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=0OpA0g—0O(pAg). FRZABENTE (Aggregative Axiom)
[)S81]

© Hn>2H/, K ATAEIER C EEHEK.

- A Ky K fEk C BRIGBESESIZLE (Weakly Aggregative
Modal Logics ( WAML )[S)J80]).
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Polyadic Modal Logic [BDRV02]

co=plLllop|(eA) | V(ip...0)
——

- A frame F for the modal langudige ML"(®) (call it n-frame) is a

pair (W, Ry) where W is an nonempty set and Ry is an n + 1-ary
relation over W.

| M,w = V(e ..., on) Iff Wi, Vo € W(ReWVs ... vy = |
‘ M, v |= ¢; for some i < n). ‘
‘ Mow = Ale, ..., @wn) Iff 3vi,...vy € WRgWv ..., Vp& ‘

| M, v; E i foralli<n). |




Normal polyadic modal logic

- A modal logic A is normal if it contains the axiom K¢ and is
closed under N§, for each i € [1,n].[BDRV02]

Ko V(r,...ri,p—=q,ligq...,M) =
(V(r1ye el Py ligq ooy tn) = V(Mo Fi1, Gyl -+, M)
NG from Fa pinfer ba V(... ,%i_1, 0,041, -, Un)
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Normal polyadic modal logic

- A modal logic A is normal if it contains the axiom Kg and is
closed under Ny, for each i € [1,n].[BDRV02]

KG  V(Myeeolisi,p = Gy Figq -5 n) =
. (V(r1y oo Ficay Py liga e« <5 M) = V(1, o 11, Gy Tigr -5 1))
NG from kFa @ infer Fa V(... % 1,0, i1y, %n)

- We call the resulting minimal normal modal logic K.

1



Alternative Axiomatization

In [Joh78], the author used the following axiom G, instead of K3
and besides N§, a monotonicity rule RMg is also used.

G V(Fty oo li1, Py i+ e o5 n) = (V(F1y e Fis1, Gy Py« v vy )
' = V(r,...lii,PAG Tiar.., )
RMg from Fp ¢ — 1 infer

l_/\ V(Q/M 71#('7179071#(4»17"' ;Q/JH) — (¢1 -"a¢/71;1/};1/}/'+17"'71/)ﬂ)

3The name G"v is in recognition of the contribution of Goldblatt.
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Wrong Axiomatizations

- In [BDRVO02], the following rule is used instead of Ng:

NG  from Fapinfer FAV(L..., Lo, L, ..., 1)

- N is not admissible in the logic K* where Ng is replaced by N%.
- Define a new semantics I+
- Wik V(pq,...,ppn) iff one of the followings hold:

1. wis a dead end, i.e. there isno vq,...,v, St Rwvy, ..., Vy.
2. There are some vy, ..., V, St.
Rwvq, ... ;vo AR € [T, n]VWq, ..., Wy (RWwy, ... Wy —

(Wi I o AVYM #£ RIWS, .., Wo (RWW,, . .., Wi, AW, IE =pm))).

- (There is a unique argument which is true at the corresponding
position of every sequence of successors.)



Wrong Axiomatizations

- Also note that the following axiom mentioned in the definition
of normal polyadic modal logics from [GPV03] is not valid:*

v(pW _>q'|7"~apﬂ _>qn)_>(v(p'lv"wpf?)_>V(CI77"'7CIN))

“In [GPVO03], A is used as the polyadic box.
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Ultrafilter Extension

- Let § = (W,Ra) be an n-frame. The ultrafilter extension ueF of
F is defined as the frame (Uf(W), R¥):

- Uf(W) is the set of all ultrafilters over W,
© UoRX U, ..oy Un Iff Ma(Xa, ..., Xn) € Uo whenever X; € u; foralli < n.

- The ultrafilter extension of an n-model M = (F,V) is the model
ueM = (ueF, V) where
V¥e(p;) = {u is an ultrafilter on W | V(p;) € u}.[BDRVO2]



An Important Lemma

Lemma

Suppose u is an ultrafilter on W". Let [, : W" — W be the i-th coordi-
nate projection and b; = {I[;(x) | x € b} be the projection of u. Then
ui = {bj | b € u} is an ultrafilter on W.

