Multiple-Path vs. Single-Path Solutions to Skepticism

Wen-fang Wang

Institute of Philosophy of Mind and Cognition Yang Ming University, Taiwan

November 7, 2016

Wen-fang Wang

Institute of Philosophy of Mind and Cognition Yang Ming University, Taiwan

□→ < □→</p>

- Skepticism about the external wold: we have no empirical, contingent knowledge about the external world.
- The main argument (P. Unger, 1975):
 - 1. $\neg K \neg biv$ Premise
 - 2. (Kh \land K(h $\rightarrow \neg$ biv)) \rightarrow K \neg biv) Premise (ECP)
 - 3. K(h $\rightarrow \neg$ biv) Premise (Let us make it true now!)
 - 4. Kh \rightarrow K \neg biv by 2 and 3
 - 5. $\neg Kh.$ by 1 and 4

Wen-fang Wang

Institute of Philosophy of Mind and Cognition Yang Ming University, Taiwan

- In order to attain knowledge p about the external world, the epistemic subject does not have to be able to evidentially exclude every ¬p-possibility (or every 'alternative'), all s/he needs is to be able to evidentially exclude every relevant ¬p-possibility (or every relevant alternative).
- It is possible that an alternative w is relevant to ψ but not relevant to φ even though (one knows that) φ entails ψ.
 Hence, it is also possible that one knows φ but does not know ψ, even if (one knows that) φ entails ψ. Thus, ECP is not valid.

Wen-fang Wang

A relevant alternative model (RA model) is a tuple $\mathfrak{M}=<\!W_{\mathfrak{M}},$ $\Rightarrow_{\mathfrak{M}}, \leq_{\mathfrak{M}}, V_{\mathfrak{M}}\!>:$

- W_m is a non-empty set;
- $\Rightarrow_{\mathfrak{M}}$ is a reflexive binary relation on $W_{\mathfrak{M}}$;
- ≤_m assigns to each w ∈ W a binary relation ≤^w_m on some W_w ⊆ W:
 3.1 ≤^w_m is reflexive and transitive in W_w (preorder);
 3.2 w ∈ W_w, and for all v ∈ W_w, w ≤^w_mv (weak centering)
 V_m: At → P(W)

Wen-fang Wang

Given an RA model M = <W_M, ⇒_M, ≤_M, V_M>, a world w ∈ W, a formula φ in the epistemic language, we define M, w ⊨ φ as follows (call this D-semantics): M, w ⊨ ¬φ iff not M, w ⊨ φ; M, w ⊨ ¬φ iff not M, w ⊨ φ; M, w ⊨ φ ∧ ψ iff M, w ⊨ φ and M, w ⊨ ψ; M, w ⊨ Kφ iff ∀v ∈Min≤_M [¬φ]_M: not w ⇒ v;
[¬φ]_M = {v ∈ W | M, v ⊨ ¬φ} and Min≤_M [¬φ]_M = {v ∈ [¬φ]_M∩W_w | ¬∃u(u ∈ [¬φ]_M ∧ u ≤_M v ∧ ¬v ≤_M u}.
D-validity is defined in the usual way.

Wen-fang Wang

Institute of Philosophy of Mind and Cognition Yang Ming University, Taiwan

- 'Kφ ∧ K(φ → ψ) → Kψ' is not D-valid. In the terminology of Dretske, knowledge operator is not fully penetrating; so ECP fails in D-semantics.
- However, 'K(φ ∧ ψ) → Kφ' and 'Kφ → K(φ ∨ ψ)' are also not D-valid. This is surprising, for it shows that 'K' may not even be semi-penetrating.
- These results point to a dilemma: skepticism or the problem of containment.

Wen-fang Wang

< 🗇 > < 🖻 > <

Basic Ideas of Heller (1999)

- Relevance (realistic) order just is similarity order. The worlds are ordered identically for SC (subjunctive conditionals) and for RA (relevant alternatives). (Heller, 1989, p. 25)
- Some possibilities are realistic (close) enough while others are not. Those that are not are too remote (too irrealistic) to be eliminated by your evidence.
- Some sentences are, while others are not, such that those possibilities that falsify them are all too remote.
- ERA (Heller 1999, p. 201): S knows p only if S does not believe p in any of the closest not-p world or any more distant not-p worlds that are still close enough.

