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ABSTRACT. A hypermodality is a connective � whose meaning depends on where in the
formula it occurs. The paper motivates the notion and shows that hypermodal logics are
much more expressive than traditional modal logics. In fact we show that logics with very
simple K hypermodalities are not complete for any neighbourhood frames.
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1. INTRODUCTION

Hypermodal logics belong to a special kind of modal logics which appear
in a variety of forms in many applications. These logics will be motivated
and studied in later sections, but if I were to characterise them in one
sentence I would say that these are modalities � whose nature changes
depending on where they appear in the wff. Thus, for example, when we
write the formula �(�A → A), the outer modality can be a T modality
while the inner modality can be K modality.1

Semantically this means that evaluating t � �A in a Kripke model
depends not only on t and on the meaning of � (the kind of modality � is),
but also on how we got to t in the process of evaluation.2 These distinc-
tions will become clear later on in the paper. Proof theoretically this kind
of dependence means that the set of available proof rules changes as we
progress through the proof.

Traces of these ideas have been around for a while. However, this is
the first time that they are all addressed in one framework the concepts of
modes and of hypermodality is coined and their formal properties studied.

Since our main example is a system involving K and T modalities, let
us remind ourselves of some convenient semantic and proof theoretical
formulations of these systems.

DEFINITION 1.1 (Semantics for strict implication). (1) A Kripke proposi-
tional model has the form m = (S,R, a, h), where S is the set of possible
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worlds and R ⊆ S2 is the accessibility relation. a ∈ S is the actual world
and h is the assignment, giving for each atomic q a subset h(q) ⊆ S.

(2) Satisfaction for t ∈ S is defined inductively as follows:

• t � q iff t ∈ h(q) for q atomic,
• t � A ∧ B iff t � A and t � B,
• t �⊥,
• t � A⇒ B iff ∀s(tRs and s � A imply s � B),
• m � A iff a � A.

Here ⇒ is strict implication and �A can be defined as (T ⇒ A).
(3) We have completeness as follows, see [1].

• K � A iff in all models m = (S,R, a, h) we have m � A,
• T � A iff in all models m with R reflexive (i.e. (∀x)(xRx) holds) we

have m � A,
• S4 � A iff in all models in which R is reflexive and transitive we have

m � A.

DEFINITION 1.2 (Proof theory for strict implication). Consider for
simplicity the language with ⇒ only.

(1) A data-structure is a list of sets of sentences of the form (�1, . . . ,

�n). Our proof rules define the consequence relation (�1, . . . ,�n) 
 B.
The semantic meaning of 
 is as follows:

• (�1, . . . ,�n) �L B iff for all Kripke models m of the logic L and all
points t1, . . . , tn in S such that t1Rt2, t2Rt3, . . . , tn−1Rtn and such that
ti � �i , we have that tn � B.

(2) To see what kind of proof rules we can expect, consider the follow-
ing.

Suppose A ⇒ B ∈ �i and A ∈ �j . This means semantically that
ti � A⇒ B and tj � A.

If in the model tiRtj holds, then also tj � B. If L = K then tiRtj is
assured to hold only if j = i + 1. If L = T, then tiRtj holds necessarily
only if i ≤ j ≤ i+1. If L = S4 then tiRtj is assured to hold only if i ≤ j .

We thus get the following rule of ⇒ E:

(⇒ E)
�1, . . . ,�i ∪ {A⇒ B}, . . . ,�j ∪ {A}, . . . ,�n 
 D
�1, . . . ,�i ∪ {A⇒ B}, . . . ,�j ∪ {A,B}, . . . ,�n 
 D.

Provided j = i + 1 for K, i ≤ j ≤ i + 1 for T and i ≤ j for S4.
(3) What would be the form of ⇒ I , that is the ⇒ introduction rule?

Suppose we want to show that �1, . . . ,�n 
 A ⇒ B. This means that in
any model m, and t1, . . . , tn as before, tn � A ⇒ B. This means that for
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any tn+1 such that tnRtn+1 and tn+1 � A we must have tn−1 � B. But this
simply means �1, . . . ,�n, {A} 
 B.

We thus get the rule

(⇒ I ) (�1, . . . ,�n) 
 A⇒ B iff (�1, . . . ,�n, {A}) 
 B.
For completeness of these rules, see [7].

(4) Let us now look at the proof rules from the �j point of view (i.e.
as if we are ‘living’ in the world tj ). Suppose we have argued successfully
and shown A is available to us in world t (i.e. in �j ). We want to use an
A ⇒ B ∈ �i , i ≤ j , and perform modus ponens and get B ∈ �j . We
first have to ask in which logic we are operating? If the logic is K, then
A ⇒ B ∈ �i is usable to us iff j = i + 1. If the logic is T, we can use
A⇒ B also if it is in �j and if the logic is S4, we can use any A⇒ B in
any �i , for any i ≤ j .

How do we show that X ⇒ Y holds at �j? We start a new theory
�j+i , assume X in there and try and prove Y . Again if the logic is K, only
A ⇒ B from �j can be used in �j+1. If the logic is T, we can also use
A ⇒ B which are proved in �j+1. If logic is S4, we can use any A ⇒ B

from �1, . . . ,�j+1.
In this context it is very easy to define the notion of mode of proof. The

mode of proof as applied to proofs in �j+1 tells us from which �i we can
import and use wffs A⇒ B.

(5) We can now talk about changing modes. We can have a rule of the
following form

• To show A⇒ B in�j , when we are in mode x, assume �j+1 = {A}
and try and prove B in a new mode y = ε(x), where ε is the mode
changing function.

The exact meaning of the above will be explained in the next example and
beyond.

Let us consider some natural examples involving modes.

EXAMPLE 1.3 (Modes of Proof with K and T). This example illustrates
how proof theory can change modes. The modal logics K and T are used.
Consider modal logic formulated with strict implication ⇒, cojunction ∧,
� and ⊥.

Focus on a natural deduction proof theory for⇒ with a view of making
⇒ either a K or T implication. Consider the following candidate formula
to be proved:

α = A ∧ (A⇒ (B ⇒ C))⇒ (B ∧ (C ⇒ D)⇒ D).

Consider the following proof of α in T:3
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(1) We show α, from the subproof in lines 1.1–1.4

1.1. A, assumption,
1.2. A⇒ (B ⇒ C), assumption,
1.3. B ⇒ C, from 1.1 and 1.2. This step is allowed since the logic is T.

It is not allowed if the logic is K.
1.4. We show B ∧ (C ⇒ D) ⇒ D, from the subproof in lines 1.4.1–

1.4.4.

1.4.1. B, assumption,
1.4.2. C ⇒ D, assumption,
1.4.3. C, from 3 and 1.4.1. This step is available for K and for T.
1.4.4. D, from 1.4.2 and 1.4.3. This step is correct if the logic is T

but not if the logic is K.

Thus, a can be proved in the logic T.
Imagine now that we have ⇒ as a hypermodality where the outermost

⇒ is a K modality and the inner ⇒ is a T modality and then the T and K
modalities keep on alternating with the nesting of ⇒ inside each other. We
can rewrite α more explicitly as α′

α′ = A ∧ (A⇒T (B ⇒K C))⇒K (B ∧ (C ⇒K D)⇒T D).

Let us now rewrite the proof above, annotating the modalities and proof
rules available at each subproof. Our outer proof procedure is a K proof
procedure. This makes the proof procedure of any X ⇒ Y subproof (i.e.
of the form: to show X⇒ Y : assume X show Y ) a T procedure.4

Show α′ using K rules. This follows from subproof 1.1–1.4 which is
carried out using T rules:

1.1. A, assumption,
1.2. A⇒T (B ⇒K C), assumption.
1.3. B ⇒K C, from 1.1–1.2. We can execute modus ponens, since we are

using T rules which include reflexivity.
1.4. We show B ∧ (C ⇒K D) ⇒T D from subproof 1.4.1–1.4–4, using

K rules (we are alternating the use of K, T rules as we go through the
nesting).

1.4.1. B, assumption.
1.4.2. C ⇒K D, assumption.
1.4.3. C, from 3 and 1.4.1. This step is available using K rules.
1.4.4. We are not allowed to get D from 1.4.2 and 1.4.3, since we

are following K rules here!
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So the proof fails.