16



- Define a function’ : W — W":
a’f{(cz\ ..... Qi1 X, Qiggy e - v an) | x € aand a; € W for each
Jj<n}={xeW"|[[(x) e a} Obviously,a C bonlyifa Cb’
and one can check that (a’);

O



- Define a function’ : W — W":
a’ ={(a,...,0_1,X,Qj}1,...,0n) | X € a and a; € W for each
J<n}={xeW |[[x) e a}. Obviously,a C bonlyifa C b
and one can check that (a’); = a.
-IfaD>beu,thendceust b=c. Togeta e u;, we only need
to show a’ D c. If x € ¢, then [];(x) € b and hence [];(x) € q,
which means x € d’.



- Define a function’ : W — W":
a’ ={(a,...,0_1,X,Qj}1,...,0n) | X € a and a; € W for each
J<n}={xeW |[[x) e a}. Obviously,a C bonlyifa C b
and one can check that (a’); = a.

- IfaD>beu,thendceust b=c. Togeta e u;, we only need
to show a’ D c. If x € ¢, then [[;(x) € b and hence [[:(x) € a,
which means x € a’.

- If a ¢ uj, then a’ ¢ u, which means W" — a’ € u. It follows that
(W' —a')i € uj, but (W' —=a’); ={J[.(x) | x e W" —a’}. Assume
thaty e {I[i(x) | x e W" — a'}, then y = [].(x) for some
xeW" —a'. Ify e a, then I];(x) € a which means x € @, a
contradiction. So (W" — a’); € W — a. By the above result,
W—a e u;.
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Saturation Models

- Let M = (W, Ry, V) be an n-model. M is called m-saturated if
for every state w € W and every sequence ¥, ..., %, of sets of
PML formulas we have:

- If for every sequence of finite subsets A C ¥4,..., A, C X,
there are states v4,...,v, st. Rywvs, ..., v, and for each i
vi = Aj. then there are wq,...,w, st. Rgywws, ..., w, and for
eachiw; E X,

- The name ‘m-saturation’ stems from [Vis94], but actually the
notion is older: its first occurrence is in [Fin75]. In those original
papers, the notion is monadic, while the polyadic case is a direct
generalization.



Saturation Theorem of UE

Theorem

Let M be an n-model. Then uedN is m-saturated.
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Saturation Theorem of UE

Theorem

Let M be an n-model. Then uedN is m-saturated.

- Proof.
Let Aj = {Wy x - X Wiy x V(@) x Wigq--- x Wy | @€ Ajand W =W
for all j}.
A= UjcicpAi.
B = {Uicicn(Wqh x <+« X Wi X Yj X Wigq--- x Wp) | mA(Ya,..., Yn) €

w and W; = W for all j}.

Let A = AU B. Check that A has the finite intersection property.

Use the above lemma.

19



Ultrafilter Extension Theorem

Theorem ([Gol00])

Let M be an n-model. Then, for any formula ¢ and any ultrafilter u
over W, V() € u iff ueM,u = .

- Hence, for each state w in M we have w «~ [],,, where [],, is
the principal ultrafilter generated by {w}.
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Ultrafilter Extension Theorem

Theorem ([Gol00])

Let M be an n-model. Then, for any formula ¢ and any ultrafilter u
over W, V() € u iff ueM,u = .

- Hence, for each state w in M we have w «~ [],, where [], is
the principal ultrafilter generated by {w}.

+ Proof.

Use the lemma again. O

20



Ultraproduct

- Let C=[];¢, W; be the Cartesian product of {W};c; and u be an
ultrafilter on the index set . For two functions f, g € C we say
that fand g are u-equivalent (f ~, g if {i € I | f(i) = g(i)} € u.
One can easily check this is indeed an equivalence relation.

21



Ultraproduct

- Let C = [];c, W; be the Cartesian product of {W};¢; and u be an
ultrafilter on the index set I. For two functions f, g € C we say
that fand g are u-equivalent (f ~, g if {i € I | f(i) = g(i)} € u.
One can easily check this is indeed an equivalence relation.

- Lletf, ={g € C| g~y f}. The ultraproduct of {W};c; modulo u is
define as follows:

[Twi={ire][w}

21



Ultraproduct

- Definition (ultraproduct)

Let M; = (W;,Rai, Vi)(i € I) be n-models. The ultraproduct J], M
modulo u is describled as follows.

