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Abstract

Understanding inductive reasoning is a problem that has engaged mankind for
thousands of years. It has been tackled by many great minds ranging from Occam
to Epicurus to Bacon to Hume to Mill to Bayes to Laplace to Keynes to Popper
to Carnap to Solomonoff. In this article we analyse the history and philosophical
foundations of Solomonoff Induction, which is a formal inductive framework which
combines algorithmic information theory(AIT) with the Bayesian framework. After
that we introduce Hutter’s general reinforcement learning agents—AIXI based on
Solomonoff’s work. At last, we introduce some approximate approaches and appli-
cations.

Keywords

Universal Induction; Sequence Prediction; ML; ME; MDL; AIXI; Bayes rule; Oc-
cam’s razor; Epicurus; Black raven paradox.

“Make everything as simple as possible, but not simpler”

— Einstein
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1 Introduction
“As far as the laws of mathematics refer to reality, they are not certain, and
as far as they are certain, they do not refer to reality.”

— Einstein

Generally speaking, incomplete induction can only draw uncertain conclusions, while
complete induction is both theoretically reducible to deduction and practically impossible.
Just as the consistency of the deductive system can’t be proved by itself but to resort to
deduction reluctantly, the legality of deduction can’t be justified circularly but to turn to
deduction for help although seeming impossible.

Induction versus Deduction

Induction ⇔ Deduction
Type of inference generalization/prediction ⇔ specialization/derivation
Framework probability axioms ̂︀= logical axioms
Assumptions prior ̂︀= non-logical axioms
Inference rule Bayes rule ̂︀= modus ponens
Results posterior ̂︀= theorems
Universal scheme Solomonoff probability ̂︀= ZFC
Universal inference universal induction ̂︀= universal theorem prover
Limitation incomputable ̂︀= imcomplete
In practice approximions ̂︀= semi-formal proofs
Operation computation ̂︀= proof

1.1 History
Occam insisted that “Entities should not be multiplied beyond necessity”, while Epicurus
thought that if more than one theory is consistent with the observations, we should keep
them all.

Bacon thought that incomplete induction is not only possible, but can even reach cer-
tain conclusions, if pursued by means of an axiomatic analysis of the essence of the
available data, through a classification by means of tables listing presence or absence
of relevant features.

According to Hume, induction is just a mental habit, and necessity is something in the
mind and not in the events, one can never demonstrate the necessity of a cause.

Leibniz raised the following curve-fitting paradox: since for any finite number of
points there are always infinitely many curves going through them, any finite set of da-
ta is compatible with infinitely many inductive generalizations. The paradox raised the
problem of which inductive generalization should be chosen, among the many available
ones fitting the data. Wittgenstein had similar ideas in the following form: since any finite
course of action is in accord with infinitely many rules, no universal rule can be learned by
examples. Goodman made it more against our intuition: past observation on all emeralds
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so far discovered supports conclusions giving rise to opposite predictions, such as ‘all
emeralds are green’ or ‘all emeralds discovered till 2050 are green, and blue thereafter’.

Mill attempted to turn induction into a deduction, by adding principles about the world
(such as ’the future resembles the past’, or ’space-time is homogeneous’) that would make
inductive conclusions follow logically from their premises.

Keynes tried to assign to inductive generalizations, according to available evidence,
probabilities that should converge to 1 as the generalizations are supported by more and
more independent events.

Popper thought that single observational events may prove hypotheses wrong, but no
finite sequence of events can verify them correct. Thus induction is theoretically un-
justifiable and becomes in practice the choice of the simplest generalization that resists
falsification, on the ground that the simpler a hypothesis is the easier it is to falsify it. But
falsifiability is as subjective as simplicity. And sometimes a complex theory with fixed
parameters is as easy to falsify as a simple theory.

Carnap weakened the verification theory into the following confirmation theory: ob-
servational events provide, if not proofs, at least positive confirmations of scientific hy-
potheses. We can evaluate the probability of a hypothesis, under certain assumptions.
Thus induction becomes a choice of a generalization among the ones that confirm more
evidence.

But how many evidences are strong enough to hold our belief?
The theory of confirmation is subject to peculiar paradoxes, which appear when it is

mixed with the usual logic of deduction:

∙ ∵ (α→ β)→ (β confirms α) { α confirms ⊥ }

∵ (α→ β) ∧ (γ confirms α))→ (γ confirms β)
∵ (α ∧ β)→ α
∴ α confirms α ∧ β
∵ (α ∧ β)→ β
∴ α confirms β

∙ ∵ A(x) ∧ B(x) confirms ∀x(A(x)→ B(x))
∵ ¬A(x) ∧ ¬B(x) confirms ∀x(¬B(x)→ ¬A(x))
∵ ∀x(A(x)→ B(x))↔ ∀x(¬B(x)→ ¬A(x))
∴ ¬A(x) ∧ ¬B(x) confirms ∀x(A(x)→ B(x))

1.2 Logic versus Probability
On one hand, one can view Bayesian probability as a special case of classical logic by
taking a frequentist interpretation. In this interpretation, one views the actual universe as
just one of a large number of possible universes. Each universe is in one of the possible
states; the probability assigned to each state is then the proportion of the possible univers-
es in which that state is attained. Each new measurement eliminates some fraction of the
universes in a given state, depending on how likely or unlikely that state was to actually
produce that measurement; the surviving universes then have a new posterior probability
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distribution, which is related to the prior distribution by Bayes’ formula. For example,
Carnap’s approach: If the predicates (Q1, · · · ,Qk) are defined so that they have different
relative widths qi, such that q1+· · ·+qk = 1, then c(Qi(an+1|a1:n)) =

ni+λqi
n+λ

. But the problem
is how to assign the initial prior distribution?

On the other hand, we can view Bayesian probability as a quantitative refinement of
classical logic.

⊢ A→ B P(B|A) = 1
⊢ A→ ¬B P(B|A) = 0
0 (A→ B)→ (B→ A) P(B|A) = 1; P(A|B) = 1
0 (A→ B)→ (B→ A) P(B|A) > P(B)⇒ P(A|B) > P(A)

⊢ (A→ B)→ (¬B→ ¬A) P(¬A) ≥ 1 −
1 − P(¬B)

P(B|A)
⊢ (A→ B) ∧ A→ B P(B) ≥ P(B|A)P(A)
⊢ (A→ B)→ (B→ C)→ (A→ C) P(C|A) ≥ P(C|B)P(B|A)

φ(0) ∧ ∀n(φ(n)→ φ(n + 1))→ ∀nφ(n) P(An) ≥
n−1∏︁
i=1

P(Ai+1|Ai)

φ(0) ∧ ∀n(φ(n)→ φ(n + 1))→ ∀nφ(n) ∀i(P(Ai+1|Ai) < 1)⇒ lim
n→∞

n−1∏︁
i=1

P(Ai+1|Ai) = 0

φ(0) ∧ ∀n(φ(n)→ φ(n + 1))→ ∀nφ(n)
∀i(P(X = Xi) ≥ c)⇒

P(X = X1 = · · · = Xn|X1 = · · · = Xn) ≥ cn

cn+(1−c)n

If we consider the predicate “confirm” as conditional probability like Carnap c(h, e) =
m(h&e)

m(e) rather than as some kind of “implication” as in the raven paradox, then the paradox
disappear. For example,
H:All ravens are black.
H̄: All non-black objects are non-ravens.
H′: Half the ravens are black.
D:A randomly selected raven is black.
A:A randomly selected non-black object is non-raven.

P(D|H) = P(A|H) = 1

P(D|H′) =
1
2

P(A|H′) ≈ 1 but P(A|H′) < 1

P(D) , P(A)⇒ P(H|D) =
P(D|H)P(H)

P(D)
,

P(A|H̄)P(H̄)
P(A)

= P(H̄|A)

P(H|A)
P(H′|A)

=
P(A|H)P(H)

P(A|H′)P(H′)
≈

P(H)
P(H′)

P(H|D)
P(H′|D)

=
P(D|H)P(H)

P(D|H′)P(H′)
= 2

P(H)
P(H′)
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It is the ratio P(D|H)
P(D|H′) determines the strength of the evidence: a strong piece of evidence

needs to be plausible under hypothesis H, while simultaneously being implausible under
rival hypotheses.
This corresponds with the maximum likelihood principle(ML) for hypothesis testing.

