
basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

A Introduction to the Complexity of Sets

Nan Fang

Department of Philosophy, Peking University
2013.11.26

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

1 basic concepts
Partial computable functions
Computably enumerable sets
Indices and approximations

2 relative computational complexity
many-one reducibility
Turing reducibility
approximating the functionals Φe, and the use principle
weak truth-table reducibility and truth-table reducibility
degree structures

3 absolute computational complexity
Sets that are lown
Sets that are highn

4 descriptive complexity
The arithmetical hierarchy
The Limit Lemma and difference hierarchy

5 Post’s problem

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

Partial computable functions

Definition

Let φ be a function with domain a subset of Nk and range a
subset of N. We say that φ is partial computable if there is a
Turing program P with k input tapes such that
φ(x0, . . . , xk−1) = y iff P on inputs x0, . . . , xk−1 outputs y. We
say that φ is computable if φ is partial computable and the
domain of φ is Nk .

Fix k and an effective listing of the Turing programs for k
inputs. Let Pk

e be the program for k inputs given by the e-th
program. Let Φk

e denote the partial computable function
with k arguments given by Pk

e . If Φ = Φk
e then e is called

an index for Φ. Instead of Φ1
e we write Φe.

(Parameter Theorem, Padding Lemma, Uniformity,
Recursion Theorem, Recursion Theorem with Parameters)

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

Computably enumerable sets

Definition
We say a set A ⊆N is computably enumerable (c.e.) if A is the
domain of some partial computable function.

Definition
A is called computable if its characteristic function is
computable; otherwise A is called incomputable.

Proposition
A is computable⇔ A and N − A are c.e.

halting problem: ∅′ = {e : e ∈We}

Proposition
The set ∅′ is c.e. but not computable

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

Indices and approcimations

We write Φe,s(x) = y if e, x , y < s and the computation of
program Pe on input x yields y in at most s computation
steps.
Let D0 = ∅ . If n > 0 has the form 2x1 + 2x2 + ...+ 2xr ,
where x1 < ... < xr , then let Dn = x1, ..., xr . We say that n is
a strong index for Dn.
A computable enumeration of a set A is an effective
sequence (As)s∈N of finite sets such that As ⊆ As+1 for
each s, and A =

⋃
s As

Each c.e. set We has the computable enumeration (We,s)s∈N.
Conversely, if A has a computable enumeration then A is c.e..

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

many-one reducibility

relative computational complexity of a set A is measured by
comparing A to other sets via preorderings called reducibilities.
many-one reducibility is one of the simplest examples of a
reducibility.

Definition
X is many-one reducible to Y , denoted X ≤m Y , if there is a
computable function f such that n ∈ X ↔ f(n) ∈ Y for all n.

Proposition
A is c.e. ⇔ A ≤m ∅

′

Definition
A c.e. set C is called r − complete if A ≤m C for each c.e. set
A .A c.e. set C is called r − complete if A ≤m C for each c.e. set
A .

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

Turing reducibility

Many-one reducibility is too restricted to serve as an
appropriate measure for the relative computational complexity
of sets. So we introduced the Turing machine with an oracle
tape.
We will extend the definition of the basic concepts to oracle
Turing machines. Now we view the effective listing (Φe)e∈N as a
listing of partial functions depending on two arguments, the
oracle set and the input.

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

Turing reducibility

Definition
A total function f : N 7→ N is called Turing reducible to Y , or
computable in Y , if there is an e such that f = ΦY

e . We denote
this by f ≤T Y . For a set A, we write A ≤T Y if the characteristic
function of A is Turing reducible to Y.A total function f : N 7→ N
is called Turing reducible to Y , or computable in Y , if there is an
e such that f = ΦY

e . We denote this by f ≤T Y . For a set A, we
write A ≤T Y if the characteristic function of A is Turing
reducible to Y.

≤m and ≤T are preorderings of the subsets of N.
A is c.e. in Y if A = WY

e for some e.
A is computable in Y ⇔ A and N − A are c.e. in Y .

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

Jump operator

Definition

We write JY (e) ' ΦY
e (e). The set Y ′ = dom(JY) is the Turing

jump of Y.

Proposition
A is c.e. in Y ⇔ A ≤m Y ′

Proposition
For each Y, the set Y ′ is c.e. in Y. And Y <T Y ′.

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

Jump operator

Definition

We define Y (n) inductively by Y (0) = Y and Y (n+1) = (Y (n))′.
Thus Y <T Y (1) <T Y (2) <T

Proposition
For each Y,Z, we hace Y ≤T Z ⇔ Y ′ ≤m Z ′.