- (i) The universe W, is the set [T, W; = {fu | f € [Tic, Wi}-
- (ii) The valuation V, is defined by
fu € Vu(p) iff {i € 1] f(i) € Vi(p)} € u.
- (iii) The n-ary relation Ra, is given by
foRaufy--f3 iff {i € 1] FP(DRaif (1)...S(1)} € u.

- If all the M; are the same model M, we say [], M the
ultrapower of M modulo u.
22



Ultrapower

Theorem (AC)

Let [T, M bean ultrapower of M. Then for all PML formulas ¢, we have
M,w = ¢ iff T, M, ((fw)u = ¢, where f, is the constant function s.t.
fw(l)=wforalliel

- One should be careful about the using of AC in the proof and
see how strong we need the "choice” to be, compared with the
case in proving Los's theorem.

23



Ultrapower

Theorem (AC)

Let [T, M bean ultrapower of M. Then for all PML formulas ¢, we have
M,w = ¢ iff T, M, ((fw)u = ¢, where f, is the constant function s.t.
fw(l)=wforalliel

- One should be careful about the using of AC in the proof and
see how strong we need the "choice” to be, compared with the
case in proving Los's theorem.

- Doets and Van Benthem [VBD83] gave an intuitive explanation of
the ultraproduct construction.
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Craig Interpolation Theorem

- There is are standard model theoretical proofs of CIT for
monadic normal modal logics in [AVBN95] and [ANvVB98].
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Craig Interpolation Theorem

- There is are standard model theoretical proofs of CIT for
monadic normal modal logics in [AVBN95] and [ANvB98].

- Rosen gave another proof which can work within finite models
in [Ros97].

- We do have a algebraic proof for CIT of PML in [Nem8&5].

- In [HT01], there is a deep connection between the
amalgamation on algebras and the interpolation on logic.

24



Craig Interpolation Theorem

- we find that both the proofs in [Ros97] and [ANvB98] can direcly
apply to PML, and those proofs are purely model theoretical on
modal logic.
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Craig Interpolation Theorem

- we find that both the proofs in [Ros97] and [ANVB98] can direcly

apply to PML, and those proofs are purely model theoretical on
modal logic.

- We choose to give a proof for PML using the method in [ANvB98].

- Rosen’s method is very important in proving CIT when the logic
is just weakly complete.

25



Craig Interpolation Theorem

Theorem

Each normal polyadic modal logic K, has the Craig Interpolation The-
orem. More precisely, let ¢ Fg, 1, then there is a formula a s.t. ¢ bk,
a bk, ¥ and atom(«) C atom(p) N atom(ap).
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Craig Interpolation Theorem

Theorem

Each normal polyadic modal logic K, has the Craig Interpolation The-
orem. More precisely, let ¢ Fg, 1, then there is a formula a s.t. ¢ bk,
a bk, ¥ and atom(«) C atom(p) N atom(ap).

* Proof.

First we fix an n and just use  without a subscript. Since we al-
ready know that K, is strongly complete w.rt to all n-frames, we could
freely switch between | and k. For convenience, let P = atom(y),
Q = atom(vy) and R = atom(«). We show that the set consg(yp) of all
consequences of ¢ In R language satisfies the following claim:

consg(p) E 9.

By a standard compactness argument, we can find the interpolant.

] 26



Proof of the Claim

Let (M, a) = (W, Ra, V) be any pointed n-model st.

(M, a) = consg(y). We show that (M, a) |= +. By a routine
argument, the R-theory Thg(M, a) is consistent with {¢}, and by
compactness again, there is a P-model (N, b) = ¢ sit.

(M, a) =k (N, b). Suppose that (N, b) = (W, Ry, V). We have
already shown that there are m-saturated models which can
preserve modal truth in this paper before, so without loss of
generality we assume that both (M, a) and (N, b) are m-saturated.
It follows that the =g is indeed an R-bisimulation. Next we construct
a product model MW, (a,b) st. (M,a) €£q MN,(a,b) and

(N, b) €p MN,(a,b), which is sufficient for our proof:

(N,b)':gpéMN(O,b)':(péM./\/,(Gb)':¢:>(./\/l,a)):1/)

27



Proof of the Claim

LetZ={(x,y) € Wx W | x ¢y}, and define MN = (Z,R},V*) as
follows:

(X YIRA X1, V1) oy (Xny V) IfE XRAXT, ooy Xn @ND YRAVA, oy Vi

For each (x,y) € Z,

xeV(p) it peQ
(x,y) € V*(p) <~ yeV(p) if peP
never if otherwise

Notice that V* is well-defined since every (x,y) € Z satisfies x g y.
Now it is sufficient to check that our construction satisfies the
requirement.

