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背景

在某次逻辑学会议之后，你被邀请去参加晚宴，而从主办者那里得知1：

• 这次晚宴专门邀请逻辑学家和其配偶，所以这里的每对夫妻中至
少有一人是逻辑学家。

• 这次晚宴也针对邀请中国人，故这里的每对夫妻中至少有一人是
中国人。

• 任意一对夫妻中都至少有一位是中国逻辑学家 ×

• 这次晚宴附带的有酒会环节，每对夫妻中至少有一人是会喝酒的。
• 每对夫妻中至少有一人满足以下三者之一：
• 1.中国逻辑学家；2.会喝酒的中国人；3.会喝酒的逻辑学家。

1例子来自王彦晶老师。
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背景

鸽笼原理：每对夫妻中至少有一人满足 A,至少有一人满足 B,且至少有
一人满足 C，故每对夫妻中至少有一人满足 A且 B, A且 C，B且 C中的
一个性质。

• □φ: 每对夫妻中的至少一人具有性质 φ.
• 我们可以形式化上述推理为：
1. C : □p ∧□q→ □(p ∧ q) 不是有效的。
2. K2 : □p ∧□q ∧□r→ □((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)) 是有效的。

• 一般的，令 □φ: 每个 N元组里至少有一个东西有性质 φ:

• Kn : □p0 ∧ · · · ∧□pn → □
∨

(0≤i<j≤n)
(pi ∧ pj)
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聚合公理

• K1 = □p∧□q→ □(p∧ q)。称之为聚合公理（Aggregative Axiom）
[JS81]

• 当 n ≥ 2时, Kn 可以看作是 C的弱形式。
• 用 Kn 在 K中替换 C得到弱聚合模态逻辑（Weakly Aggregative
Modal Logics ( WAML )[SJ80]）。
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一些聚合公理不应有效的环境

• □p解释为有义务做 p”：

• C不是有效的：
人有可能面临两种相互矛盾的义务，但不会有单个的自相矛盾的
义务（在道义逻辑中 [SJ80]。）

• □p：知道如何实现 P
• C同样不是有效的：
你知道如何喝醉，也知道如何证明某个数学定理，但你很可能并
不知道如何在喝醉的时候证明这个定理。（在“knowing how”认
知逻辑中 [Wan17, FHLW17]。）
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弱聚合公理有效

• 如之前晚宴的例子中 Kn 是有效的。

• 此时 □φ的解读：相对于关系语义的特殊多元模态逻辑（PML)。
• 用 ∇来代表 N元的 □算子 [BDRV02]。∇(φ1, . . . , φn)在 N元关系
模型上的语义解释如下 [JS81, BDRV02]：

• ∇(φ1, . . . , φn)在 s处成立当且仅当对任意 s1, ..., sn 满足
Rss1 . . . sn，都存在 i ∈ [1,n]使得 φi 分别在 si 处成立。

• 对 □φ的解释恰好符合一种特殊情况下的 ∇(φ1, . . . , φn)语义：
φ1 = · · · = φn。

• 称 □为 N元对角线算子。2

2该名称来自于 Yde Venema
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Polyadic Modal Logic



Polyadic Modal Logic [BDRV02]

• φ := p | ⊥ | ¬φ | (φ ∧ φ) | ∇(φ . . . φ︸ ︷︷ ︸
n

)

• A frame F for the modal language MLn(Φ) (call it n-frame) is a
pair ⟨W,R∇⟩ where W is an nonempty set and R∇ is an n+ 1-ary
relation over W.

•

M,w |= ∇(φ1, . . . , φn) iff ∀v1, . . . vn ∈ W(R∇wv1 . . . , vn ⇒
M, vi |= φi for some i ≤ n).

M,w |= ∆(φ1, . . . , φn) iff ∃v1, . . . vn ∈ W(R∇wv1 . . . , vn&
M, vi |= φi for all i ≤ n).

10
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Normal polyadic modal logic

• A modal logic Λ is normal if it contains the axiom Ki∇ and is
closed under Ni∇ for each i ∈ [1,n].[BDRV02]

Ki∇ ∇(r1, . . . ri−1,p→ q, ri+1 . . . , rn) →
(∇(r1, . . . ri−1,p, ri+1 . . . , rn) → ∇(r1, . . . ri−1,q, ri+1 . . . , rn))

Ni∇ from ⊢Λ φ infer ⊢Λ ∇(ψ1 . . . , ψi−1, φ, ψi+1, . . . , ψn)

• We call the resulting minimal normal modal logic Kn.