̂︀H = arg max
H

P(D|H)

We use ML rather than ̂︀H = argH[P(D|H) ≈ 1]

1.3 Subjective Probability
The Dutch book argument shows that if an agent’s beliefs are inconsistent (contradict the
axioms) then a set of bets can be formulated which the agent finds favorable according
to its beliefs but which guarantees that it will lose. Cox theorem gaves a formal rigorous
justification that a rational belief system must obey the standard probability axioms.

The Cox’s axioms for beliefs are as follows:

∙ The degree of belief in an event B, given that event A has occurred can be charac-
terized by a real-valued function Bel(B|A).
∙ Bel(Ω ∖ B|A) is a twice differentiable function of Bel(B|A) for A , ∅.
∙ Bel(B ∩ C|A) is a twice differentiable function of Bel(C|B ∩ A) and Bel(B|A) for

B ∩ A , ∅.

ρ : 𝒳* → [0, 1] is a semimeasure if ρ(x) ≥
∑︀
|a|=1 ρ(xa)∀x ∈ 𝒳*, and a (probability)

measure if equality holds and ρ(ε) = 1. We assume measures, hypotheses, models and
environments express the same concept. The class of all possible considered environments
is denoted ℳ. Assume that wν := P[Hν] is the given prior belief in Hν. Assume that
sequence ω = ω1:∞ ∈ 𝒳

∞ is sampled from the “true” probability measure µ ∈ ℳ, i.e.
µ(x1:n) := Hµ(x1:n) := P[ω1:n = x1:n|Hµ] is the µ-probability that ω starts with x1:n. I
denote expectations w.r.t. µ by E, for f : 𝒳n → R, E[ f ] :=

∑︀
x1:n∈𝒳n µ(x1:n) f (x1:n).

Bayes Theorem Let Hν be a hypothesis from classℳ which is required to be mutually
exclusive and complete. Bayes mixture ξ(x) := P[x] =

∑︀
ν∈ℳ P[x|Hν]P[Hν] must be our

(prior) belief in observational data x, and Bayes formula below can be understood as our
posterior belief in ν given data x.

wν(x) := P(Hν|x) =
P(x|Hν)P(Hν)

P(x)
=

P(x|Hν)P(Hν)∑︀
Hi∈ℳ

P(x|Hi)P(Hi)

A Bayesian is a subjectivist, believing that our beliefs and hence probabilities are a
result of our personal history. To be able to update beliefs consistently a Bayesian must
first decide on the set of all explanations that may be possible. For universal induction,
we are interested in finding the true governing process behind our entire reality and to do
this we consider all possible worlds in a certain sense. No matter what the problem is we
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can always consider it to consist of an agent in some unknown environment. The agent
must have some prior belief in these explanations before the updating process begins, in
other words, before any observations have been made.

This understanding of probability can be troubling as it suggests that we can never be
certain of any truth about reality, however this corresponds exactly with the philosophy
of science. In science it is not possible to ever prove a hypothesis, it is only possible to
disprove it. What are often stated as physical laws are actually only strongly believed and
heavily tested hypotheses.

Surprise/Uncertainty/Ignorance/Entropy Surprise springs from Ignorance. If we be-
lieve that it is probable that something will happen, we will not very surprise when it
happens.

If we assume the surprise function S (P) satisfy the following axioms, then S (P) =

−C log2 P.

∙ S (1) = 0

∙ P < Q⇒ S (P) > S (Q)

∙ S is a continuous function of P

∙ S (PQ) = S (P) + S (Q) 0 < P ≤ 1, 0 < Q ≤ 1

Let X be a random variable taking values in 𝒳* with distribution P. We assume C = 1,
the expected surprise of a random variable X is H(X) = −

∑︀
x∈𝒳* P(x) log2 P(x), i.e. the

Shannon entropy of X.

1.4 Induction versus Prediction
Inductive inference [Odi99] can be described as a particular step from chaos to order, or
from effects to causes. In such a process we can isolate three distinct aspects:

∙ data

They provide bits of information about the phenomena to be inferred, at given in-
stants of time. According to whether the order in which they occur is considered to
be relevant or not, the flow of data can be taken to be a function (or a set). For ex-
ample, the evolution of a physical system in time can be identified with a function,
while a language can be identified with a set of strings.

∙ goals of inference

A theoretical goal is to be able to explain the phenomena to which the data refer,
while a practical goal is to be able to predict the flow of data from a certain point
on. In the first case, one is interested in understanding causes, in the second in
reproducing effects.
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∙ time needed for inference

An inference must be completed in a finite time, which could be specified in ad-
vance, or at least one should know that the process will be completed even if some-
times he can’t figure out in advance when.

As a approximation to an inference process of the kind described above, we picture
time as consisting of discrete intervals, and events as being codifiable by natural numbers.
Thus a phenomenon to be inferred may be thought of as a function on the natural numbers.
Any such function f is given by a sequence of values

f (0), · · · , f (n), · · ·

The function can be inferred if this is not just a sequence of accidents, but rather it has an
intrinsic necessity. We can specify this internal structure of the sequence of values in at
least two ways, corresponding to the two goals described above:

∙ On the one hand, we can ask for a finite description that would compress the finite
amount of information contained in the sequence of values.

Find a total recursive function g such that,

φlimn→∞ g(⟨ f (0),··· , f (n)⟩) ≃ f

or for almost every n,

φg(⟨ f (0),··· , f (n)⟩) ≃ f

∙ On the other hand, we can ask for a method that would allow us to predict the next
value f (n + 1), once the values f (0), · · · , f (n) have been exhibited, for an arbitrary
n.

Find a total recursive function g such that, for almost every n,

f (n + 1) = g(⟨ f (0), · · · , f (n)⟩)

Induction can be understood to include the process of drawing conclusions about some
given data, or as the process of predicting the future. Can general induction problems be
rephrased as prediction problems?

Regression is the problem of finding the function that is responsible for generating
some given data points, often accounting for some noise or imprecision. The data is
a set of (feature,value) tuples {(x1, f (x1)), (x2, f (x2)),....(xn, f (xn))}. In machine learn-
ing this problem is often tackled by constructing a function that is the ‘best’ estimate
of the true function according to the data seen so far. Alternatively, it can be formal-
ized directly in terms of sequential prediction by writing the input data as a sequence
and appending it with a new point xn+1 for which we want to find the functional val-
ue. In other words the problem becomes: “What is the next value in the sequence
x1, f (x1), x2, f (x2), ...xn, f (xn), xn+1, ?”. Although this approach does not produce the func-
tion explicitly, it is essentially equivalent, since f (x) for any x can be obtained by choosing
xn+1 = x.
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1.5 Kolmogorov Complexity
Notation I write 𝒳* for the set of finite strings over some alphabet 𝒳, and 𝒳∞ for the
set of infinite sequences. For a string x ∈ 𝒳* of length |x| = n I write x1x2...xn with
xt ∈ 𝒳, and further abbreviate xt:n := xtxt+1...xn−1xn and x<n := x1...xn−1. The notation
generalises for blocks of symbols: e.g. ax1:n denotes a1x1a2x2 . . . anxn and ax< j denotes
a1x1a2x2 . . . a j−1x j−1. The empty string is denoted by ε. The concatenation of two strings
s and r is denoted by sr.

A function f : 𝒳* → R∪{±∞} is said to be lower semi-computable (or enumerable) if
the set {(x, y) ∈ 𝒳*×Q : y < f (x)} is recursively enumerable. f is upper semi-computable
(or co-enumerable) if − f is enumerable. f is computable (or recursive) if f and − f are
enumerable. The set of (co)enumerable functions is recursively enumerable.