The structure of the paper is as follows: Section 2 will introduce hyper-
modalities from a variety of semantical points of view. Section 3 will
semantically present a case study. Section 4 will discuss translations. Sec-
tion 5 will axiomatise the case study, and Section 6 will conclude the
paper.

2. HYPERMODALITIES

This section introduces hypermodality first intuitively and then more for-
mally.

2.1. Intuitive Presentation of Hypermodality

The traditional semantics for propositional modal logic with � (and ¬, ∨,
∧, →) offers Kripke models of the form (S,R, a, h), where S is the set of
possible worlds, R ⊆ S2 is the accessibility relation, a ∈ S is the actual
world and h is the assignment, associating with each atomic q a subset
h(q) ⊆ S. (S,R, a) is called the frame of the model.

Completeness of a logical system L relative to a class of Kripke struc-
tures K is defined as follows:

• Actual world completeness:
L 
 A iff for all (S,R, a, h) ∈ K we have a � A.

Note that we require satisfaction in the actual world only. This may turn
out to be important later.

A class K of models is said to be a class of frames defined by a frame
formula ϕ(a,R) (in a possibly higher-order language with a and R) iff we
have

• (S,R, a, h) ∈ K iff (S,R, a) � ϕ(a,R).
For example we may have ϕ(a,R) ≡ aRa. The logic of this class is not
normal, (because �A→ A is a theorem but �(�A→ A) is not).

This semantics offers the following truth conditions for �A at a world t .

• t � �A iff for all s such that tRs, s � A.

Let us refer to the above as the mode of evaluation of � at a possible world.
We now continue with our explanation of hypermodalities.
Consider the configuration in Figure 1 in which we have aRt , aRs and

sRt all hold.
Let us now evaluate at a the two wffs A0 = ���q and A1 = ��q.
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Figure 1.

• a � A0 ff ∀xy(aRx ∧ xRy → y � �q).
• a � A1 iff ∀y(aRy → y � �q).

In the course of evaluating a � A0, we come to evaluate t � �q, after
having ‘passed through’ the points s and a.

In the course of evaluating a � A1, we come to evaluate t � �q, after
having ‘passed through’ the point a only.

The traditional evaluation of t � �q does not care about ‘how we got
to t’ and how many points we ‘passed through’.

When evaluating t � �A for a hypermodality �, however, we do care
about the ‘history’ of previous evaluation points.

The history of points one passes through in the course of evaluation
can be taken as a historical mode parameter α = (a, x1, . . . , xn), where
aRx1 ∧ x1Rx2 ∧ · · · ∧ xn−1Rxn holds. We have

• xn �α �A iff ∀xn+1(xnRxn+1 → xn+1 �α∗(xn+1) A), where ∗ is
concatenation of sequences.

In traditional modal logic the evaluation at xn does not depend on α, i.e.
�α equals � for all α.

To give some intuition as to how the evaluation might depend on α,
consider the connective SoonA. Consider a flow of time {1, 2, 3, 4, . . . , }
and let us understand SoonA to mean that A will be true soon. The mean-
ing of ‘soon’ depends on the moment of time. So assume that there exists
a function f such that

• m � SoonA iff n � A for some n such that m ≤ n ≤ f (m).
We can assume that f is a function such that m < f (m) for all m. The
interval [m, f (m)] is the interval of time considered ‘soon’ from the point
of view of world m. The above gives us a traditional temporal logic, with
temporal accessibility relation R where

mRn iff n ∈ [m, f (m)].
Let us examine the truth value of Soon2A at time 1. We have:
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• 1 � Soon2A iff ∃n1, n2(1 ≤ n1 ≤ f (1) and n1 ≤ n2 ≤ f (n1) and
n2 � A).

It may be the case that n2 < f (1), in which case n2 � A is a witness for
the truth of 1 � SoonA as well for the truth of 1 � Soon2A.

Our evaluation of n2 � A in traditional temporal logic is independent
of whether we come to consider it in the course of evaluating 1 � SoonA
or 1 � Soon2A.

Let us now add a twist to our story. Imagine a time traveller who is
trying to evaluate t � SoonA by actually travelling over the time points
t, t +1, t +2, t +3, . . . , t +f (t). The more he travels, the more impatient
he becomes. Suppose in the course of evaluation of 1 � Soon3 q he gets
to the point of evaluating n2 � Soon q and he is so impatient that he
decides to look for q at the points n2 and n2 + 1 only. Thus we have two
modes of evaluation for n � Soon q, impatient mode and patient mode. We
have

• t �p Soon q iff ∃n(t ≤ n ≤ f (t) and n � q).
• t �i Soon q iff t � q or t + 1 � q.

To summarise:
The mode of evaluation does not depend only on t but also on how

(long) it took to get to t .
Let us now go back to our background Kripke semantics; to models

of the form (S,R, a, h). We are going to introduce evaluation modes into
such semantics. It is convenient to regard the relation xRy as a classical
formula "K(x, R, a, y) in the language of the relation R, the individual
variables x, y and actual world constant a as follows

• "K(x, R, a, y) =def xRy

we have

• t � �A iff ∀s("K(t, s)→ s � A).

We can refer to "K as the mode of evaluation for �. It is fixed in the
semantics and does not change. Intuitively it tells us, for a world x, how to
evaluate �A at x, namely where to look for worlds y where y � A must
hold. The subscript K indicates that this formula is used in the case of K
modality.

We can think of different formulas " for the mode. Consider, for ex-
ample (see [1], KB is also known as B, the logic for R symmetric).

• "T(x, R, a, y) =def xRy ∨ x = y.
• "K4(x, R, a, y) =def (∃n ≥ 1)xRny.

Where xRny is defined by induction as:
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– xR0y iff x = y,
– xRn+1y iff ∃z(xRz ∧ zRny).

• "KB(x, R, a, y) =def (xRy ∨ yRx).
Clearly"K4(x, R, a, y) is not a first-order formula. It defines the transitive
closure of R.

One can think of " as changing the accessibility relation from R to
λxλy"(x, y). Another way of looking at " is that it gives us a new mode
of how to useR in evaluating the truth value of �A. The latter view is more
convenient to use because we will be shifting modes during the evaluation.

Let us write �i , to mean that the mode "i is used in the evaluation.
Then �K for arbitrary frames (S,R, a) yields the logic K, �T yields the
logic T, �KB yields the logic KB and �K4 yields the logic K4.

Note that our starting point is a frame (S,R, a) with an arbitrary R. We
define "i(x,R, a, y) as a binary relation and use it to evaluate �. Thus in
traditional terms the frame we are using is (S,"i, a) not (S,R, a). When
we shift modalities, i.e. change from t �i �A to s �j �A it is like shifting
from (S,"i, a) to (S,"j , a).

We need to be able to recognise the logic Li , defined by all frames of the
form (S,"i, a), so that we can say that in mode i we let �i be this logic.
This presents us with a technical problem. Let L be a familiar logic, can it
be characterised by a " as the logic of all frames of the form (S,", a)?
We discuss this problem in Section 6.

We now give another example, an historical mode dependent modality.

DEFINITION 2.1 (Historical hypermodality). Let (S,R, a, h) be a Kripke
model.

(1) A historical mode parameter α is any sequence of points of the form
α = (t0 = a, t1, t2, . . . , tn), n ≥ 0 such that for i = 0, . . . , n − 1, tiRti+1

hold.
(2) For each α, let "α(x,R, a, y) be a (possibly second-order) formula

with two free variables x, y and constants R and a."α is called a mode
formula.

(3) Satisfaction has the form t �α A, and satisfies the following clauses

• t �α q iff t ∈ h(q), for q atomic.
• t �α A ∧ B iff t �α A and t �α B.
• t �α ¬A iff t �α A.
• t �α �A iff ∀s("α(t, R, a, s)→ s �α∗(s) A).

We say A α-holds in the model if a �α A.
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REMARK 2.2. The above definition is an extreme case, where differ-
ent historical parameters α yield different modes "α. We can regard the
family

{"(a,t1,...,tk,t )(t, R, a, y)}
as a relation"(α, y) between finite sequences α and points y, and consider
the model (S,", a, h). We have

• α � �A iff ∀s("(α, s)→ α∗(s) � A).

Such models arise in connection with Generalised quantifiers and auto-
mated deduction for modal logic. See [2, 4, 5]. The respective logic is
decidable and axiomatisable and has the f.m.p.

EXAMPLE 2.3. Consider the modes

"1(x, y) = "K(x, y) ≡ xRy,
"0(x, y) = "T(x, y) ≡ xRy ∨ x = y.

