
What we know and don’t know about Craig
Interpolation and Propositional Dynamic Logic.

Malvin Gattinger
ILLC, Amsterdam

2016-12-06
Department of Philosophy

Peking University

Based on many discussions with Yde Venema.

Disclaimer

I don’t know whether PDL has Craig Interpolation.

(I don’t know whether)2 PDL has Craig Interpolation.

I don’t know whether I know whether PDL has Craig Interpolation.

Contents

Craig-Interpolation

Propositional Dynamic Logic

Craig Interpolation for PDL

Craig-Interpolation

William Craig (November 13, 1918 – January 13, 2016)

I born in Nürnberg
I first proved Interpolation for first-order logic in 1957

Interpolation in Natural Language I

If god exists, then the world will never end and all
humans and cats will live forever.

⇒ If god exists and I am a cat, then I will live forever.

© “Simon’s Cat”

Interpolation in Natural Language II

If god exists, then the world will never end and all
humans and cats will live forever.

⇒ If god exists, then all cats will live forever.

⇒ If god exists and I am a cat, then I will live forever.

© “Simon’s Cat”

Craig-Interpolation: Definition

Given:

I Λ – logic as set of formulas, given by semantics or proof system
I L(ϕ) – language of a formula

I e.g. proposition letters: L(p → ((r ∨ p) ∧ q)) = {p, q, r}

Definition
Λ has Craig Interpolation iff for any ϕ→ ψ ∈ Λ, there is a µ s.t.:

I L(µ) ⊆ L(ϕ) ∩ L(ψ),
I ϕ→ µ ∈ Λ
I and µ→ ψ ∈ Λ.

Then call µ an interpolant for ϕ→ ψ.

Example: Propositional Interpolation

Consider: (q ∨ (r ∧ s)) → (¬q → (t ∨ s))

L(q ∨ (r ∧ s)) = {q, r , s}

L(¬q → (t ∨ s)) = {t, s, q}

L(q ∨ (r ∧ s)) ∩ L(¬q → (t ∨ s)) = {q, s}

Find a ϕ such that

I L(ϕ) = {q, s}
I (q ∨ (r ∧ s))→ ϕ
I ϕ → (¬q → (t ∨ s))

Solution: ϕ = q ∨ s

Craig-Interpolation: We can always find such interpolants.

An Easy Interpolation Proof

Consider Propositional Logic:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ

Given � ϕ→ ψ, define an interpolant by:

I If L(ϕ) ⊆ L(ψ), then use ϕ.
I Given p ∈ L(ϕ) \ L(ψ),

1. Let ϕ′ := [>/p]ϕ ∨ [⊥/p]ϕ
2. Find an interpolant for ϕ′ → ψ.

An Easy Interpolation Proof Program

interpolate :: (Form,Form) -> Form
interpolate (phi, psi)

| not (isValid (phi --> psi)) = error "Not valid!"
| atomsIn phi `subseteq` atomsIn psi = phi
| otherwise = interpolate (phi', psi) where

p = head (atomsIn phi \\ atomsIn psi)
phi' = Disj [substitute top p phi

, substitute bot p phi]

Output:

λ> interpolate (Disj[q,Conj[r,s]],Neg q-->Disj[t,s])
((q ∨ (> ∧ s)) ∨ (q ∨ (⊥ ∧ s)))

(which is equivalent to our guess q ∨ s above.)

Proof Methods: Different Roads to Craig Interpolation

I What we just saw: Purely Syntactic
I constructive
I no proof system needed

I Not today: Algebraic
I not constructive
I amalgamation ≈ interpolation

I What we will see: Proof Theoretic
I sometimes constructive
I start with a proof of ϕ→ ψ
I construct interpolants for each step of the proof
I usually done with sequent or tableaux systems

First-Order Logic Example

(Eg → Lw ∧ ∀x : (Hx ∨ Cx → Ix)) → (Eg → Cm→ Im)

Interpolant: Eg → ∀x : (Cx → Ix)

Interpolation with Proofs
Consider proof trees where nodes are sets of formulas.

Given a proof of ϕ→ ψ, define interpolants at each node.

Additionally, use L(·) and R(·) for bookmarking.