I write f (x)
+
≤ g(x) for f (x) ≤ g(x) + O(1) and f (x)

×
≤ g(x) for f (x) ≤ O(g(x)).

We say that a property A(n) holds for most n, if limn→∞
|{t≤n:A(t)}|

n = 1.

Definition 1 (Kolmogorov complexity).

K(x) := min{|p| : U(p) = x} (1)

Where U is a universal prefix Turing Machine.

It has the following properties:

K is not computable, but only co-enumerable; (K1)
K(n)

+
≤ log2 n + 2 log2 log2 n; (K2)∑︁

x

2−K(x) ≤ 1; (K3)

K( f (x))
+
≤K(x) + K( f ) for recursive f : 𝒳* → 𝒳*; (K4)

K(x)
+
≤ − log2 P(x) + K(P) if P : 𝒳* → [0, 1] is enumerable and

∑︁
x

P(x) ≤ 1; (K5)∑︁
x: f (x)=y

2−K(x) ×= 2−K(y) if f is recursive. (K6)

Shannon entropy equals the expected value of Kolmogorov complexity, up to a constant
term that only depends on the distribution P.

Theorem 1. For a computable probability distribution P

0 ≤
∑︁

x

P(x)K(x) +
∑︁

x

P(x) log2 P(x)
+
≤K(P)

Proof. The first “ ≤ ” follows directly from Shannon’s Noiseless Coding Theorem.∑︁
x

P(x)K(x) +
∑︁

x

P(x) log2 P(x)

=
∑︁

x

P(x)
(︀
K(x) + log2 P(x)

)︀
[Equation (K5)]
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+
≤

∑︁
x

P(x)K(P)

≤ K(P)

�

2 Bayesianism for Prediction
“The most incomprehensible thing about the world is that it is comprehensi-
ble.”

— Einstein

2.1 Convergence Results
Deterministic For a deterministic environment it is sufficient to know the unique obser-
vation sequence α that must be generated, since µ(α1:n) = 1 for all n, and µ(x) = 0 for any
x that is not a prefix of α. In this case we identify µ with α and the following holds:

Theorem 2.
∞∑︁

t=1

|1−ξ(αt|α<t)| ≤ ln w−1
µ and ξ(αt:n|αt)→ 1 for n ≥ t → ∞ (2)

Proof.

∵ ξ(α1:n) = Σν∈ℳwνν(α1:n) ≥ wµµ(α1:n) = wµ > 0

∵
n∑︁

t=1

|1 − ξ(xt|x<t)| ≤ −
n∑︁

t=1

ln ξ(xt|x<t) = − ln ξ(x1:n)

∴
∞∑︁

t=1

|1−ξ(αt|α<t)| ≤ ln w−1
µ

�

Non-deterministic

Lemma 1. For any discrete probability measure µ and discrete semimeasure ξ over 𝒳*∑︁
|a|=1

(
√︀
µ(a) −

√︀
ξ(a))2 ≤

∑︁
|a|=1

µ(a) ln
µ(a)
ξ(a)

Proof.

f (x, y) := x ln
x
y
− (
√

x −
√

y)2 + y − x
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∴
f (x, y)

2x
= − ln

√︂
y
x

+

√︂
y
x
− 1

∵ ln x ≤ x − 1 for 0 < x ≤ 1

∴
f (x, y)

2x
≥ 0

∴ f (x, y) ≥ 0

�

Theorem 3. In non-deterministic environments the following result holds:

n∑︁
t=1

E

[︃(︂√︁
ξ(xt |x<t)
µ(xt |x<t)

− 1
)︂2
]︃
≤

n∑︁
t=1

E[ht] ≤ Dn(µ||ξ) := E[ln µ(x1:n)
ξ(x1:n) ] ≤ ln w−1

µ < ∞ (3)

where

ht(x<t) :=
∑︁
|a|=1

(︁ √︀
ξ(a|x<t) −

√︀
µ(a|x<t)

)︁2
(4)

Proof. for the first “ ≤ ”,

(

√︃
ξ

µ
− 1)2 = µ−1(

√︀
ξ −
√
µ)2

for the second “ ≤ ”, use Lemma 1.

for the third “ ≤ ”,

ξ(x) ≥ wµµ(x)

�

These bounds (with n = ∞) imply ht → 0 and hence

ξ(xt|x<t) − µ(xt|x<t) −→ 0

and

ξ(xt|x<t)
µ(xt|x<t)

−→ 1

both rapidly with probability 1 for t → ∞.
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2.2 Bayesian Decisions
Let Loss(xt, yt) ∈ [0, 1] be the received loss when yt has been predicted and xt was the
correct observation.

Given this loss function the optimal predictor Λρ for environment ρ after seeing ob-
servations x<t is defined as the prediction or decision or action yt that minimizes the ρ-
expected loss. This is the action that we expect to be least bad according to environment
ρ.

yΛρ

t (x<t) := arg min
yt

∑︁
xt

ρ(xt|x<t)Loss(xt, yt)

Given this optimal predictor, the expected instantaneous loss at time t and the total
expected loss from the first n predictions are defined as follows.

lossΛρ

t := E[Loss(xt, y
Λρ

t )]

LossΛρ

n :=
n∑︁

t=1

E[Loss(xt, y
Λρ

t )]

Obviously the best predictor possible is the optimal predictor for the true environment Λµ,
however as µ is generally unknown, the best available option is the optimal predictor Λξ

for Bayes mixture ξ for which the following result holds:

Theorem 4.(︃√︁
LossΛξ

n −

√︁
LossΛµ

n

)︃2

≤

n∑︁
t=1

E

[︃(︁√︁
lossΛξ

t −

√︁
lossΛµ

t

)︁2
]︃
≤ 2 ln(w−1

µ ) < ∞

One can also show that Λξ is Pareto-optimal in the sense that every other predictor with
smaller loss than Λξ in some environment ν ∈ ℳ must be worse in another environment.

2.3 Continuous Environment Classes
Although the results above were proved assuming that the model class is countable, anal-
ogous results hold for the case that the model classℳ is uncountable such as continuous
parameter classes.

ξ(x) =

∫︁
ν∈ℳ

ν(x)w(ν)dν

where w(ν) is (now) a prior probability density over ν ∈ ℳ. One problem with this is
that the dominance ξ(x) ≥ w(µ)µ(x) is no longer valid since the prior probability (not the
density) is zero for any single point. To avoid this problem the Bayesian mixture is instead
shown to dominate the integral over a small vicinity around the true environment µ. By
making some weak assumptions about the smoothness of the parametric model classℳ,
a weaker type of dominance makes it possible to prove the following:

Theorem 5.
n∑︁

t=1

E[ht] ≤ ln(w(µ)−1) + O(log(n))
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2.4 Choosing the Model Class and Priors
The above results demonstrate that the Bayesian framework is highly effective and essen-
tially optimal given the available information. Unfortunately the operation and perfor-
mance of this framework is sensitive to the initial choice of hypothesis class and prior. As
long as they are non zero, the chosen priors will not affect the asymptotic performance
of the Bayesian mixture as the observations eventually wash out this initial belief value.
However in short-term applications they can have a significant impact.

The only restriction on the hypothesis class is that it must contain the true environ-
ment. But adding unnecessarily small priors leads to a high error bound which may affect
short-term performance.

For these reasons, the general guideline is to choose the smallest model class that will
contain the true environment and priors that best reflect a rational a-priori belief in each
of these environments. Occam’s razor in conjunction with Epicurus’ principle of multiple
explanations, quantified by Kolmogorov complexity will lead us to the universal prior.