Let us shift alternately between the two modes, namely

• t �i �A iff ∀s("i(t, s)→ s �1−i A)

Let K["T,"K] = {A | a �0 A, in any model (S,R, a, h)}.
To see what our logic does, consider the formula �(�A→ A). We have

• a �0 �(�A→ A) iff ∀x(aRx ∨ a = x → x �1 (�A→ A)).
• x �1 �A→ A iff ∀y(xRy → y �0 A)→ x �1 A.

EXAMPLE 2.4 (Quantifiers). If we apply the same ideas to quantifiers we
get that an expression of the form QxQyQzR(x, y, z) has the following
optional meaning.

(1) Generalised quantifiers, where the range of QuA(u, �w) depends on
the free variables �w in the matrix A(u, �w). Denoting the range by V �w
we get

QxQyQzR(x, y, z) = ∀x ∈ V∅∀y ∈ Vx∀z ∈ Vx,yR(x, y, z).
This reading corresponds to the hypermodal logic of Remark 2.2.

(2) If we want the meaning ofQ to alternate between ∀ and ∃ we get

QxQyQzR(x, y, z) ≡ ∀x∃y∀zR(x, y, z).
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This corresponds to Example 2.3 where � alternates between a T and
K modality.

This kind of Q quantifier is reminiscent of the natural language quan-
tifier ‘any’, where its meaning (as ∀ or ∃) depends on its position in the
sentence.

2.2. Formal Presentation of Hypermodality

This subsection gives a formal definition of hypermodality. It also develops
some machinery for later sections.

We treat the simple case is where the number of modes is a finite set µ
and there is a function ε for shifting modes. This case is given in the next
definition.

DEFINITION 2.5 (Mode shifting). Let µ = {"0, . . . , "k} be a set of
modes and let ε be a function assigning to each 0 ≤ i ≤ k a value
0 ≤ ε(i) ≤ k.

Let (S,R, a, h) be a Kripke model. We define the following (µ, ε)
satisfaction in the model

• t �i �A iff ∀s("i(t, s)→ s �ε(i) A).
• We say A is true in the model if a �0 A.

DEFINITION 2.6. (1) Let K be a class of models of the form (S,R,

a, h). Let (µ, ε) be a mode system. We write K �(µ,ε) A iff for every
model (S,R, a, h) in K we have a �0 A.

(2) Let L be a logic complete for a class K of Kripke models of the
form (S,R, a, h). Let K[µ, ε] be {A | K �(µ,ε) A}. We sometimes write
L[µ, ε] for K[µ, ε], when the implicit dependence on K is clear.

Obviously the nature of hypermodal logic depends on (µ, ε) and its ab-
stract properties and also on the class K of models chosen.

A general mode shifting system (µ, ε) is a sort of abstract non-deter-
ministic automaton, shifting from mode to mode. When used to shift in
any concrete model (S,R, a), it also interacts with the properties of R.
In order to identify those abstract properties of this automaton which are
independent of the particular (S,R, a), we can ‘run’ it on a ‘free’ model
(S,R, a) and see what it does. To give an example of what we mean,
consider the condition

• t �m �A iff ∀s(tRs → s �n A).
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This abstract condition does not imply that for some s, evaluation of a
� can occur both in m and in n modes, since in a general free model
(S,R, a), tRs implies s �= t . However, if the m mode is reflexive (as in
the case of "T(t, s)) then we know that such an s exists, even in the free
(S,R, a) model.

We need some definitions.
In a free model of a binary relation of the form (S,R, a), we need to

have infinitely different non-related successors of a, a1, a2, a3, . . . , each
ai of which has infinitely many all different successors ai,1, ai,2, . . . and so
on. Similarly for predecessors. Here is the definition:

DEFINITION 2.7 (Free model of a binary relation). (1) Let a be constant
and let an,bn, n = 1, 2, . . . be formal pairwise different unary functions.
Let S be the set of all Skolem terms constructed using these functions.
Namely we have

• a ∈ S.
• If x ∈ S then an(x) ∈ S and bn(x) ∈ S.

Define a relation R on S by

• xRy iff for some n either y = an(x) or x = bn(y).

(2) Let R
∗ be the reflexive and transitive closure of R. Let for t ∈ S,

St = {x ∈ S | tR∗x}.
For ordinary modality �, we evaluate t � �A at points of St .

We now need some machinery for future use. Given a mode system (µ, ε),
and a model (S,R, a, h), we begin evaluating any wff A at mode "0, i.e.
a �0 A. Thus we can ask for a t ∈ S, what possible modes can be evaluated
at t , if we try all evaluations a �0 A for all A? The next definition deals
with this.

DEFINITION 2.8 (Worlds where evaluation is at mode m). Let (S,R, a)
be a frame, let (µ, ε) be a mode system, with µ = {"0, . . . , "k} and ε the
mode shift function as defined in Definition 2.5.

We first define by induction the (not necessarily disjoint!) sets Vm ⊆ S,
0 ≤ m <≤ k as follows:

(1) a ∈ V0 (O is the start mode).
(2) If t ∈ Vm and "m(t, s) holds and m′ ∈ ε(m) then s ∈ Vm′ .

For each t ∈ S and mode m define the set Smt by induction on m. Smt is
the set of all worlds that may be involved in any evaluation of the form
t �m A, for any A.

(3) Let ε0(m) = {m}, ε1(m) = ε(m), εk+1(m) = ⋃
y∈εk(m) ε(y).
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(4) Let Smt,0 = {t} if t ∈ Vm, and ∅ otherwise.
(5) If x ∈ Smt,k we can inductively assume that x ∈ Vn, n ∈ εk(m).

Let y be any point such that "n(x, y) holds and let n′ ∈ ε(n), (then
n′ ∈ εk+1(m) and y ∈ Vn′ by our definitions above), we let y ∈ Smt,k+1.

(6) Let Smt =
⋃
k S

m
t,k.

The previous definition can be used to define properties of ε as it applies
to µ.

DEFINITION 2.9 (Coherence of a mode system). (1) Let (µ, ε) be a mode
system and let (S,R, a) be the free model. Consider the sets Vm as defined
on the free model. Let µ′ = {"m1, . . . , "mn} ⊆ µ be a maximal set of
modes such that

⋂
j Vmj �= ∅.

We say (µ, ε) is coherent iff for any such maximal µ′ = {"m1, . . . ,

"mn} we have that λy
∧
j "mj (x, y) is consistent as a property of x.5

(2) In any model (S,R, a), let Vµ′ = ⋂
m∈µ′ Vm. Note that any t ∈ S is

a member of a single Vµ′ . I.e. for µ′ �= µ′′ we have Vµ′ ∩ Vµ′′ = ∅.

DEFINITION 2.10. Let (µ, ε) be a coherent mode shifting system. Let
Iµ = {µ′ | µ′ a maximal subset of models such that the intersection Vµ′ =
∩m∈µ′Vm �= ∅ holds on the free model of Definition 2.7.

Define a relation <ε on Iµ by

• µ′ <ε µ′′ iff for some modes "m′ ∈ µ′, "m′′ ∈ µ′′ we have m′′ ∈ ε(m′).

3. CASE STUDY: SHIFTING BETWEEN K AND T MODALITIES

The language in this section contains one hypermodal symbol �.
This section will study in detail the logic K["T,"K] of Example 2.3

(named in this section as HS
1 in short).

We shall see that this logic is not complete for any Kripke or neigh-
bourhood frames. We shall also axiomatise it. This will give us a feel for
what hypermodal logics can do.

DEFINITION 3.1 (Semantical definition of the hypermodal logic HS
1 ).

Consider the family of Kripke models of the form m = (S,R, a, h) where
(S,R, a) is a tree.6

We define two satisfaction relations t �0 A and t �1 A inductively as
follows:

(1) t �i q iff t ∈ h(q), for q atomic and i = 0, 1.
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(2) t �i A ∧ B iff t �i A and t �i B, t �i ¬A iff t �i A.
(3) t �0 �A iff t �1 A and ∀s(tRs → s �1 A).
(4) t �1 �A iff ∀s(tRs → s �0 A).
(5) We say m � A iff a �0 A.
(6) Let HS

1 � A mean that m � A for all m.

DEFINITION 3.2 (Translation of HS
1 into Standard K). We define two

translations τ0 and τ1 from HS
1 to K.

