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1 BACKGROUND AND MOTIVATION
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Abstract

Pei Wang [P.Wang12] introduces a Non-Axiomatic Logic (NAL) whose
semantics is experience-grounded, where meaning is implicit definition. How-
ever, if we track the whole history of the Knowledge Base and make sure
that every relationships of the terms are noted down chronologically then the
experience-grounded semantics can be seen as pure syntax, because formal se-
mantics of a language should be formally defined in its meta-language and the
experience-grounded semantics can’t be formally figured out explicitly. The
truth function ∐︀𝑓, 𝑐̃︀ of NAL should not be confused with the binary truth
value (0,1) of Classical Logic. Seen from its whole lifespan, maybe it also
can be considered as a formal axiomatic system or a sequence of formal sys-
tems. In order to strengthen the reasoning power of NAL, Pei Wang allows
meta-level theorems as analytic truths to be introduced to NAL as a judge-
ment with a truth value ∐︀1,1̃︀, as long as they can be translated into NAL
language. And they are only implicitly used in the inference process of NAL.
Since no effective procedure is available to tell which meta-theorem can be
introduced and which cannot, this paper tries to give a partial axiomatized
variation of NAL with a lot of modifications, refinements and supplements,
for example, the truth functions and most of the reference rules, are quite
different from Pei Wang’s NAL so as to adapt to the purpose of taking good
advantage of Probability and Classical Logic and giving new names to com-
pactly interconnected structures. Combined the ideas of NAL [P.Wang12] and
𝐾𝑒𝑌 [Beckert,Hähnle,Schmitt07], several update operators are introduced to
manage self-monitoring and self control in an explicit manner.

Keywords

NAL; DL; 𝐾𝑒𝑌 ; implicit definition; update operator

“Mathematics is the art of giving the same name to different things. . . .
Moreover the physicists do just the same.”

— Henri Poincaré

§1. Background and Motivation

“Mathematics may be defined as the subject in which we never know what
we are talking about, nor whether what we are saying is true.”

— Bertrand Russell
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1 BACKGROUND AND MOTIVATION

§1.1. Remarks on the semantics of NAL

Pei Wang [P.Wang12] introduces a Non-Axiomatic Logic (NAL) whose semantics is
experience-grounded, contrary to Tarski semantics, so the meaning of a term is deter-
mined by its relationships to other terms entangled with each other in the knowledge
base (KB) which is incomplete under the Assumption of Insufficient Knowledge and
Resources (AIKR), rather than by an interpretation that maps it to an object in an
external model, and the truth value of a statement indicates the degree to which the
statement is confirmed by past experience, rather than by the correspondance to a
fact of the external model. In this sense, meaning is implicit definition. However,
if we track the whole history of the KB and make sure that every relationships of
the terms are noted down chronologically then the experience-grounded semantics
can be seen as pure syntax, because formal semantics of a language should be for-
mally defined in its meta-language and the experience-grounded semantics can’t be
formally figured out explicitly in a formal meta-language. The truth function ∐︀𝑓, 𝑐̃︀
of NAL should not be confused with the binary truth value (0,1) of Classical Logic.

Actually, in my opinion, Tarski semantics, usually defined in a meta-theory (for
example,ZFC) relative to some object theory (for example,FOL), is not as “seman-
tic” as we take it for granted. If the definition of the concept true obeys Tarski’s
T-convention—“𝑃 (𝑐)” is true iff 𝑃 (𝑐), then the truth value of the sentence 𝑃 (𝑐)
must depend on the reference of the term 𝑐 and the situation that 𝑃 (𝑐) involved in.
So it is nonsense to talk about reference without a background model and the pur-
suit of truth in that model, no matter whether the model is constructed by ourselves
or presupposed settled in the Plato world beyond our reach. The reason that we
usually can’t fully capture the univocal reference of a term is that not every detail
about it belongs to our KB which is incomplete and continuously (not necessari-
ly monotonely) extendable according to our progress of scientific discovery in the
physical world. To tell if a label is suitable for the moment for a certain object we
observed is a problem of pattern classification, which scientists should be responsi-
ble for either at the pretreatment stage or regard it as a consequence of reasoning
rather than deal with it during the process of inference. For example, when we want
to know whether whales are fish, we have already know what are whales and what
is fish, all we need to do is to compare the properties of whales and the properties
of fish according to our knowledge of biology in our KB. When we want to know
whether the big animal 𝑋 we observed is a whale or not, we’d better try our best to
discover as more properties of 𝑋 as possible and then search the properties of whales
in our KB, if most of the main properties of them match well, we can tell that 𝑋 is
a whale. Therefore, semantics in the sense of talking about the relationship between
language and the physical world can’t be explicitly defined and truth values can’t
be directly assigned. Just like in mathematics, we hope the term “truth” covers
every truth in the Plato world, however, there is no effective procedure to figure out
every truth for us once and for all. The concept “truth” is also infinitely extendable.
Besides “truth”, in fact, all of our concepts in our language, including mathematical
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1 BACKGROUND AND MOTIVATION

concepts, can be seen as incomplete symbols waiting to be completed.

Recall the acceptable framework of mathematics nowadays. What is the defini-
tion of a model of FOL? It is an ordered tuple ∐︀𝐷,𝜂̃︀ defined in set theory (ZFC),
where 𝐷 refers to a nonempty set, and 𝜂 maps the terms to the elements of the
nonempty set, while predicate symbols to the elements of the Cartesian product of
the nonempty set. Even we would like to talk about some “concrete” domain com-
posed of “concrete” objects such as “bottle”,“car”,“Caesar”, actually all of them
are nothing real but some other labels, or terms in other words. What is called
a model is just another algebra system defined somewhere else, most of the time
in ZFC. But should we believe in ZFC? What is ZFC? It is a formal system con-
sists of some axioms about “set” in the language L∈ based on FOL. Then what is
FOL? It is also defined by several axioms and some reference rules which implic-
itly define the logical symbols “¬”,“ ∧ ”,“ ∨ ”,“ → ”,“ ↔ ”,“∀”,“∃”. Therefore,
ZFC (based on FOL) should not only be regarded as a formal system built to de-
fine the concept “set”, but to develop an implicit definition of “ ∈ ” together with
“¬”,“ ∧ ”,“ ∨ ”,“ → ”,“ ↔ ”,“∀”,“∃” simultaneously. According to Löwenheim-
Skolem theorem, if a first order formal theory, for example ZFC, has infinite models,
then it has at least a model whose domain is only countable, while Cantor theorem
guarantees the existence of uncountable set, which means that ZFC is incapable of
fully capturing its intended interpretation. The “intuitive notion of set” is beyond
ZFC’s reach. We even can’t figure out a standard model for ZFC. If the concept
“set” itself is ambiguous, how can we count upon Tarski semantics defined in ZFC
to fix the univocal references for our terms? Just as Russell said “Mathematics may
be defined as the subject in which we never know what we are talking about, nor
whether what we are saying is true”. Maybe all of our concept, including mathemat-
ical concept, are implicitly defined. Consistency is nothing but relative consistency.
But, when we talk we have to stand somewhere to talk, or we would fall into infinite
regress. Maybe ZFC is the proper place safe and abundant enough to sustain us
according to our experience. So when we talk about models we usually presuppose
that we work together in the same framework of ZFC. We have no choice but to
build a Plato world for ourselves by our own hands based on our practice in the
imperfect physical world. In other words, only in the KB does one’s belief have a
rational justification. The agent owes his entire belief to the KB, and has his being
within it alone. Whatever worth and spiritual reality he possesses are his solely by
virtue of the KB.

From this point of view, the ultimate semantics must be grounded on either the
physical world or Plato world, a formal semantics must be based on some meta-
language (meta-theory) we’ve built ourselves. Pei Wang’s experience-grounded se-
mantics can be seen as pure syntax if we look into the whole lifespan of it, and
in some sense, some Tarski-style semantics can also be built for NAL from some
meta-level theory as long as its formal meta-language can be given explicitly.
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1 BACKGROUND AND MOTIVATION

§1.2. Remarks on the syntax of NAL

Pei Wang’s NAL is a variant of Term Logic, a radical extension of Aristotle’s Syllo-
gism, including inference rules such as deduction, induction, abduction, exemplifi-
cation, revision, conversion, analogy, comparison, resemblance, intersection, union,
difference, negation and so on. The reason that Pei Wang call it a non-axiomatic
logic is that it is a finite real-time open system, statements can be added or for-
gotten at any time. However, from the view of its whole life cycle, it also can be
considered as a (sequence of) formal axiomatic system(s). In order to strengthen the
reasoning power of NAL, Pei Wang allows meta-level theorems as analytic truths
to be introduced to NAL as a judgement with a truth value ∐︀1,1̃︀, as long as they
can be translated into NAL language. But they are only implicitly used in the in-
ference process of NAL, and NAL only contains empirical truths with confidence
lower than 1, refusing to store any absolute truth as axiom on the object-level. In
my opinion, there is no difference with stealing to play such a trick, because no
effective procedure is available to tell which meta-theorem can be introduced and
which cannot. This kind of trick can only be played by its creator, just like an
Oracle to a Turing machine. Therefore, the cleverness in this sense has noting to do
with NAL’s intelligence. To be capable to reason with “analytic truth”, NAL should
acquire its ownership. To be qualified to be an intelligent agent, the system should
be able to obtain its own “absolute truths” through uncertain inference by itself,
though, philosophically speaking, it is a mission impossible. Even we human beings
can never surely know that we are proceeding in the right direction to approximate
the “absolute” truth. However, we can make assumptions according to our experi-
ence to pretend that our hypothesis would have truth value 1, under which we make
implicit definitions and create our own abstract theory which is very useful in some
particular field. Although we live in a coarse physical world, the presupposition of a
Plato world (and possible worlds) is, pragmatically speaking, a useful convenience.

In other words, for the theorems proved in the system itself at time 𝑡, it can be
added into KB with truth value ∐︀1,1̃︀ at time 𝑡+1 if we would like, namely, we treat
it as a dynamic system. However, for the theorems acting as definitions of some
operators of NAL, they must be included as axioms.

§1.3. Other related works

DL Dynamic logic (DL1) is an extension of modal logic and classical logic. Rea-
soning about properties of composite programs is allowed in DL, and programs are
explicitly part of the language.

Queries like ? → 𝑃 ∐︀𝑓, 𝑐̃︀, 𝑆 →? ∐︀𝑓, 𝑐̃︀, 𝑆 → 𝑃 ∐︀?̃︀ in NAL can be understood as
programs ∐︀𝑋 ∶=?̃︀𝑋 → 𝑃 ∐︀𝑓, 𝑐̃︀, ∐︀𝑋 ∶=?̃︀𝑆 → 𝑋 ∐︀𝑓, 𝑐̃︀, ∐︀𝑋 ∶=?̃︀𝑆 → 𝑃 ∐︀𝑋̃︀ in some
sense. And programs 𝑋 ∶= 𝑆, ?𝜑,𝜋1;𝜋2,𝜋1 ∪ 𝜋2,𝜋∗ can also be introduced to NAL.

1The standard materials about DL can be found in [D.Harel,D.Kozen,J.Tiuryn00]
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1 BACKGROUND AND MOTIVATION

KeY The𝐾𝑒𝑌 project [Beckert,Hähnle,Schmitt07] introduces some interesting up-
date operators to JAVA CARD DL. The goal of 𝐾𝑒𝑌 is to create a formal tool that
integrates design, implementation, formal specification, and formal verification of
Java Card programs within a commercial platform for object-oriented specifications
languages OCL/JML-based software development. Five types of update operators
can be found in the 𝐾𝑒𝑌 book [Beckert,Hähnle,Schmitt07]:

function update 𝑓(𝑡1,⋯, 𝑡𝑛) ∶= 𝑡
sequential update 𝑢1;𝑢2

parallel update 𝑢1∏︁𝑢2
quantified update 𝑓𝑜𝑟 𝑥;𝜑;𝑢

update application {𝑢1}𝑢2

Some ideas can be borrowed from them to make abstract inference feasible in NAL.

§1.4. Motivation

The standard semantics of Propositional Dynamic Logic(PDL) is the Kripke struc-
ture, i.e. the possible world semantics. But what is a possible world? Sometimes
it is regarded as a maximal consistent set of propositions, sometimes the recombi-
nation of the possible ingredients of the actual world, sometimes a parallel universe
which coexists peacefully with ours, and sometimes a possible state. In the formal
definition of Kripke semantics of PDL a possible world is a point of a set with no in-
ner structure. However, the possible world of the semantics of First-order Dynamic
Logic(FDL) do have a structure, which is the variable assignment. Singular state-
ments are scientific observations made under a certain condition, while universal
statements are regularity, law, or principle holding under various observations. The
latter type is more helpful, for science is, in some sense, the art of data compression.
Since the semantics of NAL is a complicate graph, the domain of quantifiers can be
seen as all the points connected with a certain point through edges. But any point
or any edge may be added or deleted at any time. Therefore, although statements
containing variables stem from the facts of the KB which is based on the actual
world, yet we’d better regard them belonging to some abstract world. Then what is
a state? A state (may contain contradictory knowledge in some remote location) is
probably a snapshot of the KB at a certain time involving no variables. Heraclitus
said that you cannot step twice into the same river, for fresh waters are ever flowing
in upon you. The point is, whenever a event happens, a state changes, and the
states are changed by any event (by update operators in ANS) while we still live in
the same possible world only if the variables do not change. In other words, state
changes easily by our hands while possible world remains rigid or, maybe, altered
randomly or revolutionarily. However, when the variables occurring in the state-
ments are changed, some possible worlds open to us. Abstractly speaking, what is
a event of a graph? A point added or deleted, an edge added or deleted, two points
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2 SYNTAX OF ANS

merged into one, etc. What is the actual physical world we understand? It is the
history of all the states evolving in the KB. What is the possible worlds? They are
the variants of the actual world by abstraction, and any change of the variables (by
program operators in ANS) results in different possible world. What’s the relation-
ship between states and possible worlds? Even we live in the same physical world,
we can conceive various possible worlds. An abstraction update operator 𝑆 ∶= 𝑋
just like 𝜆 in Lambda Calculus should be added to our language. Mathematics is
the extension of natural science into the field of possible worlds.