3 How to Choose the Prior
“God always takes the simplest way.”

— Einstein

3.1 Indifference Principle
Quantifying Epicurus’s principle of multiple explanations leads to the indifference prin-
ciple(IP) which assumes that if there is no evidence favoring any particular hypothesis
then we should weight them all as equally likely. When told that an urn contains either all
black balls or all white balls and no other information, it seems natural to assign a proba-
bility of 0.5 to each hypothesis before any balls have been observed. This can be extended
to any finite hypothesis class by assigning probability 1

|ℳ|
to each hypothesis where |ℳ| is

the number of hypotheses inℳ.
For a continuous hypothesis class the analogous approach is to assign a uniform prior

density which must integrate to 1 to be a proper probability density.
Since given data D, the posterior belief of the hypothesis H is

P(H|D) =
P(D|H)P(H)

P(D)

if indifference principle holds, it justifies the maximum likelihood principle.

P(H|D) ∝ P(D|H)̂︀H = arg max
H

P(H|D) = arg max
H

P(D|H)

However, we know that maximum likelihood principle is confronted with the overfitting
problem when the model classℳ is too large. We will show that indifference principle

13



is not reparametrization invariant. Jeffreys’ solution is to find a symmetry group of the
problem (like permutations for finiteℳ) and require the prior to be invariant under group
transformations. For instance, if θ ∈ R is a location parameter (e.g. the mean) it is natural
to require a translation-invariant prior. Problems are that there may be no obvious sym-
metry, the resulting prior may be improper (like for the translation group), and the result
can depend on which parameters are treated as nuisance parameters.

The maximum entropy principle(ME) extends the symmetry principle by allowing
certain types of constraints on the parameters. The ME principle selects the estimated
valueŝ︀θ = (̂︀p1, · · · , ̂︀pk) that maximize the entropy function

H(p1, · · · , pk) = −

k∑︁
i=1

pi log pi

suject to

k∑︁
i=1

pi = 1

and some other constraints provided by empirical data or considerations of symmetry,
probabilistic laws, and so on.

When we are totally ignorant, the indifference principle follows from the maximum
entropy principle.

̂︀θ = (̂︀p1, · · · , ̂︀pk) = arg max
(p1,··· ,pk)

k∑︁
i=1

pi log
1
pi

= (
1
k
, · · · ,

1
k

)

Both IP and ME can be considered as special cases of the minimum description length
principle(MDL).

̂︀H = arg min
H

K(D|H) + K(H) ≈ arg max
H

P(D|H)P(H) = arg max
H

P(H|D)

Conjugate priors are classes of priors such that the posteriors are themselves again in the
class. While this can lead to interesting classes, the principle itself is not selective, since
e.g. the class of all priors forms a conjugate class.

3.2 Laplace and the Rule of Succession
Supose the model class is ℳ = {θ|θ ∈ [0, 1]}. We estimate the true probability using
Bayes mixture which represents our subjective probability. This involves integrating over
our prior belief density w(θ) = P(θ) to give

ξ(x) = P(x) =

∫︁ 1

0
P(x|θ)w(θ)dθ

14



We assume the prior distribution to be uniform and proper:∫︁ 1

0
w(θ)dθ = 1 and w(θ) = w(θ′) for all θ and θ′ ∈ ℳ

This results in the density ∀θ ∈ [0, 1](w(θ) = 1).

∴ P(x) =

∫︁ 1

0
P(x|θ)dθ =

∫︁ 1

0
θs(1 − θ) f dθ =

s! f !
(s + f + 1)!

∴ P(xn+1 = 1|x1:n) =
P(x1:n1)
P(x1:n)

=

(s+1)! f !
(s+1+ f +1)!

s! f !
(s+ f +1)!

=
s + 1

s + f + 2
=

s + 1
n + 2

3.3 Confirmation Problem
For some hypothesis H and evidence E Bayes rule states P(H|E) = P(E|H)P(H)/P(E).
Therefore it is clear that if P(H) = 0 then regardless of the evidence E our posterior
evidence P(H|E) must remain identically zero. Imagine we are observing the color of
ravens and θ is the percentage of ravens that are black. The hypothesis “All ravens are
black” therefore might be associated with θ = 1, but even after observing one million
black ravens and no non-black ravens P(θ = 1|x) = 0.

Instead of θ = 1 it is also possible to formulate the hypothesis “all ravens are black” as
the observation sequence of an infinite number of black ravens, i.e. H′ = x = 1∞ where a
1 is a black raven. If x1:n = 1n is a sequence of n black ravens, then P(x1:n) = n!

(n+1)! = 1
n+1 .

Therefore
P(1k|1n) =

P(1n+k)
P(1n)

=
n

n + k

However for the above hypothesis of “all ravens are black” k is infinite and P(1k=∞|1n) = 0
for any number n of observed ravens.

If we instead consider the composite or partial hypothesis θp = {θ|θ ∈ (1 − ε, 1]}
for any arbitrarily small ε, then P(θ|x) converges to 1 as the number of observed black
ravens increases. This is called a soft hypothesis and intuitively it is the hypothesis that
the percentage of black ravens is 1 or very close to 1. The reason our belief in this
hypothesis can converge to 1 is that the probability is now the integral over a small interval
which has a-priori non-zero mass P(θp) = ε > 0 and a-posteriori asymptotically all mass
P(θp|1n)→ 1.

But this implies that we are certain that everything has exceptions, which is unreason-
able. We can not be certain about their truth or falsity.

Since the indifference principle gives rise to the zero prior problem and hence the
confirmation problem, there is another solution that assigns a non-zero weight to the point
θ = 1. Consider, for instance, the improper density w(θ) = 1

2 (1 + δ(1 − θ)), where δ is
the Dirac-δ(

∫︀
f (θ)δ(θ − a) dθ = f (a)), or equivalently P(θ ≥ a) = 1 − 1

2a with a ∈ [0, 1],
which gives P(θ = 1) = 1

2 . Using this approach results in the following Bayesian mixture
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distribution:

ξ(x1:n) =
1
2

(︃
s! f !

(n + 1)!
+ δs,n

)︃
where δs,n =

⎧⎪⎪⎨⎪⎪⎩1 if s = n
0 otherwise

Therefore, if all ravens observed are black, the Bayesian mixture gives ξ(1n) = 1
2 ( n!0!

(n+1)! +

1) = 1
2 ·

n+2
n+1 , which is much larger than the ξ(1n) = 1

n+1 given by the uniform prior.

P(1k|1n) = ξ(1k|1n) =
ξ(1n+k)
ξ(1n)

=
n + k + 2
n + k + 1

·
n + 1
n + 2

P(H′|1n) = P(1∞|1n) = lim
k→∞

P(1k|1n) =
n + 1
n + 2

It is clear that the chosen “improper density” solution is biased towards universal
generalizations, in this case to the hypothesis “all ravens are black”. The question is then
why not design the density to also be able to confirm “no ravens are black”, or “exactly
half the ravens are black”? It seems that we are intuitively biased towards hypotheses
corresponding to simpler values. Then why not assign non-zero prior to all computable
θ?

3.4 Reparametrization Invariance
By applying some general principle to a parameter θ of hypothesis classℳ we arrive at
prior w(θ). If we consider some new parametrization θ′ which is related to θ via some
bijection f : θ′ = f (θ), then there would be two ways to arrive at a prior which focuses
on this new parameter θ′. Firstly we can directly apply the same principle to this new
parametrization to get prior w′(θ′). The second way is to transform the original prior
using this same bijection. If both of these ways lead to the same prior we say the principle
we used satisfy the reparametrization invariance principle(RIP).

It is clear that the indifference principle does not satisfy RIP in the case of densities,
although it does satisfy RIP for finite model classesℳ.

3.5 Regrouping Invariance
Regrouping invariance can be thought of as a generalization of the concept of
reparametrization invariance, with the function f that is not necessarily bijective and
hence can lead to a many to one or one to many correspondence. Because the function f
is not bijective anymore, the transformation of the prior w(θ) to some new parametrization
θ′ now involves an integral or sum of the priors over all values of θ for which f (θ) = θ′.
Formally, for discrete classℳ we have w̃θ′ =

∑︀
θ: f (θ)=θ′ wθ, and similarly for continuous

parametric classes we have w̃(θ′) =
∫︀
δ( f (θ) − θ′)w(θ)dθ. As with reparametrization in-

variance before, for a principle to be regrouping invariant, we require that w̃(θ′) = w′(θ′)
where w′(θ′) is obtained by applying the same principle to the new parametrization.
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For example, for an i.i.d. with d possible observations the parameter space is △d−1 :=
{~θ ≡ (θ1, ..., θd) ∈ [0, 1]d :

∑︀d
i=1 θi = 1}. The probability of x1:n, with ni occurrences of

observation i, is given by P(x1:n|~θ) =
∏︀d

i=1 θ
ni
i .