A counterfactual belief model (CB model) is a tuple $\mathfrak{M}=<\!W_{\mathfrak{M}},$ $D_{\mathfrak{M}},$ $\leq_{\mathfrak{M}},$ $V_{\mathfrak{M}}\!\!>:$

- W_m is a non-empty set;
- D_m is a serial binary relation on W_m;
- ≤_m assigns to each w ∈ W a binary relation ≤^w_m on some W_w ⊆W:
 3.1 ≤^w_m is reflexive and transitive in W_w (preorder);
 3.2 w ∈ W_w, and for all v ∈ W_w, w ≤^w_mv (weak centering)
 V_m: At → P(W)

Wen-fang Wang

- Given a CB model $\mathfrak{M} = \langle W_{\mathfrak{M}}, D_{\mathfrak{M}}, \leq_{\mathfrak{M}}, V_{\mathfrak{M}} \rangle$, a world $w \in W$, a formula ϕ in the epistemic language, we define $\mathfrak{M}, w \models \phi$ as follows (call this H-semantics): $\mathfrak{M}, w \models B\phi$ iff $\forall v \in W$: if $wD_{\mathfrak{M}}v$ then $\mathfrak{M}, v \models \phi$; $\mathfrak{M}, w \models K\phi$ iff $\mathfrak{M}, w \models B\phi$ and (sensitivity) $\forall v \in Min_{\leq_{\mathfrak{M}}^{w}}[\neg \phi]_{\mathfrak{M}}$: not $\mathfrak{M}, w \models B\phi$.
- H-semantics avoid skepticism by invalidating ECP, but all of the closure principles shown to fail for D-semantics also fail for H-semantics, so they all face the problem of containment. H-semantics may also avoid the problem of vacuous knowledge.

For any scenario w, context C, and area Σ (if $\phi \in \Sigma$ and ψ is a TF-consequence of ϕ , then $\psi \in \Sigma$), the following principles are jointly inconsistent in the standard alternative picture (where r is a selection function that select, for any sentence ϕ and any world w, a set of relevant alternatives):

- contrast/enough_{Σ} $\forall \phi \in \Sigma$: r_C(ϕ , w) \subseteq (W [ϕ]_C);
- e-fallibilism_Σ ∃φ ∈ Σ ∃ψ ∈ Σ: r_C(φ, w) ⊆ [ψ]_C and it is not the case that (W_w [φ]_C) ⊆ [ψ]_C;
- noVK_{Σ} $\forall \phi \in \Sigma$: (W_w \cap [ϕ]_C) \neq W_w implies r_C(ϕ , w) \neq Ø;
- TF-cover_Σ ∀φ ∈ Σ ∀ψ ∈ Σ: if ψ is a TF-consequence of φ, then r_C(ψ, w) ⊆ r_C(φ, w).

Wen-fang Wang

< 同 > < 三 > < 三

Multiple Paths (Holliday, 2014)

- In some cases, there are multiple sets of scenarios such that, if one is to know φ, one must exclude all of the scenarios in at least one of those sets.
- In some cases, it is sufficient for an agent to know φ that s/he only eliminates non-contrasting scenarios in which φ is true.
- Consider a disjunction 'p ∨ q' for an example. There seem to be at least three paths to know it: one could start by eliminating relevant ¬p-alternatives, or by eliminating relevant ¬(p ∨ q)-alternatives. These three sets may not be the same. Further, all of the ¬p-alternatives may also be q-scenarios, therefore be (p ∨ q)-scenarios.

Symbols and Terminology

- CCNF: A canonical conjunctive normal form of a sentence φ ('CCNF(φ)' in symbols) is a conjunction φ' of nontrivial (i.e., does not include both 'p' and '¬p') clauses (i.e., disjunctions of TF-basic sentences) such that for each p ∈ at(φ'), each clause in φ' contains either 'p' or '¬p'. Each sentence φ that is not a tautology is TF-equivalent to a φ' in CCNF with at(φ) = at(φ') that is unique up to reordering of the conjuncts and disjuncts.
- If φ is in CCNF, c(φ) is the set of all subclauses C of conjuncts in φ such that every nontrivial superclause C' of C with at(C') = at(φ) is a conjunct of φ. It turns out that c(φ) is the set of all nontrivial clauses C with at(C) ⊆ at(φ) that are TF-consequences of φ.