Now we can talk about most of the events, but what is the relationship between
them? Edges between statements and the inference rules in NAL reveal it explicitly;
and most of the update operators of 𝐾𝑒𝑌 reveal it to some extent by themselves.
For example, two events can occur sequentially, concurrently with no interactions
between each other, or they clash, one dominates the other. Besides, sometimes a
event happen only if some precondition is satisfied, or another event will happen.
And, sometimes we would like to withdraw what we have said or what we have done.
So, it’s not unnecessary that, a conditional update be introduced 𝜑→ 𝑢1⇑𝑢2, as well
as a forget update 𝑆 ∶= � and an action update 𝑇 ∶→ 𝑆.

Then how the update affect the program and the truth value of a formula? When
some event happen, some state being changed, should the program be rewritten
or just updated with an operator to adapt itself to the new environment? Some
reduction equations will be given.

Contributions of this paper According to the remarks on NAL, a Non-classical
Syllogism (ANS) is given, and some details, for example, the truth functions and
most of the reference rules, are quite different from Pei Wang’s NAL so as to adapt
to the purpose of taking good advantage of Probability and Classical Logic and
giving new names to compactly interconnected structures. Combined the ideas of
NAL [P.Wang12] and 𝐾𝑒𝑌 [Beckert,Hähnle,Schmitt07], several update operators
are introduced to manage self-monitoring and self control in an explicit manner.

Structure of the paper In section2 we will give the syntax of ANS, which includes
the whole language, truth functions and inference rules. In section3 we give the
semantics of ANS. In section4 we will give a sequence of reduction equations for
eliminating the update operators and show some examples for application. After
that, the last section5 make conclusion and discuss the future work.

§2. Syntax of ANS

§2.1. Language

Relative rigid symbols should be distinguished from flexible symbols, the former need
to have the same interpretation (as analytical truth) in all execution states, while the
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2 SYNTAX OF ANS

latter need to capture state change after update execution, so their interpretation
depends on state. Logical variables, built-in operators and some special terms belong
to the former, with constant terms the latter.

If Kronecker is believable that God created the natural numbers and all else is
the work of man, then 0,1,+,×,≤ must be rigid symbols. This paper assumes the
real number and the operations of real number such as ≤,+,× are rigid, and the truth
value ∐︀𝑓, 𝑐̃︀ of a statement can only be changed by programs. Update operators can
not change it but can replace it with an variable to be assigned by some program.

The language L consists of countably infinite constant terms (𝑆) and variables
(𝑋) to assure that there are enough fresh terms available to use relative to our
KB. Given the formal language L , terms,formulas,programs and updates are mu-
tually defined, for which reason some restrictions should be taken care of to avoid
vicious circle of some sort. For simplicity, we will not figure out every detail of the
restrictions here.

Terms 𝑇𝑒𝑟𝑚L

𝑇 ∶∶=⊺⋃︀�⋃︀𝑆⋃︀𝑋 ⋃︀ ∈ ⋃︀𝑐⋃︀ + ⋃︀ × ⋃︀ ≥ ⋃︀𝑇 − 𝑃 ⋃︀𝑇 ∩ 𝑃 ⋃︀𝑇 ∪ 𝑃 ⋃︀
𝑇 × 𝑃 ⋃︀𝜑→ 𝑇 ⇑𝑃 ⋃︀𝜇𝑋𝜑⋃︀𝜈𝑋𝜑⋃︀{𝑇}⋃︀{𝜑}⋃︀{𝑢}𝑇

Remark: the truth value ∐︀𝑓, 𝑐̃︀ and its operators/relations +,×,≥ should be re-
garded as special primitive terms fixed in the system! Another special term is ∈.

Terms ⊺ and � refer to the universal concept and empty concept respectively, so
intuitively, for any term 𝑇 , 𝑇 → ⊺ ∐︀1,1̃︀ and �→ 𝑇 ∐︀1,1̃︀ hold. Compound terms can
be created from the observational terms. For example, 𝑇 −𝑃 ⋃︀𝑇 ∩𝑃 ⋃︀𝑇 ∪𝑃 ⋃︀𝑇 ×𝑃 ⋃︀𝜑→
𝑇 ⇑𝑃 ⋃︀𝜇𝑋𝜑⋃︀𝜈𝑋𝜑⋃︀{𝑇}⋃︀{𝜑}⋃︀{𝑢}𝑇 are the compositions of existing terms. The connec-
tors −,∩,∪,×, ∈ {} are like set operations difference,intersection,union,Cartesian
product,in,“the set of”, while 𝜇, 𝜈 are similar to 𝑚𝑖𝑛 and 𝑚𝑎𝑥 respectively, but
based on different criterion. 𝜑 → 𝑇 ⇑𝑃 is a conditional term, and 𝜑 specify the
context. {𝑢}𝑇 stands for the modified term which is updated by the action 𝑢.

Formulas 𝐹𝑜𝑟𝑚L

𝜑 ∶∶=𝑇 → 𝑃 ∐︀𝑓, 𝑐̃︀⋃︀𝑇 ↔ 𝑃 ∐︀𝑓, 𝑐̃︀⋃︀¬𝜑⋃︀𝜑 ∧ 𝜓⋃︀𝜑 ∨ 𝜓⋃︀
𝜑⇒ 𝜓⋃︀𝜑⇔ 𝜓⋃︀∀𝑋𝜑⋃︀∃𝑋𝜑⋃︀(︀𝜋⌋︀𝜑⋃︀∐︀𝜋̃︀𝜑⋃︀{𝑢}𝜑

There is a pair of truth values ∐︀𝑓, 𝑐̃︀ following every formula 𝜑 in ANS just as in
NAL.

Programs 𝑃𝑟𝑜𝑔L

𝜋 ∶∶=𝑋 ∶= 𝑇 ⋃︀𝑋 ∶=?⋃︀?𝜑⋃︀𝜋1;𝜋2⋃︀𝜋1 ∪ 𝜋2⋃︀𝜋1 ∩ 𝜋2⋃︀𝜋∗⋃︀{𝑢}𝜋

Through programs abstract reasoning and operations are available based on some
assumptions.
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2 SYNTAX OF ANS

Updates 𝑈𝑝𝑑𝑡L

𝑢 ∶∶= 𝑆 ∶=𝑋 ⋃︀𝑇 ∶= 𝑆⋃︀𝑇 ∶= �⋃︀𝑇 ∶→ 𝑆⋃︀𝑢1;𝑢2⋃︀𝑢1∏︁𝑢2⋃︀𝜑≥∐︀𝑓,𝑐̃︀ → 𝑢1⇑𝑢2⋃︀(∀𝑋𝜑)𝑢⋃︀{𝑢1}𝑢2

Update operator {𝑆 ∶= 𝑋} is the passage leading from the perceptible world to
the abstract world. It is the opposite of program operator 𝑋 ∶= 𝑇 . Assumptions
or hypothesises involving variables can only be formulated through abstraction
operator 𝑆 ∶= 𝑋. 𝑇 ∶= 𝑆 means to give a name 𝑆 to term 𝑇 , and 𝑇 ∶= � is the
delete operation, when we want to delete a term(point) 𝑆, we turn to 𝑆 ∶= �, when
we want to delete a formula(edge) 𝜑, we’d better keep {𝜑} ∶= � at hand. If you
want Tom open the door, you need {𝑇𝑜𝑚} × {𝑑𝑜𝑜𝑟} ∶→ 𝑜𝑝𝑒𝑛, and after that, an
edge is added between the term {𝑇𝑜𝑚} × {𝑑𝑜𝑜𝑟} and 𝑜𝑝𝑒𝑛. 𝜑≥∐︀𝑓,𝑐̃︀ → 𝑢1⇑𝑢2 means
if 𝜑 ∐︀𝑓, 𝑐̃︀ and ∐︀𝑓, 𝑐̃︀ ≥ ∐︀𝑓, 𝑐̃︀ then {𝑢1} should be executed, else {𝑢2} be executed.
Sometimes we write 𝜑 → 𝑢1⇑𝑢2 for short. All of the actions can be carried out
sequentially,concurrently,conditionally or repeatedly.

Most of the definitions of terms,formulas and updates should be given mutually.
For example, we define free variables of a term, formula or an update as follows:

Definition 1. Free Variables
𝐹𝑣(𝑋) = {𝑋};
𝐹𝑣(⊺) = 𝐹𝑣(�) = 𝐹𝑣(𝑆) = 𝐹𝑣({𝑇}) = 𝐹𝑣({𝜑}) = ∅;
𝐹𝑣(𝜑→ 𝑇 ⇑𝑃 ) = 𝐹𝑣(𝜑) ∪ 𝐹𝑣(𝑇 ) ∪ 𝐹𝑣(𝑃 );
𝐹𝑣(𝜇𝑋𝜑) = 𝐹𝑣(𝜑) ∖ {𝑋}; so is 𝜈.
𝐹𝑣({𝑢}𝑇 ) = 𝐹𝑣(𝑢) ∪ 𝐹𝑣(𝑇 ); so is −,∩,∪,×.
𝐹𝑣(𝑇 → 𝑃 ) = 𝐹𝑣(𝑇 ↔ 𝑃 ) = 𝐹𝑣(𝑇 ) ∪ 𝐹𝑣(𝑃 );
𝐹𝑣(¬𝜑) = 𝐹𝑣(𝜑);
𝐹𝑣(𝜑 ∧ 𝜓) = 𝐹𝑣(𝜑 ∨ 𝜓) = 𝐹𝑣(𝜑⇒ 𝜓) = 𝐹𝑣(𝜑⇔ 𝜓) = 𝐹𝑣(𝜑) ∪ 𝐹𝑣(𝜓);
𝐹𝑣((∀𝑋𝜑)𝜓) = 𝐹𝑣((∃𝑋𝜑)𝜓) = 𝐹𝑣(𝜑) ∖ {𝑋};
𝐹𝑣((︀𝜋⌋︀𝜑) = 𝐹𝑣(∐︀𝜋̃︀𝜑) = 𝐹𝑣(𝜑);
𝐹𝑣({𝑢}𝜑) = 𝐹𝑣(𝑢) ∪ 𝐹𝑣(𝜑);
𝐹𝑣(𝑆 ∶=𝑋) = {𝑋};
𝐹𝑣(𝑇 ∶= 𝑆) = 𝐹𝑣(𝑇 ∶= �) = 𝐹𝑣(𝑇 ∶→ 𝑆) = 𝐹𝑣(𝑇 );
𝐹𝑣(𝑢1;𝑢2) = 𝐹𝑣(𝑢1∏︁𝑢2) = 𝐹 (𝑢1!𝑢2) = 𝐹𝑣({𝑢1}𝑢2) = 𝐹𝑣(𝑢1) ∪ 𝐹𝑣(𝑢2);
𝐹𝑣(𝜑→ 𝑢1⇑𝑢2) = 𝐹𝑣(𝜑) ∪ 𝐹𝑣(𝑢1) ∪ 𝐹 (𝑢2);
𝐹𝑣((∀𝑋𝜑)𝑢) = (𝐹𝑣(𝜑) ∪ 𝐹𝑣(𝑢)) ∖ {𝑋}.

A term without free variables is called closed term, and a formula without free
variables a sentence.

Axioms The elementary axioms of +,× of real numbers, for example, the axioms of
the real closed field, are supposed to be included in ANS. And most of the theorems
as definitions in NAL should be added explicitly as axioms with truth value ∐︀1,1̃︀,
but we usually omit ∐︀1,1̃︀ for short. For example, even in NAL, for the operator
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{}, the following axioms should be added explicitly as an axiom rather than as a
meta-level definition.

(𝑇 × 𝑃 → ∈)⇔ ({𝑇}→ 𝑃 )
∀𝑋((𝑋 → 𝑃 )⇒ (𝑇 →𝑋))⇔ ∃𝑋((𝑋 × 𝑃 → ∈) ∧ ({𝑋}↔ 𝑇 ))

However, the above axiom is only about the ideal case ∐︀1,1̃︀, what about the
uncertain cases? The uncertain cases as well as the axioms and reference rules
about the program and update operators will be given later.

§2.2. Truth Function

The frequency 𝑓 and confidence 𝑐 are based on the evidence 𝑤+,𝑤. The table1 is
the same as Pei Wang’s[P.Wang12].

{𝑤+,𝑤} ∐︀𝑓, 𝑐̃︀ (︀𝑙, 𝑢⌋︀

{𝑤+,𝑤} 𝑤+ = 𝑘𝑓𝑐⇑(1 − 𝑐) 𝑤+ = 𝑘𝑙⇑𝑖
(𝑤 = 𝑤+ +𝑤−) 𝑤 = 𝑘𝑐⇑(1 − 𝑐) 𝑤 = 𝑘(1 − 𝑖)⇑𝑖

∐︀𝑓, 𝑐̃︀ 𝑓 = 𝑤+⇑𝑤 𝑓 = 𝑙⇑(𝑙 − 𝑖)
𝑐 = 𝑤⇑(𝑤 + 𝑘) 𝑐 = 1 − 𝑖

(︀𝑙, 𝑢⌋︀ 𝑙 = 𝑤+⇑(𝑤 + 𝑘) 𝑙 = 𝑓𝑐
(𝑖 = 𝑢 − 𝑙) 𝑢 = (𝑤+ + 𝑘)⇑(𝑤 + 𝑘) 𝑢 = 1 − 𝑐(1 − 𝑓)

Table 1: Uncertainty Measurements

Definition 2 (Truth Function).