Propositional Example:

S ∪ {L(X)} int→ A S ∪ {L(Y)} int→ B
∨

S ∪ {L(X ∨ Y)} int→ A ∨ B

Proper FOL Example: ∀ rules look like this:

S ∪ {L(γ(c))} int→ A
∀3

S ∪ {L(∀xγ(x))} int→ ∀x [c/x]A

(Melvin Fitting: First-Order Logic and Automated Theorem Proving [5])

Logics that have Craig Interpolation

I Propositional Logic
I First-Order Logic
I Intuitionistic Logic
I Basic and Multi-modal logic [11]
I µ-Calculus [1]

I What about Propositional Dynamic Logic (PDL)?
Yde Venema in the Amsterdam course on Model Theory:
“By the way, for PDL this is an open question . . . ”

Propositional Dynamic Logic

Propositional Dynamic Logic (PDL)

Michael J. Fischer and Richard E. Ladner

“fundamental propositional logical system based on modal
logic for describing correctness, termination and
equivalence of programs.” [4]

Related Topics: regular expressions, automata theory, multi-agent
knowledge, programming language semantics, . . .

PDL: Basic Definitions
Syntax
Formulas and Programs:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | 〈α〉ϕ
α ::= a | α;α | α ∪ α | α∗

Models
M = (W ,R,V) where

I W : set of worlds/states
I R = (Rξ)ξ: family of binary relations on W such that

I Rχ;ξ = Rχ;Rξ (consecution)
I Rχ∪ξ = Rχ ∪ Rξ (union)
I Rχ∗ = (Rχ)∗ (reflexive-transitive closure)
I Rϕ? = {w ∈W | w � ϕ} (where � is on the next slide)

I V : Φ→ P(W): valuation function

PDL: Semantics

I M,w � p iff w ∈ V (p)
I M,w � ¬ϕ iffM,w 6� ϕ
I M,w � ϕ ∨ ψ iffM,w � ϕ orM,w � ψ
I M,w � ϕ ∧ ψ iffM,w � ϕ andM,w � ψ
I M,w � ϕ→ ψ iffM,w 6� ϕ orM,w � ψ

I M,w � [α]ϕ iff for all w ′ ∈W : wRαw ′ ⇒ M,w ′ � ϕ.

PDL: Example

v:p

w: q

x: q

a

a

b
b

M,w � 〈a; b〉q
M,w � ¬[a ∪ b]p
M,w � [b]q
M,w � [b∗]q
M,w � [b; a]⊥

M,w � 〈a〉(〈a〉¬q ∧ 〈b〉[b∗]q)

PDL Axioms

Axioms:
I all propositional tautologies
I [α](ϕ ∧ ψ)↔ ([α]ϕ ∧ [α]ψ)
I [α;β]ϕ↔ [α][β]ϕ
I [α ∪ β]ϕ↔ ([α]ϕ ∧ [β]ϕ)
I [α∗]ϕ↔ (ϕ ∧ [α][α∗]ϕ)
I [ψ?]ϕ↔ (ψ → ϕ)

Rules:
I Modus Ponens: ` ϕ and ` ϕ→ ψ imply ` ψ.
I Distribution: ` ϕ→ ψ implies ` [α]ϕ→ [α]ψ
I Induction: ` ϕ→ [α]ϕ implies ` ϕ→ [α∗]ϕ.

This Hilbert-style proof system is not useful to find interpolants /

PDL: Language of a formula

L(p) := {p}
L(ϕ ∧ ψ) := L(ϕ) ∪ L(ψ)
L(ϕ ∨ ψ) := L(ϕ) ∪ L(ψ)
L(ϕ→ ψ) := L(ϕ) ∪ L(ψ)
L(〈τ〉ϕ) = L(τ) ∪ L(ϕ)

L(a) := {a}
L(σ; τ) := L(σ) ∪ L(τ)

L(σ ∪ τ) := L(σ) ∪ L(τ)
L(σ∗) := L(σ)

Example: L([a; b]p → 〈c〉q) = {a, b, c, p, q}

Craig Interpolation for PDL

Why is this difficult?

Short answer: The star.

Without star PDL is multi-modal logic and we would be done. [11]

I But how do we systematically remove programs under the star
to get interpolants in which those must not occur?