Let By = {(X,(z1,22)) | x £q z1 and z; € W'} be a relation on W x Z
and B, = {(V,(z1,22)) | y €p z; and z; € W} be a relation on W' x Z.

28
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Language and Semantics

p=pl-p|(pAp)|Op

- Definition (n-Semantics)

Ry is an n + 1-ary relation over W. The semantics for Oy (and Q) is

defined by:
‘ M,wlEOp iff VYwi,...vp € W(Rywvs...,vn = M,V; = ¢ for some i < n). ‘
‘ M,w = OQp  iff Fva,...vp € W(Rywvy ..., Vp&M, Vi = @ foralli < n). ‘
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Language and Semantics

p=pl-p|(pAp)|Op

- Definition (n-Semantics)

Ry is an n + 1-ary relation over W. The semantics for Oy (and Oy) is
defined by:

M,wEOe iff VYwi,...vhp € W(Rywvs...,vn = M,V E ¢ for some i < n).
M,wEOQp iff Fvi,..ove € W(Ruwvs ..., va&M, Vi E ¢ foralli < n).

- It is not hard to see that the aggregation axiom
O Ay — O(p A 4) is not valid on n-frames for any n > 2.
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- [SJ80] proposed the following proof systems K¥ for each k.
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- [SJ80] proposed the following proof systems K¥ for each k.

- The logic KY is a modal logic including propositional
tautologies, the axiom K, and closed under the rules N and RM:

Kn OpoA---AOpn =0 'V (piAp)
(0<i<y<n)

N Fo = FOgp

RM Fo—=1Y = FOp— 0Oy
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- [SJ80] proposed the following proof systems K¥ for each k.

- The logic K¥ is @ modal logic including propositional
tautologies, the axiom K, and closed under the rules N and RM:

Ko OpoA---AOp,—=0 \V  (piAp)

(0<i<j<n)
N Fo = FUp
RM Fo—=¢v = FDOp— Oy

- Kj is just the aggregation axiom C and thus K is just the normal
monadic modal logic K.
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Neighborhood Semantics

- We also introduce the neighborhood semantics in [Pac17] for
modal logic as follows.
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- We also introduce the neighborhood semantics in [Pac17] for
modal logic as follows.

- A pair§ = (W,v) is a called a neighborhood frame, if W is a
non-empty set and v is a neighborhood function from W to
P(P(W)). M = (F,V) isa model if V: & — 2" is a valuation
function.
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Neighborhood Semantics

- We also introduce the neighborhood semantics in [Pac17] for
modal logic as follows.

- Apair § = (W,v) is a called a neighborhood frame, if W is a
non-empty set and v is a neighborhood function from W to
P(P(W)). M = (F,V) is a model if V: & — 2" is a valuation
function.

- The semantics is defined as follows:

M,wEOp < [e]™ evw) | M,w = Op <= W—[e]™ ¢ v(w)

M

where [o]M = {w | M,w = ¢}, i.e. the truth set of .

32



Let M = (W,Ry,V) and M’ = (W',Rg, V") be two n-models. A
non-empty binary relation Z C W x W’ is called a wa"-bisimulation
between M and M’ if the following conditions are satisfied:

inv If wZzw/, then w and w’ satisfy the same propositional letters.
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non-empty binary relation Z C W x W’ is called a wa"-bisimulation
between M and M’ if the following conditions are satisfied:

inv If wZzw/, then w and w’ satisfy the same propositional letters.

forth If wZw’ and Rywvs, ..., vy then there are v;, .. ., v, in W st
RoW'V,, ..., vy, and for each v; there is a v; such that v;Zv; where
1<1,)<n.
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Let M = (W,Ry,V) and M’ = (W',Rg, V") be two n-models. A
non-empty binary relation Z C W x W’ is called a wa"-bisimulation
between M and M’ if the following conditions are satisfied:

inv If wZzw/, then w and w’ satisfy the same propositional letters.