11
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Alternative Axiomatization

In [Joh78], the author used the following axiom Gi∇ instead of Ki∇,3
and besides Ni∇, a monotonicity rule RMi∇ is also used.

Gi∇ ∇(r1, . . . ri−1,p, ri+1 . . . , rn) → (∇(r1, . . . ri−1,q, ri+1 . . . , rn)
→ ∇(r1, . . . ri−1,p ∧ q, ri+1 . . . , rn))

RMi∇ from ⊢Λ φ→ ψ infer
⊢Λ ∇(ψ1 . . . , ψi−1, φ, ψi+1, . . . , ψn) → (ψ1 . . . , ψi−1, ψ, ψi+1, . . . , ψn)

3The name Gi∇ is in recognition of the contribution of Goldblatt.
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Wrong Axiomatizations

• In [BDRV02], the following rule is used instead of Ni∇:

•
N∗
∇ from ⊢Λ φ infer ⊢Λ ∇(⊥ . . . ,⊥, φ,⊥, . . . ,⊥)

• Ni∇ is not admissible in the logic K∗ where Ni∇ is replaced by N∗
∇.

• Define a new semantics ⊩:
• w ⊩ ∇(φ1, . . . , φn) iff one of the followings hold:
1. w is a dead end, i.e. there is no v1, . . . , vn s.t. Rwv1, . . . , vn.
2. There are some v1, . . . , vn s.t.
Rwv1, . . . , vn ∧ ∃k ∈ [1,n]∀w1, . . . ,wn(Rww1, . . . ,wn →

(wk ⊩ φk ∧ ∀m ̸= k∃w′
1, . . . ,w′

n(Rww′
1, . . . ,w′

n ∧ w′
m ⊩ ¬φm))).

• (There is a unique argument which is true at the corresponding
position of every sequence of successors.)
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Wrong Axiomatizations

• Also note that the following axiom mentioned in the definition
of normal polyadic modal logics from [GPV03] is not valid:4

∇(p1 → q1, . . . ,pn → qn) → (∇(p1, . . . ,pk) → ∇(q1, . . . ,qn))

4In [GPV03], ∆ is used as the polyadic box.
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Ultrafilter Extension

• Let F = (W,R∆) be an n-frame. The ultrafilter extension ueF of
F is defined as the frame (Uf(W),Rue∆ ):

• Uf(W) is the set of all ultrafilters over W;
• u0Rue∆ u1, ...,un iff m∆(X1, ..., Xn) ∈ u0 whenever Xi ∈ ui for all i ≤ n.

• The ultrafilter extension of an n-modelM = (F , V) is the model
ueM = (ueF , Vue) where
Vue(pi) = {u is an ultrafilter on W | V(pi) ∈ u}.[BDRV02]
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An Important Lemma

Lemma

Suppose u is an ultrafilter on Wn. Let
∏

i : Wn → W be the i-th coordi-
nate projection and bi = {

∏
i(x) | x ∈ b} be the projection of u. Then

ui = {bi | b ∈ u} is an ultrafilter on W.
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Proof

• Define a function ′ : W→ Wn:
a′ = {(a1, . . . ,ai−1, x,ai+1, . . . ,an) | x ∈ a and aj ∈ W for each
j ≤ n} = {x ∈ Wn |

∏
i(x) ∈ a}. Obviously, a ⊆ b only if a′ ⊆ b′

and one can check that (a′)i = a.

• If a ⊇ b ∈ ui, then ∃c ∈ u s.t. b = ci. To get a ∈ ui, we only need
to show a′ ⊇ c. If x ∈ c, then

∏
i(x) ∈ b and hence

∏
i(x) ∈ a,

which means x ∈ a′.
• If a /∈ ui, then a′ /∈ u, which means Wn − a′ ∈ u. It follows that
(Wn − a′)i ∈ ui, but (Wn − a′)i = {

∏
i(x) | x ∈ Wn − a′}. Assume

that y ∈ {
∏

i(x) | x ∈ Wn − a′}, then y =
∏

i(x) for some
x ∈ Wn − a′. If y ∈ a, then

∏
i(x) ∈ a which means x ∈ a′, a

contradiction. So (Wn − a′)i ⊆ W− a. By the above result,
W− a ∈ ui.
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Saturation Models

• LetM = (W,R∇, V) be an n-model. M is called m-saturated if
for every state w ∈ W and every sequence Σ1, . . . ,Σn of sets of
PML formulas we have:

• If for every sequence of finite subsets ∆1 ⊆ Σ1, . . . ,∆n ⊆ Σn

there are states v1, . . . , vn s.t. R∇wv1, . . . , vn and for each i
vi |= ∆i. then there are w1, . . . ,wn s.t. R∇ww1, . . . ,wn and for
each i wi |= Σi.