And more:

I Note that with tests we have a double recursion:
I formulas in programs
I programs in formulas

I The proof system contains an infinitary induction rule!

Interpolation via Translation?

Wait, but we can translate PDL to the µ-Calculus, right?

Yes, but this does not give us interpolants:

0. Let t : LPDL → Lµ be the translation.
1. Suppose �PDL ϕ→ ψ.
2. Then we have �µ t(ϕ)→ t(ψ).
3. µ-Calculus has C-I, there is an interpolant γµ ∈ Lµ:

I �µ t(ϕ)→ γmu
I �µ γmu → t(ψ)
I L(γµ) = L(t(ϕ)) ∩ L(t(ψ))

4. But now we still need γ ∈ LPDL such that t(γ) = γµ !?!?

/

History

Whether PDL has Craig-Interpolation seems to be an open question.

But there are at least three proof(attempt)s!
I Daniel Leivant: Proof theoretic methodology for propositional

dynamic logic. Conference paper in LNCS, 1981.
I Manfred Borzechowski: Tableau–Kalkül für PDL und

Interpolation. Diploma thesis, FU Berlin, 1988. Unpublished.
I Tomasz Kowalski: PDL has interpolation.

Journal of Symbolic Logic, 2002. Revoked in 2004.

History

Other notable references:

I Marcus Kracht: Chapter The open question in Tools and
Techniques in Modal Logic, 1999.

I D’Agostino & Hollenberg: Logical questions concerning the
µ-Calculus: Interpolation, Lyndon and Łoś-Tarski. JSL, 2000.

I Johan van Benthem: The many faces of Interpolation.
Synthese, 2008.

Kowalski 2002

Kowalski 2004

Leivant 1981

Simplifying the question

Completeness of the original axioms by Segerberg is also shown by
Leivant, but not our interest here.

In 2014 2016 we also know:

I PDL does not have uniform interpolation. [1]
I Test-free PDL has interpolation iff PDL has. [8]

Hence we can

I really stop looking at the µ-calculus for help
I reduce the syntax a bit

Proof Outline

I Define a sound and complete sequent calculus for PDL.
I Use Maehara’s method to show Partition-Interpolation.

I Show that the calculus has the “step-by-step property”.
I For the ∗ case, find a repetitive scheme in long enough proofs.
I Use linear transformations of programs to imply a ∗ formula.

I Check that Partition-Interpolation implies Craig Interpolation.

Sequent Calculus for PDL
Notation

X , Y , Z : formulas

f , g : sets of formulas

α, β: programs

Sequent example: f ,X ` Y

Proof example

[a]p ` [a]p
WEAK[a]p, [b]p ` [a]p

[b]p ` [b]p
WEAK[a]p, [b]p ` [b]p
(∪R)

[a]p, [b]p ` [a ∪ b]p
(→ R)

[a]p ` [b]p → [a ∪ b]p
(→ R)

` [a]p → ([b]p → [a ∪ b]p)

Let CD be the following proof system where g is ∅ or a singleton.

f , X `
(¬R)

f , ` ¬X
f ` X(¬L)

f ,¬X `

f , X ` Y
(→ R)

f ` X → Y
f ` X f , Y ` g

(→ L)
f , X → Y ` g

f ` [α][β]X
(; R)

f ` [α; β]X
f , [α][β]X ` g

(; L)
f , [α; β]X ` g

f ` [α]X f ` [β]X
(∪R)

f ` [α ∪ β]X
f , [α]X , [β]X ` g

(∪L)
f , [α ∪ β]X ` g

f , X , [α][α∗]X ` g
(∗L)

f , [α∗]X ` g
f ` ϕ f ` [α]ϕ · · · f ` [α]kϕ

(∗R)
f ` [α∗]ϕ

where k = 2|f |+|ϕ|

f ` X(GEN)
[α]f ` [α]X

f ` g
(WEAK)

f ′ ` g′
where f ⊆ f ′ and g ⊆ g′.

Completeness

Theorem (Leivant 1981)
CD is a intuitionistic/constructive variant of D which is a sound an
complete system for PDL, i.e. we have:

� X iff `D X iff `CD X 0

where X 0 is the result of inserting ¬¬ in front of everything in X .

NB: CD is not sound and complete for intuitionistic/constructive PDL.