forth If wzw’ and Rywws, ..., v, then there are v{,...,v, in W st
Row'v;, ..., v, and for each vj there is a v; such that v,-Zvj where
1<i,j<n.

back If wzw” and Rgw'v, ..., v/ then there are vy, ..., Vp in Wst.
Rowvs, ..., v, and for each v; there is a v; such that \/“Z\/‘f where
1<i,j<n.
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- Consider the following two 2-models where
{{w, wy, wy), (w, w,, ws)} is the ternary relation in the left model,
and {(v,vq,v2)} is the ternary relation in the right model.
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- Consider the following two 2-models where
{{w, wq, wy), (w, w,, ws)} is the ternary relation in the left model,
and {(v,vy,v,)} is the ternary relation in the right model.

Z = {(w, V), (W, V1), {wz, V1), (W, 1) } is @ wa?-bisimulation. A
polyadic modal formula =V—(p, —~p), not expressible in WAML?,
can distinguish w and v.
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Standard Translation

Definition (Standard translation)

ST : WAML" — FOL:
STx(p) = Px
STi(~p) = —STu(v)
STX(‘P A 7/)) = STX(SD) A STx(w)
ST(Op) = V2. Wn(Rxyay2...Yn = STy (@) V --- V STy, (9))
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n-Tree Unraveling [dR93]

- We use an example of a graph with ternary relations to illustrate
the intuitive idea behind the general n-ary unraveling.

36



n-Tree Unraveling [dR93]

- We use an example of a graph with ternary relations to illustrate
the intuitive idea behind the general n-ary unraveling.

36



n-Tree Unraveling [dR93]

- We use an example of a graph with ternary relations to illustrate
the intuitive idea behind the general n-ary unraveling.

- Example

Given the 2-model with ternary relations ({w, v, u, t}, {{w, u, t), (u, t, u),
{t,w,v)}, V). Itis quite intuitive to first unravel it into a binary tree with
pairs of states as nodes, illustrated below:

W
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Definition
Given an n-model M = (W,R,V) and w € W, we first define the binary
unraveling M& of M around w as (W,, R?, V') where:

W, is the set of sequences ((Vo, io), (V1,i1), ..., (Vm,im)) where:

m € N; for each j € [0,m], V; € W" and ij € [1,n] such that R(V;[ij])Vj1;
Vo is the constant n-sequence w...wand iy = 1;

Rbss’ iff s’ extends s with some (V, i)
V/(s) = V(r(s)), where r(s) = Vim[im] if s = (..., (Vm, im))-

The unraveling My, = (W, R’, V') is based on M? by defining R’ses; . .. s,
iff Rr(so)r(s1)...r(ss) and RPses; for all i € [1,n].
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Rosen van Benthem Characterization Theorem
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Rosen van Benthem Characterization Theorem

- Theorem

A first-order formula o(x) is invariant under <" (over finite models) iff
a(x) is equivalent to a WAML" formula (over finite models).
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- Theorem

A first-order formula a(x) is invariant under <" (over finite models) iff
a(x) is equivalent to a WAML" formula (over finite models).

- Following the general strategy in [Ott04], the only non-trivial
part is to show that the FOL formula «(x) that is invariant under
wa"-bisimulation has some locality property w.rt. its bounded
unraveling M|, for some (.
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Rosen van Benthem Characterization Theorem

- Theorem

A first-order formula a(x) is invariant under <" (over finite models) iff
a(x) is equivalent to a WAML" formula (over finite models).

- Following the general strategy in [Ott04], the only non-trivial
part is to show that the FOL formula «(x) that is invariant under
wa"-bisimulation has some locality property w.rt. its bounded
unraveling My, for some L.

- Lemma (locality)

FOL formula (1(X) is invariant under € (over finite models) implie
that for some [ € N, for any n-model M, w: M, w |- a(x)[w] Iff M., \

a(X)[((w,1))].
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Rosen van Benthem Characterization Theorem

M* =fol, N*
w* ° | v* °
q+1 /Q\ \ /+\ q
¢ o o o | .

° o —o o
(N NN -

C
C
C

39



Interpolation

- Unfortunately, each K, does not have the Craig Interpolation
Theorem.
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Interpolation

- Unfortunately, each K, does not have the Craig Interpolation
Theorem.