Given an RA model $\mathfrak M$ and the standard alternatives function $r_{\mathfrak M}$, we define a multipath alternatives function $r_{\mathfrak M}^r$ as follows: for any clause C,

• $\mathbf{r}_{\mathfrak{M}}^{r}(\mathsf{C}, w) = \{\mathbf{r}_{\mathfrak{M}}(\mathsf{C}', w) | \mathsf{C}' \text{ is a subclause of } \mathsf{C}\};$ for any CCNF conjunction $\mathsf{C}_{1} \land \ldots \land \mathsf{C}_{n}$ of clauses with $\mathfrak{c}(\mathsf{C}_{1} \land \ldots \land \mathsf{C}_{n}) = \{\psi_{1}, \ldots, \psi_{m}\},$ • $\mathbf{r}_{\mathfrak{M}}^{r}(\mathsf{C}_{1} \land \ldots \land \mathsf{C}_{n}, w) = \{\mathsf{A} \subseteq \mathsf{W} | \exists \mathsf{A}_{1} \in \mathbf{r}_{\mathfrak{M}}^{r}(\psi_{1}, w) \ldots \exists \mathsf{A}_{m} \in \mathbf{r}_{\mathfrak{M}}^{r}(\psi_{m}, w): \mathsf{A} = \bigcup_{1 \leq i \leq m} \mathsf{A}_{i}\};$ If ϕ is not in CCNF, we define:

The Impossibility Result Again, Holliday (2014)

- contrast/enough_{Σ} $\forall \phi \in \Sigma$: $\forall A(A \in \mathbf{r}_{\mathbf{C}}(\phi, w) \rightarrow A \subseteq (W [\phi]_{\mathcal{C}})); X$
- e-fallibilism_Σ $\exists \phi \in \Sigma \ \exists \psi \in \Sigma$: $\exists A(A \in \mathbf{r}_{\mathbf{C}}(\phi, w) \land A \subseteq [\psi]_{C})$ and it is not the case that $(W_{w} - [\phi]_{C}) \subseteq [\psi]_{C}$; \checkmark
- noVK_Σ $\forall \phi \in \Sigma$: (W_w∩[ϕ]_C) \neq W_w implies that $\emptyset \notin \mathbf{r}_{\mathbf{C}}(\phi, w)$; \checkmark
- TF-cover_Σ $\forall \phi \in \Sigma \ \forall \psi \in \Sigma$: if ψ is a TF-consequence of ϕ , then $\forall A(A \in \mathbf{r}_{\mathbf{C}}(\phi, w) \rightarrow \exists B(B \in \mathbf{r}_{C}(\psi, w) \land B \subseteq A))$. ✓

Wen-fang Wang

Institute of Philosophy of Mind and Cognition Yang Ming University, Taiwan

< 🗇 > < 🖃 > <

Advantages and Disadvantages

- Holliday's semantics invalidates ECP, at the same time avoids the problem of containment and the problem of vacuous knowledge.
- It leads to path chaos. For example, even a sentence as simple as 'p \lor (q \land r)' could have $7^3 \times 3^2 = 3087$ paths to know it. There is also a smell of *ad hocness* here.
- Worse, it is hard to avoid skepticism: if we allow that there are multiple paths of knowing p each of which is via a single sentence, what can stop us from saying that there are also multiple paths of knowing ψ each of which via several sentences together, say, via knowing both 'φ' and 'φ → ψ'?
- So the problem remains: can we have a single-path relevant alternative theory that avoids skepticism, the problem of containment, and the problem of vacuous knowledge?

- ERA (Heller 1999, p. 201): S knows p only if S does not believe p in any of the closest not-p world *or* any more distant not-p worlds that are still close enough. (Notice that the 'or' in ERA gives it a smell of *ad hocness*, but I will utilize it.)
- Heller cashes out 'S can rule out not-p' in terms of 'S does not believe p in any of the relevant not-p world', so ERA can also be understood as:

ERA*: S knows p (if and) only if S can rule out both the closest not-p world and all not-p worlds that are close enough.

Wen-fang Wang

Institute of Philosophy of Mind and Cognition Yang Ming University, Taiwan

An RA* model \mathfrak{M} is a tuple $\langle W_{\mathfrak{M}}, \$_{\mathfrak{M}}, \Rightarrow_{\mathfrak{M}}, V_{\mathfrak{M}} \rangle$ that satisfies the following conditions:

- W_m is a non-empty set.
- Sm is a function from Wm to P(P(Wm)) that is weakly centered, nested, closed under unions and nonempty intersection, and satisfies the Limit Assumption.
- ⇒_m is a reflexive binary relation on W_m and contains every pair <w, v>, where $v \in W_m \cup \$_m(w)$. (Think of those worlds in W_m $\cup \$_m$ as uneliminable.)