𝑥? 𝑦 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

(𝑥−1 + 𝑦−1 − 1)−1 if 𝑥𝑦 ≠ 0

0 otherwise

𝑥> 𝑦 = 𝑥 + 𝑦 − 𝑥? 𝑦

𝑥_ 𝑦 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

(𝑥? 𝑦) × 𝑥−1 if 𝑥𝑦 ≠ 0

1 − 𝑥 otherwise

𝑥⊖ 𝑦 = (1 − (𝑥_ 𝑦)) × 𝑥
𝑥 ⊟ 𝑦 = 𝑥? (1 − 𝑦)
⊚ (𝑥) = 𝑥𝑘

𝑛𝑜𝑡(𝑥) = 1 − 𝑥
𝑎𝑛𝑑(𝑥1,⋯, 𝑥𝑛) = 𝑥1 ×⋯ × 𝑥𝑛
𝑜𝑟(𝑥1,⋯, 𝑥𝑛) = 1 − (︀(1 − 𝑥1) ×⋯ × (1 − 𝑥𝑛)⌋︀

where 𝑘 is a system parameter.
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(d) ⊖

Methematica code:

𝐹 (︀𝑥 , 𝑦 ⌋︀ ∶= 𝐼𝑓(︀𝑥𝑦! = 0,1⇑(1⇑𝑥 + 1⇑𝑦 − 1),0⌋︀ (?)

𝐼𝑚𝑝(︀𝑥 , 𝑦 ⌋︀ ∶= 𝐼𝑓(︀𝑥𝑦! = 0, 𝐹 (︀𝑥, 𝑦⌋︀⇑𝑥,1 − 𝑥⌋︀ (_)

𝑉 (︀𝑥 , 𝑦 ⌋︀ ∶= 𝑥 + 𝑦 − 𝐹 (︀𝑥, 𝑦⌋︀ (>)

𝑀(︀𝑥 , 𝑦 ⌋︀ ∶= 𝑥 − 𝐹 (︀𝑥, 𝑦⌋︀ (⊖)
𝑃𝑙𝑜𝑡3𝐷(︀𝐹 (︀𝑥, 𝑦⌋︀,{𝑥,0,1},{𝑦,0,1}, 𝐹 𝑖𝑙𝑙𝑖𝑛𝑔− > 𝐵𝑜𝑡𝑡𝑜𝑚⌋︀ (?)

𝑃𝑙𝑜𝑡3𝐷(︀𝐼𝑚𝑝(︀𝑥, 𝑦⌋︀,{𝑥,0,1},{𝑦,0,1}, 𝐹 𝑖𝑙𝑙𝑖𝑛𝑔− > 𝐵𝑜𝑡𝑡𝑜𝑚⌋︀ (_)

𝑃𝑙𝑜𝑡3𝐷(︀𝑉 (︀𝑥, 𝑦⌋︀,{𝑥,0,1},{𝑦,0,1}, 𝐹 𝑖𝑙𝑙𝑖𝑛𝑔− > 𝐵𝑜𝑡𝑡𝑜𝑚⌋︀ (>)

𝑃𝑙𝑜𝑡3𝐷(︀𝑀(︀𝑥, 𝑦⌋︀,{𝑥,0,1},{𝑦,0,1}, 𝐹 𝑖𝑙𝑙𝑖𝑛𝑔− > 𝐵𝑜𝑡𝑡𝑜𝑚⌋︀ (⊖)

Theorem 1 (Truth Function). For 𝑥, 𝑦 ∈ (0,1)

1⊖ 𝑥 = 1 ⊟ 𝑥 = 1 − 𝑥 (2.1)
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𝑥⊖ 𝑦 ≠ 𝑥 ⊟ 𝑦 (2.2)

𝑥? (1⊖ 𝑥) ≠ 0 (2.3)

𝑥> (1⊖ 𝑥) ≠ 1 (2.4)

1⊖ (1⊖ 𝑥) = 𝑥 (2.5)

1⊖ (𝑥? (1 − 𝑥)) = (1⊖ 𝑥)> (1⊖ (1 − 𝑥)) (2.6)

1⊖ (𝑥> (1 − 𝑥)) = (1⊖ 𝑥)? (1⊖ (1 − 𝑥)) (2.7)

Problem 1. Solve the equation 𝑥⊖ 𝑦 = 𝑥 ⊟ 𝑦 for 𝑥, 𝑦 ∈ (︀0,1⌋︀.
Solution: 𝑥 = 0;𝑥 = 1; 𝑦 = 0; 𝑦 = 1.

Problem 2. Solve the equation 𝑥? 𝑥 = 𝑥 (or 𝑥> 𝑥 = 𝑥) for 𝑥, 𝑦 ∈ (︀0,1⌋︀.
Solution: 𝑥 = 0;𝑥 = 1.

Problem 3. Solve the equation 𝑥? (1⊖ 𝑥) = 0 (or 𝑥> (1⊖ 𝑥) = 1) for 𝑥, 𝑦 ∈ (︀0,1⌋︀.
Solution: 𝑥 = 0;𝑥 = 1.

Problem 4. Solve the equation 𝑥_ 𝑦 = (1⊖ 𝑥)> 𝑦 for 𝑥, 𝑦 ∈ (︀0,1⌋︀.
Solution: 𝑥 = 0;𝑥 = 1;𝑥 = (𝑦2 + 𝑦 − 1)⇑(𝑦 − 1); 𝑦 = 0; 𝑦 = 1.

Problem 5. Solve the equation 𝑥? 𝑦 + 𝑥? (1⊖ 𝑦) = 𝑥.
Solution: 𝑥 = 0;𝑥 = 1; 𝑦 = 0; 𝑦 = 1.

Explanation In some sense Pei Wang’s truth function ∐︀𝑓, 𝑐̃︀ accepts the frequency
explanation of probability but with no need of convergence, where 𝑓 refers to the
frequency and 𝑐 the confidence of the frequency.

Actually, in the graph, the weight of the edge should better be considered as
conditional probability. Pei Wang’s truth function for ∧, which equals 𝑓1 × 𝑓2, im-
plicates the independence of the probability distribution, which is inappropriate.
Since we would like to give the compactly interconnected structure a new name,
the positive effect of one event to another should be paid more attention to, so my
truth function for ∧ is a little larger than Pei Wang’s, and the truth functions for
implication, difference agree with the conditional probability, although, rigorously
speaking, 𝑓 can’t be regarded as probability, because the background knowledge of
the probability distribution may change in a real-time open system, that’s just the
very reason that my truth function fail to satisfy 𝑥⊖𝑦 = 𝑥⊟𝑦. Pei Wang [P.Wang09]
have argued that 𝑃𝐾(𝜑⋃︀𝜓) should not be written as 𝑃 (𝜑⋃︀𝐾,𝜓), because the new
knowledge 𝜓 may fall out of the sample space of the distribution 𝑃𝐾 . Under the
AIKR, new knowledge and problems are out of the reach of Probability Theory.
On one hand, Cox theorem shows that from several intuitively reasonable postu-
lations Kolmogorov axioms of probability theory can be proved to be the unique
valid calculus for degree of belief, and plausibilities follow the same rules as lim-
iting frequencies. Any agent who violate the Kolmogorov axioms will suffer from
sure loss according to Dutch Book argument, so probability theory can’t be freely
abandoned without pains. On the other hand, Pei Wang [P.Wang11] have argued
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that new models based on AIKR can’t be obtained by minor revisions or extensions
of the traditional models. How to compromise the dilemma? Probability theory is
a local instrument, and should be treated locally rather than globally according to
our bounded rationality, that is why the truth functions are defined as above.

From the solutions to the above problems, it can be seen that the truth functions
agree with classical propositional logic for the ideal cases ∐︀1,1̃︀.

Definition 3 (Expectation Function).

𝑒(∐︀𝑓, 𝑐̃︀) ∶= 𝑐 × (𝑓 − 1⇑2) + 1⇑2
∐︀𝑓, 𝑐̃︀ ≤ ∐︀𝑓 ′, 𝑐′̃︀ ∶= 𝑒(∐︀𝑓, 𝑐̃︀) ≤ 𝑒(∐︀𝑓 ′, 𝑐′̃︀)

For two terms 𝑆 and 𝑃 , if 𝜑(︀𝑆⌋︀ ∐︀𝑓, 𝑐̃︀ and 𝜑(︀𝑃 ⇑𝑆⌋︀ ∐︀𝑓 ′, 𝑐′̃︀, then we define 𝑆 ≤𝜑 𝑃 ∶=
∐︀𝑓, 𝑐̃︀ ≤ ∐︀𝑓 ′, 𝑐′̃︀, where 𝜑(︀𝑆⌋︀ means 𝑆 occurs in 𝜑, and 𝜑(︀𝑃 ⇑𝑆⌋︀ means the replacement
of 𝑆 with 𝑃 in 𝜑.

Definition 4. The truth values of the inference rules are defined as follows:

Inference Function
𝐹𝑖𝑛𝑡 𝑓 = 𝑓1 ? 𝑓2

intersection 𝑐 = 𝑎𝑛𝑑(𝑐1, 𝑐2)
𝐹𝑢𝑛𝑖 𝑓 = 𝑓1 > 𝑓2
union 𝑐 = 𝑎𝑛𝑑(𝑐1, 𝑐2)
𝐹𝑑𝑖𝑓 𝑓 = 𝑓1 ⊖ 𝑓2

difference 𝑐 = 𝑎𝑛𝑑(𝑐1, 𝑐2)
𝐹𝑛𝑒𝑔 𝑓 = 1⊖ 𝑓1

negation 𝑐 = 𝑐1
𝐹𝑡𝑟𝑓 𝑓 = ⊚𝑓1𝑐1

transform 𝑐 = 0
𝐹𝑐𝑛𝑡 𝑓 = ⊚𝑓1

contraposition 𝑐 = 𝑐1
𝐹𝑑𝑒𝑑 𝑓 = 𝑓1 ? 𝑓2

deduction 𝑐 = (𝑓1 ? 𝑓2)𝑐1𝑐2
𝐹𝑎𝑛𝑎 𝑓 = 𝑓1 ? 𝑓2

analogy 𝑐 = 𝑓2𝑐1𝑐2
𝐹𝑟𝑒𝑠 𝑓 = 𝑓1 ? 𝑓2

resemblance 𝑐 = (𝑓1 > 𝑓2)𝑐1𝑐2
𝐹𝑎𝑏𝑑 𝑓 = 𝑓𝑚𝑎𝑥 _ 𝑓𝑚𝑖𝑛

abduction 𝑐 = (𝑓1 ? 𝑓2)𝑐1𝑐2
𝐹𝑖𝑛𝑑 𝑓 = 𝑓𝑚𝑖𝑛 _ 𝑓𝑚𝑎𝑥

induction 𝑐 = (𝑓1 ? 𝑓2)𝑐1𝑐2
𝐹𝑎𝑏𝑑′ 𝑓 = (𝑓1 ? 𝑓2)(1 − 𝑐𝑚𝑖𝑛)

1
𝑘

𝑎𝑏𝑑𝑢𝑐𝑡𝑖𝑜𝑛′ 𝑐 = 𝑐1𝑐2
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𝐹𝑖𝑛𝑑′ 𝑓 = (𝑓1 ? 𝑓2)(1 − 𝑐𝑚𝑎𝑥)
1
𝑘

𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛′ 𝑐 = 𝑐1𝑐2
𝐹𝑒𝑥𝑒 𝑓 = (𝑓1 ? 𝑓2)𝑐1𝑐2

exemplification 𝑐 = ((𝑓1 ? 𝑓2)𝑐1𝑐2)⇑((𝑓1 ? 𝑓2)𝑐1𝑐2 + 𝑘)
𝐹𝑐𝑜𝑚 𝑓 = (𝑓1 _ 𝑓2)? (𝑓2 _ 𝑓1)

comparison 𝑐 = (𝑓1 ? 𝑓2)𝑐1𝑐2
𝐹𝑐𝑛𝑣 𝑓 = 𝑓1𝑐1

conversion 𝑐 = (𝑓1𝑐1)⇑(𝑓1𝑐1 + 𝑘)
Table 2: Truth Function

where 𝑓𝑚𝑖𝑛 = 𝑓𝑖 (𝑖 ∈ {1,2}) s.t. 𝑒(∐︀𝑓𝑖, 𝑐𝑖̃︀) =min{𝑒(∐︀𝑓1, 𝑐1̃︀), 𝑒(∐︀𝑓2, 𝑐2̃︀)}, and similarly
𝑓𝑚𝑎𝑥, 𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥.