Remaining goal: Show that CD has interpolation.

Maehara’s Method for Partition-Interpolation

Idea
Find interpolants by going along the proof tree.
Given the previous interpolants, we define the next one.

Example
Suppose the last step is ∪R:

...
f ` [α]X

...
f ` [β]X

(∪R)
f ` [α ∪ β]X

Given any two interpolants Z1 and Z2 for f ` [α]X and f ` [β]X ,
let Z := Z1 ∧ Z2 = ¬(Z1 → ¬Z2). This interpolates f ` [α ∪ β]X .

(See [13] for a detailed explanation.)

Partition-Interpolation
Definition
Given a sequent f ` X and a partition of f into f −; f +, we say that
K is an interpolant for f −; f + ` X iff

L(K) ⊆ L(f −) ∩ L(f +,X) and f − ` K and f +,K ` X

Lemma 5.3.1 (Leivant 1981)
Let f −; f + be any partition of f and q not occur in f .

1. If f `CD X , then there is an interpolant for f −; f + ` X .
2. Suppose P is a proof of f ` [α]q from {fi ` q}i<k and let

f −i ; f +
i be the partitions of fi induced by f −; f + for all i < k.

If Ki is an interpolant for f −i ; f +
i ` X for all i < k , then there

is an interpolant of the form
∧
i

[βi]Ki for f −; f + ` [α]X .

Proof. By tree-induction on P, simultaneously for (i) and (ii).

Partition-Interpolation: Easy Warm-Up Case
Suppose the last step is → L:

f ` X f ,Y ` Z (→ L)f ,X → Y ` Z

Case a) partition f −,X → Y ; f +. By induction hypothesis:

I f +; f − ` X (Note: flipped!) yields K1 such that

L(K1) ⊆ L(f +) ∩ L(f −,X) and f + ` K1 and f −,K1 ` X

I f −,Y ; f + ` Z yields K2 such that

L(K2) ⊆ L(f −,Y) ∩ L(f +,Z) and f −,Y ` K2 and f +,K2 ` Z

Let K := K1 → K2. This is interpolates f −,X → Y ; f + ` Z .

Case b) partition f −;X → Y , f +. Then K := K1 ∧ K2 works.

Partition-Interpolation: The evil ∗ case

Suppose the last step of P is (∗R). For each h = 1 ≤ M let Ph be
the proof of f ` [α]hX occurring in P above this premise:

P0
f ` X

P1
f ` [α]X · · ·

PM

f ` [α]MX
(∗R)

f ` [α∗]X

Note: all active formulas on the right. Hence, only consider the
given partition f −, f + without further manipulation.

Given: M many interpolants. Goal: find a formula K such that

L(K) ⊆ L(f −) ∩ L(f +, [α∗]X) and f − ` K and f +,K ` [α∗]X

How?!

Down the rabbit hole . . .

© “Alice in Wonderland”

Nice Properties of Long Proofs: Positive Closure

Definition
The positive closure of f , denoted by PC(f),
is the smallest set g ⊇ f such that:

I If (X → Y) ∈ g , then Y ∈ g .
I If [α]X ∈ g , then X ∈ g .
I If [α;β]X ∈ g , then [α][β]X ∈ g .
I If [α ∪ β]X ∈ g , then [α]X ∈ g and [β]X ∈ g .
I If [α∗]X ∈ g , then [α][α∗]X ∈ g .

Note: Whenever f is finite, PC(f) is also finite.

Nice property 1

In certain proofs, PC(·) is preserved in the following sense.

Lemma 4.2.1 (Leivant 1981, revision Venema 2014)
If P proves f ` [β1] . . . [βk][α]mq from {fi ` q}i where q 6∈ L(f), all
βis are subprograms of α, r < m and f ′ ` [α]rq is a sequent in P
(under a non-initial leaf) then PC(f ′) ⊆ PC(f).

The case we need is k = 0.

Nice property 2

Definition
Let P[X/q] be the result of substituting X for q in P.

Lemma 4.2.2 (Leivant 1981)
Suppose P proves f ` [α]rX from {fi ` X}i where X 6∈ PC(f).
Then there is a proof P ′ of f ` [α]rq from {f ′i ` q}i such that
P = P ′[X/q].

