

PML and WAML

Model theory and Craig Interpolation

刘信鑫

合作者: 王彦晶 (丁一峰)

2019 年 4 月 2 日

xuetianxuanxu@pku.edu.cn, 北京大学哲学系

目录

1. 背景
2. Polyadic Modal Logic
3. Weakly Aggregative Modal Logic
4. Conclusion and Further Work

背景

在某次逻辑学会议之后，你被邀请去参加晚宴，而从主办者那里得知¹：

- 这次晚宴专门邀请逻辑学家和其配偶，所以这里的每对夫妻中至少有一人是逻辑学家。
- 这次晚宴也针对邀请中国人，故这里的每对夫妻中至少有一人是中国人。

¹例子来自王彦晶老师。

在某次逻辑学会议之后，你被邀请去参加晚宴，而从主办者那里得知¹：

- 这次晚宴专门邀请逻辑学家和其配偶，所以这里的每对夫妻中至少有一人是逻辑学家。
- 这次晚宴也针对邀请中国人，故这里的每对夫妻中至少有一人是中国人。
- 任意一对夫妻中都至少有一位是中国逻辑学家 ×

¹例子来自王彦晶老师。

在某次逻辑学会议之后，你被邀请去参加晚宴，而从主办者那里得知¹：

- 这次晚宴专门邀请逻辑学家和其配偶，所以这里的每对夫妻中至少有一人是逻辑学家。
- 这次晚宴也针对邀请中国人，故这里的每对夫妻中至少有一人是中国人。
- 任意一对夫妻中都至少有一位是中国逻辑学家 ×
- 这次晚宴附带的有酒会环节，每对夫妻中至少有一人是会喝酒的。

¹例子来自王彦晶老师。

在某次逻辑学会议之后，你被邀请去参加晚宴，而从主办者那里得知¹：

- 这次晚宴专门邀请逻辑学家和其配偶，所以这里的每对夫妻中至少有一人是逻辑学家。
- 这次晚宴也针对邀请中国人，故这里的每对夫妻中至少有一人是中国人。
- 任意一对夫妻中都至少有一位是中国逻辑学家 ×
- 这次晚宴附带的有酒会环节，每对夫妻中至少有一人是会喝酒的。
- **每对夫妻中至少有一人满足以下三者之一：**

¹例子来自王彦晶老师。

在某次逻辑学会议之后，你被邀请去参加晚宴，而从主办者那里得知¹：

- 这次晚宴专门邀请逻辑学家和其配偶，所以这里的每对夫妻中至少有一人是逻辑学家。
- 这次晚宴也针对邀请中国人，故这里的每对夫妻中至少有一人是中国人。
- 任意一对夫妻中都至少有一位是中国逻辑学家 ×
- 这次晚宴附带的有酒会环节，每对夫妻中至少有一人是会喝酒的。
- 每对夫妻中至少有一人满足以下三者之一：
- 1. 中国逻辑学家；2. 会喝酒的中国人；3. 会喝酒的逻辑学家。

¹例子来自王彦晶老师。

背景

鸽笼原理：每对夫妻中至少有一人满足 A, 至少有一人满足 B, 且至少有一人满足 C, 故每对夫妻中至少有一人满足 A 且 B, A 且 C, B 且 C 中的一个性质。

背景

鸽笼原理：每对夫妻中至少有一人满足 A, 至少有一人满足 B, 且至少有一人满足 C, 故每对夫妻中至少有一人满足 A 且 B, A 且 C, B 且 C 中的一个性质。

- $\Box\varphi$: 每对夫妻中的至少一人具有性质 φ .

鸽笼原理：每对夫妻中至少有一人满足 A, 至少有一人满足 B, 且至少有一人满足 C, 故每对夫妻中至少有一人满足 A 且 B, A 且 C, B 且 C 中的一个性质。

- $\Box\varphi$: 每对夫妻中的至少一人具有性质 φ .

- 我们可以形式化上述推理为：

1. C : $\Box p \wedge \Box q \rightarrow \Box(p \wedge q)$ 不是有效的。

2. K₂ : $\Box p \wedge \Box q \wedge \Box r \rightarrow \Box((p \wedge q) \vee (p \wedge r) \vee (q \wedge r))$ 是有效的。

背景

鸽笼原理：每对夫妻中至少有一人满足 A, 至少有一人满足 B, 且至少有一人满足 C, 故每对夫妻中至少有一人满足 A 且 B, A 且 C, B 且 C 中的一个性质。

- $\Box\varphi$: 每对夫妻中的至少一人具有性质 φ .
- 我们可以形式化上述推理为：
 1. C : $\Box p \wedge \Box q \rightarrow \Box(p \wedge q)$ 不是有效的。
 2. K₂ : $\Box p \wedge \Box q \wedge \Box r \rightarrow \Box((p \wedge q) \vee (p \wedge r) \vee (q \wedge r))$ 是有效的。
- 一般的，令 $\Box\varphi$: 每个 N 元组里至少有一个东西有性质 φ :

背景

鸽笼原理：每对夫妻中至少有一人满足 A, 至少有一人满足 B, 且至少有一人满足 C, 故每对夫妻中至少有一人满足 A 且 B, A 且 C, B 且 C 中的一个性质。

- $\square\varphi$: 每对夫妻中的至少一人具有性质 φ .
- 我们可以形式化上述推理为：
 1. $C : \square p \wedge \square q \rightarrow \square(p \wedge q)$ 不是有效的。
 2. $K_2 : \square p \wedge \square q \wedge \square r \rightarrow \square((p \wedge q) \vee (p \wedge r) \vee (q \wedge r))$ 是有效的。
- 一般的，令 $\square\varphi$: 每个 N 元组里至少有一个东西有性质 φ :
 - $K_n : \square p_0 \wedge \cdots \wedge \square p_n \rightarrow \square \bigvee_{(0 \leq i < j \leq n)} (p_i \wedge p_j)$

- $K_1 = \square p \wedge \square q \rightarrow \square(p \wedge q)$ 。称之为聚合公理 (Aggregative Axiom)
[JS81]

- $K_1 = \square p \wedge \square q \rightarrow \square(p \wedge q)$ 。称之为聚合公理 (Aggregative Axiom) [JS81]
- 当 $n \geq 2$ 时, K_n 可以看作是 C 的弱形式。

- $K_1 = \Box p \wedge \Box q \rightarrow \Box(p \wedge q)$ 。称之为聚合公理 (Aggregative Axiom) [JS81]
- 当 $n \geq 2$ 时, K_n 可以看作是 C 的弱形式。
- 用 K_n 在 \mathbb{K} 中替换 C 得到弱聚合模态逻辑 (Weakly Aggregative Modal Logics (WAML) [SJ80])。

一些聚合公理不应有效的环境

- $\Box p$ 解释为有义务做 p'' :

一些聚合公理不应有效的环境

- $\Box p$ 解释为有义务做 p ”：

- C 不是有效的：

人有可能面临两种相互矛盾的义务，但不会有单个的自相矛盾的义务（在道义逻辑中 [SJ80]。）

一些聚合公理不应有效的环境

- $\Box p$ 解释为有义务做 p ”：

- C 不是有效的：

人有可能面临两种相互矛盾的义务，但不会有单个的自相矛盾的义务（在道义逻辑中 [SJ80]。）

- $\Box p$: 知道如何实现 P

一些聚合公理不应有效的环境

- $\Box p$ 解释为有义务做 p ”：

- C 不是有效的：

人有可能面临两种相互矛盾的义务，但不会有单个的自相矛盾的义务（在道义逻辑中 [SJ80]。）

- $\Box p$: 知道如何实现 P

- C 同样不是有效的：

你知道如何喝醉，也知道如何证明某个数学定理，但你很可能并不知道如何在喝醉的时候证明这个定理。（在“knowing how”认知逻辑中 [Wan17, FHLW17]。）

弱聚合公理有效

- 如之前晚宴的例子中 K_n 是有效的。

²该名称来自于 Yde Venema

- 如之前晚宴的例子中 K_n 是有效的。
- 此时 $\Box\varphi$ 的解读：相对于关系语义的特殊多元模态逻辑（PML）。

²该名称来自于 Yde Venema

- 如之前晚宴的例子中 K_n 是有效的。
- 此时 $\Box\varphi$ 的解读：相对于关系语义的特殊多元模态逻辑（PML）。
- 用 ∇ 来代表 N 元的 \Box 算子 [BDRV02]。 $\nabla(\varphi_1, \dots, \varphi_n)$ 在 N 元关系模型上的语义解释如下 [JS81, BDRV02]：

²该名称来自于 Yde Venema

- 如之前晚宴的例子中 K_n 是有效的。
- 此时 $\Box\varphi$ 的解读：相对于关系语义的特殊多元模态逻辑（PML）。
- 用 ∇ 来代表 N 元的 \Box 算子 [BDRV02]。 $\nabla(\varphi_1, \dots, \varphi_n)$ 在 N 元关系模型上的语义解释如下 [JS81, BDRV02]：

²该名称来自于 Yde Venema

- 如之前晚宴的例子中 K_n 是有效的。
- 此时 $\Box\varphi$ 的解读：相对于关系语义的特殊多元模态逻辑 (PML)。
- 用 ∇ 来代表 N 元的 \Box 算子 [BDRV02]。 $\nabla(\varphi_1, \dots, \varphi_n)$ 在 N 元关系模型上的语义解释如下 [JS81, BDRV02]：
 - $\nabla(\varphi_1, \dots, \varphi_n)$ 在 s 处成立 当且仅当 对任意 s_1, \dots, s_n 满足 $R s s_1 \dots s_n$ ，都存在 $i \in [1, n]$ 使得 φ_i 分别在 s_i 处成立。

²该名称来自于 Yde Venema

- 如之前晚宴的例子中 K_n 是有效的。
- 此时 $\Box\varphi$ 的解读：相对于关系语义的特殊多元模态逻辑 (PML)。
- 用 ∇ 来代表 N 元的 \Box 算子 [BDRV02]。 $\nabla(\varphi_1, \dots, \varphi_n)$ 在 N 元关系模型上的语义解释如下 [JS81, BDRV02]：
 - $\nabla(\varphi_1, \dots, \varphi_n)$ 在 s 处成立 当且仅当 对任意 s_1, \dots, s_n 满足 $R s s_1 \dots s_n$ ，都存在 $i \in [1, n]$ 使得 φ_i 分别在 s_i 处成立。
 - 对 $\Box\varphi$ 的解释恰好符合一种特殊情况下的 $\nabla(\varphi_1, \dots, \varphi_n)$ 语义：
 $\varphi_1 = \dots = \varphi_n$ 。