(1) τi(A) = A, for A without modality, i = 0, 1.
(2) τi(A ∧ B) = τ i(A) ∧ τi(B),

τi(¬A) = ¬τi(A).
(3) τ0(�A) = τ1(A) ∧�τ1(A).
(4) τ1(�A) = �τ0(A).

LEMMA 3.3. Let m = (S,R, a, h) and let t ∈ S be arbitrary and
let A be any wff. Let �0, �1 be as before and let � be the traditional K
satisfaction relation. Then for i = 0, 1 we have:

(∗) t �i A iff t � τi(A).

Proof. By structural induction.
(1) (∗) clearly holds for A without �.
(2) The cases of ∧ and ¬ are immediate.
(3) t �0 A iff t �1 A and ∀s(tRs → s �1 A) iff (by the induction

hypothesis) t � τ1(A) ∧ ∀s(tRs → s � τ1(A)) iff t � τ1(A) ∧ �τ1(A) iff
t � τ0(�A).

(4) t �1 �A iff ∀s(tRs → s �0 A) iff (by the induction hypothesis)
∀s(tRs → s � τ0(A)) iff t � �τ0(A) iff t � τ1(�A). ✷
The following series of Lemmas, Examples and Definitions serve to ac-
quaint us with the logic HS

1 as well as providing tools for axiomatising HS
1 .

LEMMA 3.4. Let A be any wff. Then

(1) τ0(�0A) = τ0(A)

(2) τ0(�A) = τ1(A) ∧�τ1(A).
(3) τ0(�2A) = �τ0(A) ∧�2τ0(A).
(4) τ0(�3A) = �τ1(A) ∧�2τ1(A) ∧�3τ1(A).
(5) τ0(�4A) = �2τ0(A) ∧�3τ0(A) ∧�4τ0(A).
(6) τ0(�5A) = �2τ1(A) ∧�3τ1(A) ∧�4τ1(A) ∧�5τ1(A).
(7) For n ≥ 2 and 0 ≤ i ≤ 1.
(8) τ0(�2n+iA) = ∧2n+i

m=n �mτi(A).
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Proof. (1) �0A = A.
(2) By definition.

(3) τ0(�2A) = τ1(�A) ∧�τ1(�A)
= �τ0(A) ∧��τ0(A),

τ0(�3A) = τ1(�2A) ∧�τ1(�2A)

= �τ0(�A) ∧�2(τ0(�A)).
(4) = �(τ1(A) ∧�τ1(A)) ∧�2(τ1(A) ∧�τ1(A))

= �τ1(A) ∧�2τ1(A) ∧�2τ1(A) ∧�3τ1(A)

= �τ1(A) ∧�2τ1(A) ∧�3τ1(A).

(5)–(6) check directly or use (7) below.
(7) We use induction on n ≥ 2.

τ0(�2(�2n+iA)) = �(τ0(�2n+iA) ∧�2τ0(�2n+iA))

= �
2n+i∧
m=n

�mτi(A) ∧�2
2n+i∧
m=n

�mτi(A)

=
2(n+1)+i−1∧
m=n+1

�mτi(A) ∧
2(n+1)+i∧
m=n+2

�mτi(A)

=
2(n+1)+i∧
m=n+1

�mτi(A). ✷

EXAMPLE 3.5. For atomic q

(1) τ0(�2q) = �q ∧��q.
(2) τ0(�3q) = �q ∧�2q ∧�3q.
(3) τ0(�4q) =
(4) For n ≥ 2, τ0(�2n+iq) = ∧2n+i

m=n �mq.
(5) τ0(¬q ∧�2q) = ¬q ∧�q ∧��q).
(6) τ0(¬q ∧�2q ∧ ♦(¬q ∧A) = ¬q ∧�q ∧�2q ∧ τ1(A).
(7) τ0(¬q ∧�2q ∧ ♦(¬q ∧�B) = ¬q ∧�q�2q ∧�τ0(B).

EXAMPLE 3.6. Let qij be a double indexed sequence of atoms. Let

(1) βi1(q
i
1) = ¬qi1 ∧�2(qi1).

(2) βi2(q
i
1, q

i
2) = ¬qi2 ∧�2qi2 ∧ ♦(¬qi2 ∧�βi1).

(3) βin+1(q
i
1, . . . , q

i
n+1) = ¬qin+1 ∧�2qin+1 ∧ ♦(¬qin+1 ∧�βin).
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(4) Note that:

τ0(β
i
1) = ¬qi1 ∧�2qi1 = βi1,

τ0(β
i
n+1) = ¬qin+1 ∧�2qin+1 ∧�τ0(β

i
n).

Using induction we get:

τ0(β
i
n+1) =

n∧
j=0

�j (¬qin+1−j ∧�2qin+1−j ).

(5) We show that if tn+1Rtn ∧ · · · ∧ t2Rt1 and tn+1 �0 β
i
n+1 then t1 �0 β

i
1.

The proof is by induction
Case n = 1.

t1 �0 β
i
2 iff t2 �0 ¬qi2 ∧�2qi2 ∧ ♦(¬qi2 ∧�(¬qi1 ∧�2qi1))

iff t2 �0 ¬qi2 ∧�2qi2 ∧ ∀t1(t2RT1 → t1 �0 ¬qi1 ∧�2qi1).

Hence if t2Rt1 and t2 �0 β
i
2 then t1 �0 β

i
1.

Case n.

tn+1 �0 β
i
n+1 iff tn+1 �0 ¬qin+1 ∧�2qin+1 ∧ ♦(¬qin+1 ∧�βin)

iff tn+1 �0 ¬qin+1 ∧�2qin+1 ∧ ∀tn(tn+1Rtn → tn � βin).

Hence by induction for all tn, . . . , t1 if tn+1Rtn ∧ · · · ∧ t2Rt1 and tn+1 �0

βin+1 we get t1 � βi1.

LEMMA 3.7. Let A be such that

HS
1 � A

then

HS
1 � �2nA.

Proof. We have K 
 τ0(A) by assumption.

τ0(�2A) = �τ0(A) ∧�2τ0(A),

τ0(�2nA) =
2n∧
m=n

�mτ0(A).

In both cases we have K 
 τ0(�2nA) and hence HS
1 � A. ✷

LEMMA 3.8. Let q be an atom, then

(1) HS
1 � �(�q → q).
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(2) HS
1 � �q → q.

(3) HS
1 is not closed under substitution of provably equivalent formulas.

Proof. (1) τ0(�(�q → q)) = τ1(�q → q)∧�τ1(�q → q) = (�q →
q) ∧�(�q → q) and this is not a theorem of K.

(2) τ0(�q → q) = q ∧�q → q which is a theorem of K.
(3) We have HS

1 � � ↔ (�q → q) but HS
1 � �� ↔ �(�q → q). ✷

LEMMA 3.9. HS
1 is not complete for any class of Kripke frames.

Proof. Assume otherwise and get a contradiction. Let (S,R, a) be a
frame where all theorems of our logic hold under any assignment h and let
h0 be an assignment such that a �h0 ♦(¬q ∧ �q). Such a frame and an
assignment must exist in view of previous lemmas.

Since every instance of �q → q must be valid at a under any assign-
ment we must have that aRa holds. We also have since a �h0 ♦(¬q ∧�q)
that there exists an a1 such that a1 �h0 ¬q and a1 �h0 �q and therefore
a1Ra1 does not hold.

Consider now �2(�q → q). This is a theorem of the logic and must
therefore hold at a under h0.

But how can it hold?, because we have aRa∧aRa1 and a1 �h0 �q and
a1 �h0 ¬q.

A contradiction. ✷
The next lemma shows that our logic is not complete for any class of
neighbourhood frames. Although the case of Kripke frames follows from
that, we think including both proofs is instructive for the case of other
logics.

DEFINITION 3.10. Neighbourhood models have the form (S,F, a, h)

where S is the set of possible worlds, a ∈ S is the actual world and F is a
family of filters, associating with each t ∈ S a filter Ft .7 h is the assignment
to atoms. The following is the truth condition for �.

• t �h �A iff ‖A‖h ∈ Ft where ‖A‖h = {x | x �h A}.
• We say A is true in the model iff a �h A.

LEMMA 3.11. HS
1 is not complete for any class of neighbourhood fra-

mes.
Proof. Assume otherwise, then since ¬�(�q → q) is consistent, there

must exist a neighbourhood model (S,F, a, h0) such that for any assign-
ment h and any A

a �h �A→ A,

a �h �2(�A→ A)
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while for h0 and q

a �h0 �(�q → q).