• The name‘m-saturation’stems from [Vis94], but actually the
notion is older: its first occurrence is in [Fin75]. In those original
papers, the notion is monadic, while the polyadic case is a direct
generalization.
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Saturation Theorem of UE

Theorem

LetM be an n-model. Then ueM is m-saturated.

• Proof.

Let Ai = {W1 × · · · ×Wi−1 × V(φ) ×Wi+1 · · · ×Wn | φ ∈ ∆i and Wj = W
for all j}.

A = ∪1≤i≤nAi.

B = {∪1≤i≤n(W1 × · · · × Wi−1 × Yi × Wi+1 · · · × Wn) | mδ
∆(Y1, . . . , Yn) ∈

w and Wj = W for all j}.

Let ∆ = A ∪ B. Check that ∆ has the finite intersection property.

Use the above lemma.
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Ultrafilter Extension Theorem

Theorem ([Gol00])

Let M be an n-model. Then, for any formula φ and any ultrafilter u
over W, V(φ) ∈ u iff ueM,u |= φ.

• Hence, for each state w inM we have w↭
∏

w, where
∏

w is
the principal ultrafilter generated by {w}.

• Proof.

Use the lemma again.
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Ultraproduct

• Let C =
∏

i∈IWi be the Cartesian product of {W}i∈I and u be an
ultrafilter on the index set I. For two functions f,g ∈ C we say
that f and g are u-equivalent (f ∼u g if {i ∈ I | f(i) = g(i)} ∈ u.
One can easily check this is indeed an equivalence relation.

• Let fu = {g ∈ C | g ∼u f}. The ultraproduct of {W}i∈I modulo u is
define as follows: ∏

u
Wi = {fu | f ∈

∏
i∈I

Wi}
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Ultraproduct

• Definition (ultraproduct)

Let Mi = (Wi,R∆i, Vi)(i ∈ I) be n-models. The ultraproduct
∏

uM
modulo u is describled as follows.

• (i) The universe Wu is the set
∏

uWi = {fu | f ∈
∏

i∈IWi}.

• (ii) The valuation Vu is defined by

fu ∈ Vu(p) iff {i ∈ I | f(i) ∈ Vi(p)} ∈ u.

• (iii) The n-ary relation R∆u is given by

f0uR∆uf1u...fnu iff {i ∈ I | f0(i)R∆if1(i)...fn(i)} ∈ u.

• If all theMi are the same modelM, we say
∏

uM the
ultrapower ofM modulo u.
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Ultrapower

Theorem (AC)

Let
∏

uM be an ultrapower ofM. Then for all PML formulasφ, we have
M,w |= φ iff

∏
uM, ((fw)u |= φ, where fw is the constant function s.t.

fw(i) = w for all i ∈ I.

• One should be careful about the using of AC in the proof and
see how strong we need the ”choice” to be, compared with the
case in proving Los’s theorem.

• Doets and Van Benthem [VBD83] gave an intuitive explanation of
the ultraproduct construction.
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Craig Interpolation Theorem

• There is are standard model theoretical proofs of CIT for
monadic normal modal logics in [AVBN95] and [ANvB98].

• Rosen gave another proof which can work within finite models
in [Ros97].

• We do have a algebraic proof for CIT of PML in [Nem85].
• In [H+01], there is a deep connection between the
amalgamation on algebras and the interpolation on logic.
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Craig Interpolation Theorem

• we find that both the proofs in [Ros97] and [ANvB98] can direcly
apply to PML, and those proofs are purely model theoretical on
modal logic.

• We choose to give a proof for PML using the method in [ANvB98].
• Rosen’s method is very important in proving CIT when the logic
is just weakly complete.

25



Craig Interpolation Theorem

• we find that both the proofs in [Ros97] and [ANvB98] can direcly
apply to PML, and those proofs are purely model theoretical on
modal logic.

• We choose to give a proof for PML using the method in [ANvB98].

• Rosen’s method is very important in proving CIT when the logic
is just weakly complete.