•
$$V_{\mathfrak{M}}$$
: At $\rightarrow \mathcal{P}(W_{\mathfrak{M}})$.

Wen-fang Wang

Truth Condition and Validity

Given an RA* model $\langle W_{\mathfrak{M}}, \$_{\mathfrak{M}}, \Rightarrow_{\mathfrak{M}}, V_{\mathfrak{M}} \rangle$, a world $w \in W$, a formula ϕ in the epistemic language, we define $\mathfrak{M}, w \models \phi$ as follows (call this H*-semantics):

$$\mathfrak{M}, w \models \neg \phi \text{ iff not } \mathfrak{M}, w \models \phi;$$

- $\mathfrak{M}, w \models \phi \land \psi$ iff $\mathfrak{M}, w \models \phi$ and $\mathfrak{M}, w \models \psi$;
- $\mathfrak{M}, w \models \mathsf{K}\phi \text{ iff } \mathsf{r}_{\mathfrak{M}}(\phi, w) \cap \{v \mid w \Rightarrow_{\mathfrak{M}} v\} = \emptyset.$
- We define Min_{≤wm}[φ]_m to be the intersection of [φ]_m and the smallest sphere S if there is such an S, of \$_m(w) such that [φ]_m∩S is not empty and we define it to be [φ]_m, if otherwise.
- H*-validity is defined in the usual way.

Wen-fang Wang

Given \mathfrak{M} , a tautology ϕ and a world w, we define $r_{\mathfrak{M}}(\phi, w) = r_{\mathfrak{M}}(p \lor \neg p, w)$. Given \mathfrak{M} , a non-tautology ϕ , and a world w, we define $r_{\mathfrak{M}}(\phi, w) = r_{\mathfrak{M}}(\mathsf{CCNF}(\phi), w)$. For any CCNF, we define its relevant set inductively as follows:

•
$$r_{\mathfrak{M}}(p, w) = Min_{\leq_{\mathfrak{M}}^{w}}[\neg p]_{\mathfrak{M}} \cup (\cup \$_{\mathfrak{M}}(w) \cap [\neg p]_{\mathfrak{M}})$$
 if p is TF-basic.

If
$$[p_1 \vee \ldots \vee p_n]_{\mathfrak{M}} = W_{\mathfrak{M}}$$
, then $r_{\mathfrak{M}}(p_1 \vee \ldots \vee p_n, w) = \emptyset$.

■ If
$$[p_1 \vee \ldots \vee p_n]_{\mathfrak{M}} \neq W_{\mathfrak{M}}$$
, then (i) if there is no p_i (where $1 \leq i \leq n$) such that $(\cup \$_{\mathfrak{M}}(w) \cap [\neg p_i]_{\mathfrak{M}}) \neq \emptyset$, $r_{\mathfrak{M}}(p_1 \vee \ldots \vee p_n, w) = \emptyset$; otherwise, (ii) $r_{\mathfrak{M}}(p_1 \vee \ldots \vee p_n, w) = \cup \$_{\mathfrak{M}}(w) \cap ([\neg p_{i_1}]_{\mathfrak{M}} \cap \ldots \cap [\neg p_{i_m}]_{\mathfrak{M}})$, where $1 \leq i_j \leq n$ for each j between 1 and m and $(\cup \$_{\mathfrak{M}}(w) \cap [\neg p_{i_j}]_{\mathfrak{M}}) \neq \emptyset$ for each i_j ;

•
$$r_{\mathfrak{M}}(C_1 \land \ldots \land C_n, w) = \cup \{r_{\mathfrak{M}}(A, w) \mid A \in \mathfrak{c}(C_1 \land \ldots \land C_n)\}$$

Wen-fang Wang

Here is a model that invalidate ECP:

$$W_{\mathfrak{M}} = \{w_{1}, w_{2}, w_{3}\}$$

$$\$_{\mathfrak{M}}(w_{1}) = \{\{w_{1}\}, \{w_{1}, w_{2}\}\}$$

$$\$_{\mathfrak{M}}(w_{2}) = \$_{\mathfrak{M}}(w_{3}) = \{\{w_{1}, w_{2}, w_{3}\}\}$$

$$\cup\$_{\mathfrak{M}}(w_{2}) = \$_{\mathfrak{M}}(w_{3}) = \{w_{1}, w_{2}, w_{3}\}$$

$$\bigcup\$_{\mathfrak{M}}(w_{2}) = C_{\mathfrak{M}}(w_{3}) = \{w_{1}, w_{2}, w_{3}\}$$