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

approximating the functionals Φe, and the use principle

Definition

We write ΦY
e,s(x) = y if e, x , y < s and the computation of

program Pe on input x yields y in at most s computation steps,
with all oracle queries less than s. And we let
WY

e,s = dom(ΦY
e,s).

Proposition (use principle)
a terminating oracle computation only asks finitely many oracle
questions. Hence (ΦY

e,s)s∈N approximates ΦY
e , namely,

ΦY
e (x) = y ↔ ∃sΦY

e,s = y (1)

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

approximating the functionals Φe, and the use principle

Definition

the use of ΦY
e (x), denoted useΦY

e (x), is defined if ΦY
e (x) ↓ , in

which case its value is 1+the largest oracle query asked during
this computation (and 1 if no question is asked at all). Similarly,
useΦY

e,s(x) is 1+the largest oracle question asked up to stage s.

We write Φσ
e(x) = y if ΦF

e (x) yields the output y, where
F = i < |σ| : σ(i) = 1, and the use is at most |σ|, and Φσ

e(x) ↑ if
there is no such y. Then for each set Y,

ΦY
e (x) = y ↔ ΦY�u

e (x) = y , (2)

where u = useΦY
e (x).

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

weak truth-table reducibility

In the Turing reduction, the use function is unbounded and may
grow very quickly. So when we bound the use function we can
get stronger reducibilities.

Definition
A function f : N 7→ N is weak truth-table reducible to Y, denoted
f ≤wtt Y , if there is Φe and a computable bound r such that
f = ΦY

e and ∀n useΦY
e (n) ≤ r(n). For a set A, we write A ≤wtt Y

if the characteristic function of A is weak truth-table reducible to
Y .

It may happen that f ≤wtt Y via Φe and r such that ΦZ
e is not

total function for some oracle Z , Y . So there is a stronger
reducibility.

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

truth-table reducibility

Definition
A function f : N 7→ N is truth-table reducible to Y , denoted
f ≤tt Y , if there is Φe such that f = ΦY

e and ΦZ
e is total for each

oracle Z. For a set A, we write A ≤tt Y if the characteristic
function of A is truth-table reducible to Y.

A truth table is a finite boolean combination of the atomic
formulas “n ∈ X", for n ∈ N. Let σnn∈N be an effective list of all
truth tables.

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

truth-table reducibility

Proposition
X ≤tt Y ⇔ there is a computale function f such that for all n,
n ∈ X ↔ Y � σf(x).

Proposition
X ≤tt⇒ X ≤wtt Y.

Clearly, there are implications between our reducibilities:
≤m⇒≤tt⇒≤wtt⇒≤T .

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

degree structures

As we already known that the previous redicibilities are
preorderings. For a reducibility ≤r we can give a equivalence
relation by X ≡r Y ↔ X ≤r Y ≤r X . The equivalence classes
are called r-degrees. Then the r-degrees form a partial order
denoted by Dr .

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

absolute computational complexity

A hierarchy of absolute computational complexity is abtained by
considering C(n) within the Turing degrees, for n ≥ 0. Note that
C(n)

≥T ∅
(n).

A lowness property of a set specifies a sense in which the set is
computationally weak. Usually this means that it is not very
useful as an oracle. While a highness property says that the set
is computationally strong.

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

Sets that are lown

Definition

Let n ≥ 0. We say that C is lown if C(n)
≡T ∅

(n). The low1 sets
are called low.

By the note above, for a set C to be lown it suffices to require
that C(n)

≤T ∅
(n).

As C(n)
≤T ∅

(n)
⇔ C(n+1)

≤m ∅
(n+1)

⇒ C(n+1)
≤T ∅

(n+1). We
have the following hierarchy:

computable ⊆ low1 ⊆ low2 ⊆ ... ⊆ {Z : Z �T ∅
′
} (3)

Actually, it is a proper hierarchy.
(some other lowness properties: superlow, generalized
lown(GLn), computably dominated)

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

Sets that are highn

Definition

Let n ≥ 0. A set C is highn if ∅(n+1)
≤ C(n).

As ∅(n+1)
≤ C(n)

⇒ ∅
(n+2)

≤ C(n+1), we have highn ⊆ highn+1.
And we can easily show that for any m,n ∈ N,
C ∈ lown ⇒ C < highm.
Let non − highn denotes the complementary of highn, we can
refine the hierarchy above as following:

computable ⊆ low1 ⊆ low2 ⊆ ...
⊆ non − high2 ⊆ non − high1 ⊆ {Z : Z �T ∅

′
}

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

The arithmetical hierarchy

Definition
1 A is Σ0

n if there is a computable relation R(x , y1, ..., yn) such
that x ∈ A ↔ ∃y1∀y2...QynR(x , y1, ..., yn), where Q is ∃ if n
is odd and ∀ if n is even.