²该名称来自于 Yde Venema

- 如之前晚宴的例子中 K_n 是有效的。
- 此时 $\Box\varphi$ 的解读：相对于关系语义的特殊多元模态逻辑 (PML)。
- 用 ∇ 来代表 N 元的 \Box 算子 [BDRV02]。 $\nabla(\varphi_1, \dots, \varphi_n)$ 在 N 元关系模型上的语义解释如下 [JS81, BDRV02]：
 - $\nabla(\varphi_1, \dots, \varphi_n)$ 在 s 处成立 当且仅当 对任意 s_1, \dots, s_n 满足 $R s s_1 \dots s_n$ ，都存在 $i \in [1, n]$ 使得 φ_i 分别在 s_i 处成立。
 - 对 $\Box\varphi$ 的解释恰好符合一种特殊情况下的 $\nabla(\varphi_1, \dots, \varphi_n)$ 语义：
 $\varphi_1 = \dots = \varphi_n$ 。
 - 称 \Box 为 N 元对角线算子。²

²该名称来自于 Yde Venema

Polyadic Modal Logic

Polyadic Modal Logic [BDRV02]

- $\varphi := p \mid \perp \mid \neg\varphi \mid (\varphi \wedge \varphi) \mid \nabla(\underbrace{\varphi \dots \varphi}_n)$

- $\varphi := p \mid \perp \mid \neg\varphi \mid (\varphi \wedge \varphi) \mid \nabla(\underbrace{\varphi \dots \varphi}_{n})$
- A frame \mathcal{F} for the modal language $ML^n(\Phi)$ (call it n -frame) is a pair $\langle W, R_\nabla \rangle$ where W is a nonempty set and R_∇ is an $n + 1$ -ary relation over W .

Polyadic Modal Logic [BDRV02]

- $\varphi := p \mid \perp \mid \neg\varphi \mid (\varphi \wedge \varphi) \mid \nabla(\varphi \dots \varphi)$
- A frame \mathcal{F} for the modal language $\text{ML}^n(\Phi)$ (call it n -frame) is a pair $\langle W, R_\nabla \rangle$ where W is a nonempty set and R_∇ is an $n + 1$ -ary relation over W .
-

$$\mathcal{M}, w \models \nabla(\varphi_1, \dots, \varphi_n) \quad \text{iff} \quad \forall v_1, \dots, v_n \in W (R_\nabla w v_1 \dots, v_n \Rightarrow \mathcal{M}, v_i \models \varphi_i \text{ for some } i \leq n).$$

$$\mathcal{M}, w \models \Delta(\varphi_1, \dots, \varphi_n) \quad \text{iff} \quad \exists v_1, \dots, v_n \in W (R_\nabla w v_1 \dots, v_n \& \mathcal{M}, v_i \models \varphi_i \text{ for all } i \leq n).$$

Normal polyadic modal logic

- A modal logic Λ is *normal* if it contains the axiom K_{∇}^i and is closed under N_{∇}^i for each $i \in [1, n]$. [BDRV02]

$K_{\nabla}^i \quad \nabla(r_1, \dots, r_{i-1}, p \rightarrow q, r_{i+1}, \dots, r_n) \rightarrow$

$(\nabla(r_1, \dots, r_{i-1}, p, r_{i+1}, \dots, r_n) \rightarrow \nabla(r_1, \dots, r_{i-1}, q, r_{i+1}, \dots, r_n))$

$N_{\nabla}^i \quad \text{from } \vdash_{\Lambda} \varphi \text{ infer } \vdash_{\Lambda} \nabla(\psi_1, \dots, \psi_{i-1}, \varphi, \psi_{i+1}, \dots, \psi_n)$

Normal polyadic modal logic

- A modal logic Λ is *normal* if it contains the axiom K_{∇}^i and is closed under N_{∇}^i for each $i \in [1, n]$. [BDRV02]

$$\begin{array}{ll} K_{\nabla}^i & \nabla(r_1, \dots, r_{i-1}, p \rightarrow q, r_{i+1}, \dots, r_n) \rightarrow \\ & (\nabla(r_1, \dots, r_{i-1}, p, r_{i+1}, \dots, r_n) \rightarrow \nabla(r_1, \dots, r_{i-1}, q, r_{i+1}, \dots, r_n)) \\ N_{\nabla}^i & \text{from } \vdash_{\Lambda} \varphi \text{ infer } \vdash_{\Lambda} \nabla(\psi_1, \dots, \psi_{i-1}, \varphi, \psi_{i+1}, \dots, \psi_n) \end{array}$$

- We call the resulting minimal normal modal logic \mathbb{K}_n .

Alternative Axiomatization

In [Joh78], the author used the following axiom G_{∇}^i instead of K_{∇}^i ,³ and besides N_{∇}^i , a monotonicity rule RM_{∇}^i is also used.

$$\begin{array}{ll} G_{\nabla}^i & \nabla(r_1, \dots, r_{i-1}, p, r_{i+1}, \dots, r_n) \rightarrow (\nabla(r_1, \dots, r_{i-1}, q, r_{i+1}, \dots, r_n) \\ & \quad \rightarrow \nabla(r_1, \dots, r_{i-1}, p \wedge q, r_{i+1}, \dots, r_n)) \\ RM_{\nabla}^i & \text{from } \vdash_{\Lambda} \varphi \rightarrow \psi \text{ infer} \\ & \vdash_{\Lambda} \nabla(\psi_1, \dots, \psi_{i-1}, \varphi, \psi_{i+1}, \dots, \psi_n) \rightarrow (\psi_1, \dots, \psi_{i-1}, \psi, \psi_{i+1}, \dots, \psi_n) \end{array}$$

³The name G_{∇}^i is in recognition of the contribution of Goldblatt.

Wrong Axiomatizations

- In [BDRV02], the following rule is used instead of N_{∇}^i :

Wrong Axiomatizations

- In [BDRV02], the following rule is used instead of N_{∇}^i :
 - $N_{\nabla}^* \quad \text{from } \vdash_{\Lambda} \varphi \text{ infer } \vdash_{\Lambda} \nabla(\perp, \dots, \perp, \varphi, \perp, \dots, \perp)$

Wrong Axiomatizations

- In [BDRV02], the following rule is used instead of N_{∇}^i :
 - $N_{\nabla}^* \quad \text{from } \vdash_{\Lambda} \varphi \text{ infer } \vdash_{\Lambda} \nabla(\perp, \dots, \perp, \varphi, \perp, \dots, \perp)$
- N_{∇}^i is not admissible in the logic \mathbb{K}^* where N_{∇}^i is replaced by N_{∇}^* .

Wrong Axiomatizations

- In [BDRV02], the following rule is used instead of N_{∇}^i :
 - $N_{\nabla}^* \quad \text{from } \vdash_{\Lambda} \varphi \text{ infer } \vdash_{\Lambda} \nabla(\perp, \dots, \perp, \varphi, \perp, \dots, \perp)$
- N_{∇}^i is not admissible in the logic \mathbb{K}^* where N_{∇}^i is replaced by N_{∇}^* .
- Define a new semantics \Vdash :

Wrong Axiomatizations

- In [BDRV02], the following rule is used instead of N_{∇}^i :
 - N_{∇}^* from $\vdash_{\Lambda} \varphi$ infer $\vdash_{\Lambda} \nabla(\perp, \dots, \perp, \varphi, \perp, \dots, \perp)$
- N_{∇}^i is not admissible in the logic \mathbb{K}^* where N_{∇}^i is replaced by N_{∇}^* .
- Define a new semantics \Vdash :
 - $w \Vdash \nabla(\varphi_1, \dots, \varphi_n)$ iff one of the followings hold:
 1. w is a dead end, i.e. there is no v_1, \dots, v_n s.t. Rwv_1, \dots, v_n .
 2. There are some v_1, \dots, v_n s.t.
 $Rwv_1, \dots, v_n \wedge \exists k \in [1, n] \forall w_1, \dots, w_n (Rww_1, \dots, w_n \rightarrow$
 $(w_k \Vdash \varphi_k \wedge \forall m \neq k \exists w'_1, \dots, w'_n (Rww'_1, \dots, w'_n \wedge w'_m \Vdash \neg\varphi_m))).$

Wrong Axiomatizations

- In [BDRV02], the following rule is used instead of N_{∇}^i :
 - $N_{\nabla}^* \quad \text{from } \vdash_{\Lambda} \varphi \text{ infer } \vdash_{\Lambda} \nabla(\perp, \dots, \perp, \varphi, \perp, \dots, \perp)$
- N_{∇}^i is not admissible in the logic \mathbb{K}^* where N_{∇}^i is replaced by N_{∇}^* .
- Define a new semantics \Vdash :
- $w \Vdash \nabla(\varphi_1, \dots, \varphi_n)$ iff one of the followings hold:
 1. w is a dead end, i.e. there is no v_1, \dots, v_n s.t. Rwv_1, \dots, v_n .
 2. There are some v_1, \dots, v_n s.t.
 $Rwv_1, \dots, v_n \wedge \exists k \in [1, n] \forall w_1, \dots, w_n (Rww_1, \dots, w_n \rightarrow$
 $(w_k \Vdash \varphi_k \wedge \forall m \neq k \exists w'_1, \dots, w'_n (Rww'_1, \dots, w'_n \wedge w'_m \Vdash \neg\varphi_m))).$
- (There is a unique argument which is true at the corresponding position of every sequence of successors.)

Wrong Axiomatizations

- Also note that the following axiom mentioned in the definition of normal polyadic modal logics from [GPV03] is not valid:⁴

$$\nabla(p_1 \rightarrow q_1, \dots, p_n \rightarrow q_n) \rightarrow (\nabla(p_1, \dots, p_k) \rightarrow \nabla(q_1, \dots, q_n))$$

⁴In [GPV03], Δ is used as the polyadic box.

Ultrafilter Extension

- Let $\mathfrak{F} = (W, R_\Delta)$ be an n -frame. The *ultrafilter extension* $ue\mathcal{F}$ of \mathcal{F} is defined as the frame $(Uf(W), R_\Delta^{ue})$:

Ultrafilter Extension

- Let $\mathfrak{F} = (W, R_\Delta)$ be an n -frame. The *ultrafilter extension* $ue\mathcal{F}$ of \mathcal{F} is defined as the frame $(Uf(W), R_\Delta^{ue})$:
 - $Uf(W)$ is the set of all ultrafilters over W ;

Ultrafilter Extension

- Let $\mathfrak{F} = (W, R_\Delta)$ be an n -frame. The *ultrafilter extension* $ue\mathcal{F}$ of \mathcal{F} is defined as the frame $(Uf(W), R_\Delta^{ue})$:
 - $Uf(W)$ is the set of all ultrafilters over W ;
 - $u_0 R_\Delta^{ue} u_1, \dots, u_n$ iff $m_\Delta(X_1, \dots, X_n) \in u_0$ whenever $X_i \in u_i$ for all $i \leq n$.