- The counterexamples are actually from what we lack in the
bisimulation relation-which is not a bijection.
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Counterexample 1

Example
Consider the following two 2-models where {{(w, wy, wy), (W, ws, wy)}
is the ternary relation in the left model M,, and {{v,vq,v,)} is the

ternary relation in the right model A%.

R

Wy =P, q Sp,r

- Z = {{w, V), (W, vq), (W, v2), (W3, V), (w3, Vo) } IS @
{p}-wa*-bisimulation.
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Counterexample 1

Example

Consider the following two 2-models where {{(w, wy, wy), (W, ws, wy)}
is the ternary relation in the left model M,, and {{v,vq,v,)} is the
ternary relation in the right model A%.

I ™~

(wi,w2) : p,—q ws:p,q Wy 1 =P, g viip,ar Vaip,r

© Z={{w,V), (W, 1), (Wa, V), (W3, V1), (W3, V) } is @
{p}-wa?-bisimulation.

- Mo, W= o = O(p A=) AOp A GG AD(=p V —q);
Noyv =, =0(r Ap) AO(=r A p) AO(—p).
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Counterexample 1

Example

Consider the following two 2-models where {{(w, wy, wy), (W, ws, wy)}
is the ternary relation in the left model M,, and {{v,vq,v,)} is the
ternary relation in the right model A%.

I ™~

(wi,w2) : p,—q ws:p,q Wy 1 =P, g viip,ar Vaip,r

< Z={(w, V), (Wi, vq), (W2, V2), (W3, V1), (W3,V;)} IS a
{p}-wa?-bisimulation.

* Mo, W E g =0(pA—g) AOp A Og AD(=p V —q);
Ny, v = by =0(r Ap) AO(=r A p) AD(=p).

c 0 =

L ¥Z 2
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Counterexample 2(Due to Yifeng)

Example

Consider the following two 3-models where {(w, wq, w5, ws)} is the re-
lation in M3, and {(v, vy, v2,Vv3)} is the relation in N5.

Wy p,—q Viiop,r
MZW*WzZp,q NZV*VzZﬁp,"r
W3 :=p,q V3:p,r

- Z={{w, V), (Wq,Vv3), (Wa, v3), (W3, vq), (W3, v2) } IS a

{p}-wa’-bisimulation.
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Counterexample 2(Due to Yifeng)

Example

Consider the following two 3-models where {(w, wq, w5, ws)} is the re-
lation in M3, and {(v, vy, v2,Vv3)} is the relation in N5.

Wy p,—q Viiop,r
MZW*WzZp,q NZV*VzZﬁ[L‘!r
W3:“p7q V3:p>r

2= W, V), (Wi, v3), (W, v3), (W, Vi), (W3, Vo) } s @
{p}-wa3-bisimulation.

" M, wiE @3 =0(pA-q) AD(PAG)AD(=pAQ)AQT;
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Counterexample 2(Due to Yifeng)

Example

Consider the following two 3-models where {(w, wq, w5, ws)} is the re-
lation in M3, and {(v, vy, v2,Vv3)} is the relation in N5.

Wy p,—q Viiop,r
MZW*WzZp,q NZV*Vziﬁ[L‘!r
W3:“p7q V3:p>r

- Z={(w,V), (Wi, v3), (Wa,V3), (W3, vy), (W3, v5)} is a
{p}-wa3-bisimulation.
NV s =BOP A ABP A AP AN AQT
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Counterexample 2(Due to Yifeng)

Example

Consider the following two 3-models where {(w, wq, w5, ws)} is the re-
lation in M3, and {(v, vy, v2,Vv3)} is the relation in N5.

Wy p,—q Viiop,r
MZW*WzZp,q NZV*VzZﬁp,"r
W3 :=p,q V3:p,r

- Z={(w,V), (Wi, V3), (Wy, V3), (W3, V1), (W3, Vo) } is @
{p}-wa3-bisimulation.

" M, wiE 3 =0(pA=q) AD(P A Q) AD(=p A Q) AOT;

N, vEYs =0(-pAN)AD(pA=N)ADPANAOT.

. s

3 P3 — Y3.

42



Counterexamples

Proposition

K> and Ks lack the Craig Interpolation Theorem.

Proof.