LetQ0 = ‖q‖h0 .
The above conditions mean the following second-order conditions hold

for arbitrary X ⊆ S
∀X[X ∈ Fa → a ∈ X].(1)

(1) holds because �A→ A mush hold at a under any assignment and
any A.

Since a �h0 �(�q → q), this means that ‖�q → q‖h0 /∈ Fa. This
implies that {y | y �h0 �q or y �h0 q} /∈ Fa , which further implies that

Q0 = {y | Q0 /∈ Fy or y ∈ Q0} /∈ Fa.

We summarise the latter as condition (2):

Q0 = Q0 ∪ {y | Q0 /∈ Fy} /∈ Fa.(2)

The third condition is obtained from the fact that for any h and any A,
a �h ��(�A→ A). This gives us the following condition for any atom
x and h

{z | z �h �(�x → x)} ∈ Fa.

but

z �h �(�x→ x) iff ‖�x → x‖h ∈ Fz.

Thus we get

{z | {y | ‖x‖ /∈ Fy or y �h x} ∈ Fy} ∈ Fa.

Since h is arbitrary we get condition (3).

∀X[{z | X ∪ {y | X /∈ Fy} ∈ Fz} ∈ Fa].(3)

We can now proceed to get a contradiction:
Let X = Q0 in (3). We therefore get that:

Y0 = {z | Q0 ∪ {y | Q0 /∈ Fy} ∈ Fz} ∈ Fa.

By (1) we get that a ∈ Y0 and hence

Q0 ∪ {y | Q0 /∈ Fy} ∈ Fa

which contradicts (2). ✷
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Figure 2.

REMARK 3.12. Notice that we have not used any special properties of
the filters Ft . This means that any extension of K which proves all instances
of �A→ A, �2(�A→ A) but not �(�A→ A) cannot be complete for
any neighbourhood frames. For example we can take K4.3 [T,K] (i.e.
assume R is linear transitive and irreflexive).

4. TRANSLATIONS OF HYPERMODALITY

This section discusses the relationship of hypermodality and other kinds of
modalities, namely many dimensional modal logics and multimodal logics.

We can view the system HS
1 as a two-dimensional system. Instead of

writing t �i A we write (t, i) � A and consider our set of possible worlds
as S × {0, 1}. We then have a relation R2 defined as follows:

(t, 0)R1(s, i) iff i = 1 ∧ (t = s ∨ tRs),
(t, 1)R2(s, i) iff i = 0 ∧ tRs.

Figure 1 will become Figure 2, where → now shows R2 accessibility, and
� shows R1 accessibility.

The two-dimensional view requires the further restriction on the as-
signment h, namely that for all atomic q and t ∈ S and i, j ∈ {0, 1} we
have:

(t, i) ∈ h(q) iff (t, j) ∈ h(q).
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Therefore this point of view does not yield completeness for frames!
We now turn to the connection of hypermodality and multimodal logics.
A multimodal logic with modalities �0, �1 can be characterised by

Kripke models of the form (S,R0, R1, a, h) where Ri ⊆ S2, i = 0, 1 and
the truth table for �i , i = 0, 1 is as follows:

• t � �iA iff ∀s(tRis → s � A).
If we want �0 to be a T modality we can assume that R0 is reflexive. We
can view a hypermodal system with � as a fragment of a multimodal logic,
where � can be �i , depending on its position in the formula.

Let νi be two translations from the hypermodal language into the mul-
timodal language with �0 and �1. We have

• νi(A) = A, for A without �.
• νi(¬A) = ¬νi(A).
• νi(A ∧ B) = νi(A) ∧ νi(B).
• ν0(�A) = �0ν1(A).
• ν1(�A) = �1ν0(A).

Thus

• ν0(�q → q) = �0q → q.
• ν0(�(�q → q)) = �0(�1q → q).
• ν0(��(�q → q)) = �0�1(�0q → q).
• ν0(��q → �q) = �0�1q → �0q.

Our hypermodal logic for � with modes "0, "1 based on the class of
models {(S,R, a, h)} is translated into the multimodal logic with �0, �1

based on the class of models {(S,"0,"1, a, h)}. "0, "1 are based on R.
Thus our modal logic HS

1 when viewed as a multimodal logic is special;
the relations used for �0 and �1 are both defined from a single underlying
relation R.

We can define the notion of a multimodal frame (S,R0, R1, a, h) as
generated from a frame (S,R, a, h) iff there exists generators "i(x,R,
a, y), i = 0, 1 such that Ri = λxλy"i , i = 0, 1.

This means for our case that we can take R1 as our R and assume that
R0 is the reflexive closure of R1. So let (S,R0, R1, a, h) be a bimodal logic
where R1 = R and R0 is the reflexive closure of R. Consider (S,R, a, h)
as a monomodal model for HS

1 .

LEMMA 4.1. For the above translation we have:

t �i A iff t � νi(A).(∗)
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Proof. This can be proved by structural induction on A.
The cases of � free A and of classical connectives ∧ and ¬ present no

difficulties. Let us check the case of �:
t �0 �A iff t �1 A and ∀s(tRs → s �1 A) iff t � ν1(A) and ∀s(tRs →

s � ν1(A) iff t � �0ν1(A) iff t � ν0(�A).
Similarly t �1 �A iff ∀s(tRs → s �0 A) iff ∀s(tRs → s � ν0(A)) iff

t � �1ν0(A) iff t � ν1(�A). ✷
(∗) presents us with a conceptual query. We saw that HS

1 is not complete
for any family Kripke frames. Is the bimodal logic with �0, �1 complete
for a family of Kripke frames?

The answer is yes, the family of frames of the form (S,R0, R1, a)where
R0 is the reflexive closure of R1.8

Does this not imply that HS
1 is complete for frames? The answer is no.

When we examine �q → q in a frame (S,R, a), since it is a theorem
of HS

1 for all q, we conclude that R must be reflexive. If we examine
ν0(�q → q) = �0q → q in models (S,R0, R1, a), we conclude R0

is reflexive, which is OK.9

Compare, for example, HS
1 � �q → q but HS

1 � ��q → �q. The
translation ν0(��q → �q) is �0�1q → �0q which does not hold in the
bimodal logic.

The reader may be under the intuitive impression that somehow a hyper-
modal logic is a composition of several modalities �1, . . . ,�n used ac-
cording to position in the formula. Thus � is sometimes �i , sometimes
�j , etc. The reader may think that the study of hypermodality should be re-
duced to special cases of the study of multimodal logic. This is not the gen-
eral case. The interaction between �1, . . . ,�n may make � a completely
new modality.10 Example 6.1 below illustrates this point.

5. AXIOMATISING HS
1

5.1. Methodological Discussion

Before giving syntactical axiomatisation for our logic, we need to discuss
methodology. There are different kinds of proof methods around. There
are Hilbert-type systems, Gentzen-type systems, tableaux systems, natural
deduction systems and labelled deductive systems. The difference between
these methods, when applied to modal logics, manifests itself in how much
of the geometry of the Kripke structure (possible worlds semantics) is
brought into the syntax.
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We defined modal logic satisfaction in terms of truth in the actual world.
Thus the set of theorems of a modal logic L is the set

{A | a � A, for all models (S,R, a, h)}.
Axiomatising the logic means generating this set. In the case of HS

1 it
means generating the set of all formulas A such that a �0 A, in any model
(S,R, a, h), see Definition 3.1.

We know, however, that a �0 Amay depend, in its semantic evaluation,
on other points in the model; for example it may depend on whether a point
b such that aRb, a �= b exists such that b �1 B, for some subformula B.

The Hilbert-type axiomatisation, because it generates only As such that
a �0 A, cannot directly talk about such bs. We can indirectly write a �0

♦B but this means ∃x[(x = a ∨ aRx) ∧ x �1 B].
We cannot force the geometrical condition x �= a.
There are other ways around the problem. Suppose we had an atomic q

such that a �0 ¬q and ∀x(aRx ∧ a �= x → x �1 q), then we can say what
we want by writing a �0 ♦(q ∧ B).

Can we say that such a q exists? That depends on the properties of our
logic. Indeed, we can write a �0 ¬q ∧ ��q. This will give us such a
q. Thus to axiomatise our logic as a Hilbert system, we need to say more
about other points and we need to use such qs to enable us to say what we
need. This approach gives us a rather complicated Hilbert axiomatisation
of our logic.