25



Craig Interpolation Theorem

• we find that both the proofs in [Ros97] and [ANvB98] can direcly
apply to PML, and those proofs are purely model theoretical on
modal logic.

• We choose to give a proof for PML using the method in [ANvB98].
• Rosen’s method is very important in proving CIT when the logic
is just weakly complete.

25



Craig Interpolation Theorem

Theorem

Each normal polyadic modal logic Kn has the Craig Interpolation The-
orem. More precisely, let φ ⊢Kn ψ, then there is a formula α s.t. φ ⊢Kn

α ⊢Kn ψ and atom(α) ⊆ atom(φ) ∩ atom(ψ).

• Proof.

First we fix an n and just use ⊢ without a subscript. Since we al-
ready know that Kn is strongly complete w.r.t to all n-frames, we could
freely switch between |= and ⊢. For convenience, let P = atom(φ),
Q = atom(ψ) and R = atom(α). We show that the set consR(φ) of all
consequences of φ in R language satisfies the following claim:

consR(φ) |= ψ.

By a standard compactness argument, we can find the interpolant.
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Proof of the Claim

Let (M,a) = (W,R∆, V) be any pointed n-model s.t.
(M,a) |= consR(φ). We show that (M,a) |= ψ. By a routine
argument, the R-theory ThR(M,a) is consistent with {φ}, and by
compactness again, there is a P-model (N ,b) |= φ s.t.
(M,a) ≡R (N ,b). Suppose that (N ,b) = (W′,R′∆, V′). We have
already shown that there are m-saturated models which can
preserve modal truth in this paper before, so without loss of
generality we assume that both (M,a) and (N ,b) are m-saturated.
It follows that the ≡R is indeed an R-bisimulation. Next we construct
a product modelMN , (a,b) s.t. (M,a) ↔Q MN , (a,b) and
(N ,b) ↔P MN , (a,b), which is sufficient for our proof:

(N ,b) |= φ⇒ MN , (a,b) |= φ⇒ MN , (a,b) |= ψ ⇒ (M,a) |= ψ
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Proof of the Claim

Let Z = {(x, y) ∈ W×W′ | x ↔R y}, and defineMN = (Z,R∗∆, V∗) as
follows:

(x, y)R∗∆(x1, y1), ..., (xn, yn) iff xR∆x1, ..., xn and yR′∆y1, ..., yn

For each (x, y) ∈ Z,

(x, y) ∈ V∗(p) ⇐⇒


x ∈ V(p) if p ∈ Q
y ∈ V′(p) if p ∈ P
never if otherwise

Notice that V∗ is well-defined since every (x, y) ∈ Z satisfies x ↔R y.
Now it is sufficient to check that our construction satisfies the
requirement.

Let B1 = {(x, (z1, z2)) | x ↔Q z1 and z2 ∈ W′} be a relation on W× Z
and B2 = {(y, (z1, z2)) | y ↔P z2 and z1 ∈ W} be a relation on W′ × Z.
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Weakly Aggregative Modal Logic



Language and Semantics

•
φ := p | ¬φ | (φ ∧ φ) | □φ

• Definition (n-Semantics)

R∇ is an n+ 1-ary relation over W. The semantics for □φ (and ♢φ) is
defined by:

M,w |= □φ iff ∀v1, . . . vn ∈ W(R∇wv1 . . . , vn → M, vi |= φ for some i ≤ n).
M,w |= ♢φ iff ∃v1, . . . vn ∈ W(R∇wv1 . . . , vn&M, vi |= φ for all i ≤ n).

• It is not hard to see that the aggregation axiom
□φ ∧□ψ → □(φ ∧ ψ) is not valid on n-frames for any n ≥ 2.
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Systems

• [SJ80] proposed the following proof systems Kw
n for each k.

• The logic Kw
n is a modal logic including propositional

tautologies, the axiom Kn and closed under the rules N and RM:

Kn □p0 ∧ · · · ∧□pn → □
∨

(0≤i<j≤n)
(pi ∧ pj)

N ⊢ φ =⇒ ⊢ □φ
RM ⊢ φ→ ψ =⇒ ⊢ □φ→ □ψ

• K1 is just the aggregation axiom C and thus Kw
1 is just the normal

monadic modal logic K.

31



Systems

• [SJ80] proposed the following proof systems Kw
n for each k.