Definition 5 (Revision Function and Its Inverse Function). Given ∐︀𝑓1, 𝑐1̃︀ and
∐︀𝑓2, 𝑐2̃︀, revision function 𝐹𝑟𝑒𝑣(∐︀𝑓1, 𝑐1̃︀, ∐︀𝑓2, 𝑐2̃︀) = ∐︀𝑓, 𝑐̃︀, where

𝑓 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1 if ∐︀𝑓1, 𝑐1̃︀ = ∐︀𝑓2, 𝑐2̃︀ = ∐︀1,1̃︀
(︀𝑓1𝑐1(1 − 𝑐2) + 𝑓2𝑐2(1 − 𝑐1)⌋︀⇑(︀𝑐1(1 − 𝑐2) + 𝑐2(1 − 𝑐1)⌋︀ otherwise

𝑐 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1 if ∐︀𝑓1, 𝑐1̃︀ = ∐︀𝑓2, 𝑐2̃︀ = ∐︀1,1̃︀
(︀𝑐1(1 − 𝑐2) + 𝑐2(1 − 𝑐1)⌋︀⇑(1 − 𝑐1𝑐2) otherwise

Conversely, given ∐︀𝑓, 𝑐̃︀ and ∐︀𝑓1, 𝑐1̃︀, the inverse function of revision function 𝐹𝑟𝑒𝑣

can be computed 𝐹𝑖𝑣𝑟(∐︀𝑓, 𝑐̃︀, ∐︀𝑓1, 𝑐1̃︀) = ∐︀𝑓2, 𝑐2̃︀, where

𝑓2 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1 if 𝑐 = 𝑐1
(𝑐𝑓 − 𝑐𝑐1𝑓 − 𝑐1𝑓1 + 𝑐𝑐1𝑓1)⇑(𝑐 − 𝑐1) otherwise

𝑐2 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1 if 𝑐1 = 1⇑(2 − 𝑐)
(𝑐 − 𝑐1)⇑(1 − 2𝑐1 + 𝑐𝑐1) otherwise

Theorem 2 (Revision on Transformation).

𝐹𝑟𝑒𝑣(∐︀𝑓, 𝑐̃︀, 𝐹𝑡𝑟𝑓(∐︀𝑓, 𝑐̃︀)) = ∐︀𝑓, 𝑐̃︀

§2.3. Inference Rules

Some of the syntax of the reference rules (table3,table4) Pei Wang [P.Wang12] used
are kept as they were. However, the truth values of the rules need to be modified,
and some other rules need to be added.
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𝑀 → 𝑃 ∐︀𝑓1, 𝑐1̃︀ 𝑃 →𝑀 ∐︀𝑓1, 𝑐1̃︀ 𝑀 ↔ 𝑃 ∐︀𝑓1, 𝑐1̃︀

𝑆 → 𝑃 ∐︀𝐹𝑑𝑒𝑑̃︀ 𝑆 → 𝑃 ∐︀𝐹𝑎𝑏𝑑̃︀ 𝑆 → 𝑃 ∐︀𝐹𝑎𝑛𝑎̃︀

𝑆 →𝑀 ∐︀𝑓2, 𝑐2̃︀ 𝑃 → 𝑆 ∐︀𝐹𝑒𝑥𝑒̃︀ (𝑃 → 𝑆 ∐︀𝐹𝑎𝑏𝑑′̃︀)

𝑆 ↔ 𝑃 ∐︀𝐹𝑐𝑜𝑚̃︀

𝑆 → 𝑃 ∐︀𝐹𝑖𝑛𝑑̃︀ 𝑆 → 𝑃 ∐︀𝐹𝑒𝑥𝑒̃︀

𝑀 → 𝑆 ∐︀𝑓2, 𝑐2̃︀ (𝑃 → 𝑆 ∐︀𝐹𝑖𝑛𝑑′̃︀) 𝑃 → 𝑆 ∐︀𝐹𝑑𝑒𝑑̃︀ 𝑃 → 𝑆 ∐︀𝐹𝑎𝑛𝑎̃︀

𝑆 ↔ 𝑃 ∐︀𝐹𝑐𝑜𝑚̃︀

𝑆 → 𝑃 ∐︀𝐹𝑎𝑛𝑎̃︀

𝑆 ↔𝑀 ∐︀𝑓2, 𝑐2̃︀ 𝑃 → 𝑆 ∐︀𝐹𝑎𝑛𝑎̃︀

𝑆 ↔ 𝑃 ∐︀𝐹𝑟𝑒𝑠̃︀

Table 3: Two-premise Syllogistic Rules

𝑆 → 𝑃 𝑃 → 𝑆 𝐹𝑐𝑛𝑣

𝜑⇒ 𝜓 ¬𝜓⇒ ¬𝜑 𝐹𝑐𝑛𝑡

Table 4: One-premise Syllogistic Rules

Raven Paradox In Classical Logic, the following deduction holds.
∵𝐴(𝑥) ∧𝐵(𝑥) confirms ∀𝑥(𝐴(𝑥)→ 𝐵(𝑥))
∴ ¬𝐴(𝑥) ∧ ¬𝐵(𝑥) confirms ∀𝑥(¬𝐵(𝑥)→ ¬𝐴(𝑥))
∵ ∀𝑥(𝐴(𝑥)→ 𝐵(𝑥))↔ ∀𝑥(¬𝐵(𝑥)→ ¬𝐴(𝑥))
∴ ¬𝐴(𝑥) ∧ ¬𝐵(𝑥) confirms ∀𝑥(𝐴(𝑥)→ 𝐵(𝑥))

If 𝐴(𝑥) stands for 𝑥 is a Raven, and 𝐵(𝑥) stands for 𝑥 is Black, the above
conclusion is what is called “Raven Paradox”. As to “Raven Paradox”, Pei Wang
[P.Wang09] insists that “non-raven” are irrelevant evidence according to Nicod’s
criterion, and that the frequency 𝑓 of 𝐹𝑐𝑛𝑡 equals 0. But in my opinion, if the
extension 𝑇𝐸 of 𝑇 is still defined as {𝑋 ∈ 𝐾𝐵 ∶ 𝑋 → 𝑇} and the intension 𝑇 𝐼 of
𝑇 is still defined as {𝑋 ∈ 𝐾𝐵 ∶ 𝑇 → 𝑋}, then inevitably the “non-raven” cases are
implicate in the intensional evidence, so the truth value of the contraposition of a
statement is increasing with the original statement, and they are equivalent when
the frequency is 1. That’s why I use the truth function 𝐹𝑐𝑛𝑡.

Definition 6 (Deduction). deduction rule.

𝑀 → 𝑃 ∐︀𝑓1, 𝑐1̃︀
𝑆 →𝑀 ∐︀𝑓2, 𝑐2̃︀
𝑆 → 𝑃 ∐︀𝐹𝑑𝑒𝑑̃︀

∀𝑋((𝑋 →𝑀)⇒ (𝑋 → 𝑃 )) ∐︀𝑓1, 𝑐1̃︀
∀𝑋((𝑋 → 𝑆)⇒ (𝑋 →𝑀)) ∐︀𝑓2, 𝑐2̃︀
∀𝑋((𝑋 → 𝑆)⇒ (𝑋 → 𝑃 )) ∐︀𝐹𝑑𝑒𝑑̃︀
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∀𝑋((𝑃 →𝑋)⇒ (𝑀 →𝑋)) ∐︀𝑓1, 𝑐1̃︀
∀𝑋((𝑀 →𝑋)⇒ (𝑆 →𝑋)) ∐︀𝑓2, 𝑐2̃︀
∀𝑋((𝑃 →𝑋)⇒ (𝑆 →𝑋)) ∐︀𝐹𝑑𝑒𝑑̃︀

Definition 7 (Induction). induction rule.

𝑀 → 𝑃 ∐︀𝑓1, 𝑐1̃︀
𝑀 → 𝑆 ∐︀𝑓2, 𝑐2̃︀
∐︀𝑓2, 𝑐2̃︀ ≤ ∐︀𝑓1, 𝑐1̃︀

∀𝑋((𝑋 → 𝑆)⇒ (𝑋 → 𝑃 )) ∐︀𝐹𝑖𝑛𝑑̃︀

𝑀 → 𝑃 ∐︀𝑓1, 𝑐1̃︀
𝑀 → 𝑆 ∐︀𝑓2, 𝑐2̃︀
∐︀𝑓2, 𝑐2̃︀ > ∐︀𝑓1, 𝑐1̃︀

∀𝑋((𝑋 → 𝑆)⇒ (𝑋 → 𝑃 )) ∐︀𝐹𝑖𝑛𝑑′̃︀

The extensional and intensional cases are similar to definition6.

Definition 8 (Abduction). abduction rule.

𝑃 →𝑀 ∐︀𝑓1, 𝑐1̃︀
𝑆 →𝑀 ∐︀𝑓2, 𝑐2̃︀
∐︀𝑓1, 𝑐1̃︀ ≤ ∐︀𝑓2, 𝑐2̃︀

∀𝑋((𝑃 →𝑋)⇒ (𝑆 →𝑋)) ∐︀𝐹𝑎𝑏𝑑̃︀

𝑃 →𝑀 ∐︀𝑓1, 𝑐1̃︀
𝑆 →𝑀 ∐︀𝑓2, 𝑐2̃︀
∐︀𝑓1, 𝑐1̃︀ > ∐︀𝑓2, 𝑐2̃︀

∀𝑋((𝑃 →𝑋)⇒ (𝑆 →𝑋)) ∐︀𝐹𝑎𝑏𝑑′̃︀

The extensional and intensional cases are similar to definition6.

Remark: This rule complies with the following intuition.

𝜑⇒ 𝜓 is plausible (high ∐︀𝑓1, 𝑐1̃︀)
𝜓 is likely to be true (high 𝑓2) although with little evidence (low 𝑐2)

𝜑 is more likely to be true (high 𝑓)

Definition 9 (Extension 𝑣𝑠. Intension). Most of the time it is hard to distinguish
extension from intension, both of them merge in our cognitive process.

∀𝑋((𝑋 → 𝑆)⇒ (𝑋 → 𝑃 )) ∐︀𝑓1, 𝑐1̃︀
∀𝑋((𝑃 →𝑋)⇒ (𝑆 →𝑋)) ∐︀𝑓2, 𝑐2̃︀

𝑆 → 𝑃 ∐︀𝐹𝑟𝑒𝑣̃︀

The extension case ∀𝑋((𝑋 → 𝑆)⇒ (𝑋 → 𝑃 )) can be rewritten as 𝑆 ↠ 𝑃 , and
the intension case ∀𝑋((𝑃 →𝑋)⇒ (𝑆 →𝑋)) can be rewritten as 𝑆 ↣ 𝑃 , as a result,
the above rule can be rewritten as:
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𝑆 ↠ 𝑃 ∐︀𝑓1, 𝑐1̃︀
𝑆 ↣ 𝑃 ∐︀𝑓2, 𝑐2̃︀
𝑆 → 𝑃 ∐︀𝐹𝑟𝑒𝑣̃︀

Thanks to induction, we get the extensional direction 𝑆 ↠ 𝑃 ; thanks to abduc-
tion, we get the intensional direction 𝑆 ↣ 𝑃 ; thanks to the revision of the extensional
direction and intensional direction we get the simple inheritance relationship 𝑆 → 𝑃 .

Sometimes deduction,induction or abduction inference are executed extensionally
and intensionally simultaneously.

𝑀 ↠ 𝑃 ∐︀𝑓1, 𝑐1̃︀
𝑆 ↣𝑀 ∐︀𝑓2, 𝑐2̃︀
𝑆 → 𝑃 ∐︀𝐹𝑑𝑒𝑑̃︀

𝑀 ↠ 𝑃 ∐︀𝑓1, 𝑐1̃︀
𝑀 ↣ 𝑆 ∐︀𝑓2, 𝑐2̃︀
𝑆 → 𝑃 ∐︀𝐹𝑖𝑛𝑑̃︀

𝑃 ↠𝑀 ∐︀𝑓1, 𝑐1̃︀
𝑆 ↣𝑀 ∐︀𝑓2, 𝑐2̃︀
𝑆 → 𝑃 ∐︀𝐹𝑎𝑏𝑑̃︀

However, if we intend to distinguish them, it is not impossible when one direction
is clear.

𝑆 ↠ 𝑃 ∐︀𝑓1, 𝑐1̃︀
𝑆 → 𝑃 ∐︀𝑓2, 𝑐2̃︀
𝑆 ↣ 𝑃 ∐︀𝐹𝑖𝑣𝑟̃︀

𝑆 ↣ 𝑃 ∐︀𝑓1, 𝑐1̃︀
𝑆 → 𝑃 ∐︀𝑓2, 𝑐2̃︀
𝑆 ↠ 𝑃 ∐︀𝐹𝑖𝑣𝑟̃︀

The other inference rules, such as analogy, resemblance, exemplification, com-
parison, conversion, contraposition are similarly treated like the above ones. But
the followings are quite different from Pei Wang’s.

Definition 10 (Extension to Intension 𝑣𝑠. Intension to Extension). Given the subset
relationship of 𝑆 and 𝑃 , sometimes we could not help guessing the properties of 𝑆
with the help of the properties of 𝑃 , and sometimes vice versa.

𝑆 ↣ 𝑃 ∐︀𝑓, 𝑐̃︀
𝑆 ↠ 𝑃 ∐︀𝐹𝑡𝑟𝑓 ̃︀

𝑆 ↠ 𝑃 ∐︀𝑓, 𝑐̃︀
𝑆 ↣ 𝑃 ∐︀𝐹𝑡𝑟𝑓 ̃︀

The reason we use the function 𝐹𝑡𝑟𝑓 is as follows: when we are pretty sure about
the extension ∐︀1,1̃︀ then we expect/guess/hypothesize its intension is 𝐹𝑡𝑟𝑓(∐︀1,1̃︀) =
∐︀1,0̃︀; when we know nothing about the extension ∐︀−,0̃︀, we are totally innocent of
its intension 𝐹𝑡𝑟𝑓(∐︀0,0̃︀) = ∐︀0,0̃︀; when we know something about its extension, our
knowledge of its intension should be discounted (by some system parameter 𝑘). And
the function 𝑓 should be monotonously increasing. When we want to estimate the
normal relation → with the revision function 𝐹𝑟𝑒𝑣 through its extension ↠ and its
hypothetical intension ↣ by 𝐹𝑡𝑟𝑓 , the truth value should not be increased by our guess,
that is what theorem2 says.