The source of the complication lies in the fact that a Hilbert system
allows us to code information of the form b �i B, bRc, etc. only though
�0 validity in the actual world and the use of the connectives ♦ and �.
It makes the axioms complicated for the case of our logic because of the
multiple modes available. Traditional Hilbert axiomatisations of K happen
to be able to manage because there is only one mode.

It is not that our two-mode modal logic is complicated, it is that Hilbert
style axiomatisation are geometrically poor.

Let us now turn to Gentzen style axioms. This style allows for a richer
geometry. We can look at sequents of the form

A0, A1, . . . , An � B.

It is up to us to interpret this sequent semantically. Let us, for the case of
ordinary modal logic, take the following interpretation

• A0, A1, . . . , An � B iff in any Kripke model (S,R, a, h) and any
t0 = a, t1, . . . , tn such that t0Rt1, t1Rt2, . . . , tn−1Rtn and such that
ti � Ai , i = 0, . . . , n we have tn � B.
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This kind of geometry gives us better expressive power reflecting more
of the possible world semantics in the syntax. In the case of two modes 0
and 1 we can venture and propose to amend the definition to:

• A0, A1, . . . , An � B iff for all models and all t0 = aRt1, . . . , tn−1Rtn
we have that if ti �i Ai , i = 0, . . . , n then tn �n B, where �m is taken
to be �0 if m is even and �1 if m is odd.

It is more likely that we find a simpler axiomatisation using the above
sequents because of its better expressive power.

In fact, we can put more of the geometry into the syntax. Authors have
proposed double sequents for modal and substructural logics; we can allow
sequents of the form

(A0, A
′
0), (A1, A

′
1), . . . , (An,A

′
n) � (B,B ′)

with the following validity definition

• (A0, A
′
0), . . . , (An,A

′
n) � (B,B ′) is valid iff for every model and

every t0 = aRt1, . . . , tn−1Rtn such that for all 0 ≤ i ≤ 1, ti � Ai and
ti �1 A

′
i we have tn �0 B and tn �1 B

′.

It is obvious that the more semantical information we put into the syn-
tax the easier it becomes to axiomatise. We therefore adopt the following
approach. Rather than sneak in the information through the geometry of the
sequents, double sequents, hyper-sequents, special connectives or what-
ever, we shall go all the way and use the theory of labelled deductive
systems. It allows for part of the Kripke structure to be put in the syntax as
labels. See [7]. Thus we have letters standing for labels (which stand for
possible worlds) and a relation ρ on labels (standing for the accessibility
R) and our theory (sequents) have the form (mt, n = 0 or 1)

� = {(mt, t) : At, tiρtj } � (n, s) : B.
Validity is defined as follows:

• � � (n, s): B is valid iff for every Kripke model (S,R, a, h) and
every function g assigning to labels t values g(t) ∈ S such that if
tρt ′ ∈ � then g(t)Rg(t ′) holds, we have the following:
If for all (mt, t): At ∈ � we have t �mt At then also s �n B holds.

In this paper we shall give two extreme axiomatisations. The Hilbert
one and the labelled deductive systems one.
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5.2. Hilbert Axiomatisation

We shall give a Hilbert axiomatisation of HS
1 . We need first to adopt a

different point of view of axiomatising the traditional logic K. We saw that
in HS

1 , �q → q for q atomic is a theorem, so is �2n(�q → q) but not
�(�q → q).

Also the rule of substitution of logical equivalents does not hold. We
have HS

1 � � ↔ (�q → q) but HS
1 � �� ↔ �(�q → q).

So we shall therefore formulate an axiomatisation of traditional K with-
out necessitation and substitution.

DEFINITION 5.1 (Another formulation of modal logic K). Consider the
following formulation of modal K.

Axioms

1. A if A is a substitution instance of a truth function tautology.
2. �A if A is as in (1).
3. �(A→ B)→ (�A→ �B), A arbitrary.
4. �(�(A→ B)→ (�A→ �B)), A arbitrary.

Rules


 A,
 A→ B


 B ,


 A

 ��A.

Note that we replaced necessitation


 A

 �A

by 2-necessitation


 A

 �2A

.

To compensate for the loss of necessitation we had to take also as axiom
�A for any axiom A of K.

DEFINITION 5.2 (The modal logic H1). Let H1 be the system obtained by
extending K under the formulation of the previous Definition 5.1 with the
axiom

5. �A→ A, for A such that K 
 τ1(A) ∧�τ1(A)→ τ0(A).
Note that we will have shown that �(�A → A) cannot be proved in
H1.
If it is added as an axiom we get the traditional logic T.
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6. If K 
 τ0(A)→ τ0(B) then H1 
 A→ B.

The above is not a good axiomatisation. It makes use of K provability
(which is technically OK, since K is decidable) and of the translations
τ0 and τ1. It is illuminating, however, and affords a neat, almost trivial
completeness proof.

We shall give a better Hilbert axiomatisation later on.
We saw that HS

1 can be translated into a bimodal logic with �0, �1

and that the Hilbert axiomatisation of the bimodal logic is relatively easy.
If we can define inside HS

1 , using � only, the two modalities �0 and �1,
we could then give an axiomatisation of HS

1 . The key to defining �0, �1

is irreflexivity. Let q be an atom and assume that t �0 ¬q ∧ ��q. This
means that t � ¬q and ∀x, y(tRx ∧ xRy → x � q and y � q.

Now imagine that t �0 ♦(¬q ∧ A) holds. This forces t �1 A. In our
logic, a theory � is {A | t �0 A} for some t . We can get the �1 part of
� by looking at 4 = {A | � 
 ♦(¬q ∧ A)} provided q is such that
� 
 ¬q ∧ ��q. Together (�,4) constitute a possible world t because
they contain in them both �0 and �1 satisfaction.

� = {A | t �0 A}, 4 = {A | t �1 A}.
So to give an effective axiomatisation we need irreflexivity rules involving
¬q ∧��q.

DEFINITION 5.3 (IRR Hilbert System for HS
1 ). The following axioma-

tisation defining the system H1 makes use of the well known Gabbay
Irreflexivity Rule, (see [3]).

Axioms: (E,F are wffs without �).

1. A ∧ �A, where A is a substitution instance of a truth functional
tautology.

2. �(A→ B)→ (�A→ �B).
3. �(�(A→ B)→ (�A→ �B)).
4. ♦�.
5. ¬E ∧ �2E ∧ Y → ♦(¬E ∧ Y ), where Y = A or Y = �A, for A

without �.
6. ¬E ∧�2E ∧ ♦(¬E ∧ A) ∧ ♦(¬E ∧ B)→ ♦(¬E ∧ A ∧ B).
7. ¬E ∧�2E → ♦(¬E ∧ A) ∨ ♦(¬E ∧ ¬A).
8. �A ∧¬E ∧�2E→ ♦(¬E ∧ A).
9. �X ∧ ¬E ∧�2E→ ♦(¬E ∧�(¬�2F → ♦¬F ∧X)).

10. ¬E ∧�2E ∧ ♦A∧ ♦(¬E ∧�Y ∧��Y ′ ∧ ¬A∧��X)→ ♦(A∧
X ∧ Y ∧�Y ′) where Y, Y ′ are without �.

11. ¬E ∧�2E ∧ ♦(C ∧ E ∧ Y )→ ♦(¬E ∧ ♦(Y ∧ E ∧ ♦(C ∧ E)).
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Rules

MP : 
 A; 
 A→ B


 B

IRR : 
 ¬q ∧�2q → A


 A
where q is an atom not in A.

2-necessitation: 
A

�2A

IRRn : 
 ∧n
m=1 β

m
m → A


 A
where βmm are as in Example 3.6 and qij are all not in A.

LEMMA 5.4. The axioms and rules given are sound for the semantics.
Proof. By direct verification. ✷

DEFINITION 5.5. A theory � is said to be 0-consistent (resp. 1-con-
sistent) iff for no finite number of Ai ∈ � do we have 
 ¬∧

Ai (resp.

 �¬∧

Ai).

LEMMA 5.6. Any i-consistent theory can be extended to a complete
i-consistent theory.