We will see that the above two are counterexamples for CIP: ¢; — —);
do not have any interpolant in K;. Since the only common proposition
letter is p, we assume for contradiction that 6;(p) is a interpolant for
»i = —i. Then We have F; ¢; — 6;(p) and F; 6;(p) — —)5. By the
above two examples we know that M;,w = 6;(p), which also means
Ni,v = 6;(p) by p-bisimulation. But it follows that NVj,v = —;, a
contradiction.

O
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Repair CIT

- Cx: O(pVvqg) —0OpvVv0Og.

4l



Repair CIT

- Cx O(pVvqg)— OpvOg.

- ay, ..., an)(WRay...ap A
V(D1, ..., bn)(WRDs...b, — ({a1,...,an} C {bn,...,bn})).
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Repair CIT

- Cx O(pVvqg)— OpvOg.

Hay, ..., an)(WRa...ap A

<b1,...,b Y(WRDq...by — ({aq,...,an} € {bs,...,bn})).
- VA,B(AUB e v(w) — Aev(w)VBeuvw)).
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First Degree Modal Logic

- A modal logic L is said to be first degree if it is axiomatizable by
a set of formulas of modal degree at most 1.
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First Degree Modal Logic

- A modal logic L is said to be first degree if it is axiomatizable by
a set of formulas of modal degree at most 1.

- In [Lew74] David Lewis shows that every finitely axiomatizable
first degree modal logic is Decidable by fm.p. method.
- Proposition (Apostoli in [Ap097])

Every first degree n-normal logic is complete with respect to the class
of finite n-frames which validate it.

- Proposition (Prop 2.8 in [Pac17])

Every first degree modal logic is complete with respect to the class of
finite neighborhood frames which validate it.
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Propositional Qualifier

Let M = (W, N, V) be a neighborhood model, we say MQisa
(_I)—\{ariant of M if they only differ in Q-valuation. More precisely,
M@ = (W,N, V'), where V(p) = V'(p) for all p ¢ Q.

Definition

Let ¢(P, Q) be a modal formula st. PN Q = §. Then M, w |= 3Q¢(P, Q)
iff there is some Q-variant M2 w = ¢(P, Q). The formula YQy(P, Q)
is defined similarly.
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KS has CIT

Proposition

K$ has the Craig interpolation. More precisely, let ¢ Fx: ¥, then there
is aformula a st. ¢ Fxe a b 9 and atom(a) € atom(e) N atom(zp).
Furthermore, deg(«) < max(deg(), deg(+))).
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KS has CIT

Proposition

K$ has the Craig interpolation. More precisely, let ¢ Fx: ¥, then there
is aformula a st. ¢ Fxe a b 9 and atom(a) € atom(e) N atom(zp).
Furthermore, deg(«) < max(deg(), deg(+))).

Proof.

- Let kR = max(deg(y), deg()). There are only finitely many
w;j'ffequi\/alence classes.
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KS has CIT

Proposition

K$ has the Craig interpolation. More precisely, let ¢ Fx: ¥, then there
is aformula a st. ¢ Fxe a b 9 and atom(a) € atom(e) N atom(zp).
Furthermore, deg(«) < max(deg(), deg(+))).

Proof.

- Let k = max(deg(y), deg(z)). There are only finitely many
~f-equivalence classes.

- Claim: For any ~,-equivalence classes C, if there is some
M,w € Cst. M,w = 3Qp(P,Q), then for all V,v € C,
N,V = VYRy(P,R).
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KS has CIT

Proposition
K$ has the Craig interpolation. More precisely, let ¢ Fx: ¥, then there

is aformula a st. ¢ Fxe a b 9 and atom(a) € atom(e) N atom(zp).
Furthermore, deg(«) < max(deg(), deg(+))).

Proof.

- Let k = max(deg(y), deg(z)). There are only finitely many
~f-equivalence classes.

- Claim: For any ~F-equivalence classes C, if there is some
M,w e Cst. M,w = 3Qg(P, Q), then for all V', v € (,
N, v = VRy(P,R).

- For each class contain such an M, w, let 8; be the formula
defines that class. One can check that deg(p;) < k and the
disjunction of all such g;, say 8 =/ 3;, will be an interpolant.

47



Proof of the Claim

- Suppose for contradiction that there are M, w ~, N, v st.
M, w = 3Qp(P,Q) and N, v = IR—(P, R). We need to find
another model D, u |= 3Qp(P, Q) A 3R—)(P, R), which is a

contradiction.
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Proof of the Claim

- Suppose for contradiction that there are M, w ~f A, v st.
M,w = 3Q¢(P,Q) and N, v = 3R—)(P, R). We need to find
another model D, u = 3Qp(P, Q) A 3R—(P, R), which is a
contradiction.