Definition 11 (Composition Rule). The composition rules are different from Pei
Wang’s because the truth functions of intersection,union and difference are different.
And rules of ×,{}, ∈ are added.
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𝑀 → 𝑇1 ∐︀𝑓1, 𝑐1̃︀
𝑀 → 𝑇2 ∐︀𝑓2, 𝑐2̃︀

𝑀 → 𝑇1 ∩ 𝑇2 ∐︀𝐹𝑖𝑛𝑡̃︀

𝑀 → 𝑇1 ∐︀𝑓1, 𝑐1̃︀
𝑀 → 𝑇2 ∐︀𝑓2, 𝑐2̃︀

𝑀 → 𝑇1 ∪ 𝑇2 ∐︀𝐹𝑢𝑛𝑖̃︀

𝑇1 →𝑀 ∐︀𝑓1, 𝑐1̃︀
𝑇2 →𝑀 ∐︀𝑓2, 𝑐2̃︀

𝑇1 ∩ 𝑇2 →𝑀 ∐︀𝐹𝑢𝑛𝑖̃︀

𝑇1 →𝑀 ∐︀𝑓1, 𝑐1̃︀
𝑇2 →𝑀 ∐︀𝑓2, 𝑐2̃︀

𝑇1 ∪ 𝑇2 →𝑀 ∐︀𝐹𝑖𝑛𝑡̃︀

𝑀 → 𝑇1 ∐︀𝑓1, 𝑐1̃︀
𝑀 → 𝑇2 ∐︀𝑓2, 𝑐2̃︀

𝑀 → 𝑇1 − 𝑇2 ∐︀𝐹𝑑𝑖𝑓 ̃︀

𝑇1 →𝑀 ∐︀𝑓1, 𝑐1̃︀
𝑇2 →𝑀 ∐︀𝑓2, 𝑐2̃︀

𝑇1 − 𝑇2 →𝑀 ∐︀𝐹𝑑𝑖𝑓 ̃︀

𝑀 → 𝑇1 ∪ 𝑇2 ∐︀𝑓1, 𝑐1̃︀
𝑀 → 𝑇1 ∐︀𝑓2, 𝑐2̃︀
𝑀 → 𝑇2 ∐︀𝐹𝑑𝑖𝑓 ̃︀

𝑇1 ∩ 𝑇2 →𝑀 ∐︀𝑓1, 𝑐1̃︀
𝑇1 →𝑀 ∐︀𝑓2, 𝑐2̃︀
𝑇2 →𝑀 ∐︀𝐹𝑑𝑖𝑓 ̃︀

𝑀 → 𝑇1 − 𝑇2 ∐︀𝑓1, 𝑐1̃︀
𝑀 → 𝑇2 ∐︀𝑓2, 𝑐2̃︀
𝑀 → 𝑇1 ∐︀𝐹𝑢𝑛𝑖̃︀

𝑇1 − 𝑇2 →𝑀 ∐︀𝑓1, 𝑐1̃︀
𝑇2 →𝑀 ∐︀𝑓2, 𝑐2̃︀
𝑇1 →𝑀 ∐︀𝐹𝑢𝑛𝑖̃︀

𝜑 ∐︀𝑓, 𝑐̃︀
¬𝜑 ∐︀𝐹𝑛𝑒𝑔̃︀

¬𝜑 ∐︀𝑓, 𝑐̃︀
𝜑 ∐︀𝐹𝑛𝑒𝑔̃︀

{𝑇}→ 𝑃 ∐︀𝑓, 𝑐̃︀
𝑇 × 𝑃 → ∈ ∐︀𝑓, 𝑐̃︀

𝑇 × 𝑃 → ∈ ∐︀𝑓, 𝑐̃︀
{𝑇}→ 𝑃 ∐︀𝑓, 𝑐̃︀

∀𝑋(𝑋 → 𝑃 ⇒ 𝑇 →𝑋) ∐︀𝑓, 𝑐̃︀
{𝑇}−1 × 𝑃 → ∈ ∐︀𝑓, 𝑐̃︀

𝑇 × 𝑃 → ∈ ∐︀𝑓, 𝑐̃︀
∀𝑋(𝑋 → 𝑃 ⇒ {𝑇}→𝑋) ∐︀𝑓, 𝑐̃︀

{{𝑇}−1}
𝑇

𝑇
{{𝑇}−1}

{{𝑇}}−1
𝑇

𝑇
{{𝑇}}−1

{𝜑}→ {𝜓} ∐︀𝑓, 𝑐̃︀
𝜑⇒ 𝜓 ∐︀𝑓, 𝑐̃︀

𝜑⇒ 𝜓 ∐︀𝑓, 𝑐̃︀
{𝜑}→ {𝜓} ∐︀𝑓, 𝑐̃︀

𝑆1 → 𝑃1 ∐︀𝑓1, 𝑐1̃︀
𝑆2 → 𝑃2 ∐︀𝑓2, 𝑐2̃︀

𝑆1 × 𝑆2 → 𝑃1 × 𝑃2 ∐︀𝐹𝑖𝑛𝑡̃︀

𝑌 × {𝑋 ∶ 𝜑(︀𝑋⌋︀ ∐︀𝑓, 𝑐̃︀ & ∐︀𝑓, 𝑐̃︀ > ∐︀0,0̃︀}→∈ ∐︀𝑓 ′, 𝑐′̃︀⇔ 𝜑(︀𝑌 ⌋︀ ∐︀𝑓 ′, 𝑐′̃︀

The extensional and intensional cases are similar to definition6, as well as the
propositional level ∧,∨ are treated like ∩ and ∪.
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§2.4. Deduction

Definition 12 (Deductive Consequence and Theorems). A deduction is a sequence
of formulas, each of which is either an axiom or a hypothesis or derived from existing
formulas by the inference rules. A statement with truth value ∐︀1,1̃︀ is a theorem of
ANS. What else are theorems? For arbitrary ∐︀𝑓, 𝑐̃︀, if ⋀Γ∐︀𝑓, 𝑐̃︀ ⊢ 𝜑 ∐︀1,−̃︀ always
holds, then we say 𝜑 is a deductive consequence of Γ, sometimes we write Γ ⊢ 𝜑 for
short. Since ANS is a dynamic system, we assume the deduction theorem holds in
ANS, which means that, if we get 𝜑 ⊢ 𝜓 at time 𝑡, then 𝜑⇒ 𝜓 ∐︀1,1̃︀ is added to ANS
at time 𝑡 + 1. So after “for any ∐︀𝑓, 𝑐̃︀,⋀Γ∐︀𝑓, 𝑐̃︀ ⊢𝑡 𝜑 ∐︀1,−̃︀” proved, ⋀Γ → 𝜑 ∐︀1,1̃︀ is
added at time 𝑡 + 1, and we get theorem ⊢𝑡+1 ⋀Γ→ 𝜑.

Remark: A real-time open system can be considered as a sequence of linear
systems along the time axis. Time is discretely and potential infinitely flowing.
We do not care about ⊢∞, although it is expected that the classical theorems are
included in 𝑇ℎ(⊢∞).

Remark: For certain ∐︀𝑓, 𝑐̃︀, we get ⋀Γ∐︀𝑓, 𝑐̃︀ ⊢ 𝜑 ∐︀1, 𝑐′̃︀, which means “we be-
lieve/doubt that 𝜑 is true to some extent 𝑐′ if we believe Γ is about 𝑓 true to extent
𝑐”. However, if “for arbitrary ∐︀𝑓, 𝑐̃︀,⋀Γ∐︀𝑓, 𝑐̃︀ ⊢ 𝜑 ∐︀1,−̃︀ is proved, we know that
“whether we believe it or not, 𝜑 is true”, which means that ⋀Γ⇒ 𝜑might be called a
priori synthetical truth. If “for crisp value ∐︀1,−̃︀(∐︀0,−̃︀)2, ⋀Γ∐︀1,−̃︀(∐︀0,−̃︀) ⊢ 𝜑 ∐︀1,−̃︀
is proved, we know that “whether the premise is true or false, 𝜑 is true”, which
means that ⋀Γ ∐︀1,−̃︀(∐︀0,−̃︀)⇒ 𝜑 might be called an analytical truth.

Remark: If Γ ⊢ 𝜑 ∐︀𝑓, 𝑐̃︀ ⇒ 𝜓 ∐︀𝑓, 𝑔(𝑐)̃︀ and Γ ⊢ 𝜓 ∐︀𝑓, 𝑐̃︀ ⇒ 𝜑 ∐︀𝑓, 𝑔′(𝑐)̃︀ always
holds for any ∐︀𝑓, 𝑐̃︀, where 𝑔(1) = 𝑔′(1) = 1 and 𝑔(𝑔′) is monotone, then we write
Γ ⊢ 𝜑⇔ 𝜓 for short in the following.

Theorem 3.

we have a weak law of excluded middle, for any term 𝑇,𝑀

𝑇 →𝑀 ∐︀1,1̃︀(∐︀0,1̃︀) ⊢ 𝑇 →𝑀 ∪ (⊺ −𝑀) ∐︀1,1̃︀

for any formula 𝜑,𝜓

𝜑⇒ 𝜓 ∐︀1, 𝑐̃︀(∐︀0, 𝑐̃︀) ⊢ 𝜑⇒ 𝜓 ∨ ¬𝜓 ∐︀1, 𝑐2̃︀

and weak law of contradiction

𝑀 → 𝑇 ∐︀1,1̃︀(∐︀0,1̃︀) ⊢𝑀 ∩ (⊺ −𝑀)→ 𝑇 ∐︀1,1̃︀
𝜑→ 𝜓 ∐︀1, 𝑐̃︀(∐︀0, 𝑐̃︀) ⊢ 𝜑 ∧ ¬𝜑⇒ 𝜓 ∐︀1, 𝑐2̃︀

double negation

⊢ 𝜑⇔ ¬¬𝜑

2∐︀1,−̃︀(∐︀0,−̃︀) means ∐︀1,−̃︀ or ∐︀0,−̃︀

19 / 33 ANS 19 / 33



2 SYNTAX OF ANS

Proof. All of the above theorems follow from theorem1 and the inference rules. For
double negation, the function 𝑔, 𝑔′ equals 𝐼𝐷.

Remark1: Thanks to definition12 and the above theorem, the weak law of ex-
cluded middle and contradiction is true in ANS in some sense. They are of great
importance to our reasoning and cognition and will be used in the definition18 of
choice rule.

Remark2: Since the weak law of contradiction is in very special form (only for
∐︀1,−̃︀ 𝑜𝑟 ∐︀0,−̃︀), and it needs a relevant premise, so it is actually not such a theorem
that can be used everywhere, as a result, ANS do not have to face the irrelevant
deduction problem.

Definition 13 (translate function). ∗ is a translate function.
for any term 𝑇,𝑆 containing only −,∪,∩

𝑇 ∗ = 𝑝𝑇
(𝑇 − 𝑆)∗ = ¬𝑝𝑆

∪∗ = ∨
∩∗ = ∧
→∗ =⇒

where 𝑝𝑇 , 𝑝𝑆 are special unused terms representing atomic formulas, which can be
substituted by any formula 𝜑.

Theorem 4. If Γ ⊢ 𝜑 then Γ∗ ⊢ 𝜑∗.

Proof. The rigorous proof should be given via the principle of mathematical induc-
tion of the structure of the formulas. Here it is eliminated. Instead, some intuition
will be given.

Intuitively, the terms of the theorems can be substituted by other terms, specif-
ically, the special term {𝜑} firstly. For example,

𝑇 →𝑀 ⊢ 𝑇 →𝑀 ∪ (⊺ −𝑀)
⇓

{𝜑}→ {𝜓} ⊢ {𝜑}→ {𝜓} ∪ {¬𝜓}
⇓

𝜑⇒ 𝜓 ⊢ 𝜑⇒ 𝜓 ∨ ¬𝜓

Actually, an inverse function ○ of the translate function ∗ in definition13 can be
defined as follows.
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Definition 14. for any atomic formula 𝜑

𝜑○ = {𝜑}
(¬𝜑)○ = ⊺ − {𝜑}

∨○ = ∪
∧○ = ∩
⇒○ =→

However, the proposition corresponding to theorem4 do not hold, so we add the
following rule to ANS.

Definition 15 (Termize Rule). The term case of the formula theorem.

𝜑 ∐︀𝑓, 𝑐̃︀
𝜑○ ∐︀𝑓, 𝑐̃︀

Specially, for the atomic formula 𝜑.

𝜑 ∐︀1,1̃︀
{𝜑}↔ ⊺ ∐︀1,1̃︀

The termize rule is introduced to take care of the search problem 𝑋 ∶=?, to make
sure that the search of an answer to a question can be executed on the level of terms.

Definition 16 (Syntactical Complexity). The syntactical complexity of an atomic
term (i.e., word) is 1. The syntactical complexity of a compound term or a statement
is 1 plus the sum of the syntactical complexity of its components.

Remarks: A very complicated compound term 𝑇 , even containing variables, can
be renamed to be a atomic term 𝑆, is it rational to be counted 1 when we compute
the syntactical complexity of it? Yes! The reason is that, whatever exists in the
KB is rational! The rename operator 𝑇 ∶= 𝑆 can only be used in 𝜑 ∐︀𝑓, 𝑐̃︀ → 𝑢1⇑𝑢2,
namely, only when the compound term 𝑇 is very compact can it be renamed.

Definition 17 (Syntactical Simplicity). If the syntactic complexity of a term or a
statement is 𝑛, then its syntactic simplicity is 𝑠 = 1⇑𝑛𝑟, where 𝑟 > 0 is a system
parameter.