The regrouping problem arises when we want to make inferences about the hypothesis
“all ravens are black” when the setup is now to record the extra information of whether a
raven is colored or white. When we make an inference that only looks at the ‘blackness’
of a raven, the observations are collapsed into blackness or non-blackness as before by
mapping black to success and either white or colored to failure. Now P(x1:n|θ) = θs(1−θ) f .
However, since we assumed indifference over the parameter vectors in △2, by regrouping
the prior belief is skewed towards higher proportions of non-black ravens. Therefore
w̃(θ′) = 2(1 − θ′) , 1 = w′(θ′) for θ′ ∈ [0, 1].

In fact, it was shown by Wallace that there is no acceptable prior density that solves
this problem universally.

3.6 Universal Prior
The universal prior is designed to do justice to both Occam and Epicurus as well as be
applicable to any computable environment. To do justice to Epicurus’ principle of mul-
tiple explanations we must regard all environments as possible, which means the prior
for each environment must be non zero. To do justice to Occam we must regard simpler
hypotheses as more plausible than complex ones. To be a valid prior it must also sum
to (less than or equal to) one. Since the prefix Kolmogorov complexity satisfies Kraft’s
inequality, the following is a valid prior.

wU
ν := 2−K(ν)

This prior is monotonically decreasing in the complexity of ν and is non-zero for all
computable ν.

When the bounds for Bayesian prediction are re-examined in the context of the Uni-
versal Prior we see that the upper bounds on the deviation of the Bayesian mixture from
the true environment are ln(w−1

µ ) = ln(2K(µ)) = K(µ) ln(2).
The universality of Kolmogorov complexity bestows the universal prior wU

ν with re-
markable properties. First, any other reasonable prior wν gives approximately the same or
weaker bounds. Second, the universal prior approximately satisfies both, reparametriza-
tion and regrouping invariance. This is possible, since it is not a density.

Theorem 6. wU
ν is reparametrization invariant.

Proof.
w̃U
θ′ = wU

f −1(θ′) = 2−K( f −1(θ′)) ×= 2−K(θ′) = w′Uθ′

�

Theorem 7. wU
ν is regrouping invariant.
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Proof.

w̃U
θ′ =

∑︁
θ: f (θ)=θ′

2−K(θ) ×= 2−K(θ′) = w′Uθ′ [Equation(K6)]

�

4 Solomonoff’s Universal Probability
“God does not play dice.”
“Reality is merely an illusion, albeit a very persistent one.”

— Einstein

Solomonoff’s [Sol78] induction scheme completes the general Bayesian framework
by choosing the model classℳ to be the class of all computable measures and taking the
universal prior over this class.

4.1 How to Choose the Model Class
The class of all computable distributions, although only countable, is pretty large from
a practical point of view. Finding a non-computable physical system would overturn the
Church-Turing thesis. It is the largest class, relevant from a computational point of view.
However, this class is not recursively enumerable, since the class of total computable
functions f : 𝒳* → R is not recursively enumerable because of halting problem. Levin
“slightly” extends the class to include also lower semi-computable semimeasures. One
can show that this classℳU = {ν1, ν2, ...} is recursively enumerable, hence the universal
Bayesian mixture

ξU(x) =
∑︁
ν∈ℳU

wU
ν ν(x) (5)

is itself lower semi-computable.

Theorem 8. ξU ∈ ℳU

Proof.

∵ wU
ν = 2−K(ν) and ν are lower semi-computable.

∴ ∃n( lim
n→∞

wn
ν = wU

ν ) and ∃n( lim
n→∞

νn(x) = ν(x))

∵ ξn
U(x) =

∑︁
ν∈ℳU

wn
νν

n(x)

∴ lim
n→∞

ξn
U(x) = ξU(x)

∵ ξn
U is increasing in n.

∴ ξU is lower semi-computable.
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∵ ξU(x) =
∑︁
ν∈ℳU

wU
ν ν(x) ≥

∑︁
ν∈ℳU

wU
ν (

∑︁
|a|=1

ν(xa)) =
∑︁
|a|=1

∑︁
ν∈ℳU

wU
ν ν(xa) =

∑︁
|a|=1

ξU(xa)

∴ ξU is semi-measure.

�

Obviously,
ξU(x) ≥ wU

ν ν(x) (6)

One of the problems with the Bayesian framework is dealing with new hypotheses H
that were not in the original class ℳ. In science it is natural to come up with a new
explanation of some data which cannot be satisfactorily explained by any of the current
models. Unfortunately the Bayesian framework describes how to update our belief in
a hypothesis according to evidence but not how to assign a belief if the hypothesis was
created to fit the data. By choosing the universal class ℳU this problem is formally
solved. Theoretically it can no longer occur since this class is complete in the sense that
it already contains any reasonable hypothesis.

4.2 Deterministic Representation
The above definition is a mixture over all semi-computable stochastic environments using
the universal prior as weights. It is however possible to think about ξU in a completely
different way. To do this we assume that the world is governed by some deterministic
computable process. In other words, suppose the world is created by a God who flips a
coin instead of playing dice, equipped with a Universal Monotone Turing Machine which
reads a 1 for heads and a 0 for tails. In this case the probability of x should be:

M(x) :=
∑︁

p:U(p)=x*

2−|p|

where U(p) = x* means p is a minimal program printing a string starting with x.
Obviously, It can be regarded as a 2−|p|-weighted mixture over all computable deter-

ministic environments νp (νp(x) = 1 if U(p) = x* and 0 otherwise).
It can also be seen as follow:M(x) = limn→∞

|{p∈Bn:U(p)=x*}|
2n .

It turns out that ξU
×
= M. One can also get an explicit enumeration of all lower semi-

computable semimeasuresℳU = {ν1, ν2, ...} by means of νi(x) :=
∑︀

p:Ti(p)=x* 2−|p|, where
Ti(p) ≡ U(⟨i⟩p), i = 1, 2, ... is an enumeration of all monotone Turing machines.

Lemma 2. For ν ∈ ℳU ,
M(x)

×
≥ 2−K(ν)ν(x) (7)

Proof.

M(x) =
∑︁

p:U(p)=x*

2−|p|
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≥
∑︁

q:U(⟨T ⟩q)=x*

2−|q|

= 2−|T |
∑︁

q:T (q)=x*

2−|q|

×
= 2−K(ν)ν(x)

�

4.3 Total Bounds
Since Solomonoff’s approach is simply the Bayesian framework with the universal model
class and prior, the bounds for Bayes mixture remain valid for ξU , therefore also for M.

In the case that the true distribution µ is deterministic the following bound holds.

Theorem 9.
∞∑︁

t=1

|1 − M(xt|x<t)| ≤ Km(x1:∞) ln 2

where the monotone complexity Km(x) := min{|p| : U(p) = x*}

Proof. Follows from theorem 2 and wU
µ = 2−K(µ) = 2−K(x1:∞) and K(x1:∞) ≤ Km(x1:∞) �

If x1:∞ is a computable sequence, then Km(x1:∞) is finite, which implies M(xt|x<t)→ 1.
In particular, observing an increasing number of black ravens, M(1|1n) → 1 (Km(1∞) =

O(1)), and we become rapidly confident that future ravens are black.
For the non-deterministic case, similar results hold.