Ultrafilter Extension

- Let $\mathfrak{F} = (W, R_\Delta)$ be an n -frame. The *ultrafilter extension* $ue\mathcal{F}$ of \mathcal{F} is defined as the frame $(Uf(W), R_\Delta^{ue})$:
 - $Uf(W)$ is the set of all ultrafilters over W ;
 - $u_0 R_\Delta^{ue} u_1, \dots, u_n$ iff $m_\Delta(X_1, \dots, X_n) \in u_0$ whenever $X_i \in u_i$ for all $i \leq n$.
- The *ultrafilter extension* of an n -model $\mathcal{M} = (\mathcal{F}, V)$ is the model $ue\mathcal{M} = (ue\mathcal{F}, V^{ue})$ where $V^{ue}(p_i) = \{u \text{ is an ultrafilter on } W \mid V(p_i) \in u\}.$ [BDRV02]

An Important Lemma

Lemma

Suppose u is an ultrafilter on W^n . Let $\prod_i : W^n \rightarrow W$ be the i -th coordinate projection and $b_i = \{\prod_i(x) \mid x \in b\}$ be the projection of u . Then $u_i = \{b_i \mid b \in u\}$ is an ultrafilter on W .

Proof

- Define a function $\cdot' : W \rightarrow W^n$:
$$a' = \{(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_n) \mid x \in a \text{ and } a_j \in W \text{ for each } j \leq n\} = \{x \in W^n \mid \prod_i(x) \in a\}.$$
 Obviously, $a \subseteq b$ only if $a' \subseteq b'$ and one can check that $(a')_i = a$.

Proof

- Define a function $': W \rightarrow W^n$:
$$a' = \{(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_n) \mid x \in a \text{ and } a_j \in W \text{ for each } j \leq n\} = \{x \in W^n \mid \prod_i(x) \in a\}.$$
 Obviously, $a \subseteq b$ only if $a' \subseteq b'$ and one can check that $(a')_i = a$.
- If $a \supseteq b \in u_i$, then $\exists c \in u$ s.t. $b = c_i$. To get $a \in u_i$, we only need to show $a' \supseteq c$. If $x \in c$, then $\prod_i(x) \in b$ and hence $\prod_i(x) \in a$, which means $x \in a'$.

Proof

- Define a function $\prime : W \rightarrow W^n$:
$$a' = \{(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_n) \mid x \in a \text{ and } a_j \in W \text{ for each } j \leq n\} = \{x \in W^n \mid \prod_i(x) \in a\}.$$
 Obviously, $a \subseteq b$ only if $a' \subseteq b'$ and one can check that $(a')_i = a$.
- If $a \supseteq b \in u_i$, then $\exists c \in u$ s.t. $b = c_i$. To get $a \in u_i$, we only need to show $a' \supseteq c$. If $x \in c$, then $\prod_i(x) \in b$ and hence $\prod_i(x) \in a$, which means $x \in a'$.
- If $a \notin u_i$, then $a' \notin u$, which means $W^n - a' \in u$. It follows that $(W^n - a')_i \in u_i$, but $(W^n - a')_i = \{\prod_i(x) \mid x \in W^n - a'\}$. Assume that $y \in \{\prod_i(x) \mid x \in W^n - a'\}$, then $y = \prod_i(x)$ for some $x \in W^n - a'$. If $y \in a$, then $\prod_i(x) \in a$ which means $x \in a'$, a contradiction. So $(W^n - a')_i \subseteq W - a$. By the above result, $W - a \in u_i$.

Saturation Models

- Let $\mathcal{M} = (W, R_\nabla, V)$ be an n -model. \mathcal{M} is called m -saturated if for every state $w \in W$ and every sequence $\Sigma_1, \dots, \Sigma_n$ of sets of PML formulas we have:

Saturation Models

- Let $\mathcal{M} = (W, R_\nabla, V)$ be an n -model. \mathcal{M} is called \mathfrak{m} -saturated if for every state $w \in W$ and every sequence $\Sigma_1, \dots, \Sigma_n$ of sets of PML formulas we have:
- If for every sequence of finite subsets $\Delta_1 \subseteq \Sigma_1, \dots, \Delta_n \subseteq \Sigma_n$ there are states v_1, \dots, v_n s.t. $R_\nabla w v_1, \dots, v_n$ and for each i $v_i \models \Delta_i$. then there are w_1, \dots, w_n s.t. $R_\nabla w w_1, \dots, w_n$ and for each i $w_i \models \Sigma_i$.

Saturation Models

- Let $\mathcal{M} = (W, R_\nabla, V)$ be an n -model. \mathcal{M} is called \mathfrak{m} -saturated if for every state $w \in W$ and every sequence $\Sigma_1, \dots, \Sigma_n$ of sets of PML formulas we have:
- If for every sequence of finite subsets $\Delta_1 \subseteq \Sigma_1, \dots, \Delta_n \subseteq \Sigma_n$ there are states v_1, \dots, v_n s.t. $R_\nabla w v_1, \dots, v_n$ and for each i $v_i \models \Delta_i$. then there are w_1, \dots, w_n s.t. $R_\nabla w w_1, \dots, w_n$ and for each i $w_i \models \Sigma_i$.
- The name ‘ \mathfrak{m} -saturation’ stems from [Vis94], but actually the notion is older: its first occurrence is in [Fin75]. In those original papers, the notion is monadic, while the polyadic case is a direct generalization.

Saturation Theorem of UE

Theorem

Let \mathcal{M} be an n -model. Then $ue\mathcal{M}$ is m -saturated.

Saturation Theorem of UE

Theorem

Let \mathcal{M} be an n -model. Then $\text{ue}\mathfrak{M}$ is \mathfrak{m} -saturated.

- Proof.

Let $A_i = \{W_1 \times \cdots \times W_{i-1} \times V(\varphi) \times W_{i+1} \cdots \times W_n \mid \varphi \in \Delta_i \text{ and } W_j = W \text{ for all } j\}$.

$$A = \bigcup_{1 \leq i \leq n} A_i.$$

$B = \{\bigcup_{1 \leq i \leq n} (W_1 \times \cdots \times W_{i-1} \times Y_i \times W_{i+1} \cdots \times W_n) \mid m_{\Delta}^{\delta}(Y_1, \dots, Y_n) \in w \text{ and } W_j = W \text{ for all } j\}$.

Let $\Delta = A \cup B$. Check that Δ has the finite intersection property.

Use the above lemma.

□

Ultrafilter Extension Theorem

Theorem ([Gol00])

Let \mathcal{M} be an n -model. Then, for any formula φ and any ultrafilter u over W , $V(\varphi) \in u$ iff $u \in \mathcal{M}$, $u \models \varphi$.

- Hence, for each state w in \mathcal{M} we have $w \rightsquigarrow \Pi_w$, where Π_w is the principal ultrafilter generated by $\{w\}$.

Ultrafilter Extension Theorem

Theorem ([Gol00])

Let \mathcal{M} be an n -model. Then, for any formula φ and any ultrafilter u over W , $V(\varphi) \in u$ iff $u \in \mathcal{M}$, $u \models \varphi$.

- Hence, for each state w in \mathcal{M} we have $w \rightsquigarrow \prod_w$, where \prod_w is the principal ultrafilter generated by $\{w\}$.

Ultrafilter Extension Theorem

Theorem ([Goloo])

Let \mathcal{M} be an n -model. Then, for any formula φ and any ultrafilter u over W , $V(\varphi) \in u$ iff $u \in \mathcal{M}$, $u \models \varphi$.

- Hence, for each state w in \mathcal{M} we have $w \rightsquigarrow \prod_w$, where \prod_w is the principal ultrafilter generated by $\{w\}$.
- Proof.

Use the lemma again.

□

- Let $C = \prod_{i \in I} W_i$ be the Cartesian product of $\{W_i\}_{i \in I}$ and u be an ultrafilter on the index set I . For two functions $f, g \in C$ we say that f and g are u -equivalent ($f \sim_u g$ if $\{i \in I \mid f(i) = g(i)\} \in u$). One can easily check this is indeed an equivalence relation.

- Let $C = \prod_{i \in I} W_i$ be the Cartesian product of $\{W_i\}_{i \in I}$ and u be an ultrafilter on the index set I . For two functions $f, g \in C$ we say that f and g are u -equivalent ($f \sim_u g$ if $\{i \in I \mid f(i) = g(i)\} \in u$). One can easily check this is indeed an equivalence relation.
- Let $f_u = \{g \in C \mid g \sim_u f\}$. The ultraproduct of $\{W_i\}_{i \in I}$ modulo u is defined as follows:

$$\prod_u W_i = \{f_u \mid f \in \prod_{i \in I} W_i\}$$

- **Definition (ultraproduct)**

Let $\mathcal{M}_i = (W_i, R_{\Delta i}, V_i)$ ($i \in I$) be n -models. The ultraproduct $\prod_u \mathcal{M}$ modulo u is described as follows.

- (i) The universe W_u is the set $\prod_u W_i = \{f_u \mid f \in \prod_{i \in I} W_i\}$.
- (ii) The valuation V_u is defined by

$$f_u \in V_u(p) \text{ iff } \{i \in I \mid f(i) \in V_i(p)\} \in u.$$

- (iii) The n -ary relation $R_{\Delta u}$ is given by

$$f_u^0 R_{\Delta u} f_u^1 \dots f_u^n \text{ iff } \{i \in I \mid f^0(i) R_{\Delta i} f^1(i) \dots f^n(i)\} \in u.$$

- If all the \mathcal{M}_i are the same model \mathcal{M} , we say $\prod_u \mathcal{M}$ the ultrapower of \mathcal{M} modulo u .

Theorem (AC)

Let $\prod_u \mathcal{M}$ be an ultrapower of \mathcal{M} . Then for all PML formulas φ , we have $\mathcal{M}, w \models \varphi$ iff $\prod_u \mathcal{M}, ((f_w)_u \models \varphi$, where f_w is the constant function s.t. $f_w(i) = w$ for all $i \in I$.

- One should be careful about the using of AC in the proof and see how strong we need the "choice" to be, compared with the case in proving Los's theorem.

Theorem (AC)

Let $\prod_u \mathcal{M}$ be an ultrapower of \mathcal{M} . Then for all PML formulas φ , we have $\mathcal{M}, w \models \varphi$ iff $\prod_u \mathcal{M}, ((f_w)_u \models \varphi$, where f_w is the constant function s.t. $f_w(i) = w$ for all $i \in I$.