Intuitively, this means that P does not take X “apart”:

{fi ` X}i
...

f ` [α]rX
=

{fi ` q}i

...
f ` [α]rq

 [X/q]

Nice property 3: Step by Step
Suppose P is a CD-proof of f ` [α]nX . Then P consists of proof
parts P0, . . . ,Pn which build up the [α]s “step by step”:

P0
{fj ` X}j∈I0

P1
{fj ` [α]X}j∈I1

P2
{fj ` [α]2X}j∈I2

...
{fj ` [α]n−1X}j∈In−1

Pn
f ` [α]nX

NB: This looks more linear than it actually is!

Linear Transformations

Think of programs and formulas as a vector space:

(β)~Y =

β1,1 · · · β1,k
...

βk,1 · · · βk,k

Y1

...
Yk

 :=

[β1,1]Y1 ∧ · · · ∧ [β1,k]Yk
...

[βk,1]Y1 ∧ · · · ∧ [βk,k]Yk

Lemma
For every k × k matrix (β) there exists a (γ) such that

(γ) ≡ (β)∗ = (β)(β)(β) . . .

Linear Transformations: Example

Let ~Y = 〈p, q〉 and (β) =
(
a b
c d

)
. Then (β)~Y =

(
[a]p ∧ [b]q
[c]p ∧ [d]q

)

and (β)(β)~Y =
(

[a]([a]p ∧ [b]q) ∧ [b]([c]p ∧ [d]q)
[c]([a]p ∧ [b]q) ∧ [d]([c]q ∧ [d]q)

)
. . .

Let γ :=
(

(a ∪ (b; (d∗; c)))∗ (a∗; b)((c; a∗; b) ∪ d)∗
(d∗; c)(a ∪ (b; (d∗; c)))∗ ((c; a∗; b) ∪ d)∗

)

Then (γ) ≡ (β)∗ and (β)∗~Y ≡ (γ)~Y .

This γ can be found systematically. Moreover, it is useful:

p ∧ [a]p ∧ ([a]p ∧ [b]q) ∧ ([a]([a]p ∧ [b]q) ∧ [b]([c]p ∧ [d]q)) ∧ . . .

≡ [(a ∪ (b; (d∗; c)))∗]p ∧ [(a∗; b)((c; a∗; b) ∪ d)∗]q

Putting it all together: Back to the evil ∗ case

Now we can deal with this:

P0
f ` X

P1
f ` [α]X · · ·

PM

f ` [α]MX
(∗R)

f ` [α∗]X

Fix a ridiculously large h := s + v + d where

I d such that [α]dX 6∈ PC(f)
I v := 2|PC(f)|·2|f | + 1
I s := 1 (for now).

Apply the step by step property to Ph:

Qi

{f −i ; f +
i ` [α]dX}i∈Id

...
f −; f + ` [α]d+v+sX

Putting it all together: Finding a repetitive pattern

Now Ph has to look like this:

Qj,i

{f −i ; f +
i ` [α]dX}i∈Id

R ′j [[α]dX/q]
{f −j ; f +

j ` [α]d+vX}j∈Id+v

U ′[[α]d+vX/q]
f −; f + ` [α]d+v+sX

For all c ≤ v , j ∈ Id+c : fi ⊆ PC(fi) ⊆ PC(f) and |P(fj)| ≤ |P(f)

Hence | ∪ {P(fj) | c ≤ v , j ∈ Id+c} ≤ |P(PC(f)| · |P(f)|

= 2|PC(f)| · 2|f | = v − 1 < v .

Repetitive Pattern
For some m 6= n we have {f +

j ; f −j | j ∈ Im} = {f +
j ; f −j | j ∈ In}.

Furthermore, we can assume d < m < n < d + v and Im = In.

Putting it all together: Applying the induction hypothesis
Let r be such that n = m + r . Now Ph can be divided as follows:

Qi
{f −i ; f +

i ` [α]mX}i∈I

R ′j [[α]mX/q]
{f −j ; f +

j ` [α]m+rX}j∈I

U ′[[α]m+rX/q]
f −i ; f +

i ` [α]m+r+sX

IH(i) yields ~K such that Ki interpolates f −i ; f +
i ` [α]mX .