Proof. We need to address the case i = 1.
Assume�n is 1-consistent and let δn=1 be the n+1 wff. Can�n∪{δn+1}

and �n ∪ {¬δn+1} be both 1-inconsistent?
Otherwise, we have for some Ai , Bj


 �
(∧

Ai → δn+1

)
,


 �
(∧

Bj → ¬δn+1

)
,

hence 
 �(
∧
Ai ∧∧

Bj →⊥).
A contradiction because of axiom ♦�. ✷

DEFINITION 5.7. A theory � is said to be an IRR-theory if it is 0-
consistent and for some sequence of atoms qij , i, j = 1, 2, 3, . . . and for
each βnn(q

n
1 , . . . , q

n
n ) we have that βnn ∈ �.
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We shall see later how any 0-consistent formula A can be extended to a
complete IRR-theory. At this stage, let us show that every IRR theory has
a model.

DEFINITION 5.8. (�,4) is a 0-1 pair iff

(1) � is 0-consistent and complete and 4 is 1-consistent and complete.
(2) For any A, B:

�B ∈ �→ B ∈ 4,
�2¬A ∧ ♦A ∈ �→ A ∈ 4.

(3) A ∈ 4→ ♦A ∈ �, for all A.
(4) For any Y without �, Y ∈ �→ Y ∈ 4.
(5) For all Y ′ without �:

�Y ′ ∈ �→ �Y ′ ∈ 4.
LEMMA 5.9. Let (�) be an IRR theory and assume ¬q1

1 ∧ �2q1
1 ∈ �.

Let4 = {A | ♦(¬q1
1 ∧A) ∈ �}. Then4 is a complete 1-consistent theory

such that (�,4) is a 0-1 pair.
Proof. Axiom 7 gives us completeness. Assume 4 is not 1-consistent

then 
 �(¬q1
1 → ¬∧

i Ai), Ai ∈ 4. Hence �(¬q1
1 → ¬∧

i Ai) ∈ �.
But from axiom 6 we get ♦(¬q1

1 ∧
∧
i Ai) ∈ �, a contradiction.

The 0-1 pair property of (�,4) follows from axioms 5, 8. ✷
LEMMA 5.10. Let (�,4) be a 0-1 pair, with � an IRR theory.

Assume ♦A ∈ 4.
Let�′

1,A = {B | �B ∈ 4} ∪ {A}. Then�′
1,A is 0-consistent and can be

completed to a 0-consistent IRR theory �1A.
Proof. Otherwise



∧
Bi → ¬A,�Bi ∈ 4.

Hence 
 �2(
∧
Bi → ¬A).

Hence �2(
∧
Bi → ¬A) ∈ � and from axiom 8

�
(∧

Bi → ¬A
)
∈ 4.

Hence
∧

�Bi → �¬A ∈ 4 and so �¬A ∈ 4, a contradiction.
We can complete �′

1,A to a 0-consistent complete theory �1,A.
Note that since� is an IRR theory, βn+1

n+1 ∈ �, namely¬qn+1
n+1∧�2qn+1

n+1∧
♦(¬qn+1

n+1 ∧�βn+1
n ) is in � and so βn+1

n ∈ �1,A.
These considerations show that �1,A is IRR. For let q̄ni be a renaming

of qn=1
i+1 , i = 1, . . . , n. Then βnn(p

n
1 , . . . , p

n
n) = βn+1

n . ✷
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LEMMA 5.11. Let (�,4), �1,A be as before. Let 41,A = {A | ¬q2
1 ∧

�2q2
1 ∧ ♦(¬q2

1 ∧ A) ∈ �1,A}.
Then as proved before, (�1,A,41,A) are a 0-1 pair. Furthermore, for

any X, if �X ∈ �, then X ∈ 41,A.
Proof. Assume �X ∈ �, then from axiom 9 we get that �(¬q2

1 ∧
�2q2

1 → ♦(¬q2
1 ∧X)) ∈ 4 and hence X ∈ 41,A. ✷

LEMMA 5.12. Let (�,4) be as before and assume ¬A ∈ 4 and ♦A ∈
�. Then 4′

0,A = {A} ∪ {B | �B ∈ �} ∪ {C | ��C ∈ 4} ∪ {Y ∧ �Y ′ |
�Y ∧ �2Y ′ ∈ 4,Y, Y ′ without �} is 1-consistent and can be completed
to a 1-consistent theory 40,A.

Proof. Otherwise


 �
(∧

i

Bi → ¬
(
A ∧ Y ∧�Y ′ ∧

∧
j

Cj

))

hence �¬(A ∧ Y ∧�Y ′ ∧∧
j Cj ∈ � but also ��

∧
j Cj ∈ 4.

From axiom 10 we get that ♦(A ∧ Y ∧ �Y ′ ∧ ∧
j Cj ) ∈ �, a contra-

diction. We can extend 4′
0,A to a complete 1-consistent theory 40,A. ✷

LEMMA 5.13. Let (�,4), 40,A be as before. Then

�′
0,A = {B | �B ∈ 4} ∪ {♦C | C ∈ 40,A} ∪ {Y | Y ∈ 40,A,

Y without �}
is 0-consistent.

Proof. Otherwise let E be such that ¬E ∧ �2E ∈ �, ¬E ∈ 4 and
E ∈ 40,A. Such E exists by construction. We have



∧
i

�Bi →
(
Y ∧ E→ ¬

∧
j

♦(Cj ∧E ∧ Y )
)

hence


 �2

(∧
i

�Bi →
(
Y ∧ E→

∧
j

♦(Cj ∧ E ∧ Y )
))

hence

�
(∧

i

�Bi →
(
Y ∧ E→ ¬

∧
j

♦Cj ∧ E ∧ Y
))

∈ 4

hence

�
(
Y ∧E → ¬

∧
j

♦(Cj ∧ E ∧ Y )
)
∈ 4
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but


 �
(
¬

∧
♦Dj → ¬♦

∧
Dj

)

hence

�
(
♦

∧
(Cj ∧ E ∧ Y

)
→ ¬(E ∧ Y )) ∈ 4.

But by construction of 40,A we have ♦(
∧
i Ci ∧ E ∧ Y ) ∈ �. From

axiom 11 we have ♦(Y ∧E ∧ ♦(
∧
Ci ∧ E ∧ Y )) ∈ 4, a contradiction. ✷

DEFINITION 5.14. Let (�,4) and (�′,4′) be two 0-1 pairs. We say
(�,4)R(�′,4′) iff the following holds:

(1) If �A ∈ 4 then A ∈ �′.
(2) If �A ∈ � then A ∈ 4′.

The previous series of lemmas proved the following:

LEMMA 5.15. Let (�,4) be an IRR 0-1 pair then

(1) If ♦A ∈ 4 then there exists an IRR 0-1 pair (�′,4′) such that
(�,4)R(�′,4′) and A ∈ �.

(2) If ♦A ∈ � and ¬A ∈ 4 then there exists an IRR 0-1 pair (�′,4′)
such that (�4)R(�′,4′) and A ∈ 4′.

Proof. From previous lemmas. ✷
LEMMA 5.16. Let A be a consistent wff. Then A has a model.

Proof. Since A is consistent, so is �0 = {A} ∪ {βnn | n = 1, 2, . . . , },
for βnn using completely new atoms {qij }. This follows from the IRRn rule.
We can complete �0 to a complete IRR theory � and construct the IRR
0-1 pair (�,4). Let S be the set of all 0-1 IRR theories. Let R as before
and let a = (�,4). Let h be defined by

(�,4) ∈ h(q) iff q ∈ �
(we know that q ∈ � iff q ∈ 4 for an IRR 0-1 pair!).

We claim for any pair (60, 61) ∈ S and any A

(60, 61) �i A iff A ∈ 6i, i = 0, 1.(∗)

This is proved by structural induction on A. ✷
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5.3. LDS Axiomatisation

We now develop the basic concepts of an LDS theory and consequence for
the same logic HS

1 . The general theory of LDS is presented in [7]. See also
Definition 1.2.

DEFINITION 5.17 (Labelled theories). (1) Consider a formal first-order
language with atomic terms D= {t1, t2, . . .}, a binary relation ρ, equality
= and a distinguished constant d ∈ D. This is the language of the algebra
of labels. D stands for a set of possible worlds, d stands for the actual
world and ρ stands for the accessibility relation.

(2) A literal has the form x = y, x �= y, xρy, ¬xρy where x, y ∈ D.
(3) A declarative unit has the form (m, t) : A where m ∈ {0, 1}, t ∈ D

and A is a wff of the modal language with �.
(4) A (labelled) theory is a set of declarative units and literals.