$$\Rightarrow_{\mathfrak{M}} = \{, , , \}$$

$$V_{\mathfrak{M}}(p) = \{w_{1}\}, V_{\mathfrak{M}}(q) = \{w_{3}\}$$

$$\mathfrak{M}, w_{1} \models \mathsf{Kp} \text{ for } \{w_{2}\} = \mathsf{Min}_{\leq_{\mathfrak{M}}^{w_{1}}}[\neg p]_{\mathfrak{M}} \cup (\cup\$_{\mathfrak{M}}(w_{1}) \cap [\neg p]_{\mathfrak{M}})$$

$$\mathfrak{M}, w_{1} \models \mathsf{K}(p \rightarrow \neg q) \text{ for } [p \rightarrow \neg q]_{\mathfrak{M}} = \mathsf{W}_{\mathfrak{M}}$$
Not $\mathfrak{M}, w_{1} \models \mathsf{K} \neg q$ for $w_{3} \in \mathsf{Min}_{\leq_{\mathfrak{M}}^{w_{1}}}[q]_{\mathfrak{M}} \cup (\cup\$_{\mathfrak{M}}(w_{1}) \cap [q]_{\mathfrak{M}})$

Wen-fang Wang

Institute of Philosophy of Mind and Cognition Yang Ming University, Taiwan

∰ ► < ≣ ►

The Impossibility Result, putting $C = \mathfrak{M}$, $W_w = \bigcup \mathfrak{M}(w)$

- contrast/enough_{Σ} $\forall \phi \in \Sigma$: $r_{\mathfrak{M}}(\phi, w) \subseteq (W_{\mathfrak{M}} [\phi]_{\mathfrak{M}}); X$
- e-fallibilism_{Σ} $\exists \phi \in \Sigma \ \exists \psi \in \Sigma$: $r_{\mathfrak{M}}(\phi, w) \subseteq [\psi]_{\mathfrak{M}}$ and it is not the case that $(\cup \$_{\mathfrak{M}}(w) - [\phi]_{\mathfrak{M}}) \subseteq [\psi]_{\mathfrak{M}}$; \varkappa
- noVK_Σ $\forall \phi \in \Sigma$: $(\cup \$_{\mathfrak{M}}(w) \cap [\phi]_{\mathfrak{M}}) \neq \cup \$_{\mathfrak{M}}(w)$ implies $r_{\mathfrak{M}}(\phi, w) \neq \emptyset$; \checkmark
- TF-cover_Σ ∀φ ∈ Σ ∀ψ ∈ Σ: if ψ is a TF-consequence of φ, then r_M(ψ, w) ⊆ r_M(φ, w).

Wen-fang Wang

Institute of Philosophy of Mind and Cognition Yang Ming University, Taiwan

Proof: We prove noVK_{Σ} by induction. The case for TF-basics is trivial. The case for clauses when $[p_1 \vee \ldots \vee p_n]_{\mathfrak{M}} = W_{\mathfrak{M}}$ is also trivial. Suppose $[p_1 \vee \ldots \vee p_n]_{\mathfrak{M}} \neq W_{\mathfrak{M}}$. If there is no p_i $(1 \le i \le n)$ such that $(\bigcup \$_m(w) \cap [\neg p_i]_m) \ne \emptyset$, then $(\bigcup \$_m(w) \cap [p_1]_m)$ $\vee \ldots \vee p_n[m] = \bigcup \mathfrak{m}(w)$ and the case is trivial again. So assume that there is p_i $(1 \le i \le n)$ such that $(\bigcup m(w) \cap [\neg p_i]_m) \ne \emptyset$ and $r_{\mathfrak{M}}(\mathfrak{p}_{1} \vee \ldots \vee \mathfrak{p}_{n}, w) = \bigcup \mathfrak{m}(w) \cap ([\neg \mathfrak{p}_{i_{1}}]_{\mathfrak{M}} \cap \ldots \cap [\neg \mathfrak{p}_{i_{m}}]_{\mathfrak{M}}), \text{ where }$ $1 \leq i_i \leq n$ for each j between 1 and m and $(\cup \mathfrak{m}(w) \cap [\neg p_i]_m)$ $\neq \emptyset$ for each i_i : (a) if \cup $(m) \cap ([\neg p_i]_m \cap \ldots \cap [\neg p_i]_m) \neq \emptyset$, then noVK₅ holds; (b) if \cup $(\neg p_{i_1} |_{\mathfrak{M}} \cap \ldots \cap [\neg p_{i_m}]_{\mathfrak{M}}) = \emptyset$, then $(\cup \$_m(w) \cap [p_1 \lor \ldots \lor p_n]_m) = \cup \$_m(w)$ and the case is trivial again. (To be continued)