- One should be careful about the using of AC in the proof and see how strong we need the "choice" to be, compared with the case in proving Los's theorem.
- Doets and Van Benthem [VBD83] gave an intuitive explanation of the ultraproduct construction.

Craig Interpolation Theorem

- There are standard model theoretical proofs of CIT for monadic normal modal logics in [AVBN95] and [ANvB98].

Craig Interpolation Theorem

- There are standard model theoretical proofs of CIT for monadic normal modal logics in [AVBN95] and [ANvB98].
- Rosen gave another proof which can work within finite models in [Ros97].

Craig Interpolation Theorem

- There are standard model theoretical proofs of CIT for monadic normal modal logics in [AVBN95] and [ANvB98].
- Rosen gave another proof which can work within finite models in [Ros97].
- We do have an algebraic proof for CIT of PML in [Nem85].

Craig Interpolation Theorem

- There are standard model theoretical proofs of CIT for monadic normal modal logics in [AVBN95] and [ANvB98].
- Rosen gave another proof which can work within finite models in [Ros97].
- We do have an algebraic proof for CIT of PML in [Nem85].
- In [H⁺01], there is a deep connection between the amalgamation on algebras and the interpolation on logic.

Craig Interpolation Theorem

- we find that both the proofs in [Ros97] and [ANvB98] can directly apply to PML, and those proofs are purely model theoretical on modal logic.

Craig Interpolation Theorem

- we find that both the proofs in [Ros97] and [ANvB98] can directly apply to PML, and those proofs are purely model theoretical on modal logic.
- We choose to give a proof for PML using the method in [ANvB98].

Craig Interpolation Theorem

- we find that both the proofs in [Ros97] and [ANvB98] can directly apply to PML, and those proofs are purely model theoretical on modal logic.
- We choose to give a proof for PML using the method in [ANvB98].
- Rosen's method is very important in proving CIT when the logic is just weakly complete.

Craig Interpolation Theorem

Theorem

Each normal polyadic modal logic \mathbb{K}_n has the Craig Interpolation Theorem. More precisely, let $\varphi \vdash_{\mathbb{K}_n} \psi$, then there is a formula α s.t. $\varphi \vdash_{\mathbb{K}_n} \alpha \vdash_{\mathbb{K}_n} \psi$ and $\text{atom}(\alpha) \subseteq \text{atom}(\varphi) \cap \text{atom}(\psi)$.

Craig Interpolation Theorem

Theorem

Each normal polyadic modal logic \mathbb{K}_n has the Craig Interpolation Theorem. More precisely, let $\varphi \vdash_{\mathbb{K}_n} \psi$, then there is a formula α s.t. $\varphi \vdash_{\mathbb{K}_n} \alpha \vdash_{\mathbb{K}_n} \psi$ and $\text{atom}(\alpha) \subseteq \text{atom}(\varphi) \cap \text{atom}(\psi)$.

- **Proof.**

First we fix an n and just use \vdash without a subscript. Since we already know that \mathbb{K}_n is strongly complete w.r.t to all n -frames, we could freely switch between \models and \vdash . For convenience, let $P = \text{atom}(\varphi)$, $Q = \text{atom}(\psi)$ and $R = \text{atom}(\alpha)$. We show that the set $\text{cons}_R(\varphi)$ of all consequences of φ in R language satisfies the following claim:

$$\text{cons}_R(\varphi) \models \psi.$$

By a standard compactness argument, we can find the interpolant.

Proof of the Claim

Let $(\mathcal{M}, a) = (W, R_\Delta, V)$ be any pointed n -model s.t.

$(\mathcal{M}, a) \models \text{cons}_R(\varphi)$. We show that $(\mathcal{M}, a) \models \psi$. By a routine argument, the R -theory $\text{Th}_R(\mathcal{M}, a)$ is consistent with $\{\varphi\}$, and by compactness again, there is a P -model $(\mathcal{N}, b) \models \varphi$ s.t.

$(\mathcal{M}, a) \equiv_R (\mathcal{N}, b)$. Suppose that $(\mathcal{N}, b) = (W', R'_\Delta, V')$. We have already shown that there are m -saturated models which can preserve modal truth in this paper before, so without loss of generality we assume that both (\mathcal{M}, a) and (\mathcal{N}, b) are m -saturated. It follows that the \equiv_R is indeed an R -bisimulation. Next we construct a product model $\mathcal{M}\mathcal{N}, (a, b)$ s.t. $(\mathcal{M}, a) \leftrightarrow_Q \mathcal{M}\mathcal{N}, (a, b)$ and $(\mathcal{N}, b) \leftrightarrow_P \mathcal{M}\mathcal{N}, (a, b)$, which is sufficient for our proof:

$$(\mathcal{N}, b) \models \varphi \Rightarrow \mathcal{M}\mathcal{N}, (a, b) \models \varphi \Rightarrow \mathcal{M}\mathcal{N}, (a, b) \models \psi \Rightarrow (\mathcal{M}, a) \models \psi$$

Proof of the Claim

Let $Z = \{(x, y) \in W \times W' \mid x \leftrightharpoons_R y\}$, and define $\mathcal{MN} = (Z, R_\Delta^*, V^*)$ as follows:

$$(x, y) R_\Delta^* (x_1, y_1), \dots, (x_n, y_n) \text{ iff } x R_\Delta x_1, \dots, x_n \text{ and } y R'_\Delta y_1, \dots, y_n$$

For each $(x, y) \in Z$,

$$(x, y) \in V^*(p) \iff \begin{cases} x \in V(p) & \text{if } p \in Q \\ y \in V'(p) & \text{if } p \in P \\ \text{never} & \text{if otherwise} \end{cases}$$

Notice that V^* is well-defined since every $(x, y) \in Z$ satisfies $x \leftrightharpoons_R y$. Now it is sufficient to check that our construction satisfies the requirement.

Let $B_1 = \{(x, (z_1, z_2)) \mid x \leftrightharpoons_Q z_1 \text{ and } z_2 \in W'\}$ be a relation on $W \times Z$ and $B_2 = \{(y, (z_1, z_2)) \mid y \leftrightharpoons_P z_2 \text{ and } z_1 \in W\}$ be a relation on $W' \times Z$.

Weakly Aggregative Modal Logic

Language and Semantics

•

$$\varphi := p \mid \neg\varphi \mid (\varphi \wedge \varphi) \mid \Box\varphi$$

Language and Semantics

$$\varphi := p \mid \neg\varphi \mid (\varphi \wedge \varphi) \mid \Box\varphi$$

.

$$\varphi := p \mid \neg\varphi \mid (\varphi \wedge \varphi) \mid \Box\varphi$$

- **Definition (n -Semantics)**

R_∇ is an $n + 1$ -ary relation over W . The semantics for $\Box\varphi$ (and $\Diamond\varphi$) is defined by:

$$\boxed{\begin{aligned} \mathcal{M}, w \models \Box\varphi &\quad \text{iff} \quad \forall v_1, \dots, v_n \in W (R_\nabla w v_1 \dots, v_n \rightarrow \mathcal{M}, v_i \models \varphi \text{ for some } i \leq n). \\ \mathcal{M}, w \models \Diamond\varphi &\quad \text{iff} \quad \exists v_1, \dots, v_n \in W (R_\nabla w v_1 \dots, v_n \& \mathcal{M}, v_i \models \varphi \text{ for all } i \leq n). \end{aligned}}$$

.

$$\varphi := p \mid \neg\varphi \mid (\varphi \wedge \varphi) \mid \Box\varphi$$

- **Definition (n -Semantics)**

R_∇ is an $n + 1$ -ary relation over W . The semantics for $\Box\varphi$ (and $\Diamond\varphi$) is defined by:

$$\begin{aligned} \mathcal{M}, w \models \Box\varphi &\quad \text{iff} \quad \forall v_1, \dots, v_n \in W (R_\nabla w v_1 \dots, v_n \rightarrow \mathcal{M}, v_i \models \varphi \text{ for some } i \leq n). \\ \mathcal{M}, w \models \Diamond\varphi &\quad \text{iff} \quad \exists v_1, \dots, v_n \in W (R_\nabla w v_1 \dots, v_n \& \mathcal{M}, v_i \models \varphi \text{ for all } i \leq n). \end{aligned}$$

- It is not hard to see that the aggregation axiom $\Box\varphi \wedge \Box\psi \rightarrow \Box(\varphi \wedge \psi)$ is not valid on n -frames for any $n \geq 2$.

Systems

- [SJ80] proposed the following proof systems \mathbb{K}_n^w for each k .

- [SJ80] proposed the following proof systems \mathbb{K}_n^w for each k .
- The logic \mathbb{K}_n^w is a modal logic including propositional tautologies, the axiom K_n and closed under the rules **N** and **RM**:

$$K_n \quad \square p_0 \wedge \cdots \wedge \square p_n \rightarrow \square \bigvee_{(0 \leq i < j \leq n)} (p_i \wedge p_j)$$

$$N \quad \vdash \varphi \implies \vdash \square \varphi$$

$$RM \quad \vdash \varphi \rightarrow \psi \implies \vdash \square \varphi \rightarrow \square \psi$$

- [SJ80] proposed the following proof systems \mathbb{K}_n^w for each k .
- The logic \mathbb{K}_n^w is a modal logic including propositional tautologies, the axiom K_n and closed under the rules **N** and **RM**:

$$\begin{array}{ll} K_n & \square p_0 \wedge \cdots \wedge \square p_n \rightarrow \square \bigvee_{(0 \leq i < j \leq n)} (p_i \wedge p_j) \\ \mathbf{N} & \vdash \varphi \implies \vdash \square \varphi \\ \mathbf{RM} & \vdash \varphi \rightarrow \psi \implies \vdash \square \varphi \rightarrow \square \psi \end{array}$$

- K_1 is just the aggregation axiom **C** and thus \mathbb{K}_1^w is just the normal monadic modal logic \mathbb{K} .

Neighborhood Semantics

- We also introduce the neighborhood semantics in [Pac17] for modal logic as follows.

Neighborhood Semantics

- We also introduce the neighborhood semantics in [Pac17] for modal logic as follows.
- A pair $\mathfrak{F} = \langle W, \nu \rangle$ is called a *neighborhood frame*, if W is a non-empty set and ν is a neighborhood function from W to $\mathcal{P}(\mathcal{P}(W))$. $\mathcal{M} = \langle \mathfrak{F}, V \rangle$ is a model if $V : \Phi \rightarrow 2^W$ is a valuation function.