DEFINITION 5.18 (Labelled rules). This definition lists proof rules to be
used to define a consequence relation for HS

1 .

1. Axioms
(m, t) : A, for A a substitution instance of a truth functional tautology.

2.
(m, t) : A; (m, t) : A→ B

(m, t) : B .

3.
(m, t) : �A; tρs
(1−m, s) : A ,(a)

(1−m, s) : �A; tρs
(m, t) : ♦A .(b)

4.
(0, t) : �A
(1, t) : A ,(a)

(1, t) : A
(0, t) : ♦A.(b)

5.
(m, t) :⊥
(n, s) : A .

6.
(1, t) : ♦A

create a new s, tρs with (0, s) : A .

7.
(0, t) : ♦A; (1, t) : ¬A

create a new s, tρs with (1, s) : A .

8.
(m, t) : A
(1− n, t) : A
for A not containing �.
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9. Rules 6–7 are referred to as creative, the others as non-creative.

DEFINITION 5.19 (Consequence). Let � be a theory and let (m, t) : A
be a declarative unit. We define the notion of � 
n (m, t) : A. n is the
number of creation steps used.

(1) � 
0 (m, t) : A if (m, t) appears in � and (m, t) : A can be
reached after a finite number of applications of the non-creative rules of
the previous definitions to the units in �.

(2) � 
0 �
′ if � 
0 (x, s) : B for all (x, s) : B in �′.

(3)� 
n+1 (m, t) : A if� is obtained from a�′,�′′ such that� 
0 �
′

and �′′ is obtained from �′ by the application of a creative rule (and the
new declarative unit added) such that �′′ 
n (m, t) : A.

(4) � 
 (m, t) : A if for some n, � 
n (m, t) : A.
(5) � is consistent if for no (m, t) do we have � 
 (m, t) : ⊥.

DEFINITION 5.20. Let � be a theory and (S,R, a, h) a model. Let g
be a function g : � '→ S such that for any t appearing in �, g(t) ∈ S.

Assume g satisfies the following:

• If ±tρs ∈ � then ±g(t)Rg(s) holds.
• If t = s (resp. t �= s) in � then g(t) = g(s) (resp. g(t) �= g(s)) holds.
• g(d) = a.
• If (m, t) : A ∈ � then g(t) �m A holds,

then we say that (S,R, a, h, g) is a model of �.

THEOREM 5.21. If � is consistent then it has a model.
Proof. The usual Henkin/tableaux construction. ✷

6. CONCLUSION: HYPERMODALITY IN CONTEXT

One can certainly look at the hypermodal framework as a way of signif-
icantly broadening the expressive power of modal logic in an interesting
way. However, there is another, more general way of looking at hyper-
modality, as a manifestation of a more general proof theoretic mechanism.
This point of view will now be explained. It is best done by an example.

Consier S4 strict implication, A ⇒ B. We can understand it as having
a future temporal meaning. Read A ⇒ B as an insurance policy, say that
whenever an accident happens (i.e. A holds), then remedies are guaranteed
(B holds). It is clear that the accident must happen after the policy was
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taken out. Thus if we list all data avaialble according to the earlier–later
temporal occurrence then modus ponens can be effected only in the form

A⇒ B,A 
 B
and not in the form

A,A⇒ B 
?B.

We can be even more careful and record that B does not come at the same
time as A, but afterwards. (Compare with Definition 1.2, items 2 and 4.)

Now let us look at automobile insurance known as Home Start. This
allows you to call the company any time if your car does not start and
they will come and start/charge your battery, wherever you are. Arrival is
guaranteed within the hour. There is a catch, however. You are allowed to
use this service only a fixed number of times (I think it is 4 times). So let
us see what this means in terms of modus ponens. We will have to write
something like

(mode n) A⇒ B,A 
 B (mode n− 1),

where the (mode n) says how many times you can use A⇒ B.
The proof theory will have to tell us how to change mode with every

use of modus ponens.
This example is very real and can become very complex. I can now

make my general point:

Logic is now evolving and becoming more and more complex in re-
sponse to the needs of computer science and artificial intelligence. These
disciplines are building devices which help/replace humans in their daily
activities. To be successfully sold to the public, we need to properly model
(in logic) various aspects of human activity and use these logical models
to help build these devices. The urgency of this need is fuelling the devel-
opment of new concepts in logic. The process of modelling is the same as
the intuitive analysis traditionally done by philosophical logic, only more
urgent and more computational. The notion of mode is one such concept
arising in this context.

I believe it is going to be central in the modal logic of the future.
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NOTES

1 The word ‘hyper’ was suggested to me by Michael Gabbay. It can be used to qualify
the logical meaning of any symbol x and make it dependent on its occurrence in the wff.
So, for instance, a hypernominal is a nominal whose meaning depends on its place in the
wff. Similarly a hyperSkolem-function, hyperquantifier, etc.

2 As we evaluate s � B inductively from the outside, the evaluation path leading to any
t � �A indicates the position of this occurrence of �A inside B.

3 In the proof below think semantically. Let m be an arbitrary model, then a � α iff for
all t , aRt and t � (1.1 and 1.2 and 1.3) imply t � 1.4. But t � 1.4 iff for any s, tRs, if
s � (1.4.1 and 1.4.2) then s � 1.4.4.

Thus proof lines 1.1–1.4 take place in t and 1.4.1–1.4.4 take place in s.
4 In semantical terms in a model (S,R, a), we are evaluating as follows: a �K α′ iff

∀s(aRs ∧ s �T A ∧ (A⇒T (B ⇒K C)) implies s �T B ∧ (C ⇒K D)⇒T D).
5 By λzA(z) we mean the unary relation formed by the predicate A(z). Some books use

the notation ẑA(z) or {z | A(z)} viewed as a one place relation.
6 The modal logic K is complete for many classes of models. The widest class is where

R is an arbitrary relation. A more strict class is where (S, R, a) is a tree. When we define
modes on a class K of models we have to be careful which class to choose. We may get
different hypermodal logics for different choices of classes of models, even though these
classes characterise the same ordinary modal logic. Thus for HS1 we start with trees as the
class of models.

We now define our notion of a tree. LetW be the set of all finite sequences of the form
(−x0, x1, . . . , xm) where x0 ≥ 0 is a natural number and xi , i ≥ 1 are positive natural
numbers. Let p be a function defined by p((−x0, x1, . . . , xn)) = (−x0, x1, . . . , xn−1), for
n ≥ 1 and p((−x0)) = (−x0 − 1). Let, for t, s in W , tRs means t = p(s). The full tree
model is (W, R, 0). We can now be specific about our tree (S, R, a). It must satisfy the
properties

• a ∈ S ⊆ W .
• x ∈ S ∧ yRx → y ∈ S.

7 A filter Ft is a family of subsets of S satisfying

(1) S ∈ Ft .
(2) ∅ /∈ Ft .
(3) X ∈ Ft ∧X ⊆ Y imply X ∈ Ft .
(4) X ∈ Ft and Y ∈ Ft imply X ∩ Y ∈ Ft .

8 The proof is standard. We take as axioms and rules all K axioms for �1 and T axioms
for �0, together with the additional interaction axioms �0A → �1A and ♦0A → A ∨
♦1A.

To prove completeness, let S be the set of all complete consistent theories. Let �Ri4
be defined as ‘for all �iA ∈ � we have A ∈ 4’. For atomic q, let � � q iff � 
 q
and show by induction that for all A, � � A iff � 
 A. The axioms �0A → �1A and
♦0A→ A ∨ ♦1A ensure that R0 is the reflexive closure of R1.

9 Another point to watch for is substitutivity of equivalents. �q → q is equivalent to �
in HS1 but �� is not equivalent to �(�q → q).

However, as a two-dimensional formula, �q → q is �0q → q and indeed �1� is
equivalent to �1(�0q → q).
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The non-substitutivity of equivalents, in itself, does not imply non-completeness for a
class of frames. Consider the class of all frames (S, R, a) such that R is transitive and aRa
holds. Let the logic be the set of all wffs valid at the actual world a. This logic is finitely
axiomatisable (with modus ponens only, without necessitation, since it is not normal) and
it has no substitutivity of equivalents.

10 The theory of Abelian groups, for example, is a special case of the theory of groups
but it is so special that it is completely different.
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