Lemma 3 (Entropy Inequality). Let µ and ρ be two probability distributions over 𝒳*.
Then we have ∑︁

|a|=1

(µ(a) − ρ(a))2 ≤
∑︁
|a|=1

µ(a) ln
µ(a)
ρ(a)

(8)

Proof. for 𝒳 = B = {0, 1}

f (p, q) := p ln
p
q

+ (1 − p) ln
1 − p
1 − q

− 2(p − q)2

∵
∂ f
∂q

= (q − p)
4(q − 1

2 )2

q(1 − q)
∴ f (p, q) ≥ 0

�

Theorem 10 (Completeness Theorem).
∞∑︁

t=1

∑︁
x1:t∈Bt

µ(x<t)
(︁
M(xt|x<t) − µ(xt|x<t)

)︁2 +
≤K(µ) ln 2 < ∞ (9)
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Proof.

M′(ε) := 1

M′(xa) := M′(x)
M(xa)∑︀
|a|=1 M(xa)

n∑︁
t=1

∑︁
x1:t∈Bt

µ(x<t)
(︂
M(xt|x<t) − µ(xt|x<t)

)︂2

=

n∑︁
t=1

∑︁
x<t

µ(x<t)
∑︁

xt

(︂
M(xt|x<t) − µ(xt|x<t)

)︂2

≤

n∑︁
t=1

∑︁
x<t

µ(x<t)
∑︁

xt

µ(xt|x<t) ln
µ(xt|x<t)

M′(xt|x<t)
[Lemma 3]

≤

n∑︁
t=1

∑︁
x<t

µ(x<t)
∑︁

xt

µ(xt|x<t) ln
µ(xt|x<t)
M(xt|x<t)

=

n∑︁
t=1

∑︁
x1:t

µ(x1:t) ln
µ(xt|x<t)
M(xt|x<t)

=

n∑︁
t=1

∑︁
x1:t

(︂∑︁
xt+1:n

µ(x1:n)
)︂

ln
µ(xt|x<t)
M(xt|x<t)

=

n∑︁
t=1

∑︁
x1:n

µ(x1:n) ln
µ(xt|x<t)
M(xt|x<t)

=
∑︁
x1:n

µ(x1:n)
n∑︁

t=1

ln
µ(xt|x<t)
M(xt|x<t)

=
∑︁
x1:n

µ(x1:n) ln
µ(x1:n)
M(x1:n)

+
≤K(µ) ln 2 [Lemma 2]

�

Both results consider one-step lookahead prediction but are easily extendible to multi-
step lookahead prediction. Exploiting absolute continuity of µ w.r.t. M, asymptotic con-
vergence can be shown even for infinite lookahead and any computable µ:

Theorem 11.

sup
A⊆𝒳∞

⃒⃒⃒
M(A|x<t) − µ(A|x<t)

⃒⃒⃒
−→ 0 with µ-probability 1
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4.4 Instantaneous Bounds
The previous bounds give excellent guarantees over some initial n predictions but say
nothing about the nth prediction itself. The following instantaneous bound for computable
x also holds:

Theorem 12.
2−K(n) ≤ (1 − M(xn|x<n)) ≤ 22Km(x1:n)−K(n)

In particular for x1:∞ = 1∞ we get

M(0|1n) ×
= 2−K(n)

which means that M quickly disbelieves in non-black ravens.

4.5 Future Bounds
When looking at an agent’s performance it is often important to consider not only the
total and instantaneous performance but also the total future performance bounds. In
other words it can be important to estimate how many errors it is going to make from now
on.

Theorem 13.
∞∑︁

t=n+1

E[ht|x1:n]
+
≤ (K(µ|x1:n) + K(n)) ln 2

4.6 Universal is Better than Continuous
It can be proved that M can do as good as any Bayesian mixture ξ over any model class
ℳ, continuous or discrete, and prior function w() over this class. The reason for this is
that although a specific environment ν inℳmay be incomputable and its prior wν may be
zero, the prior function w() and the overall mixture ξ generally remain computable. This
computability of ξ implies the following general result for any, possibly incomputable,
environment µ:

Theorem 14.

Dn(µ‖M) := E[ln
µ

M
] = E[ln

µ

ξ
] + E[ln

ξ

M
]

+
≤ Dn(µ‖ξ) + K(ξ) ln 2

So any bound valid for Dn(µ‖ξ) is directly valid for Dn(µ‖M). If there exists any
computable predictor that converges to µ, then so does M, whether µ is computable or
not.

5 Hutter’s AIXI
“God is subtle but he is not malicious.”

— Einstein
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The General Reinforcement Learning Problem Consider an agent that exists within
some unknown environment. The agent interacts with the environment in cycles. In each
cycle, the agent executes an action and in turn receives an observation and a reward. The
only information available to the agent is its history of previous interactions. The general
reinforcement learning problem is to construct an agent that, over time, collects as much
reward as possible from the (unknown) environment.

The AIXI Agent To achieve generality, the environment is assumed to be an unknown
but computable function; i.e. the observations and rewards received by the agent, given
its past actions, can be computed by some program running on a Turing machine.

More formally, let U(q, a1a2 . . . an) denote the output of a universal Turing machine U
supplied with program q and input a1a2 . . . an, m ∈ N a finite lookahead horizon, and |q|
the length in bits of program q. The action picked by AIXI [VNH11] at time t, having ex-
ecuted actions a1a2 . . . at−1 and having received the sequence of observation-reward pairs
o1r1o2r2 . . . ot−1rt−1 from the environment, is given by:

a*t = arg max
at

∑︁
otrt

. . .max
at+m

∑︁
ot+mrt+m

[rt + · · · + rt+m]
∑︁

q:U(q,a1...at+m)=o1r1...ot+mrt+m

2−|q|. (10)

o1 r1 o2 r2 o3 r3 o4 r4 o5 r5 o6 r6 ...

a1 a2 a3 a4 a5 a6 ...

working
Agent

p
tape ... working

Environ−
ment q

tape ...

�
�

�
��+ Q

Q
Q

QQk

�
�
�
��3

PPPPPPPPPq

5.1 The Agent Setting
Agent Setting The (finite) action, observation, and reward spaces are denoted by𝒜,𝒪,
and ℛ respectively. Also, 𝒳 denotes the joint perception space 𝒪 × ℛ.

Definition 2. A history h is an element of (𝒜×𝒳)* ∪ (𝒜×𝒳)* ×𝒜.

Definition 3. An environment ρ is a sequence of conditional probability functions
{ρ0, ρ1, ρ2, . . . }, where ρn : 𝒜n → Density (𝒳n), that satisfies

∀a1:n∀x<n : ρn−1(x<n|a<n) =
∑︁
xn∈𝒳

ρn(x1:n|a1:n). (11)

In the base case, we have ρ0(ε |ε) = 1.
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Equation (11), called the chronological condition in [Hut05], captures the natural con-
straint that action an has no effect on earlier perceptions x<n. For convenience, we drop
the index n in ρn from here onwards.

Given an environment ρ, we define the predictive probability

∀a1:n∀x1:n : ρ(x<n|a<n) > 0 =⇒ ρ(xn|ax<nan) :=
ρ(x1:n|a1:n)
ρ(x<n|a<n)

(12)

ρ(x1:n|a1:n) = ρ(x1|a1)ρ(x2|ax1a2) · · · ρ(xn|ax<nan) (13)

Reward, Policy and Value Functions The agent’s goal is to accumulate as much re-
ward as it can during its lifetime. More precisely, the agent seeks a policy that will allow
it to maximise its expected future reward up to a fixed, finite, but arbitrarily large horizon
m ∈ N. The instantaneous reward values are assumed to be bounded.

Definition 4. Given history ax1:t, the m-horizon expected future reward of an agent acting
under policy π : (𝒜×𝒳)* → 𝒜 with respect to an environment ρ is:

vm
ρ (π, ax1:t) := Eρ

⎡⎢⎢⎢⎢⎢⎣ t+m∑︁
i=t+1

Ri(ax≤t+m)
⃒⃒⃒⃒⃒

x1:t

⎤⎥⎥⎥⎥⎥⎦ , (14)

where for t < k ≤ t + m, ak := π(ax<k) and Ri(aor≤n) := rk for 1 ≤ i ≤ n. The quantity
vm
ρ (π, ax1:tat+1) is defined similarly, except that at+1 is now no longer defined by π.