• The logic Kw
n is a modal logic including propositional

tautologies, the axiom Kn and closed under the rules N and RM:

Kn □p0 ∧ · · · ∧□pn → □
∨

(0≤i<j≤n)
(pi ∧ pj)

N ⊢ φ =⇒ ⊢ □φ
RM ⊢ φ→ ψ =⇒ ⊢ □φ→ □ψ

• K1 is just the aggregation axiom C and thus Kw
1 is just the normal

monadic modal logic K.

31



Systems

• [SJ80] proposed the following proof systems Kw
n for each k.

• The logic Kw
n is a modal logic including propositional

tautologies, the axiom Kn and closed under the rules N and RM:

Kn □p0 ∧ · · · ∧□pn → □
∨

(0≤i<j≤n)
(pi ∧ pj)

N ⊢ φ =⇒ ⊢ □φ
RM ⊢ φ→ ψ =⇒ ⊢ □φ→ □ψ

• K1 is just the aggregation axiom C and thus Kw
1 is just the normal

monadic modal logic K.

31



Neighborhood Semantics

• We also introduce the neighborhood semantics in [Pac17] for
modal logic as follows.

• A pair F = ⟨W, ν⟩ is a called a neighborhood frame, if W is a
non-empty set and ν is a neighborhood function from W to
P(P(W)). M = ⟨F, V⟩ is a model if V : Φ → 2W is a valuation
function.

• The semantics is defined as follows:

M,w |= □φ ⇐⇒ JφKM ∈ ν(w) | M,w |= ♢φ ⇐⇒ W−JφKM /∈ ν(w)

where JφKM = {w | M,w |= φ}, i.e. the truth set of φ.
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Bisimulation

LetM = (W,R∇, V) andM′ = (W′,R′∇, V′) be two n-models. A
non-empty binary relation Z ⊆ W×W′ is called a wan-bisimulation
betweenM andM′ if the following conditions are satisfied:

inv If wZw′, then w and w′ satisfy the same propositional letters.

forth If wZw′ and R∇wv1, . . . , vn then there are v′1, . . . , v′n in W′ s.t.
R′∇w′v′1, . . . , v′n and for each v′j there is a vi such that viZv′j where
1 ≤ i, j ≤ n.

back If wZw′ and R′∇w′v′1, . . . , v′n then there are v1, . . . , vn in W s.t.
R∇wv1, . . . , vn and for each vi there is a v′j such that viZv′j where
1 ≤ i, j ≤ n.
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Bisimulation

• Consider the following two 2-models where
{⟨w,w1,w2⟩, ⟨w,w2,w3⟩} is the ternary relation in the left model,
and {⟨v, v1, v2⟩} is the ternary relation in the right model.

•
w1 : p v1 : p

w : p

iiiiiiiiii

UUUU
UUUU

UUU w2 : p v : p

iiiiiiiiii v2 : p

w3

Z = {⟨w, v⟩, ⟨w1, v1⟩, ⟨w2, v2⟩, ⟨w2, v1⟩} is a wa2-bisimulation. A
polyadic modal formula ¬∇¬(p,¬p), not expressible in WAML2,
can distinguish w and v.
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Standard Translation

Definition (Standard translation)

ST : WAMLn → FOL:
STx(p) = Px
STx(¬φ) = ¬STx(φ)
STx(φ ∧ ψ) = STx(φ) ∧ STx(ψ)
STx(□φ) = ∀y1∀y2 . . . ∀yn(Rxy1y2 . . . yn → STy1(φ) ∨ · · · ∨ STyn(φ))
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n-Tree Unraveling [dR93]

• We use an example of a graph with ternary relations to illustrate
the intuitive idea behind the general n-ary unraveling.

• Example

Given the 2-model with ternary relations ⟨{w, v,u, t}, {⟨w,u, t⟩, ⟨u, t,u⟩,
⟨t,w, v⟩}, V⟩. It is quite intuitive to first unravel it into a binary tree with
pairs of states as nodes, illustrated below:

w
��uukkkk

kkkk
kk

⟨u, t⟩

vvlll
lll

ll
��

⟨u, t⟩
�� ))RRR

RRRR
RR

⟨t,u⟩ ⟨t,u⟩ ⟨w, v⟩ ⟨w, v⟩

36



n-Tree Unraveling [dR93]

• We use an example of a graph with ternary relations to illustrate
the intuitive idea behind the general n-ary unraveling.