Neighborhood Semantics

- We also introduce the neighborhood semantics in [Pac17] for modal logic as follows.
- A pair $\mathfrak{F} = \langle W, \nu \rangle$ is called a *neighborhood frame*, if W is a non-empty set and ν is a neighborhood function from W to $\mathcal{P}(\mathcal{P}(W))$. $\mathcal{M} = \langle \mathfrak{F}, V \rangle$ is a model if $V : \Phi \rightarrow 2^W$ is a valuation function.
- The semantics is defined as follows:

$$\mathcal{M}, w \models \Box \varphi \iff [\![\varphi]\!]^{\mathcal{M}} \in \nu(w) \mid \mathcal{M}, w \models \Diamond \varphi \iff W - [\![\varphi]\!]^{\mathcal{M}} \notin \nu(w)$$

where $[\![\varphi]\!]^{\mathcal{M}} = \{w \mid \mathcal{M}, w \models \varphi\}$, i.e. the truth set of φ .

Bisimulation

Let $\mathcal{M} = (W, R_\nabla, V)$ and $\mathcal{M}' = (W', R'_\nabla, V')$ be two n -models. A non-empty binary relation $Z \subseteq W \times W'$ is called a wa^n -bisimulation between \mathcal{M} and \mathcal{M}' if the following conditions are satisfied:

inv If wZw' , then w and w' satisfy the same propositional letters.

Let $\mathcal{M} = (W, R_\nabla, V)$ and $\mathcal{M}' = (W', R'_\nabla, V')$ be two n -models. A non-empty binary relation $Z \subseteq W \times W'$ is called a wa^n -bisimulation between \mathcal{M} and \mathcal{M}' if the following conditions are satisfied:

inv If wZw' , then w and w' satisfy the same propositional letters.

forth If wZw' and $R_\nabla wv_1, \dots, v_n$ then there are v'_1, \dots, v'_n in W' s.t.

$R'_\nabla w'v'_1, \dots, v'_n$ and for each v'_j there is a v_i such that $v_iZv'_j$ where $1 \leq i, j \leq n$.

Bisimulation

Let $\mathcal{M} = (W, R_\nabla, V)$ and $\mathcal{M}' = (W', R'_\nabla, V')$ be two n -models. A non-empty binary relation $Z \subseteq W \times W'$ is called a wa^n -bisimulation between \mathcal{M} and \mathcal{M}' if the following conditions are satisfied:

inv If wZw' , then w and w' satisfy the same propositional letters.

forth If wZw' and $R_\nabla wv_1, \dots, v_n$ then there are v'_1, \dots, v'_n in W' s.t.

$R'_\nabla w'v'_1, \dots, v'_n$ and for each v'_j there is a v_i such that $v_iZv'_j$ where $1 \leq i, j \leq n$.

back If wZw' and $R'_\nabla w'v'_1, \dots, v'_n$ then there are v_1, \dots, v_n in W s.t.

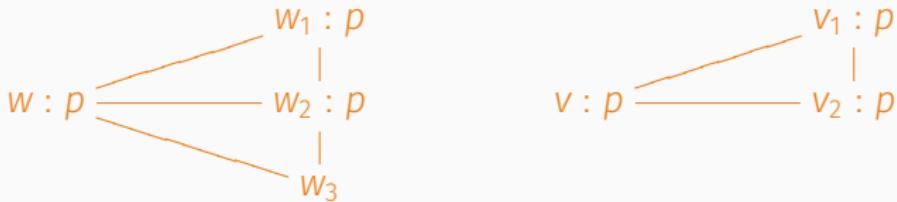
$R_\nabla wv_1, \dots, v_n$ and for each v_i there is a v'_j such that $v_iZv'_j$ where $1 \leq i, j \leq n$.

Bisimulation

- Consider the following two 2-models where
 $\{\langle w, w_1, w_2 \rangle, \langle w, w_2, w_3 \rangle\}$ is the ternary relation in the left model,
and $\{\langle v, v_1, v_2 \rangle\}$ is the ternary relation in the right model.

Bisimulation

- Consider the following two 2-models where $\{\langle w, w_1, w_2 \rangle, \langle w, w_2, w_3 \rangle\}$ is the ternary relation in the left model, and $\{\langle v, v_1, v_2 \rangle\}$ is the ternary relation in the right model.
-



$Z = \{\langle w, v \rangle, \langle w_1, v_1 \rangle, \langle w_2, v_2 \rangle, \langle w_2, v_1 \rangle\}$ is a wa^2 -bisimulation. A polyadic modal formula $\neg\nabla\neg(p, \neg p)$, not expressible in WAML², can distinguish w and v .

Standard Translation

Definition (Standard translation)

$ST : \text{WAML}^n \rightarrow \text{FOL}$:

$$ST_x(p) = Px$$

$$ST_x(\neg\varphi) = \neg ST_x(\varphi)$$

$$ST_x(\varphi \wedge \psi) = ST_x(\varphi) \wedge ST_x(\psi)$$

$$ST_x(\Box\varphi) = \forall y_1 \forall y_2 \dots \forall y_n (Rxy_1y_2 \dots y_n \rightarrow ST_{y_1}(\varphi) \vee \dots \vee ST_{y_n}(\varphi))$$

n -Tree Unraveling [dR93]

- We use an example of a graph with ternary relations to illustrate the intuitive idea behind the general n -ary unraveling.

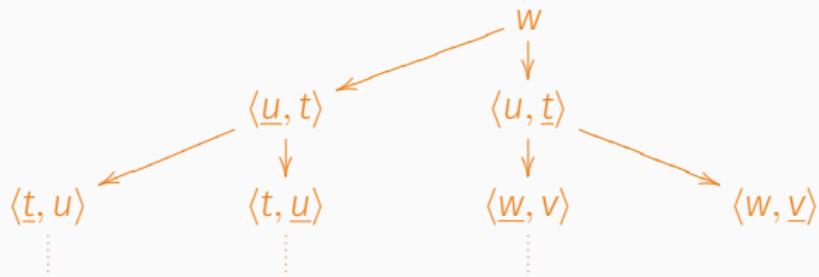
n -Tree Unraveling [dR93]

- We use an example of a graph with ternary relations to illustrate the intuitive idea behind the general n -ary unraveling.

n -Tree Unraveling [dR93]

- We use an example of a graph with ternary relations to illustrate the intuitive idea behind the general n -ary unraveling.
- **Example**

Given the 2-model with ternary relations $\langle\{w, v, u, t\}, \{\langle w, u, t \rangle, \langle u, t, u \rangle, \langle t, w, v \rangle\}, V \rangle$. It is quite intuitive to first unravel it into a binary tree with pairs of states as nodes, illustrated below:



Definition

Given an n -model $\mathcal{M} = \langle W, R, V \rangle$ and $w \in W$, we first define the binary unraveling \mathcal{M}_w^b of \mathcal{M} around w as $\langle W_w, R^b, V' \rangle$ where:

W_w is the set of sequences $\langle \langle \vec{v}_0, i_0 \rangle, \langle \vec{v}_1, i_1 \rangle, \dots, \langle \vec{v}_m, i_m \rangle \rangle$ where:

$m \in \mathbb{N}$; for each $j \in [0, m]$, $\vec{v}_j \in W^n$ and $i_j \in [1, n]$ such that $R(\vec{v}_j[i_j])\vec{v}_{j+1}$;
 \vec{v}_0 is the constant n -sequence $w \dots w$ and $i_0 = 1$;

$R^b s s'$ iff s' extends s with some $\langle \vec{v}, i \rangle$

$V'(s) = V(r(s))$, where $r(s) = \vec{v}_m[i_m]$ if $s = \dots, \langle \vec{v}_m, i_m \rangle \dots$.

The unraveling $\mathcal{M}_w = \langle W_w, R', V' \rangle$ is based on \mathcal{M}_w^b by defining $R' s_0 s_1 \dots s_n$ iff $R r(s_0) r(s_1) \dots r(s_n)$ and $R^b s_0 s_i$ for all $i \in [1, n]$.

Rosen van Benthem Characterization Theorem

Rosen van Benthem Characterization Theorem

- Theorem

A first-order formula $\alpha(x)$ is invariant under \leftrightarrow^n (over finite models) iff $\alpha(x)$ is equivalent to a WAMLⁿ formula (over finite models).

- Theorem

A first-order formula $\alpha(x)$ is invariant under \leftrightarrow^n (over finite models) iff $\alpha(x)$ is equivalent to a WAMLⁿ formula (over finite models).

- Following the general strategy in [Ott04], the only non-trivial part is to show that the FOL formula $\alpha(x)$ that is invariant under wa^n -bisimulation has some locality property w.r.t. its bounded unraveling $\mathcal{M}_w|_l$ for some l .

Rosen van Benthem Characterization Theorem

- **Theorem**

A first-order formula $\alpha(x)$ is invariant under \leftrightarrow^n (over finite models) iff $\alpha(x)$ is equivalent to a WAMLⁿ formula (over finite models).

- Following the general strategy in [Ott04], the only non-trivial part is to show that the FOL formula $\alpha(x)$ that is invariant under wa^n -bisimulation has some locality property w.r.t. its bounded unraveling $\mathcal{M}_w|_l$ for some l .

Rosen van Benthem Characterization Theorem

- **Theorem**

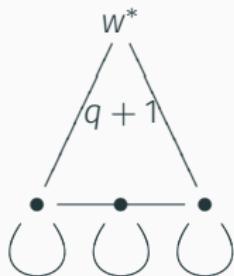
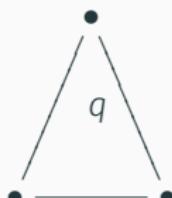
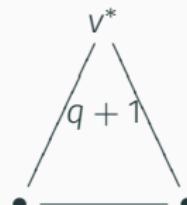
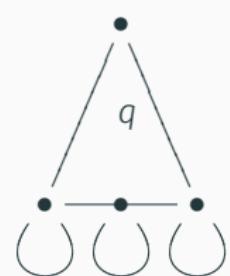
A first-order formula $\alpha(x)$ is invariant under \leftrightarrow^n (over finite models) iff $\alpha(x)$ is equivalent to a WAMLⁿ formula (over finite models).

- Following the general strategy in [Ott04], the only non-trivial part is to show that the FOL formula $\alpha(x)$ that is invariant under wa^n -bisimulation has some locality property w.r.t. its bounded unraveling $\mathcal{M}_w|_l$ for some l .

- **Lemma (locality)**

FOL formula $\alpha(x)$ is invariant under \leftrightarrow (over finite models) implies that for some $l \in \mathbb{N}$, for any n -model $\mathcal{M}, w: \mathcal{M}, w \Vdash \alpha(x)[w]$ iff $\mathcal{M}_w|_l \Vdash \alpha(x)[(\vec{w}, 1)]$.