Definition 18 (Choice Rule). If the syntactic simplicity of a statement 𝜑𝑖(︀𝑆⌋︀ is 𝑠,
then its choice value is 𝑐ℎ(𝜑𝑖∐︀𝑓, 𝑐̃︀) ∶= 𝑠 × 𝑒′, where 𝜑𝑗 = 𝜑𝑖(︀𝑇 ⇑𝑆⌋︀ for some term 𝑇
and

𝑒′ =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑐 × (𝑓 − 1⇑𝑛) + 1⇑𝑛 if ⊢ ⋁𝑛
𝑖=1 𝜑𝑖 ∐︀1,−̃︀

𝑒(∐︀𝑓, 𝑐̃︀) otherwise

When there are two different statements 𝜑,𝜓 both of which are candidate answers
to a question, the one with higher choice value 𝑐ℎ is preferred.

For two formulas 𝜑 ∐︀𝑓, 𝑐̃︀ and 𝜓 ∐︀𝑓 ′, 𝑐′̃︀, we define {𝜑 ∐︀𝑓, 𝑐̃︀} ≤ {𝜓 ∐︀𝑓 ′, 𝑐′̃︀} ∶=
𝑐ℎ(𝜑 ∐︀𝑓, 𝑐̃︀) ≤ 𝑐ℎ(𝜓 ∐︀𝑓 ′, 𝑐′̃︀).
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Remark: For special cases, for example, whether the sun will rise or not to-
morrow, Pei Wang’s expectation function 𝑒(∐︀𝑓, 𝑐̃︀) corresponds to Carnap’s 𝜆-
continuum, however, if the possibilities of an event are more than two, Carnap’s
𝜆-continuum is flexible enough to handle with it, while Pei Wang’s expectation
function is not very reasonable, so we expand it to 𝑒′. In other words, when we
know the exact partition of the event, we use the function of Carnap, if we are
totally innocent, it defaults that the event is partitioned into two parts(yes/no).

§2.5. Axioms and Reference Rules for Programs

∐︀𝑋 ∶= 𝑇 ̃︀𝜑 ∐︀𝑓, 𝑐̃︀⇔ 𝜑(︀𝑇 ⇑𝑋⌋︀ ∐︀𝑓, 𝑐̃︀

where 𝜑(︀𝑇 ⇑𝑋⌋︀ means the substitution of 𝑇 for 𝑋 in 𝜑.

Specially, to change the truth value of a statement ∐︀𝑋 ∶= 𝑇 ̃︀𝜑 ∐︀𝑋̃︀⇔ 𝜑 ∐︀𝑇 ̃︀

Convention:𝜑 ∐︀𝑓, 𝑐̃︀ in this subsection means the truth value 𝐹 of 𝜑 satisfies 𝐹 ≥
∐︀𝑓, 𝑐̃︀.

(︀𝑋 ∶=?⌋︀𝜑 ∐︀𝑓, 𝑐̃︀⇔ ∀𝑋𝜑 ∐︀𝑓, 𝑐̃︀
(︀𝜋⌋︀(𝜑⇒ 𝜓) ∐︀𝑓1, 𝑐1̃︀ ∧ (︀𝜋⌋︀𝜑 ∐︀𝑓2, 𝑐2̃︀⇒ (︀𝜋⌋︀𝜓 ∐︀𝐹𝑑𝑒𝑑̃︀
(︀𝜋⌋︀(𝜑 ∨ 𝜓) ∐︀𝑓1, 𝑐1̃︀ ∧ (︀𝜋⌋︀𝜑 ∐︀𝑓2, 𝑐2̃︀⇒ (︀𝜋⌋︀𝜓 ∐︀𝐹𝑑𝑖𝑓 ̃︀
(︀𝜋⌋︀𝜑 ∐︀𝑓1, 𝑐1̃︀ ∧ (︀𝜋⌋︀𝜑 ∐︀𝑓2, 𝑐2̃︀⇒ (︀𝜋⌋︀(𝜑 ∧ 𝜓) ∐︀𝐹𝑖𝑛𝑡̃︀
(︀𝜋1;𝜋2⌋︀𝜑 ∐︀𝑓, 𝑐̃︀⇔ (︀𝜋1⌋︀(︀𝜋2⌋︀𝜑 ∐︀𝑓, 𝑐̃︀
(︀𝜋1 ∪ 𝜋2⌋︀𝜑 ∐︀𝑓, 𝑐̃︀⇔ (︀𝜋1⌋︀𝜑 ∐︀𝑓, 𝑐̃︀ ∧ (︀𝜋2⌋︀𝜑 ∐︀𝑓, 𝑐̃︀
(︀𝜋1 ∩ 𝜋2⌋︀𝜑 ∐︀𝑓, 𝑐̃︀⇔ (︀𝜋1;𝜋2⌋︀𝜑 ∐︀𝑓, 𝑐̃︀ ∧ (︀𝜋2;𝜋1⌋︀𝜑 ∐︀𝑓, 𝑐̃︀
(︀𝜋∗⌋︀𝜑 ∐︀𝑓, 𝑐̃︀⇔ 𝜑 ∐︀𝑓, 𝑐̃︀ ∧ (︀𝜋⌋︀(︀𝜋∗⌋︀𝜑 ∐︀𝑓, 𝑐̃︀
(︀?𝜑 ∐︀𝑓, 𝑐̃︀⌋︀𝜓 ∐︀𝑓1, 𝑐1̃︀⇔ (𝜑 ∐︀𝑓, 𝑐̃︀⇒ 𝜓 ∐︀𝑓1, 𝑐1̃︀)
(︀𝜋∗⌋︀(𝜑 ∐︀𝑓, 𝑐̃︀⇒ (︀𝜋⌋︀𝜑 ∐︀𝑓, 𝑐̃︀)⇒ (𝜑 ∐︀𝑓, 𝑐̃︀⇒ (︀𝜋∗⌋︀𝜑 ∐︀𝑓, 𝑐̃︀)

∐︀𝑋 ∶=?̃︀𝜑 ∐︀𝑋̃︀
𝜈𝑋𝜑 ∐︀𝑋̃︀

∐︀𝑋 ∶=?̃︀𝜑
𝜈𝑋𝜑

Where 𝜈 is based on ≤ of ∐︀𝑓, 𝑐̃︀ defined in definition3.
To answer an question ?⇒ 𝜑, we search the candidate solutions of it on the level

of terms via the termize rule(Definition15).
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2 SYNTAX OF ANS

∐︀𝑋 ∶=?̃︀(𝑋 → {𝜑})
𝜈𝑋(𝑋 → {𝜑})

Where 𝜈 is based on ≤ of {𝜑∐︀𝑓, 𝑐̃︀} defined in definition18, so 𝜈𝑋(𝑋 → {𝜑})
should not be confused with 𝜈𝑋𝜑 because they are based on different ≤, the same
notation 𝜈 is used here only for simplicity. In fact, this is the formalization of choice
rule18.

𝜑⇒ (︀𝜋𝑛⌋︀𝜓 ∐︀𝑓, 𝑐̃︀ 𝑛 ∈ 𝜔
𝜑⇒ (︀𝜋∗⌋︀𝜓 ∐︀𝑓, 𝑐̃︀

Remark: Most of the programs are similar to those in DL, yet not all of them
can be eliminated by means of syntactic rewriting. The most important difference
is ∐︀𝑋 ∶=?̃︀, which is defined to determine how to choose the answers to questions.
So ∐︀𝑋 ∶=?̃︀𝜑 ⇔ ¬(︀𝑋 ∶=?⌋︀¬𝜑 do not hold in ANS, yet for the other programs 𝜋,
∐︀𝜋̃︀𝜑 ⇔ ¬(︀𝜋⌋︀¬𝜑 still holds. Besides, ∐︀𝑋 ∶=?̃︀ can still be compared with ∃𝑋𝜑.
Whenever ∃𝑋𝜑, the term which most probably satisfies 𝜑 in our KB should be
picked out.

§2.6. Axioms and Reference Rules for Updates

There is no free variables in the KB initially, if we want to execute abstract reasoning,
we need to turn to 𝑆 ∶=𝑋 for help.

{𝑆 ∶=𝑋}𝜑⇔ 𝜑(︀𝑋⇑𝑆⌋︀ (abstraction)

where 𝜑(︀𝑋⇑𝑆⌋︀ means the substitution of 𝑋 for 𝑆 in 𝜑. 𝑆 ∶= 𝑋 is the opposite of
𝑋 ∶= 𝑆, and we have ⊢ ∐︀𝑋 ∶= 𝑆̃︀{𝑆 ∶=𝑋}𝜑⇔ 𝜑.

{𝑇 ∶= 𝑆}𝜑 ∐︀𝑓, 𝑐̃︀
𝜑(︀𝑆⇑𝑇 ⌋︀ ∐︀𝑓, 𝑐̃︀
𝑇 ↔ 𝑆 ∐︀1,1̃︀

(name)

where 𝜑(︀𝑆⇑𝑇 ⌋︀ means the substitution of 𝑆 for 𝑇 in 𝜑 whenever 𝑇 occurs in 𝜑. 𝑇 ∶= 𝑆
can be regarded as a name operation.

Remark: The following is invalid. We can’t change the truth value by update
operators. Truth value can only be changed by programs, because real numbers are
rigid terms.

{𝑇 ∶= 𝑆}𝜑 ∐︀𝑇 ̃︀
𝜑 ∐︀𝑆̃︀
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{𝑇 ∶= �}𝜑 ∐︀𝑓, 𝑐̃︀
𝑇 ↔ � ∐︀1,1̃︀
{𝜑}↔ � ∐︀1,1̃︀

(delete)

whenever 𝑇 occurs in 𝜑.

� can be seen as a refuse container. Whenever an edge leading to �, the edge
(𝜑) together with the point (𝑇 ) can be abandoned.

From {𝑇 ∶= 𝑆} we have 𝑇 ↔ 𝑆, which means

{𝑇 ∶= 𝑆}𝑀 ↔𝑀
𝑇 ↔ 𝑆

However, from 𝑇 ∶→ 𝑆 we only get 𝑇 → 𝑆. So it can be seen as a weak name
operation. When {𝑇 ∶= 𝑆}𝜑 executed, all of the 𝑇 in 𝜑 should be replaced by 𝑆,
while {𝑇 ∶→ 𝑆}𝜑 executed, 𝜑 should be updated if 𝑇 → 𝑆 is a sub-formula of 𝜑.

{𝑇 ∶→ 𝑆}𝜑 ∐︀𝑓, 𝑐̃︀
𝑇 → 𝑆 ∐︀1,1̃︀

𝜑(︀𝑇 → 𝑆⌋︀ ∐︀−,−̃︀
(action)

Where 𝜑(︀𝑇 → 𝑆⌋︀ ∐︀−,−̃︀ means the truth value of 𝜑 is updated by 𝑇 → 𝑆 ∐︀1,1̃︀.

𝜑 ∐︀𝑓, 𝑐̃︀
∐︀𝑓, 𝑐̃︀ ≥ ∐︀𝑓, 𝑐̃︀

{𝜑≥∐︀𝑓,𝑐̃︀ → 𝑢1⇑𝑢2}𝜓
(condition)

{𝑢1}𝜓

𝜑 ∐︀𝑓, 𝑐̃︀
∐︀𝑓, 𝑐̃︀ < ∐︀𝑓, 𝑐̃︀

{𝜑≥∐︀𝑓,𝑐̃︀ → 𝑢1⇑𝑢2}𝜓
(condition)

{𝑢2}𝜓

The abstraction, name, delete, action and condition rules are given for the for-
mulas, in fact, the above rules for terms can be similarly treated. The compound
updates can be eliminated by means of syntactic rewriting, but the complicate cases
will be handled in section4, after section3 makes their semantics more clear.
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§3. Semantics of ANS

Formal semantics of a language should be formally defined in its meta-language.
The experience-grounded semantics can’t be formally figured out explicitly, from
the view of its whole lifespan, NAL can be seen as a total syntactic system, so is
ANS, both of whose meta-language are hard to figure out. Perhaps its semantics
is very hard to define because it is not one logic system, given the initial KB and
the exact time stamp of the input, there is one logic system, and the KB and the
input can be seen as axioms indexed by the time stamp at that exact moment.
However, when talking about semantics we can’t count the time flow in. However,
to distinguish a semantic level from the syntactic level, it is not impossible. But this
paper cannot solve this problem and can only put forward a semi-formal semantics,
according to which both of the logic part 𝑆 → 𝑃 and the “truth value” part ∐︀𝑓, 𝑐̃︀
are assumed to be syntactic, and the semantics of ANS is considered to consist
two inseparable part. The first part is a Kripke Structure which mainly takes care
of the programs and updates, and the second part is R which takes care of the
truth functions, so R is responsible for the operations of the frequency 𝑓 and the
confidence 𝑐. All of the truth functions can be easily explained in R, and all of the
reference rules, as well as the operators, are determined by the truth functions. But
what is the meaning of ⊧𝑡 𝑆 → 𝑃 ∐︀𝑓, 𝑐̃︀? It means we have reason to believe that 𝑆
is about 𝑓 part of 𝑃 to extent 𝑐 at time 𝑡, which cannot be explicitly represented in
a formal meta-language, so we assume it can be formalized by 𝑆 ⊂𝑡 𝑃 ∐︀𝑓, 𝑐̃︀. What
is the meaning of part of ? It may approximately be seen as subset relation, but the
degree of subset is determined by the truth function other than the elements of the
set.