The optimal policy π* is the policy that maximises the expected future reward. The
maximal achievable expected future reward of an agent with history h in environment ρ
looking m steps ahead is Vm

ρ (h) := vm
ρ (π*, h). It is easy to see that if h ∈ (𝒜×𝒳)t, then

Vm
ρ (h) = max

at+1

∑︁
xt+1

ρ(xt+1|hat+1) · · ·max
at+m

∑︁
xt+m

ρ(xt+m|haxt+1:t+m−1at+m)

⎡⎢⎢⎢⎢⎢⎣ t+m∑︁
i=t+1

ri

⎤⎥⎥⎥⎥⎥⎦ (15)

For convenience, we will often refer to Equation (15) as the expectimax operation.
Furthermore, the m-horizon optimal action a*t+1 at time t + 1 is related to the expectimax
operation by

a*t+1 = arg max
at+1

Vm
ρ (ax1:tat+1). (16)

5.2 Bayesian Agents
Since we are assuming that the agent does not initially know the true environment, we
desire subjective models whose predictive performance improves as the agent gains expe-
rience.

Definition 5. Given a countable model classℳ := {ρ1, ρ2, . . . } and a prior weight wρ
0 > 0

for each ρ ∈ ℳ such that
∑︀
ρ∈ℳ wρ

0 = 1, the mixture environment model is ξ(x1:n|a1:n) :=∑︀
ρ∈ℳ

wρ
0ρ(x1:n|a1:n).
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Proposition 1. A mixture environment model is an environment model.

Proof. ∀a1:n ∈ 𝒜
n and ∀x<n ∈ 𝒳

n−1 we have that∑︁
xn∈𝒳

ξ(x1:n|a1:n) =
∑︁
xn∈𝒳

∑︁
ρ∈ℳ

wρ
0ρ(x1:n|a1:n) =

∑︁
ρ∈ℳ

wρ
0

∑︁
xn∈𝒳

ρ(x1:n|a1:n) = ξ(x<n|a<n)

where the final step follows from application of Equation (11) and Definition 5. �

Prediction with a Mixture Environment Model As a mixture environment model is
an environment model, we can simply use:

ξ(xn|ax<nan) =
ξ(x1:n|a1:n)
ξ(x<n|a<n)

(17)

to predict the next observation reward pair. Equation (17) can also be expressed in terms
of a convex combination of model predictions, with each model weighted by its posterior,
from

ξ(xn|ax<nan) =

∑︀
ρ∈ℳ

wρ
0ρ(x1:n|a1:n)∑︀

ρ∈ℳ
wρ

0ρ(x<n|a<n)
=

∑︁
ρ∈ℳ

wρ
n−1ρ(xn|ax<nan), (18)

where the posterior weight wρ
n−1 for environment model ρ is given by

wρ
n−1 :=

wρ
0ρ(x<n|a<n)∑︀

ν∈ℳ
wν

0ν(x<n|a<n)
= Pr(ρ|ax<n) (19)

If |ℳ| is finite, Equations (17) and (18) can be maintained online in O(|ℳ|) time by
using the fact that

ρ(x1:n|a1:n) = ρ(x<n|a<n)ρ(xn|ax<na),

which follows from Equation (13), to incrementally maintain the likelihood term for each
model.

Theoretical Properties We now show that if there is a good model of the (unknown)
environment inℳ, an agent using the mixture environment model

ξ(x1:n|a1:n) :=
∑︁
ρ∈ℳ

wρ
0ρ(x1:n|a1:n) (20)

will predict well.

Theorem 15. Let µ be the true environment. The µ-expected squared difference of µ and
ξ is bounded as follows. For all n ∈ N, for all a1:n,

n∑︁
k=1

∑︁
x1:k

µ(x<k|a<k)
(︂
µ(xk|ax<kak) − ξ(xk|ax<kak)

)︂2

≤ min
ρ∈ℳ

{︂
− ln wρ

0 + D1:n(µ ‖ ρ)
}︂

(21)

where D1:n(µ ‖ ρ) :=
∑︀

x1:n
µ(x1:n|a1:n) ln µ(x1:n |a1:n)

ρ(x1:n |a1:n) is the KL divergence of µ(·|a1:n) and
ρ(·|a1:n).
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Proof. Combining [Hut05, S3.2.8 and S5.1.3] we get

n∑︁
k=1

∑︁
x1:k

µ(x<k|a<k)
(︂
µ(xk|ax<kak) − ξ(xk|ax<kak)

)︂2

=

n∑︁
k=1

∑︁
x<k

µ(x<k|a<k)
∑︁

xk

(︂
µ(xk|ax<kak) − ξ(xk|ax<kak)

)︂2

≤

n∑︁
k=1

∑︁
x<k

µ(x<k|a<k)
∑︁

xk

µ(xk|ax<kak) ln
µ(xk|ax<kak)
ξ(xk|ax<kak)

[Lemma 3]

=

n∑︁
k=1

∑︁
x1:k

µ(x1:k|a1:k) ln
µ(xk|ax<kak)
ξ(xk|ax<kak)

[Equation (12)]

=

n∑︁
k=1

∑︁
x1:k

(︂∑︁
xk+1:n

µ(x1:n|a1:n)
)︂

ln
µ(xk|ax<kak)
ξ(xk|ax<kak)

[Equation (11)]

=

n∑︁
k=1

∑︁
x1:n

µ(x1:n|a1:n) ln
µ(xk|ax<kak)
ξ(xk|ax<kak)

=
∑︁
x1:n

µ(x1:n|a1:n)
n∑︁

k=1

ln
µ(xk|ax<kak)
ξ(xk|ax<kak)

=
∑︁
x1:n

µ(x1:n|a1:n) ln
µ(x1:n|a1:n)
ξ(x1:n|a1:n)

[Equation (13)]

=
∑︁
x1:n

µ(x1:n|a1:n) ln
[︃
µ(x1:n|a1:n)
ρ(x1:n|a1:n)

ρ(x1:n|a1:n)
ξ(x1:n|a1:n)

]︃
[arbitrary ρ ∈ ℳ]

=
∑︁
x1:n

µ(x1:n|a1:n) ln
µ(x1:n|a1:n)
ρ(x1:n|a1:n)

+
∑︁
x1:n

µ(x1:n|a1:n) ln
ρ(x1:n|a1:n)
ξ(x1:n|a1:n)

≤ D1:n(µ ‖ ρ) +
∑︁
x1:n

µ(x1:n|a1:n) ln
ρ(x1:n|a1:n)

wρ
0ρ(x1:n|a1:n)

[Definition 5]

= D1:n(µ ‖ ρ) − ln wρ
0.

Since the inequality holds for arbitrary ρ ∈ ℳ, it holds for the minimising ρ. �

In Theorem 15, take the supremum over n in the r.h.s and then the limit n→ ∞ on the
l.h.s. If supn D1:n(µ ‖ ρ) < ∞ for the minimising ρ, the infinite sum on the l.h.s can only be
finite if ξ(xk|ax<kak) converges sufficiently fast to µ(xk|ax<kak) for k → ∞ with probability
1, hence ξ predicts µ with rapid convergence.