- Every finite models of K is bisimular with some determined
2-tree model:
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M,w = 3Q¢(P,Q) and N, v = 3R—)(P, R). We need to find
another model D, u = 3Qp(P, Q) A 3R—(P, R), which is a
contradiction.

- Every finite models of K is bisimular with some determined
2-tree model:

- Transfer a K§ model A to a model B with two 2-ary relations;
- Using unraveling on B to get a tree model By with two relations;

- Transfer By to a determined 2-tree model Ar;
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Proof of the Claim

- Suppose for contradiction that there are M, w ~f A, v st.
M,w = 3Q¢(P,Q) and N, v = 3R—)(P, R). We need to find
another model D, u = 3Qp(P, Q) A 3R—(P, R), which is a
contradiction.

- Every finite models of K is bisimular with some determined
2-tree model:

- Transfer a K§ model A to a model B with two 2-ary relations;
- Using unraveling on B to get a tree model By with two relations;
- Transfer By to a determined 2-tree model Ag;

- Check that A and Ay are bisimilar.

48



Construction of D

- We use induction on k to show:
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Construction of D

- We use induction on k to show:

- For any two finite determined 2-tree models M*, w* and N**, v* of
depth R+ 1, if M*, w j N*,v* then there is a model D, u st.
M*w* 28D u2f N Ve (%)
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Construction of D

- We use induction on k to show:

- For any two finite determined 2-tree models M*,w* and N*,v* of
depth k41, if M*,w* &} N*,v*, then there is a model D, u st.
M w2 Doy eFF N v (%)
- Let M* = (Wq, Ry, V) and N* = (W,, Ry, V5).
If k=0, then Let D = (W, T, V*), where W = {(w,v)},T =0, and
V* is defined as follows:

xeVip) if peaQ
(x,y) € Vi (p) — y e Vo(p) if pER
never if otherwise
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Construction of D

- We use induction on k to show:
- For any two finite determined 2-tree models M*,w* and N*,v* of
depth k41, if M*,w* &} N*,v*, then there is a model D, u st.
M w2 Doy eFF N v (%)

- Let M* = <W1,R1,V1> and N* = <W2,R2, \/2)
If k=0, then Let D = (W, T,V*), where W = {(w,V)},T =0, and
V* is defined as follows:

xeVi(p) if peQ
Xy)eVi(p) <=  yeVa(p) if peRr
never if otherwise

- Since w €} v, the definition is well-defined, and it's easy to
check the two required bisimulation relation.

49



Construction of D

D, ‘ Dz\‘
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Construction of D

- Define D = (W, T,V*) as follows:
W = (w*,v*) U Dom(D,) U Dom(D;);
T={((w*,v*),us,Uz2)} URp, URp,;
xeVip) It  peQ
(w*,v*) e V*(p) <= yeW(p) if peRr
never if otherwise

For each x € Dom(D;), x € V*(p) iff x € Vp.(p).
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Construction of D

- Define D = (W, T, V*) as follows:
W = (w*,v*) U Dom(Dy) U Dom(Dy);
= {((W*’ V*)’ Uy, u2)} U RDW ) RDZ;

x e Vqi(p) if peQ
(wv)eV'(p) < < yeW(p) if peR
never if otherwise
For each x € Dom(D;), x € V*(p) iff x € Vp,(p).

- It's a routine argument to check that D, (w*, v*) satisfies the two
bisimulation relations.
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Conclusion

- Two method to prove interpolation:

1 By compactness, using saturated model.
Requirement:

- 1. The logic need to be strongly complete.

- 2. The frame conditions need to be preserved under UE (or
other saturation construction).

2 By finite model method, using inductive construction.
Requirement:

- The logic need to have fm.p.
- The logic need to have "tree-like” model property.

53



Further Work

- Relativized interpolation.
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Further Work

- Relativized interpolation.

- Strong interpolation properties: Uniform Interpolation.
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Further Work

- Relativized interpolation.
- Strong interpolation properties: Uniform Interpolation.

- Applications, especially of neighborhood frame: n-filter.
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