Using IH(ii) r times: If ~M contains interpolants for f −i ; f +
i ` Y ,

then there is a matrix (β) such that ((β)M)i interpolates
f −i ; f +

i ` [α]rY .

Thus, for all n, by applying the latter to the former n times:
f −i ` ((β)nK)i and f +

i , ((β)nK)i ` [α]m[α]r×nX

Putting it all together: Done, repeat.

By linear transformations there is a γ such that:

f −i ` ((γ)K)i and f +
i , ((γ)K)i ` [α]m[(αr)∗]X

Now apply IH(ii) to all the ((γ)K)is and U ′.

This yields an interpolant Hs for f −; f + ` [α]s [α]m[(αr)∗]X .

Repeat all of the above to obtain H1, . . . ,Hv+d .

Finally, let K :=
∧

s≤v+d
Hs . This interpolates f −; f + ` [α∗]X . ,

Lemma
`CD

∧
k<w

[αk][(αw)∗]X → [α∗]X

Putting it all together: This is the end, I promise.
Theorem 5.3.2 (i) (Leivant 1981)
PDL has Craig Interpolation.

Proof. Take any � X → Y . D is complete, hence `D X → Y .
Then `CD X o → Y o and thus X o `CD Y o.

Partition-interpolation of X o;∅ ` Y o yields Z such that

I L(Z) ⊆ L(X o) ∩ L(∅,Y o),
I X o → Z ∈ PDL and Z → Y o ∈ PDL

By X o ≡ X , Y o ≡ Y , L(X o) = L(X) and L(Y o) = L(Y):

I L(Z) ⊆ L(X) ∩ L(Y),
I X → Z ∈ PDL and Z → Y ∈ PDL

Hence Z is an interpolant for X → Y .

Criticism

Marcus Kracht: Tools and techniques in modal logic. (1999)
Chapter 10.6. The Unanswered Question:

“[T]he problem of interpolation for PDL is one of the
major open problems in this area. Twice a solution has
been announced [. . .], but in neither case was it possible
to verify the argument.
The argument of Leivant makes use of the fact that if
ϕ `PDL ψ then we can bound the size of a possible
countermodel so that the star α∗ only needs to search up
to a depth d which depends on ϕ and ψ.”

[8, p. 493]

Criticism
Marcus Kracht (continued):

“The argument of Leivant makes use of the fact that if
ϕ `PDL ψ then we can bound the size of a possible
countermodel so that the star α∗ only needs to search up
to a depth d which depends on ϕ and ψ. Once that is
done, we have reduced PDL to EPDL, which definitely
has interpolation because it is a notational variant of
polymodal K. However, this is tantamount to the
following. Abbreviate by PDLn the strengthening of PDL
by axioms of the form [a∗]p ↔ [a≤n]p for all a. Then, by
the finite model property of PDL, PDL is the intersection
of the logics PDLn . Unfortunately, it is not so that
interpolation is preserved under intersection.”

[8, p. 493]

PDL and PDLn

Definition
Semantic closure SCL(A) := {ϕ | A � ϕ}
[α≤n]ϕ := ϕ ∧ [α]ϕ ∧ [α;α]ϕ ∧ · · · ∧ [αn]ϕ
PDLn := SCL

(
PDL ∪ {[α∗]p ↔ [α≤n]p | α ∈ PROG , p ∈ P}

)
Theorem

PDL0 ⊇ PDL1 ⊇ PDL2 ⊇ · · · ⊇ PDL =
⋂
n
PDLn

Idea / Question
Is there an n, depending on |ϕ→ ψ| such that any
PDLn-interpolant for ϕ→ ψ is also a PDL-interpolant?

Refuting the Criticism
But this is not what Leivant was doing:

f ` ϕ f ` [α]ϕ · · · f ` [α]kϕ
(∗R)

f ` [α∗]ϕ

where k = 2|f |+|ϕ| and therefore depends on f and ϕ.

Theorem: Finite-Model Property
If ϕ is satisfiable, then there is a modelM = (W ,R,V) and a
world w ∈W such thatM,w � ϕ and |W | ≤ 2size(ϕ).

Lemma
If �

∧
f → [α]nϕ for all n ≤ k = 2|f |+|ϕ|, then �

∧
f → [α∗]ϕ.