Wen-fang Wang

🗇 🕨 🖌 🖻 🕨 🤞 🖻

Finally, suppose that $(\cup \$_{\mathfrak{M}}(w) \cap [C_1 \land \ldots \land C_n]_{\mathfrak{M}}) \neq \cup \$_{\mathfrak{M}}(w)$. So $\cup \$_{\mathfrak{M}}(w) \cap [\neg C_i]_{\mathfrak{M}} \neq \emptyset$ and $(\cup \$_{\mathfrak{M}}(w) \cap [C_i]_{\mathfrak{M}}) \neq \cup \$_{\mathfrak{M}}(w)$ for some *i* between 1 and *n*. It follows from the previous result that $r_{\mathfrak{M}}(C_i, w) \neq \emptyset$. Since $r_{\mathfrak{M}}(C_i, w) \neq \emptyset$, $C_i \in \mathfrak{c}(C_1 \land \ldots \land C_n)$, and $r_{\mathfrak{M}}(C_1 \land \ldots \land C_n, w) = \cup \{r_{\mathfrak{M}}(A, w) \mid A \in \mathfrak{c}(C_1 \land \ldots \land C_n)\}$, it follows that $r_{\mathfrak{M}}(C_1 \land \ldots \land C_n, w) \neq \emptyset$. Q.E.D.

Wen-fang Wang

Institute of Philosophy of Mind and Cognition Yang Ming University, Taiwan

Proof: Suppose that ψ is a TF-consequence of ϕ . If ψ is a tautology, then $r_{\mathfrak{M}}(\psi, w)$ is \emptyset for any w and \mathfrak{M} . So $r_{\mathfrak{M}}(\psi, w) \subseteq$ $r_{\mathfrak{M}}(\phi, w)$. Suppose that ψ is not a tautology on the other hand, then $CCNF(\psi)$ is still a TF-consequence of $CCNF(\phi)$ by our initial assumption and the fact that every formula is TF-equivalent to its CCNF. But then, by the definition of \mathfrak{c} , $\mathfrak{c}(CCNF(\psi))$ is a subset of $\mathfrak{c}(\mathsf{CCNF}(\phi))$. By the definition of $\mathfrak{r}_{\mathfrak{M}}$ and the fact that $\mathfrak{c}(\mathsf{CCNF}(\psi))$ is a subset of of $\mathfrak{c}(\mathsf{CCNF}(\phi))$, $\mathsf{r}_{\mathfrak{M}}(\mathsf{CCNF}(\psi), w) \subset \mathsf{r}_{\mathfrak{M}}(\mathsf{CCNF}(\phi))$ w) for any w in any model \mathfrak{M} . Since $r_{\mathfrak{M}}(\phi, w) = r_{\mathfrak{M}}(\mathsf{CCNF}(\phi))$, w) and $r_{\mathfrak{M}}(\psi, w) = r_{\mathfrak{M}}(\mathsf{CCNF}(\psi), w)$ for any w and \mathfrak{M} , it follows that $r_{\mathfrak{M}}(\psi, w) \subseteq r_{\mathfrak{M}}(\phi, w)$ for any w and \mathfrak{M} . Q.E.D.

Wen-fang Wang

$contrast/enough_{\Sigma}$ & e-fallibilism_{Σ}

- Like Holliday, we agree that one may know a proposition φ by eliminating some φ-alternatives. For example, if p is an ordinary empirical proposition while q is a 'heavy-weight' proposition that is impossible to know by empirical method, there is no way to know 'p or q' except by knowing p, i.e., by eliminating all relevant ¬p-possibilities. Since these relevant ¬p-possibilities may also be q-possibilities (and therefore p-or-q-possibilities), contrast/enough_Σ is violated.
- Even though e-fallibilism_Σ is violated, there is a weaker form of fallibilism that is sustained: ∃φ ∈ Σ ∃ψ ∈ Σ: r_M(φ, w) ⊆ [ψ]_M and it is not the case that (W - [φ]_M) ⊆ [ψ]_M. There is no reason why this weaker form should not be called 'falliblism'.

→ Ξ →

That's all, Folks.

Wen-fang Wang

Institute of Philosophy of Mind and Cognition Yang Ming University, Taiwan

< E