Rosen van Benthem Characterization Theorem

 \mathcal{M}^*  \equiv_{FOL_q}  \mathcal{N}^* 

Interpolation

- Unfortunately, each K_n does not have the Craig Interpolation Theorem.

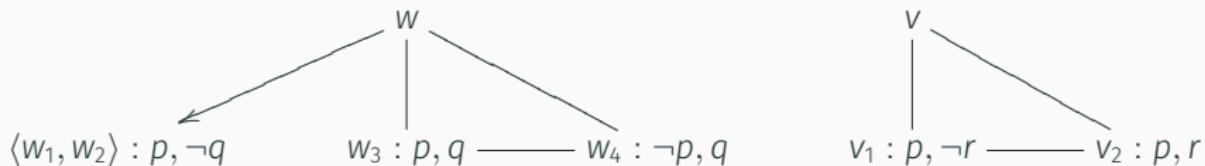
Interpolation

- Unfortunately, each K_n does not have the Craig Interpolation Theorem.
- The counterexamples are actually from what we lack in the bisimulation relation—which is not a bijection.

Counterexample 1

Example

Consider the following two 2-models where $\{\langle w, w_1, w_2 \rangle, \langle w, w_3, w_4 \rangle\}$ is the ternary relation in the left model \mathcal{M}_2 , and $\{\langle v, v_1, v_2 \rangle\}$ is the ternary relation in the right model \mathcal{N}_2 .

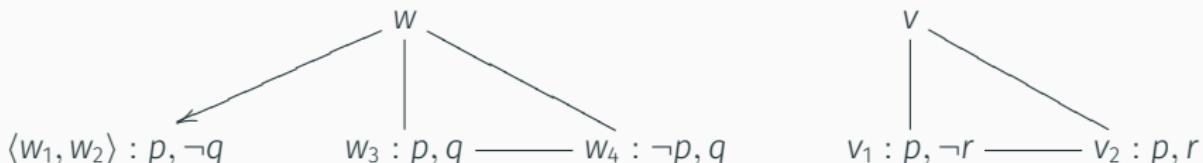


- $Z = \{\langle w, v \rangle, \langle w_1, v_1 \rangle, \langle w_2, v_2 \rangle, \langle w_3, v_1 \rangle, \langle w_3, v_2 \rangle\}$ is a $\{p\}$ -wa²-bisimulation.

Counterexample 1

Example

Consider the following two 2-models where $\{\langle w, w_1, w_2 \rangle, \langle w, w_3, w_4 \rangle\}$ is the ternary relation in the left model \mathcal{M}_2 , and $\{\langle v, v_1, v_2 \rangle\}$ is the ternary relation in the right model \mathcal{N}_2 .

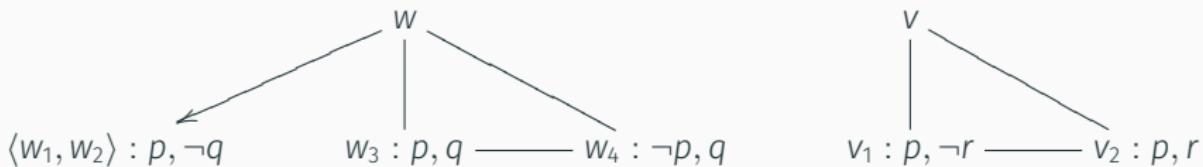


- $Z = \{\langle w, v \rangle, \langle w_1, v_1 \rangle, \langle w_2, v_2 \rangle, \langle w_3, v_1 \rangle, \langle w_3, v_2 \rangle\}$ is a $\{p\}$ -wa²-bisimulation.
- $\mathcal{M}_2, w \models \varphi_2 = \Diamond(p \wedge \neg q) \wedge \Box p \wedge \Diamond q \wedge \Box(\neg p \vee \neg q)$;
- $\mathcal{N}_2, v \models \psi_2 = \Box(r \wedge p) \wedge \Box(\neg r \wedge p) \wedge \Box(\neg p)$.

Counterexample 1

Example

Consider the following two 2-models where $\{\langle w, w_1, w_2 \rangle, \langle w, w_3, w_4 \rangle\}$ is the ternary relation in the left model \mathcal{M}_2 , and $\{\langle v, v_1, v_2 \rangle\}$ is the ternary relation in the right model \mathcal{N}_2 .



- $Z = \{\langle w, v \rangle, \langle w_1, v_1 \rangle, \langle w_2, v_2 \rangle, \langle w_3, v_1 \rangle, \langle w_3, v_2 \rangle\}$ is a $\{p\}$ -wa²-bisimulation.
- $\mathcal{M}_2, w \models \varphi_2 = \Diamond(p \wedge \neg q) \wedge \Box p \wedge \Diamond q \wedge \Box(\neg p \vee \neg q)$;
- $\mathcal{N}_2, v \models \psi_2 = \Box(r \wedge p) \wedge \Box(\neg r \wedge p) \wedge \Box(\neg p)$.
- $\vdash_2 \varphi_2 \rightarrow \neg \psi_2$

Counterexample 2(Due to Yifeng)

Example

Consider the following two 3-models where $\{\langle w, w_1, w_2, w_3 \rangle\}$ is the relation in \mathcal{M}_3 , and $\{\langle v, v_1, v_2, v_3 \rangle\}$ is the relation in \mathcal{N}_3 .

- $Z = \{\langle w, v \rangle, \langle w_1, v_3 \rangle, \langle w_2, v_3 \rangle, \langle w_3, v_1 \rangle, \langle w_3, v_2 \rangle\}$ is a $\{p\}$ -wa³-bisimulation.

Counterexample 2(Due to Yifeng)

Example

Consider the following two 3-models where $\{\langle w, w_1, w_2, w_3 \rangle\}$ is the relation in \mathcal{M}_3 , and $\{\langle v, v_1, v_2, v_3 \rangle\}$ is the relation in \mathcal{N}_3 .



- $Z = \{\langle w, v \rangle, \langle w_1, v_3 \rangle, \langle w_2, v_3 \rangle, \langle w_3, v_1 \rangle, \langle w_3, v_2 \rangle\}$ is a $\{p\}$ -wa³-bisimulation.
- $\mathcal{M}_3, w \models \varphi_3 = \square(p \wedge \neg q) \wedge \square(p \wedge q) \wedge \square(\neg p \wedge q) \wedge \Diamond T$;

Counterexample 2(Due to Yifeng)

Example

Consider the following two 3-models where $\{\langle w, w_1, w_2, w_3 \rangle\}$ is the relation in \mathcal{M}_3 , and $\{\langle v, v_1, v_2, v_3 \rangle\}$ is the relation in \mathcal{N}_3 .

- $\cdot Z = \{\langle w, v \rangle, \langle w_1, v_3 \rangle, \langle w_2, v_3 \rangle, \langle w_3, v_1 \rangle, \langle w_3, v_2 \rangle\}$ is a $\{p\}$ -wa³-bisimulation.
- $\cdot \mathcal{M}_3, w \models \varphi_3 = \square(p \wedge \neg q) \wedge \square(p \wedge q) \wedge \square(\neg p \wedge q) \wedge \Diamond \top$;
- $\cdot \mathcal{N}_3, v \models \psi_3 = \square(\neg p \wedge r) \wedge \square(\neg p \wedge \neg r) \wedge \square(p \wedge r) \wedge \Diamond \top$.

Counterexample 2(Due to Yifeng)

Example

Consider the following two 3-models where $\{\langle w, w_1, w_2, w_3 \rangle\}$ is the relation in \mathcal{M}_3 , and $\{\langle v, v_1, v_2, v_3 \rangle\}$ is the relation in \mathcal{N}_3 .

- $Z = \{\langle w, v \rangle, \langle w_1, v_3 \rangle, \langle w_2, v_3 \rangle, \langle w_3, v_1 \rangle, \langle w_3, v_2 \rangle\}$ is a $\{p\}$ -wa³-bisimulation.
- $\mathcal{M}_3, w \models \varphi_3 = \square(p \wedge \neg q) \wedge \square(p \wedge q) \wedge \square(\neg p \wedge q) \wedge \Diamond \top$;
- $\mathcal{N}_3, v \models \psi_3 = \square(\neg p \wedge r) \wedge \square(\neg p \wedge \neg r) \wedge \square(p \wedge r) \wedge \Diamond \top$.
- $\vdash_3 \varphi_3 \rightarrow \neg \psi_3$.

Proposition

K_2 and K_3 lack the Craig Interpolation Theorem.

Proof.

We will see that the above two are counterexamples for CIP: $\varphi_i \rightarrow \neg\psi_i$ do not have any interpolant in K_i . Since the only common proposition letter is p , we assume for contradiction that $\theta_i(p)$ is an interpolant for $\varphi_i \rightarrow \neg\psi_i$. Then we have $\vdash_i \varphi_i \rightarrow \theta_i(p)$ and $\vdash_i \theta_i(p) \rightarrow \neg\psi_i$. By the above two examples we know that $\mathcal{M}_i, w \models \theta_i(p)$, which also means $\mathcal{N}_i, v \models \theta_i(p)$ by p -bisimulation. But it follows that $\mathcal{N}_i, v \models \neg\psi_i$, a contradiction.

□

- $C^*:$ $\Box(p \vee q) \rightarrow \Box p \vee \Box q.$

- $C* : \square(p \vee q) \rightarrow \square p \vee \square q.$
- $\exists \langle a_1, \dots, a_n \rangle (wRa_1 \dots a_n \wedge$
 $\forall \langle b_1, \dots, b_n \rangle (wRb_1 \dots b_n \rightarrow (\{a_1, \dots, a_n\} \subseteq \{b_1, \dots, b_n\}))).$

- $C* : \square(p \vee q) \rightarrow \square p \vee \square q.$
- $\exists \langle a_1, \dots, a_n \rangle (wRa_1 \dots a_n \wedge \forall \langle b_1, \dots, b_n \rangle (wRb_1 \dots b_n \rightarrow (\{a_1, \dots, a_n\} \subseteq \{b_1, \dots, b_n\}))).$
- $\forall A, B ((A \cup B \in \nu(w) \rightarrow A \in \nu(w) \vee B \in \nu(w))).$

First Degree Modal Logic

- A modal logic L is said to be first degree if it is axiomatizable by a set of formulas of modal degree at most 1.

First Degree Modal Logic

- A modal logic L is said to be first degree if it is axiomatizable by a set of formulas of modal degree at most 1.
- In [Lew74] David Lewis shows that every finitely axiomatizable first degree modal logic is Decidable by f.m.p. method.