Theorem
The finitary rule is admissible.

Conclusion (for now . . .)

I There is a finitary sequent calculus for PDL.
(In particular, Kracht’s criticism does not apply.)

I This system has the “step by step” property.
I Therefore we can:

I find a repetitive pattern in long enough proofs.
I use linear transformations to build ∗ interpolants.

I This extends Maehara’s method to show Craig Interpolation.

All this [c ∪ sh]ould have been known since 1981.

Please: We need more people to look at this proof.

Epilogue

Kracht: “Twice a solution has been announced . . . ”

Borzechowski 1988: unpublished, unknown and unread?

There is hope!

Thank You for Listening!
And special thanks to Yanjing for hosting me at PKU!

malvin@w4eg.de

https://w4eg.de/malvin

(also online: note on PDL and C-I.)

mailto:malvin@w4eg.de
https://w4eg.de/malvin
https://w4eg.de/malvin/illc/pdl.pdf

References I
Giovanna D’Agostino, Marco Hollenberg: Logical Questions Concerning the
µ-Calculus: Interpolation, Lyndon and Łoś-Tarski. In: Journal of Symbolic
Logic, Volume 65, Issue 1, March 2000, pp 310-332.

Johan van Benthem: The many faces of interpolation.
In: Synthese, Volume 164, 2008, pp 451–460.

Manfred Borzechowski: Tableau–Kalkül für PDL und Interpolation.
Diplomarbeit, Department of Mathematics, FU Berlin, 1988.

Michael J. Fischer, Richard E. Ladner: Propositional dynamic logic of
regular programs. In: Journal of Computer and System Sciences, Volume
18, Issue 2, April 1979, pp 194-211.

Melvin Fitting: First-Order Logic and Automated Theorem Proving.
Springer-Verlag, New York 1996.

Tomasz Kowalski: PDL has Interpolation. In: Journal of Symbolic Logic,
Volume 67, Issue 3, September 2002, pp 933-946.

Tomasz Kowalski: Retraction note for »PDL has interpolation«.
In: Journal of Symbolic Logic, Volume 69, Issue 3, September 2004, p 935.

http://www.jstor.org/stable/2586539
http://www.jstor.org/stable/2586539
http://www.jstor.org/stable/2586539
https://doi.org/10.1007/s11229-008-9351-5
https://doi.org/10.1007/s11229-008-9351-5
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1007/978-1-4612-2360-3
http://www.jstor.org/stable/3648548
http://www.jstor.org/stable/3648548
http://www.jstor.org/stable/30041768
http://www.jstor.org/stable/30041768

References II

Marcus Kracht: Tools and techniques in modal logic.
Elsevier, 1999.

Dexter Kozen: A Completeness Theorem for Kleene Algebras and the
Algebra of Regular Events. In: Information and Computation, Volume 110,
Issue 2, 1994, pp 366–390.

Daniel Leivant: Proof theoretic methodology for propositional dynamic logic.
In: Lecture Notes in Computer Science, Volume 107, 1981, pp 356-373.

Judit Madarász: The Craig interpolation theorem in multi-modal logics.
In: Bulletin of the Section of Logic, Volume 3.24, 1995, pp 147-151.

Krister Segerberg: A completeness theorem in the modal logic of programs.
In: Notices American Mathematical Society, Volume 24, 1977, A522.
Republished in: Banach Center Publications, Volume 9.1, 1982, pp 31-46.

Gaisi Takeuti: Proof Theory. North-Holland, Amsterdam/Oxford 1975.

http://wwwhomes.uni-bielefeld.de/mkracht/html/tools/book.pdf
http://wwwhomes.uni-bielefeld.de/mkracht/html/tools/book.pdf
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1007/3-540-10699-5_111
https://doi.org/10.1007/3-540-10699-5_111
http://www.filozof.uni.lodz.pl/bulletin/pdf/24_3_5.pdf
http://www.filozof.uni.lodz.pl/bulletin/pdf/24_3_5.pdf
https://eudml.org/doc/209235
https://eudml.org/doc/209235
https://eudml.org/doc/209235
http://www.getcited.org/pub/101589483

	Craig-Interpolation
	Propositional Dynamic Logic
	Craig Interpolation for PDL