AIXI: The Universal Bayesian Agent Theorem 15 motivates the construction of
Bayesian agents that use rich model classes. The AIXI agent can be seen as the limiting
case of this viewpoint, by using the largest model class expressible on a Turing machine.
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Note that AIXI can handle stochastic environments since Equation (10) can be shown
to be formally equivalent to

a*t = arg max
at

∑︁
otrt

. . .max
at+m

∑︁
ot+mrt+m

[rt + · · · + rt+m]
∑︁
ρ∈ℳU

2−K(ρ)ρ(x1:t+m|a1:t+m), (22)

where ρ(x1:t+m|a1 . . . at+m) is the probability of observing x1x2 . . . xt+m given actions
a1a2 . . . at+m, classℳU consists of all enumerable chronological semimeasures, which in-
cludes all computable ρ, and K(ρ) denotes the Kolmogorov complexity of ρ with respect
to U. In the case where the environment is a computable function and

ξU(x1:t|a1:t) :=
∑︁
ρ∈ℳU

2−K(ρ)ρ(x1:t|a1:t), (23)

Theorem 15 shows for all n ∈ N and for all a1:n,

n∑︁
k=1

∑︁
x1:k

µ(x<k|a<k)
(︂
µ(xk|ax<kak) − ξU(xk|ax<kak)

)︂2

≤ K(µ) ln 2. (24)

6 Approximations and Applications
Solomonoff’s universal probability M as well as Kolmogorov complexity K are not com-
putable, hence need to be approximated in practice. Levin complexity Kt is a down-scaled
computable variant of K with nice theoretical properties, and the minimum description
length principle(MDL) is a effective model selection principle based on Ockham’s razor
quantifying complexity using practical compressors. K and M have also been used to
well-define the clustering and the AI problem.

6.1 Minimum Description Length Principle

̂︀ν = arg min
ν
{K(x|Hν) + K(Hν) : ν ∈ ℳ} = max{wνν(x) : ν ∈ ℳ} (25)

MDL converges, but speed can be exponentially worse than Bayes.

Theorem 16.
∞∑︁

t=1

E

⎡⎢⎢⎢⎢⎢⎢⎣∑︁
xt∈𝒳

(︁̂︀ν(xt|x<t) − µ(xt|x<t)
)︁2
⎤⎥⎥⎥⎥⎥⎥⎦ +
≤ 8w−1

µ (26)

Practical MDL achieves computational feasibility by restricting the hypotheses, which
are the methods of data compression, to probabilistic Shannon-Fano based encoding
schemes.
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6.2 Resource Bounded Complexity and Prior
Levin Complexity Levin Complexity is a direct variant of algorithmic complexity
which is computable because it bounds the resources available to the execution.

Kt(x) = min
p
{|p| + log t(p, x) : U(p) = x}

Within a (typically large) factor, Levin search is the fastest algorithm for inverting a
function g : Y →X, if g can be evaluated quickly. Given x, an inversion algorithm p tries
to find a y∈Y , called g-witness for x, with g(y)= x.

Levin Search levin: Run all {p : |p| ≤ i} for 2i−|p| steps in phase i = 1, 2, 3, . . . until it
has inverted g on x.

Theorem 17. All strings {x : Kt(x)
+
≤ k} can be generated and tested in 2k+1 steps.

Proof.
∑︀k

i=1
∑︀
|p|≤i 2i−|p| =

∑︀
U(p)↓ 2−|p|

∑︀k
i=1 2i ≤ 2k+1 �

The time needed is tL(x) ≤ 2K(k)+O(1)t+
pk

(x), where t+
pk

(x) is the runtime of pk(x) plus the
time to verify the correctness of the result (g(p(x))= x) by a known implementation for g.

There is another algorithm that can do nearly as good as Levin search.
simple: p1 is run every second step, p2 every second step in the remaining unused

steps, p3 every second step in the remaining unused steps, and so forth, i.e. according to
the sequence of indices 121312141213121512 . . ..

Levin search can be modified to handle time-limited optimization problems as well.

Definition 6. p→ x if p computes output starting with x, while no prefix of p outputs x.
p→i x if p→ x in phase i of levin.

Definition 7 (Speed Prior).

S n(x) :=
n∑︁

i=1

2−iS i(x)

S (x) := lim
n→∞

S n(x)

where

S i(ε) = 1; S i(x) =
∑︁
p→i x

2−|p|

The speed prior S (x) defined in [Sch02] is also a semimeasure, and approximates
M(x).
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6.3 Universal Similarity Measure
For objects x and y, the similarity metric is defined by symmetrizing and normalizing
K(x|y) as follows:

d(x, y) :=
max{K(x|y), K(y|x)}

max{K(x), K(y)}
≈

K(xy) − min{K(x),K(y)}
max{K(x),K(y)}

Although the Kolmogorov complexity is incomputable, it is possible to achieve an ef-
fective approximation of this metric by approximating K with a good compressor such
as Lempel-Ziv, gzip or bzip, or it can be approximated by just counting the frequency p
in the world wide web with Google and then use − log p. The similarity metric defined
above can lead to excellent classification in many domains.

For example, if there are n objects x1, x2, · · · , xn, we can figure out the similarity
matrix Mi j =

(︁
d(xi, x j)

)︁
i j

and then cluster similar objects.

7 Discussion
Our predictions of the future are dependent on a lifetime of observations. One of the prob-
lems with Solomonoff induction is that relevant background knowledge is not explicitly
accounted for. There are two ways to modify Solomonoff induction to account for prior
background knowledge y.

The first method is to resort to the conditional Kolmogorov complexity K(ν|y). The
second method is to prefix the observation sequence x, which we wish to predict, with the
prior knowledge y. We are therefore predicting the continuation of the sequence yx.

8 Conclusion
Advantages and Problems The following are the advantages (+) and problems (−) of
Solomonoff’s approach:

+ general total bounds for generic class, prior, and loss,
+ universal and i.i.d.-specific instantaneous and future bounds,
+ the Dn bound for continuous classes,
+ indifference/symmetry principles,
+ the problem of zero p(oste)rior and confirmation of universal hypotheses,
+ reparametrization and regrouping invariance,
+ the problem of old evidence and updating,
+ that M works even in non-computable environments,
+ how to incorporate prior knowledge,
− the prediction of short sequences,
− the constant fudges in all results and the U-dependence,
− M’s incomputability and crude practical approximations.
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AIXI as a Principle As the AIXI agent is only asymptotically computable, it is by no
means an algorithmic solution to the general reinforcement learning problem. Rather it is
best understood as a Bayesian optimality notion for decision making in general unknown
environments.
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[LV08] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its Ap-
plications. Springer, Berlin, 3rd edition, 2008.

[Odi99] P.G. Odifreddi. Classical Recursion Theory. Volume2. Elseviser, 1999.

[Sch02] J. Schmidhuber. The speed prior: A new simplicity measure yielding near-optimal
computable predictions. In Proc. 15th Conf. on Computational Learning Theory
(COLT’02), volume 2375 of LNAI, pages 216–228, Sydney, 2002. Springer, Berlin.

[Sol64] R. J. Solomonoff. A formal theory of inductive inference: Parts 1 and 2. Information
and Control, 7:1–22 and 224–254, 1964.

[Sol78] R. J. Solomonoff. Complexity-based induction systems: Comparisons and conver-
gence theorems. IEEE Transactions on Information Theory, IT-24:422–432, 1978.

[Sol03] R. J. Solomonoff. Progress In Incremental Machine Learning. TR IDSIA-16-03. 2003

[VNH11] J. Veness, K. S. Ng, M. Hutter, W. Uther, and D. Silver. A Monte Carlo AIXI approx-
imation. Journal of Artificial Intelligence Research, 40:95–142, 2011.

30


	Contents
	Introduction
	History
	Logic versus Probability
	Subjective Probability
	Induction versus Prediction
	Kolmogorov Complexity

	Bayesianism for Prediction
	Convergence Results
	Bayesian Decisions
	Continuous Environment Classes
	Choosing the Model Class and Priors

	How to Choose the Prior
	Indifference Principle
	Laplace and the Rule of Succession
	Confirmation Problem
	Reparametrization Invariance
	Regrouping Invariance
	Universal Prior

	Solomonoff's Universal Probability
	How to Choose the Model Class
	Deterministic Representation
	Total Bounds
	Instantaneous Bounds
	Future Bounds
	Universal is Better than Continuous

	Hutter's AIXI
	The Agent Setting
	Bayesian Agents

	Approximations and Applications
	Minimum Description Length Principle
	Resource Bounded Complexity and Prior
	Universal Similarity Measure

	Discussion
	Conclusion
	References