First Degree Modal Logic

- A modal logic L is said to be first degree if it is axiomatizable by a set of formulas of modal degree at most 1.
- In [Lew74] David Lewis shows that every finitely axiomatizable first degree modal logic is Decidable by f.m.p. method.

First Degree Modal Logic

- A modal logic L is said to be first degree if it is axiomatizable by a set of formulas of modal degree at most 1.
- In [Lew74] David Lewis shows that every finitely axiomatizable first degree modal logic is Decidable by f.m.p. method.
- **Proposition (Apostoli in [Apo97])**

Every first degree n -normal logic is complete with respect to the class of finite n -frames which validate it.

- A modal logic L is said to be first degree if it is axiomatizable by a set of formulas of modal degree at most 1.
- In [Lew74] David Lewis shows that every finitely axiomatizable first degree modal logic is Decidable by f.m.p. method.
- **Proposition (Apostoli in [Apo97])**

Every first degree n -normal logic is complete with respect to the class of finite n -frames which validate it.

First Degree Modal Logic

- A modal logic L is said to be first degree if it is axiomatizable by a set of formulas of modal degree at most 1.
- In [Lew74] David Lewis shows that every finitely axiomatizable first degree modal logic is Decidable by f.m.p. method.
- **Proposition (Apostoli in [Apo97])**
Every first degree n -normal logic is complete with respect to the class of finite n -frames which validate it.
- **Proposition (Prop 2.8 in [Pac17])**
Every first degree modal logic is complete with respect to the class of finite neighborhood frames which validate it.

Let $\mathcal{M} = \langle W, N, V \rangle$ be a neighborhood model, we say $\mathcal{M}^{\bar{Q}}$ is a \bar{Q} -variant of \mathcal{M} if they only differ in \bar{Q} -valuation. More precisely, $\mathcal{M}^{\bar{Q}} = \langle W, N, V' \rangle$, where $V(p) = V'(p)$ for all $p \notin \bar{Q}$.

Definition

Let $\varphi(\bar{P}, \bar{Q})$ be a modal formula s.t. $\bar{P} \cap \bar{Q} = \emptyset$. Then $\mathcal{M}, w \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q})$ iff there is some \bar{Q} -variant $\mathcal{M}^{\bar{Q}}, w \models \varphi(\bar{P}, \bar{Q})$. The formula $\forall \bar{Q} \varphi(\bar{P}, \bar{Q})$ is defined similarly.

Proposition

\mathbb{K}_2^c has the Craig interpolation. More precisely, let $\varphi \vdash_{\mathbb{K}_2^c} \psi$, then there is a formula α s.t. $\varphi \vdash_{\mathbb{K}_2^c} \alpha \vdash_{\mathbb{K}_2^c} \psi$ and $\text{atom}(\alpha) \subseteq \text{atom}(\varphi) \cap \text{atom}(\psi)$. Furthermore, $\deg(\alpha) \leq \max(\deg(\varphi), \deg(\psi))$.

Proposition

\mathbb{K}_2^c has the Craig interpolation. More precisely, let $\varphi \vdash_{\mathbb{K}_2^c} \psi$, then there is a formula α s.t. $\varphi \vdash_{\mathbb{K}_2^c} \alpha \vdash_{\mathbb{K}_2^c} \psi$ and $\text{atom}(\alpha) \subseteq \text{atom}(\varphi) \cap \text{atom}(\psi)$. Furthermore, $\deg(\alpha) \leq \max(\deg(\varphi), \deg(\psi))$.

Proof.

- Let $k = \max(\deg(\varphi), \deg(\psi))$. There are only finitely many \sim_k^P -equivalence classes.

Proposition

\mathbb{K}_2^c has the Craig interpolation. More precisely, let $\varphi \vdash_{\mathbb{K}_2^c} \psi$, then there is a formula α s.t. $\varphi \vdash_{\mathbb{K}_2^c} \alpha \vdash_{\mathbb{K}_2^c} \psi$ and $\text{atom}(\alpha) \subseteq \text{atom}(\varphi) \cap \text{atom}(\psi)$. Furthermore, $\deg(\alpha) \leq \max(\deg(\varphi), \deg(\psi))$.

Proof.

- Let $k = \max(\deg(\varphi), \deg(\psi))$. There are only finitely many \sim_k^P -equivalence classes.
- Claim: For any \sim_k^P -equivalence classes C , if there is some $\mathcal{M}, w \in C$ s.t. $\mathcal{M}, w \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q})$, then for all $\mathcal{N}, v \in C$, $\mathcal{N}, v \models \forall \bar{R} \psi(\bar{P}, \bar{R})$.

Proposition

\mathbb{K}_2^c has the Craig interpolation. More precisely, let $\varphi \vdash_{\mathbb{K}_2^c} \psi$, then there is a formula α s.t. $\varphi \vdash_{\mathbb{K}_2^c} \alpha \vdash_{\mathbb{K}_2^c} \psi$ and $\text{atom}(\alpha) \subseteq \text{atom}(\varphi) \cap \text{atom}(\psi)$. Furthermore, $\deg(\alpha) \leq \max(\deg(\varphi), \deg(\psi))$.

Proof.

- Let $k = \max(\deg(\varphi), \deg(\psi))$. There are only finitely many \sim_k^P -equivalence classes.
- Claim: For any \sim_k^P -equivalence classes C , if there is some $\mathcal{M}, w \in C$ s.t. $\mathcal{M}, w \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q})$, then for all $\mathcal{N}, v \in C$, $\mathcal{N}, v \models \forall \bar{R} \psi(\bar{P}, \bar{R})$.
- For each class contain such an \mathcal{M}, w , let β_i be the formula defines that class. One can check that $\deg(\beta_i) \leq k$ and the disjunction of all such β_i , say $\beta = \bigvee \beta_i$, will be an interpolant.

Proof of the Claim

- Suppose for contradiction that there are $\mathcal{M}, w \sim_k^P \mathcal{N}, v$ s.t. $\mathcal{M}, w \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q})$ and $\mathcal{N}, v \models \exists \bar{R} \neg \psi(\bar{P}, \bar{R})$. We need to find another model $\mathcal{D}, u \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q}) \wedge \exists \bar{R} \neg \psi(\bar{P}, \bar{R})$, which is a contradiction.

Proof of the Claim

- Suppose for contradiction that there are $\mathcal{M}, w \sim_k^P \mathcal{N}, v$ s.t. $\mathcal{M}, w \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q})$ and $\mathcal{N}, v \models \exists \bar{R} \neg \psi(\bar{P}, \bar{R})$. We need to find another model $\mathcal{D}, u \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q}) \wedge \exists \bar{R} \neg \psi(\bar{P}, \bar{R})$, which is a contradiction.
- Every finite models of \mathbb{K}_2^c is bisimilar with some determined 2-tree model:

Proof of the Claim

- Suppose for contradiction that there are $\mathcal{M}, w \sim_k^P \mathcal{N}, v$ s.t. $\mathcal{M}, w \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q})$ and $\mathcal{N}, v \models \exists \bar{R} \neg \psi(\bar{P}, \bar{R})$. We need to find another model $\mathcal{D}, u \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q}) \wedge \exists \bar{R} \neg \psi(\bar{P}, \bar{R})$, which is a contradiction.
- Every finite models of \mathbb{K}_2^c is bisimilar with some determined 2-tree model:
- Transfer a \mathbb{K}_2^c model A to a model B with two 2-ary relations;

Proof of the Claim

- Suppose for contradiction that there are $\mathcal{M}, w \sim_k^P \mathcal{N}, v$ s.t. $\mathcal{M}, w \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q})$ and $\mathcal{N}, v \models \exists \bar{R} \neg \psi(\bar{P}, \bar{R})$. We need to find another model $\mathcal{D}, u \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q}) \wedge \exists \bar{R} \neg \psi(\bar{P}, \bar{R})$, which is a contradiction.
- Every finite models of \mathbb{K}_2^c is bisimilar with some determined 2-tree model:
- Transfer a \mathbb{K}_2^c model A to a model B with two 2-ary relations;
- Using unraveling on B to get a tree model B_T with two relations;

Proof of the Claim

- Suppose for contradiction that there are $\mathcal{M}, w \sim_k^P \mathcal{N}, v$ s.t. $\mathcal{M}, w \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q})$ and $\mathcal{N}, v \models \exists \bar{R} \neg \psi(\bar{P}, \bar{R})$. We need to find another model $\mathcal{D}, u \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q}) \wedge \exists \bar{R} \neg \psi(\bar{P}, \bar{R})$, which is a contradiction.
- Every finite models of \mathbb{K}_2^c is bisimilar with some determined 2-tree model:
- Transfer a \mathbb{K}_2^c model A to a model B with two 2-ary relations;
- Using unraveling on B to get a tree model B_T with two relations;
- Transfer B_T to a determined 2-tree model A_T ;

Proof of the Claim

- Suppose for contradiction that there are $\mathcal{M}, w \sim_k^P \mathcal{N}, v$ s.t. $\mathcal{M}, w \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q})$ and $\mathcal{N}, v \models \exists \bar{R} \neg \psi(\bar{P}, \bar{R})$. We need to find another model $\mathcal{D}, u \models \exists \bar{Q} \varphi(\bar{P}, \bar{Q}) \wedge \exists \bar{R} \neg \psi(\bar{P}, \bar{R})$, which is a contradiction.
- Every finite models of \mathbb{K}_2^c is bisimilar with some determined 2-tree model:
- Transfer a \mathbb{K}_2^c model A to a model B with two 2-ary relations;
- Using unraveling on B to get a tree model B_T with two relations;
- Transfer B_T to a determined 2-tree model A_T ;
- Check that A and A_T are bisimilar.