• Example

Given the 2-model with ternary relations ⟨{w, v,u, t}, {⟨w,u, t⟩, ⟨u, t,u⟩,
⟨t,w, v⟩}, V⟩. It is quite intuitive to first unravel it into a binary tree with
pairs of states as nodes, illustrated below:

w
��uukkkk

kkkk
kk

⟨u, t⟩

vvlll
lll

ll
��

⟨u, t⟩
�� ))RRR

RRRR
RR

⟨t,u⟩ ⟨t,u⟩ ⟨w, v⟩ ⟨w, v⟩

36



n-Tree Unraveling [dR93]

• We use an example of a graph with ternary relations to illustrate
the intuitive idea behind the general n-ary unraveling.

• Example

Given the 2-model with ternary relations ⟨{w, v,u, t}, {⟨w,u, t⟩, ⟨u, t,u⟩,
⟨t,w, v⟩}, V⟩. It is quite intuitive to first unravel it into a binary tree with
pairs of states as nodes, illustrated below:

w
��uukkkk

kkkk
kk

⟨u, t⟩

vvlll
lll

ll
��

⟨u, t⟩
�� ))RRR

RRRR
RR

⟨t,u⟩ ⟨t,u⟩ ⟨w, v⟩ ⟨w, v⟩

36



Unraveling

Definition

Given an n-modelM = ⟨W,R, V⟩ and w ∈ W, we first define the binary
unravelingMb

w ofM around w as ⟨Ww,Rb, V′⟩ where:

Ww is the set of sequences ⟨⟨⃗v0, i0⟩, ⟨⃗v1, i1⟩, . . . , ⟨⃗vm, im⟩⟩ where:

m ∈ N; for each j ∈ [0,m], v⃗j ∈ Wn and ij ∈ [1,n] such that R(⃗vj[ij])⃗vj+1;
v⃗0 is the constant n-sequence w . . .w and i0 = 1;

Rbss′ iff s′ extends s with some ⟨⃗v, i⟩

V′(s) = V(r(s)), where r(s) = v⃗m[im] if s = ⟨. . . , ⟨⃗vm, im⟩⟩.

The unravelingMw = ⟨Ww,R′, V′⟩ is based onMb
w by defining R′s0s1 . . . sn

iff Rr(s0)r(s1) . . . r(sn) and Rbs0si for all i ∈ [1,n].
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Rosen van Benthem Characterization Theorem

• Theorem

A first-order formula α(x) is invariant under↔n (over finite models) iff
α(x) is equivalent to a WAMLn formula (over finite models).

• Following the general strategy in [Ott04], the only non-trivial
part is to show that the FOL formula α(x) that is invariant under
wan-bisimulation has some locality property w.r.t. its bounded
unravelingMw|l for some l.

• Lemma (locality)

FOL formula α(x) is invariant under ↔ (over finite models) implies
that for some l ∈ N, for any n-modelM,w: M,w ⊩ α(x)[w] iffMw|l ⊩
α(x)[(⟨w⃗, 1)⟩].
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Rosen van Benthem Characterization Theorem

M∗ ≡FOLq N ∗

w∗

��
��
��
��
�

..
..
..
..
. •

��
��
��
��
�

--
--
--
--
- | v∗

��
��
��
��
�

..
..
..
..
. •

��
��
��
��
�

--
--
--
--
-

q+ 1 q | q+ 1 q

• • • • • | • • • • •

39



Interpolation

• Unfortunately, each Kn does not have the Craig Interpolation
Theorem.

• The counterexamples are actually from what we lack in the
bisimulation relation–which is not a bijection.
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Counterexample 1

Example

Consider the following two 2-models where {⟨w,w1,w2⟩, ⟨w,w3,w4⟩}
is the ternary relation in the left model M2, and {⟨v, v1, v2⟩} is the
ternary relation in the right model N2.

w

vvmmm
mmm

mmm
mmm

NNN
NNN

NNN
NNN

v

MMM
MMM

MMM
MM

⟨w1,w2⟩ : p,¬q w3 : p, q w4 : ¬p, q v1 : p,¬r v2 : p, r

• Z = {⟨w, v⟩, ⟨w1, v1⟩, ⟨w2, v2⟩, ⟨w3, v1⟩, ⟨w3, v2⟩} is a
{p}-wa2-bisimulation.

• M2,w |= φ2 = ♢(p ∧ ¬q) ∧□p ∧ ♢q ∧□(¬p ∨ ¬q);
N2, v |= ψ2 = □(r ∧ p) ∧□(¬r ∧ p) ∧□(¬p).