2 A is Π0
n if there is a computable relation R(x , y1, ..., yn) such

that x ∈ A ↔ ∀y1∃y2...QynR(x , y1, ..., yn), where Q is ∀ if n
is odd and ∃ if n is even.

3 A is ∆0
n if A is both Σ0

n and Π0
n.

It is easy to see that A is Π0
n ⇔ A is Σ0

n.

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

The arithmetical hierarchy

Proposition

A is Σ0
1 ⇔ A is c.e.

A is Σ0
n ⇔ A is c.e. in ∅(n−1)

For n ≥ 1. A is ∆0
n ⇔ A ≤T ∅

(n−1).

There is a arithmetical hierarchy as following:

⊂ Σ0
1 ⊂ ⊂ Σ0

2 ⊂ ⊂

∆0
1 ∆0

2 ∆0
3 . . .

⊂ Π0
1 ⊂ ⊂ Π0

2 ⊂ ⊂

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

The Limit Lemma

Theorem (Limit Lemma, Shoenfield)

For a set Z, we have Z is ∆0
2 iff there is a computable binary

function g such that, for all n,
(1) limsg(n, s) exists (i.e. |{s : g(n, s) , g(n, s + 1)}| < ∞), and
(2) Z(n) = limsg(n, s).

Actually, we can view g(n, s)s∈N as a list of set Zs(n), then
Z(n) = limsZs(n). We say that Zss∈N is a computable
approximation of Z .

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

Difference hierarchy

For a ∆0
2 set, every number n change finite many times in its

computabel approximation, but not bounded. When we bound
it, we can get an other hierarchy, that’s the difference hierarchy.

Definition
A set Z is ω − c.e. if there is a computable approximation Zss∈N
of Z and a computable function b such that
|{s : Zs(n) , Zs+1(n)}| ≤ b(n) for each n ∈ N.

If the function can be chosen constant of value n, then we say Z
is n-c.e..
Obviously, Z is 1-c.e. iff Z is c.e.. And the difference hierarchy is

computable ⊂ c.e. ⊂ 2−c.e. ⊂ 3−c.e. ⊂ ... ⊂ ω−c.e. ⊂ ∆0
2. (4)

This is also proper.

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

Post’s problem

In 1944, Post observed that all computably enumerable
problems known at the time were either computable or of Turing
degree ∅′. He asked the following question.

Post’s Problem: Does there exist a c.e. set A such that
∅ <T A <T ∅

′.
It took 12 years to answer his question. Kleene and Post (1954)
made a first step by building a pair of Truing incomparable
∆0

2-sets, that is a pair of sets Y ,Z ≤T ∅
′ such that Y �T Z and

Z �T Y . To do so they introduced the method of finite
extentions. Post’s question was finally answered in the
affirmative by Friedberg(1957) and Muchnik (1956)
independently. They built a pair of Turing incomparable sets
that are also computably enumerable. Their proof technique is
nowadays called the priority method with finite injury.

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

Post’s problem

But the solution by Friedberg and Muchnik is far from being
natural. It depends on the particular choice of a universal
Turing program. In computability theory a natural class of sets
should be closed under computable permutations. We want to
find a natural Post property which is a property of c.e. sets
which is satisfied by some incomputable set and implies Turing
incompleteness. Several people have found some Post
properties but all are not natural and depend on our particular
version of the universal Turing program. Any reasonable
solution W to Post’s problem should be relativizable to an
oracle set X , so one would expect that X <T WX <T X ′ for
each X . If the solution does not depend on the choice of the
universal program, it should also be degree invariant: if
X ≡T Y , then WX

≡T WY . The existence of such a degree
invariant solution to Post’s problem is a long-standing open
question posed by Sacks (1963).

basic concepts relative computational complexity absolute computational complexity descriptive complexity Post’s problem

References

Odifreddi. P. G. Classical Recursion Theory.
North-Holland, 1989.
Nies, Andre. Computability and Randomness. Oxford:
Oxford UP, 2009.
Downey, Ronald G., and Denis R. Hirschfeldt. Algorithmic
Randomness and Complexity. Springer, 2010.

	basic concepts
	Partial computable functions
	Computably enumerable sets
	Indices and approximations

	relative computational complexity
	many-one reducibility
	Turing reducibility
	approximating the functionals e, and the use principle
	weak truth-table reducibility and truth-table reducibility
	degree structures

	absolute computational complexity
	Sets that are lown
	Sets that are highn

	descriptive complexity
	The arithmetical hierarchy
	The Limit Lemma and difference hierarchy

	Post's problem