Kripke Structures A Kripke Structure 𝒦 in this paper is a quadruple (𝐷,𝑀,𝑊,𝜌)
consisting of a non-empty domain 𝐷, a set 𝑆 of states, a set 𝑊 of variable assign-
ments, and a program relation 𝜌 such that:

• 𝐷 is a non-empty domain rich enough to contain 𝐾𝐵∗
0 , where 𝐾𝐵

∗
0 is the

closure of 𝐾𝐵0 under all of the term-formation operators, and 𝐾𝐵0 is the
initial Knowledge Base consisting all of the terms and relations between terms.
𝐾𝐵𝑡 may evolve with time flow but 𝐷 remains invariant, which means 𝐷
contains all of the terms that are conceivable and all of the terms that are
forgotten, and ⋃∞𝑡=0𝐾𝐵𝑡 ⊂𝐷.

• 𝑀 is a set of states, consisting of all interpretations 𝐼 that 𝐼(𝑆) ∈ 𝐷. Based
on the assumption of 𝐷, any term 𝑆 can be interpreted as itself just like in
the Henkin canonical model.

• 𝑊 is a set of variable assignment(possible worlds) 𝜎 that 𝜎(𝑋) ∈𝐷.
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𝜎(𝑆⇑𝑋)(𝑌 ) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑆 if 𝑋 = 𝑌
𝜎(𝑌 ) otherwise

• 𝜌 is a program relation that, for all 𝜎,𝜎′ ∈ 𝑊 and for any program 𝜋 ∈
𝑃𝑟𝑜𝑔L , (𝜎,𝜎′) ∈ 𝜌(𝜋) 𝑖𝑓𝑓 𝜋 started in 𝜎 and terminates in 𝜎′.

Given the formal language L , semantics of terms,formulas,programs and updates
also need to be mutually defined.

Semantics of Terms

Definition 19 (Sematntics of Terms). Given a Kripke structure 𝒦 = (𝐷,𝑀,𝑊,𝜌),
for every state 𝐼 ∈ 𝑀 and any variable assignment 𝜎 ∈ 𝑊 , the valuation function
𝑉𝐼,𝜎 for terms is inductively defined by:

𝑉𝐼,𝜎(�) = �
𝑉𝐼,𝜎(⊺) = ⊺
𝑉𝐼,𝜎(𝑋) = 𝜎(𝑋)
𝑉𝐼,𝜎(𝑆) = 𝐼(𝑆)
𝑉𝐼,𝜎({𝜑}) = {𝜑}, the other set operaters should be treated similarly.

𝑉𝐼,𝜎(𝜑 ∐︀𝑓, 𝑐̃︀→ 𝑇1⇑𝑇2) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑉𝐼,𝜎(𝑇1) if 𝐼, 𝜎 ⊧ 𝜑 ∐︀𝑓, 𝑐̃︀ and ∐︀𝑓, 𝑐̃︀ ≥ ∐︀𝑓, 𝑐̃︀
𝑉𝐼,𝜎(𝑇2) otherwise

where 𝑓, 𝑐 are system parameters

𝑉𝐼,𝜎(𝜈𝑋𝜑) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝐼(𝑆) if 𝐼, 𝜎(𝑆⇑𝑋) ⊧ 𝜑∐︀𝑓, 𝑐̃︀ & ∐︀𝑓, 𝑐̃︀ =max{∐︀𝑓, 𝑐̃︀ ∶ 𝐼, 𝜎(𝑇 ⇑𝑋) ⊧ 𝜑∐︀𝑓, 𝑐̃︀}
↑ otherwise

𝜇 is similar.

𝑉𝐼,𝜎({𝑢}𝑇 ) = 𝑉𝐼′,𝜎(𝑢)(𝑇 ) with 𝐼 ′ = 𝑉𝐼,𝜎(𝑢)(𝐼).

Semantics of Formulas Since R speaks for itself, and the necessary and sufficient
condition for the formulas are hard to figure out, we’ll only give some examples and
can’t help but pass over it.

Definition 20 (Semantics of Formulas). Given a Kripke structure 𝒦 = (𝐷,𝑀,𝑊,𝜌),
𝜋 ∈ 𝑃𝑟𝑜𝑔L , for every state 𝐼 ∈𝑀 and any variable assignment 𝜎 ∈ 𝑊 , the satisfia-
bility relation ⊧ for formulas is inductively defined by:

• 𝐼, 𝜎 ⊧𝑡 𝑆 → 𝑃 ∐︀𝑓, 𝑐̃︀ 𝑖𝑓𝑓 𝑆 ⊂𝑡 𝑃 ∐︀𝑓, 𝑐̃︀
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• 𝐼, 𝜎 ⊧𝑡 {𝜑}→ {𝜓} ∐︀𝑓, 𝑐̃︀ 𝑖𝑓𝑓 𝐼, 𝜎 ⊧𝑡 𝜑⇒ 𝜓 ∐︀𝑓, 𝑐̃︀

• 𝐼, 𝜎 ⊧𝑡+1 ¬𝜑 ∐︀1 − 𝑓, 𝑐̃︀ 𝑖𝑓 𝐼, 𝜎 ⊧𝑡 𝜑 ∐︀𝑓, 𝑐̃︀

• 𝐼, 𝜎 ⊧𝑡+1 𝜑 ∐︀1 − 𝑓, 𝑐̃︀ 𝑖𝑓 𝐼, 𝜎 ⊧𝑡 ¬𝜑 ∐︀𝑓, 𝑐̃︀

• 𝐼, 𝜎 ⊧𝑡+1 𝑇 → 𝑃 ∪𝑀 ∐︀−,−̃︀ 𝑖𝑓 𝐼, 𝜎 ⊧𝑡 𝑇 → 𝑃 ∐︀−,−̃︀ and 𝐼, 𝜎 ⊧𝑡 𝑇 →𝑀 ∐︀−,−̃︀.

• 𝐼, 𝜎 ⊧𝑡+1 𝜑 ∧ 𝜓 ∐︀−,−̃︀ 𝑖𝑓 𝐼, 𝜎 ⊧𝑡 𝜑 ∐︀−,−̃︀ and 𝐼, 𝜎 ⊧𝑡 𝜓 ∐︀−,−̃︀.

• 𝐼, 𝜎 ⊧𝑡 (︀𝜋⌋︀𝜑 ∐︀−,−̃︀ 𝑖𝑓𝑓 for every 𝜎′ ∈𝑊, (𝜎, 𝜎′) ∈ 𝜌(𝜋)⇒ 𝐼, 𝜎′ ⊧𝑡 𝜑 ∐︀−,−̃︀.

• 𝐼, 𝜎𝑡 ⊧ {𝑢}𝜑 ∐︀−,−̃︀ 𝑖𝑓𝑓 𝐼 ′, 𝜎 ⊧𝑡 𝜑 ∐︀−,−̃︀ with 𝐼 ′ = 𝑉𝐼,𝜎(𝑢)(𝐼).

• ⋯⋯

A general Tarski semantic flavour can be tasted if we ignore the time 𝑡 in some
of the above examples, but not all of the formulas can be explicitly analyzed to be
given the semantic necessary and sufficient condition.

Semantics of Programs

Definition 21 (Semantics of Programs). Given a Kripke structure 𝒦 =
(𝐷,𝑀,𝑊,𝜌), 𝜋 ∈ 𝑃𝑟𝑜𝑔L , for every state 𝐼 ∈𝑀 and any variable assignment 𝜎 ∈𝑊 ,
the program relation 𝜌 for programs is inductively defined by:

• 𝜌(𝑋 ∶= 𝑇 ) = {(𝜎,𝜎(𝑉𝐼,𝜎(𝑇 )⇑𝑋) ∶ 𝜎 ∈𝑊}

• 𝜌(𝑋 ∶=?) = {(𝜎,𝜎(𝑆⇑𝑋)) ∶ 𝑆 ∈𝐾𝐵𝑡}

• 𝜌(?𝜑) = {(𝜎,𝜎) ∶ 𝐼, 𝜎 ⊧ 𝜑}

• 𝜌(𝜋1;𝜋2) = 𝜌(𝜋1) ○ 𝜌(𝜋2) =𝑑𝑓 {(𝜎1, 𝜎2) ∶ ∃𝜎 ((𝜎1, 𝜎) ∈ 𝜌(𝜋1) & (𝜎,𝜎2) ∈ 𝜌(𝜋2))}

• 𝜌(𝜋1 ∪ 𝜋2) = 𝜌(𝜋1) ∪ 𝜌(𝜋2)

• 𝜌(𝜋1 ∩ 𝜋2) = 𝜌(𝜋1;𝑝2) ∩ 𝜌(𝜋2;𝑝1)

• 𝜌(𝜋∗) = ⋃𝑖≥0 𝜌(𝜋𝑛) with 𝜌(𝜋0) = 𝐼𝑑 and 𝜌(𝜋𝑛+1) = 𝜌(𝜋𝑛) ○ 𝜌(𝜋).

Semantics of Updates A valuation of an update is a mapping from a term to
another term 𝑇 ↦ 𝑇 ′ or as a set 𝑈 of ordered pair (𝑇,𝑇 ′).

Definition 22. A modification 𝐼 ′ of 𝐼 can be defined as follows:

𝐼 ′(𝑇 ) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑇 ′ if (𝑇,𝑇 ′) ∈ 𝑈
𝐼(𝑇 ) otherwise.

or it can be defined as follows:
for any (partial) function 𝑓, 𝑔 ∶ 𝐴 → 𝐵, 𝑓 ⊕ 𝑔 =𝑑𝑓 (𝑓 ↾ (𝑑𝑜𝑚(𝑓) ∖ 𝑑𝑜𝑚(𝑔))) ∪ 𝑔, then
𝐼 ′ = 𝐼 ⊕𝑈 .
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Definition 23 (Semantics of Updates). Given a Kripke structure 𝒦 = (𝐷,𝑀,𝑊,𝜌),
𝜋 ∈ 𝑃𝑟𝑜𝑔L , for every state 𝐼 ∈𝑀 and any variable assignment 𝜎 ∈𝑊 , the valuation
function 𝑉𝐼,𝜎(𝑢) for updates is inductively defined by:

• 𝑉𝐼,𝜎(𝑆 ∶=𝑋) = {(𝐼(𝑆), 𝜎(𝑋))}

• 𝑉𝐼,𝜎(𝑇 ∶= 𝑆) = {(𝐼(𝑇 ), 𝐼(𝑆))} ∪ {(∅,{𝑇 ↔ 𝑆})}

• 𝑉𝐼,𝜎(𝑇 ∶= �) = {(𝐼(𝑇 ), 𝐼(�))} ∪ {(∅,{𝑇 ↔ �})}

• 𝑉𝐼,𝜎(𝑇 ∶→ 𝑆) = {(∅,{𝑇 → 𝑆})}

• 𝑉𝐼,𝜎(𝑢1;𝑢2) = 𝑉𝐼,𝜎(𝑢1)⊕ 𝑉𝐼′,𝜎(𝑢2) with 𝐼 ′ = 𝑉𝐼,𝜎(𝑢1)(𝐼) =𝑑𝑓 𝐼 ⊕ 𝑉𝐼,𝜎(𝑢1)

• 𝑉𝐼,𝜎(𝑢1∏︁𝑢2) = 𝑉𝐼,𝜎(𝑢1)⊕ 𝑉𝐼,𝜎(𝑢2)

•

𝑉𝐼,𝜎(𝜑≥∐︀𝑓,𝑐̃︀ → 𝑢1⇑𝑢2) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑉𝐼,𝜎(𝑢1) if 𝐼, 𝜎 ⊧ 𝜑 ∐︀𝑓, 𝑐̃︀ and ∐︀𝑓, 𝑐̃︀ ≥ ∐︀𝑓, 𝑐̃︀
𝑉𝐼,𝜎(𝑢2) otherwise

•

𝑉𝐼,𝜎((∀𝑋𝜑)𝑢) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

⋃{𝑓(𝑆) ∶ 𝐼, 𝜎(𝑆⇑𝑋) ⊧ 𝜑} if there exists 𝑆, 𝐼, 𝜎(𝑆⇑𝑋) ⊧ 𝜑
𝐼 otherwise

with 𝑓(𝑆) recursively defined as 𝑓(𝑆) = 𝑉𝐼,𝜎(𝑆⇑𝑋)(𝑢) ⊕ ⋃{𝑓(𝑆′) ∶ 𝑆′ ≤𝜑
𝑆 & 𝐼, 𝜎(𝑆′⇑𝑋) ⊧ 𝜑 ∐︀𝑓 ′, 𝑐′̃︀}, assuming {𝑆 ∶ 𝐼, 𝜎(𝑆⇑𝑋) ⊧ 𝜑} is well ordered
by ≤𝜑 corresponding to definition3.

• 𝑉𝐼,𝜎({𝑢1}𝑢2) = 𝑉𝐼′,𝜎(𝑢2) with 𝐼 ′ = 𝑉𝐼,𝜎(𝑢1)(𝐼)

§4. ANS Reduction

§4.1. Axioms and Reference Rules for Updates(Continued)

Definition 24.