• ⊢2 φ2 → ¬ψ2
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Counterexample 2(Due to Yifeng)

Example

Consider the following two 3-models where {⟨w,w1,w2,w3⟩} is the re-
lation inM3, and {⟨v, v1, v2, v3⟩} is the relation in N3.

w1 : p,¬q v1 : ¬p, r

M : w

hhhhhhhhhh

VVVVV
VVVVV

w2 : p,q N : v

hhhhhhhhhh

VVVVV
VVVVV

V v2 : ¬p,¬r

w3 : ¬p,q v3 : p, r

• Z = {⟨w, v⟩, ⟨w1, v3⟩, ⟨w2, v3⟩, ⟨w3, v1⟩, ⟨w3, v2⟩} is a
{p}-wa3-bisimulation.

• M3,w |= φ3 = □(p ∧ ¬q) ∧□(p ∧ q) ∧□(¬p ∧ q) ∧ ♢⊤;
• N3, v |= ψ3 = □(¬p ∧ r) ∧□(¬p ∧ ¬r) ∧□(p ∧ r) ∧ ♢⊤.
• ⊢3 φ3 → ¬ψ3.

42



Counterexample 2(Due to Yifeng)

Example

Consider the following two 3-models where {⟨w,w1,w2,w3⟩} is the re-
lation inM3, and {⟨v, v1, v2, v3⟩} is the relation in N3.

w1 : p,¬q v1 : ¬p, r

M : w

hhhhhhhhhh

VVVVV
VVVVV

w2 : p,q N : v

hhhhhhhhhh

VVVVV
VVVVV

V v2 : ¬p,¬r

w3 : ¬p,q v3 : p, r

• Z = {⟨w, v⟩, ⟨w1, v3⟩, ⟨w2, v3⟩, ⟨w3, v1⟩, ⟨w3, v2⟩} is a
{p}-wa3-bisimulation.

• M3,w |= φ3 = □(p ∧ ¬q) ∧□(p ∧ q) ∧□(¬p ∧ q) ∧ ♢⊤;

• N3, v |= ψ3 = □(¬p ∧ r) ∧□(¬p ∧ ¬r) ∧□(p ∧ r) ∧ ♢⊤.
• ⊢3 φ3 → ¬ψ3.

42



Counterexample 2(Due to Yifeng)

Example

Consider the following two 3-models where {⟨w,w1,w2,w3⟩} is the re-
lation inM3, and {⟨v, v1, v2, v3⟩} is the relation in N3.
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Counterexamples

Proposition

K2 and K3 lack the Craig Interpolation Theorem.

Proof.

We will see that the above two are counterexamples for CIP: φi → ¬ψi
do not have any interpolant in Ki. Since the only common proposition
letter is p, we assume for contradiction that θi(p) is a interpolant for
φi → ¬ψi. Then We have ⊢i φi → θi(p) and ⊢i θi(p) → ¬ψ3. By the
above two examples we know that Mi,w |= θi(p), which also means
Ni, v |= θi(p) by p-bisimulation. But it follows that Ni, v |= ¬ψi, a
contradiction.
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Repair CIT

• C∗: □(p ∨ q) → □p ∨□q.

• ∃⟨a1, ...,an⟩(wRa1...an∧
∀⟨b1, ...,bn⟩(wRb1...bn → ({a1, ...,an} ⊆ {b1, ...,bn})).

• ∀A,B((A ∪ B ∈ ν(w) → A ∈ ν(w) ∨ B ∈ ν(w)).
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First Degree Modal Logic

• A modal logic L is said to be first degree if it is axiomatizable by
a set of formulas of modal degree at most 1.

• In [Lew74] David Lewis shows that every finitely axiomatizable
first degree modal logic is Decidable by f.m.p. method.

• Proposition (Apostoli in [Apo97])

Every first degree n-normal logic is complete with respect to the class
of finite n-frames which validate it.

• Proposition (Prop 2.8 in [Pac17])

Every first degree modal logic is complete with respect to the class of
finite neighborhood frames which validate it.
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Propositional Qualifier

LetM = ⟨W,N, V⟩ be a neighborhood model, we sayMQ̄ is a
Q̄-variant ofM if they only differ in Q̄-valuation. More precisely,
MQ̄ = ⟨W,N, V′⟩, where V(p) = V′(p) for all p /∈ Q̄.