Construction of \mathcal{D}

- We use induction on k to show:

Construction of \mathcal{D}

- We use induction on k to show:
 - For any two finite determined 2-tree models \mathcal{M}^*, w^* and \mathcal{N}^*, v^* of depth $k + 1$, if $\mathcal{M}^*, w^* \leftrightarrow_k^P \mathcal{N}^*, v^*$, then there is a model \mathcal{D}, u s.t. $\mathcal{M}^*, w^* \leftrightarrow_k^{PQ} \mathcal{D}, u \leftrightarrow_k^{PR} \mathcal{N}^*, v^*$. (*)

Construction of \mathcal{D}

- We use induction on k to show:
 - For any two finite determined 2-tree models \mathcal{M}^*, w^* and \mathcal{N}^*, v^* of depth $k + 1$, if $\mathcal{M}^*, w^* \leftrightarrow_k^P \mathcal{N}^*, v^*$, then there is a model \mathcal{D}, u s.t. $\mathcal{M}^*, w^* \leftrightarrow_k^{PQ} \mathcal{D}, u \leftrightarrow_k^{PR} \mathcal{N}^*, v^*$. (*)
- Let $\mathcal{M}^* = \langle W_1, R_1, V_1 \rangle$ and $\mathcal{N}^* = \langle W_2, R_2, V_2 \rangle$.
If $k = 0$, then Let $\mathcal{D} = \langle W, T, V^* \rangle$, where $W = \{(w, v)\}$, $T = \emptyset$, and V^* is defined as follows:

$$(x, y) \in V^*(p) \iff \begin{cases} x \in V_1(p) & \text{if } p \in Q \\ y \in V_2(p) & \text{if } p \in R \\ \text{never} & \text{if } \text{otherwise} \end{cases}$$

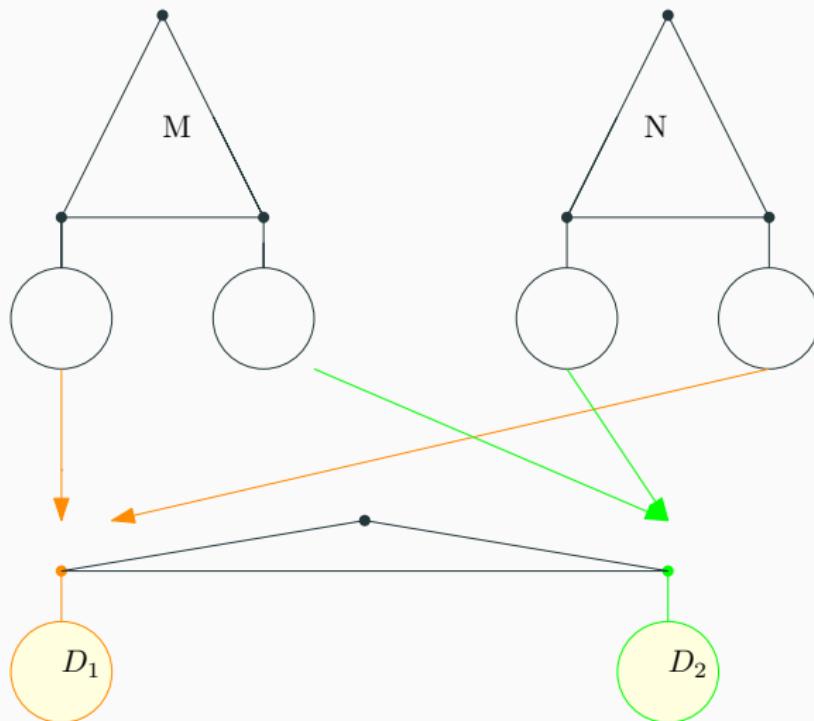
Construction of \mathcal{D}

- We use induction on k to show:
 - For any two finite determined 2-tree models \mathcal{M}^*, w^* and \mathcal{N}^*, v^* of depth $k + 1$, if $\mathcal{M}^*, w^* \xrightarrow{k} \mathcal{N}^*, v^*$, then there is a model \mathcal{D}, u s.t. $\mathcal{M}^*, w^* \xrightarrow{k} \mathcal{D}, u \xrightarrow{k} \mathcal{N}^*, v^*$. (*)
- Let $\mathcal{M}^* = \langle W_1, R_1, V_1 \rangle$ and $\mathcal{N}^* = \langle W_2, R_2, V_2 \rangle$.
If $k = 0$, then Let $\mathcal{D} = \langle W, T, V^* \rangle$, where $W = \{(w, v)\}$, $T = \emptyset$, and V^* is defined as follows:

$$(x, y) \in V^*(p) \iff \begin{cases} x \in V_1(p) & \text{if } p \in Q \\ y \in V_2(p) & \text{if } p \in R \\ \text{never} & \text{if otherwise} \end{cases}$$

- Since $w \xrightarrow{0} v$, the definition is well-defined, and it's easy to check the two required bisimulation relation.

Construction of \mathcal{D}



Construction of \mathcal{D}

- Define $\mathcal{D} = \langle W, T, V^* \rangle$ as follows:

$$W = (w^*, v^*) \cup \text{Dom}(D_1) \cup \text{Dom}(D_2);$$

$$T = \{((w^*, v^*), u_1, u_2)\} \cup R_{\mathcal{D}_1} \cup R_{\mathcal{D}_2};$$

$$(w^*, v^*) \in V^*(p) \iff \begin{cases} x \in V_1(p) & \text{if } p \in Q \\ y \in V_2(p) & \text{if } p \in R \\ \text{never} & \text{if otherwise} \end{cases}$$

For each $x \in \text{Dom}(D_i)$, $x \in V^*(p)$ iff $x \in V_{\mathcal{D}_i}(p)$.

Construction of \mathcal{D}

- Define $\mathcal{D} = \langle W, T, V^* \rangle$ as follows:

$$W = (w^*, v^*) \cup \text{Dom}(D_1) \cup \text{Dom}(D_2);$$

$$T = \{((w^*, v^*), u_1, u_2)\} \cup R_{\mathcal{D}_1} \cup R_{\mathcal{D}_2};$$

$$(w^*, v^*) \in V^*(p) \iff \begin{cases} x \in V_1(p) & \text{if } p \in Q \\ y \in V_2(p) & \text{if } p \in R \\ \text{never} & \text{if otherwise} \end{cases}$$

For each $x \in \text{Dom}(D_i)$, $x \in V^*(p)$ iff $x \in V_{\mathcal{D}_i}(p)$.

- It's a routine argument to check that $\mathcal{D}, (w^*, v^*)$ satisfies the two bisimulation relations.

Conclusion and Further Work

Conclusion

- Two method to prove interpolation:

Conclusion

- Two method to prove interpolation:
 - 1 By compactness, using saturated model.
Requirement:

Conclusion

- Two method to prove interpolation:
 - 1 By compactness, using saturated model.
Requirement:
 - 1. The logic need to be strongly complete.

Conclusion

- Two method to prove interpolation:
 - 1 By compactness, using saturated model.
Requirement:
 - 1. The logic need to be strongly complete.
 - 2. The frame conditions need to be preserved under UE (or other saturation construction).

Conclusion

- Two method to prove interpolation:
 - 1 By compactness, using saturated model.
Requirement:
 - 1. The logic need to be strongly complete.
 - 2. The frame conditions need to be preserved under UE (or other saturation construction).
 - 2 By finite model method, using inductive construction.
Requirement:

Conclusion

- Two method to prove interpolation:
 - 1 By compactness, using saturated model.
Requirement:
 - 1. The logic need to be strongly complete.
 - 2. The frame conditions need to be preserved under UE (or other saturation construction).
 - 2 By finite model method, using inductive construction.
Requirement:
 - The logic need to have f.m.p.

Conclusion

- Two method to prove interpolation:

1 By compactness, using saturated model.

Requirement:

- 1. The logic need to be strongly complete.
- 2. The frame conditions need to be preserved under UE (or other saturation construction).

2 By finite model method, using inductive construction.

Requirement:

- The logic need to have f.m.p.
- The logic need to have "tree-like" model property.

Further Work

- Relativized interpolation.

Further Work

- Relativized interpolation.
- Strong interpolation properties: Uniform Interpolation.

Further Work

- Relativized interpolation.
- Strong interpolation properties: Uniform Interpolation.
- Applications, especially of neighborhood frame: n-filter.

- 1. Model Theoretical Aspects of Normal Polyadic Modal Logic: An Exposition. 逻辑学研究已收录;
- 2. Weakly Aggregative Modal Logic: completeness, characterization and interpolation: 修改中, 和丁一峰, 王彦晶老师合作。

参考文献 |

- Hajnal Andréka, István Németi, and Johan van Benthem.
Modal languages and bounded fragments of predicate logic.
Journal of Philosophical Logic, 27(3):217–274, 1998.
- Peter Apostoli.
On the completeness of first degree weakly aggregative modal logics.
Journal of philosophical logic, 26(2):169–180, 1997.
- Hajnal Andréka, Johan Van Benthem, and Istvan Németi.
Back and forth between modal logic and classical logic.
Logic Journal of the IGPL, 3(5):685–720, 1995.
- Patrick Blackburn, Maarten De Rijke, and Yde Venema.
Modal Logic: Graph. Darst, volume 53.
Cambridge University Press, 2002.

参考文献 II

- Maarten de Rijke.
Extending modal logic.
PhD thesis, ILLC, University of Amsterdam, 1993.
- Raul Fervari, Andreas Herzig, Yanjun Li, and Yanjing Wang.
Strategically knowing how.
In *Proceedings of IJCAI '17*, pages 1031–1038, 2017.
- Kit Fine.
Some connections between elementary and modal logic.
In *Studies in Logic and the Foundations of Mathematics*,
volume 82, pages 15–31. Elsevier, 1975.
- Robert Goldblatt.
Algebraic polymodal logic: A survey.
Logic Journal of IGPL, 8(4):393–450, 2000.

- George Goguadze, Carla Piazza, and Yde Venema.
Simulating polyadic modal logics by monadic ones.
The Journal of Symbolic Logic, 68(02):419–462, 2003.
- Eva Hoogland et al.
Definability and interpolation: Model-theoretic investigations.
Inst. for Logic, Language and Computation, 2001.
- David Kenneth Johnston.
A generalized relational semantics for modal logic.
Master's thesis, Simon Fraser University, 1978.
- R. E. Jennings and P. K. Schotch.
Some remarks on (weakly) weak modal logics.
Notre Dame J. Formal Logic, 22(4):309–314, 10 1981.

- David Lewis.
Intensional logics without interative axioms.
J. Philosophical Logic, 3:457–466, 1974.
- Istvan Nemeti.
Cylindric-relativised set algebras have strong amalgamation.
The Journal of symbolic logic, 50(3):689–700, 1985.
- Martin Otto.
Elementary proof of the van benthem-rosen characterisation theorem.
Technical Report, 2342, 2004.
- Eric Pacuit.
Neighborhood Semantics for Modal Logic.
Springer, 2017.

- Eric Rosen.
Modal logic over finite structures.
Journal of Logic, Language and Information, 6(4):427–439, 1997.
- PK Schotch and RE Jennings.
Modal logic and the theory of modal aggregation.
Philosophia, 9(2):265–278, 1980.
- Johan Van Benthem and Kees Doets.
Higher-order logic.
In *Handbook of philosophical logic*, pages 275–329. Springer, 1983.

参考文献 VI

- A Visser.
Modal logics and bisimulation.
In *Tutorial for the workshop Three days of bisimulation.*
Amsterdam, 1994.
- Yanjing Wang.
A logic of goal-directed knowing how.
Synthese, 2017.
forthcoming.

谢谢大家