𝑢1 ≡ 𝑢2 𝑖𝑓𝑓 for any 𝐼 ∈𝑀,𝜎 ∈𝑊,𝑉𝐼,𝜎(𝑢1) = 𝑉𝐼,𝜎(𝑢2)
𝑢1 ≡′ 𝑢2 𝑖𝑓𝑓 for any 𝐼 ∈𝑀,𝜎 ∈𝑊,𝐼 ⊕ 𝑉𝐼,𝜎(𝑢1) = 𝐼 ⊕ 𝑉𝐼,𝜎(𝑢2)
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Theorem 5. For 𝛼 ∈ 𝑇𝑒𝑟𝑚L ∪ 𝐹𝑜𝑟𝑚L ∪𝑈𝑝𝑑𝑡L , we have,
𝑢 ≡′ 𝑢′⇒ {𝑢}𝛼 ≡ {𝑢′}𝛼
{𝑢2}({𝑢1}𝛼) ≡ {𝑢1;𝑢2}𝛼
𝑢1; (𝑢2;𝑢3) ≡ (𝑢1;𝑢2);𝑢3
𝑢1∏︁(𝑢2∏︁𝑢3) ≡ (𝑢1∏︁𝑢2)∏︁𝑢3
𝜑→ (𝑢1∏︁𝑢2)⇑𝑢3 ≡ (𝜑→ 𝑢1⇑𝑢3)∏︁(𝜑→ 𝑢2⇑𝑢3)
𝜑→ 𝑢1⇑(𝑢2∏︁𝑢3) ≡ (𝜑→ 𝑢1⇑𝑢2)∏︁(𝜑→ 𝑢1⇑𝑢3)
(∀𝑋𝜑)(𝜓 → 𝑢1⇑𝑢2) ≡ 𝜓 → ((∀𝑋𝜑)𝑢1)⇑((∀𝑋𝜑)𝑢2) for 𝑋 ∉ 𝐹𝑣(𝜓)

There are lots of propositions like these that can be proved valid by checking
their semantics. We will write down a sequence of valid formulas in the proof of
the following theorems without details. The theorems themselves can be used as
reduction axioms. Actually, the following theorems need to be put together as a
package to be proved mutually rather than to be proved separately, but we break
them into several sub-theorems.

Definition 25 (indom). The two value (∐︀1,1̃︀𝑜𝑟∐︀0,0̃︀) term 𝑖𝑛𝑑𝑜𝑚 can be inductive-
ly defined in the language of ANS, but here we will not give the details. Its general
meaning is {𝑀}×{𝑢}→ 𝑖𝑛𝑑𝑜𝑚 𝑖𝑓𝑓 the term of 𝑀 and the term on the left of ∶= or
∶→ in 𝑢 coincide with each other.

Applying Updates to Terms and Formulas

Theorem 6. The parallel update before terms and formulas can be eliminated.

Proof.

{𝑢1∏︁𝑢2}𝑇 ↔ (({𝑇} × {𝑢2}→ 𝑖𝑛𝑑𝑜𝑚)≥∐︀𝑓,𝑐̃︀ → {𝑢2}𝑇 ⇑{𝑢1}𝑇 ) (parallel)

Updates for formulas and updates for terms are similar.

Applying Updates to Programs How do an update operator affect a programs?
Can a program be updated other than rewritten to adapt to the changing environ-
ment?
Define 𝜋1 ≡ 𝜋2 𝑖𝑓𝑓 ∐︀𝜋1̃︀𝜑⇔ ∐︀𝜋2̃︀𝜑 for any 𝜑.

Theorem 7. Updates before all of the programs except 𝑋 ∶=? can be eliminated.

Proof. {𝑢}∐︀𝑋 ∶= 𝑇 ̃︀ ≡ ∐︀𝑋 ∶= {𝑢}𝑇 ̃︀
{𝑢}∐︀?𝜑̃︀ ≡ ∐︀?{𝑢}𝜑̃︀
{𝑢}∐︀𝜋1 ▽ 𝜋2̃︀ ≡ ∐︀{𝑢}𝜋1 ∗ {𝑢}𝜋2̃︀,▽ ∈ {; ,∪,∩}
{𝑢}∐︀𝜋∗̃︀ ≡ ∐︀({𝑢}𝜋)∗̃︀
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Applying Updates to Updates

Theorem 8. The update application operator {𝑢1}𝑢2, the quantified update operator
(∀𝑋𝜑)𝑢 and the sequential update operator 𝑢1;𝑢2 can be eliminated.

Proof.

𝑢1;𝑢2 ≡ 𝑢1∏︁{𝑢1}𝑢2 (sequential)

(∀𝑋𝜑)𝑢 ≡ 𝑢(︀𝜈𝑋𝜑⇑𝑋⌋︀∏︁⋯∏︁𝑢(︀𝜇𝑋𝜑⇑𝑋⌋︀ (quantified)

{𝑢}𝑆 ∶=𝑋 ≡ 𝑆 ∶= {𝑢}𝑋
{𝑢}𝑇 ∶= 𝑆 ≡ 𝑇 ∶= {𝑢}𝑆
{𝑢}𝑇 ∶= � ≡ 𝑇 ∶= {𝑢}�
{𝑢}𝑇 ∶→ 𝑆 ≡ 𝑇 ∶→ {𝑢}𝑆
{𝑢}(𝑢1∏︁𝑢2) ≡ {𝑢}𝑢1∏︁{𝑢}𝑢2
{𝑢}(𝜑→ 𝑢1⇑𝑢2) ≡ {𝑢}𝜑→ {𝑢}𝑢1⇑{𝑢}𝑢2
{𝑢}((∀𝑋𝜑)𝑢′) ≡ (∀𝑋{𝑢}𝜑){𝑢}𝑢′ 𝑓𝑜𝑟 𝑋 ∉ 𝐹𝑣(𝑢)

All of the above valid formulas in theorem6, theorem7, theorem8 can be used
as reduction axioms to eliminate update operators, and every occurrence of the
compound update operators can be eliminated, just like in [P.Rümmer06].

§4.2. Applications

Several examples are given as follows. From them it can be seen how the update
operators help us to cognitively understand the respective problems.

Example1(Pattern Classification): What is a table? It consists three or four
legs(𝜑1); it is hard enough to sustain a man(𝜑2); it is made of wood or metal(𝜑3); it
is ⋯(𝜑4,⋯)

We put together all of the properties of table ⋀𝑖 𝜑𝑖(𝑡𝑎𝑏𝑙𝑒). Now we observe
something 𝑆 has property 𝜓. How to tell if 𝑆 is a table or not?

{∀𝑋({𝑆 ∶=𝑋}𝜓⇔ {𝑡𝑎𝑏𝑙𝑒 ∶=𝑋}⋀
𝑖

𝜑𝑖)→ (𝑆 ∶→ 𝑡𝑎𝑏𝑙𝑒)⇑(𝑆 ∶= 𝑆)}𝑀 ↔𝑀

Example2(Theory): What is a group? After we find some of the operations
(𝜑) of + over Z, for example, identity, associativity, invertibility, are very interesting,
maybe we would like to give it a weak name {𝜑} ∶→ 𝑔𝑟𝑜𝑢𝑝, after observing that some
operations (𝜑) of + over Z and some operations (𝜓) of × over Z∖{0} are quite similar,

we abstract every constant terms (
Ð→
𝑆 ) of them {

Ð→
𝑆 ∶=

Ð→
𝑋}𝜑,{

Ð→
𝑆 ∶=

Ð→
𝑋}𝜓, then we find

they are absolutely the same ting ∀
Ð→
𝑋({

Ð→
𝑆 ∶=

Ð→
𝑋}𝜑 ⇔ {

Ð→
𝑆 ∶=

Ð→
𝑋}𝜓) ∐︀1,1̃︀, we give

it a strong name {{
Ð→
𝑆 ∶=

Ð→
𝑋}𝜑} ∶= 𝑔𝑟𝑜𝑢𝑝. After that, we found a theory, namely,

group theory, i.e. {
Ð→
𝑆 ∶=

Ð→
𝑋}𝜑. By {

Ð→
𝑆 ∶=

Ð→
𝑋}𝜑 we can deduce some statement 𝛾,
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{
Ð→
𝑆 ∶=

Ð→
𝑋}𝜑 ⇒ 𝛾 ∐︀1,1̃︀, then we know {𝜓} → {𝛾} and 𝜓 ⇒ 𝛾. Someday when we

recognize the operations (𝛿) of + over Matrix is also a group, {𝛿}→ 𝑔𝑟𝑜𝑢𝑝, then we
know 𝛿⇒ 𝛾 immediately.

Example3(Categoricity): A Cognitive Interpretation of Non-standard Mod-
els. What is cardinal number? Is the abstract mathematical concept generated from
experience? Can we capture it uniquely? According to Russell, the cardinality of 𝑋
is the class (︀𝑋⌋︀ of all sets that are equinumerous with 𝑋. In ANS, what is 3? Rus-
sell’s definition can be understood as that, between all the terms 𝑋 which consist
of only three parts as well as all the formulas 𝑌 which character three edges and
the cardinal number 3, there is an arrow →, i.e. 𝑋 ∪ 𝑌 → 3. But 3 is a weak name
given by ∶→. When there is a new term 𝑀 inputted, is 𝑀 → 3 ∐︀1,1̃︀ or not? We
can’t tell! Because there is no unique semantic explanation for 3! We can’t exclude
that 𝑀 has another property (𝜓) that is same as some common property of 𝑋 ∪ 𝑌 .
This is the “Caesar problem”. Just like PA admits non-standard models because of
Compactness theorem. In our daily communication, once we find the agent mistakes
𝜓 with 3 in our mind, we can force him to distinguish them by teaching him another
term 𝑁 which consists of three parts but without property 𝜓. However, we can’t
excluded the potential “Caesars” once and for all. So it is hard, if not impossible, to
figure out a rigorous name {𝜑} for 3 like in the above example to make sure we can
make an explicit definition by {𝜑} ∶= 3. Cardinal numbers had better to be defined
from an meta-level, in other words, implicitly defined by axioms.

Example4(Context/Localization): Are whales fish? It all depends. In biolo-
gy, they are not. In daily life, average people take for granted that they are fish. But
how to distinguish the context biology from daily life? First of all, what is biology?
It is a science composed of a set of statements(Γ), {Γ} ∶→ 𝑏𝑖𝑜𝑙𝑜𝑔𝑦, then we have
{Γ} → 𝑏𝑖𝑜𝑙𝑜𝑔𝑦 ∐︀1,1̃︀ and 𝑏𝑖𝑜𝑙𝑜𝑔𝑦 → {Γ} ∐︀1,1⇑(1 + 𝑘)̃︀ by conversion. In daily life,
we talk about something 𝜑(︀𝑤ℎ𝑎𝑙𝑒⌋︀ about whale. When we want to emphasize the
context of biology, what should we do? Can we find a way to talk about 𝑤ℎ𝑎𝑙𝑒𝑏𝑖𝑜
instead of 𝑤ℎ𝑎𝑙𝑒?

{𝑤ℎ𝑎𝑙𝑒 ∶=𝑋}𝜑
⇓

∐︀𝑋 ∶= (Γ∐︀1,1⇑(1 + 𝑘)̃︀→ 𝑤ℎ𝑎𝑙𝑒𝑏𝑖𝑜⇑𝑤ℎ𝑎𝑙𝑒)̃︀{𝑤ℎ𝑎𝑙𝑒 ∶=𝑋}𝜑
⇓

𝜑(︀(Γ∐︀1,1⇑(1 + 𝑘)̃︀→ 𝑤ℎ𝑎𝑙𝑒𝑏𝑖𝑜⇑𝑤ℎ𝑎𝑙𝑒̃︀)⇑𝑤ℎ𝑎𝑙𝑒⌋︀

What’s the meaning of Γ∐︀1,1⇑(1 + 𝑘)̃︀→ 𝑤ℎ𝑎𝑙𝑒𝑏𝑖𝑜⇑𝑤ℎ𝑎𝑙𝑒̃︀ in 𝜑?

𝜓(︀𝜑 ∐︀𝑓, 𝑐̃︀→ 𝑇1⇑𝑇2⌋︀
⇕

(𝜑 ∐︀𝑓, 𝑐̃︀ ∧ ∐︀𝑓, 𝑐̃︀ ≥ ∐︀𝑓, 𝑐̃︀⇒ 𝜓(︀𝑇1⌋︀) ∧ (¬(𝜑 ∐︀𝑓, 𝑐̃︀ ∧ (∐︀𝑓, 𝑐̃︀ ≥ ∐︀𝑓, 𝑐̃︀))⇒ 𝜓(︀𝑇2⌋︀)

At last, if the context is strong, namely, ∐︀1,1⇑(1 + 𝑘)̃︀ ≥ ∐︀𝑓, 𝑐̃︀ then we talk about
𝑤ℎ𝑎𝑙𝑒𝑏𝑖𝑜 in biology rather than 𝑤ℎ𝑎𝑙𝑒 in daily life.
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If the context can be depicted by a formula 𝜑 directly rather than indexed by
some term like 𝑏𝑖𝑜𝑙𝑜𝑔𝑦, and the truth value of the context 𝜑 ∐︀𝑓, 𝑐̃︀ is not very high,
but we still want to emphasize the context, what should we do? We can change the
truth value high for the moment and change it back later.

∐︀𝑋 ∶= ∐︀1,1̃︀̃︀{𝐹 ∶=𝑋}𝜑 ∐︀𝐹 ̃︀

To save the resources, most of the time, the extension and intension reference
should not be executed unless necessary. Once we want to consider the extension
or intension aspect of the case, we localize a big enough context, within which we
make the distinction.

§5. Conclusion and Further Research

A variation (ANS) of Pei Wang’s NAL is given. Some interesting update operators
are introduced to make Pei Wang’s self-monitor and self-control idea possible.
Further work need to be done. For example,

• Formalize other self-monitor and self-control ideas in Pei Wang[P.Wang12].

• Study the interactions between the programs and the updates. Especially,
how can a compound program be abstracted to a macro? How to found a
theory through programs and then apply it on the level of KB? Namely, how
to achieve more intelligence by self-programming?

• Compliment the reference rules, and make the semantics complete. Define and
prove the soundness of ANS.

• Programming ANS.

Acknowledgments Thanks Pei Wang for teaching me every detail of his NAL for
half an year and for lots of invaluable discussions.
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[Beckert,Hähnle,Schmitt07] Verification of Object-Oriented Software. Springer-Verlag
Berlin Heidelberg, 2007.

[D.Harel,D.Kozen,J.Tiuryn00] Dynamic Logic. Foundations of Computing. The MIT
Press, Cambridge, Massachusetts, 2000.
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