Definition

Let φ(P̄, Q̄) be a modal formula s.t. P̄∩ Q̄ = ∅. ThenM,w |= ∃Q̄φ(P̄, Q̄)
iff there is some Q̄-variant MQ̄,w |= φ(P̄, Q̄). The formula ∀Q̄φ(P̄, Q̄)
is defined similarly.
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Kc
2 has CIT

Proposition

Kc
2 has the Craig interpolation. More precisely, let φ ⊢Kc

2
ψ, then there

is a formula α s.t. φ ⊢Kc
2
α ⊢Kc

2
ψ and atom(α) ⊆ atom(φ) ∩ atom(ψ).

Furthermore, deg(α) ≤ max(deg(φ),deg(ψ)).

Proof.

• Let k = max(deg(φ),deg(ψ)). There are only finitely many
∼P
k-equivalence classes.

• Claim: For any ∼P
k-equivalence classes C, if there is some

M,w ∈ C s.t. M,w |= ∃Q̄φ(P̄, Q̄), then for all N , v ∈ C,
N , v |= ∀R̄ψ(P̄, R̄).

• For each class contain such anM,w, let βi be the formula
defines that class. One can check that deg(βi) ≤ k and the
disjunction of all such βi, say β =

∨
βi, will be an interpolant.
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Proof of the Claim

• Suppose for contradiction that there areM,w ∼P
k N , v s.t.

M,w |= ∃Q̄φ(P̄, Q̄) and N , v |= ∃R̄¬ψ(P̄, R̄). We need to find
another model D,u |= ∃Q̄φ(P̄, Q̄) ∧ ∃R̄¬ψ(P̄, R̄), which is a
contradiction.

• Every finite models of Kc
2 is bisimular with some determined

2-tree model:
• Transfer a Kc

2 model A to a model B with two 2-ary relations;
• Using unraveling on B to get a tree model BT with two relations;
• Transfer BT to a determined 2-tree model AT;
• Check that A and AT are bisimilar.
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Construction of D

• We use induction on k to show:

• For any two finite determined 2-tree modelsM∗,w∗ and N ∗, v∗ of
depth k+ 1, ifM∗,w∗ ↔P

k N ∗, v∗, then there is a model D,u s.t.
M∗,w∗ ↔PQ

k D,u ↔PR
k N ∗, v∗. (*)

• LetM∗ = ⟨W1,R1, V1⟩ and N ∗ = ⟨W2,R2, V2⟩.
If k = 0, then Let D = ⟨W, T, V∗⟩, where W = {(w, v)}, T = ∅, and
V∗ is defined as follows:

(x, y) ∈ V∗(p) ⇐⇒


x ∈ V1(p) if p ∈ Q
y ∈ V2(p) if p ∈ R
never if otherwise

• Since w ↔P
0 v, the definition is well-defined, and it’s easy to

check the two required bisimulation relation.
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Construction of D

M N

D1 D2
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Construction of D

• Define D = ⟨W, T, V∗⟩ as follows:
W = (w∗, v∗) ∪ Dom(D1) ∪ Dom(D2);
T = {((w∗, v∗),u1,u2)} ∪ RD1 ∪ RD2 ;

(w∗, v∗) ∈ V∗(p) ⇐⇒


x ∈ V1(p) if p ∈ Q
y ∈ V2(p) if p ∈ R
never if otherwise

For each x ∈ Dom(Di), x ∈ V∗(p) iff x ∈ VDi(p).

• It’s a routine argument to check that D, (w∗, v∗) satisfies the two
bisimulation relations.
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Conclusion and Further Work



Conclusion

• Two method to prove interpolation:

1 By compactness, using saturated model.
Requirement:

• 1. The logic need to be strongly complete.
• 2. The frame conditions need to be preserved under UE (or
other saturation construction).

2 By finite model method, using inductive construction.
Requirement:

• The logic need to have f.m.p.
• The logic need to have ”tree-like” model property.
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Further Work

• Relativized interpolation.

• Strong interpolation properties: Uniform Interpolation.
• Applications, especially of neighborhood frame: n-filter.

54



Further Work

• Relativized interpolation.
• Strong interpolation properties: Uniform Interpolation.

• Applications, especially of neighborhood frame: n-filter.

54



Further Work

• Relativized interpolation.
• Strong interpolation properties: Uniform Interpolation.
• Applications, especially of neighborhood frame: n-filter.

54



相关论文

• 1. Model Theoretical Aspects of Normal Polyadic Modal Logic: An
Exposition. 逻辑学研究已收录;

• 2. Weakly Aggregative Modal Logic: completeness,
characterization and interpolation：修改中，和丁一峰，王彦晶
老师合作。
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