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Processes as arrows

I Everything changes in the perceivable world. Nothing is static
and permanent.

I A change f from object A to object B can be represented as

A
f
−→ B

We only care about the change f itself, neither the
constituents of the source object A nor the the constituents of
the target object B.

I A change is also called a process.
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Sequential composition of processes

I Two processes can happen in a time order:

A
f
−→ B

g
−→ C

I We then have a composite process g ◦ f which means first
happend the process f then the process g:

(A
g◦f
−→ C) = (A

f
−→ B

g
−→ C)

We have to use brackets here to avoid confusion as follows:

A
g◦f
−→ C = A

f
−→ B

g
−→ C
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Associativity

I Finite sequential composition makes sense without brackets:

A1
f1
−→ A2

f2
−→ · · ·

fn−1
−→ An

which denotes a sequence of processes happened in time
order.

I This important property is called associativity.
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Identity

I For any object A , there is a particular process 1A called
identity of A which performs nothing on A :

A
1A
−→ A

I As a consequence, composite process with identity process
involved has the following property:

(A
1A
−→ A

f
−→ B) = (A

f
−→ B) = (A

f
−→ B

1B
−→ B)

i.e., f ◦ 1A = f = 1B ◦ f
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Categories
If we summarise the above properties of processes, then we have
the definition of a category:
A category C consists of:
I a class of objects ob(C);
I for each pair of objects A ,B, a set C(A ,B) of morphisms from

A to B;
I for each triple of objects A ,B ,C, a composition map

C(B ,C) × C(A ,B) −→ C(A ,C)
(g, f) 7→ g ◦ f ;

I for each object A , an identity morphism 1A ∈ C(A ,A),

satisfying the following axioms:
I associativity: for any f ∈ C(A ,B), g ∈ C(B ,C), h ∈ C(C ,D),

there holds (h ◦ g) ◦ f = h ◦ (g ◦ f);
I identity law: for any f ∈ C(A ,B), 1B ◦ f = f = f ◦ 1A .



Slogan

A category can be seen as a closed system of processes!



Deficiency of arrows

The denotation of a process as an arrow has the following
deficiencies:

I The expression of an equality of arrows has to resort to
brackets:

(A
g◦f
−→ C) = (A

f
−→ B

g
−→ C)

I The simple property of an identity arrow is not shown as
simple as a tautology:

(A
1A
−→ A

f
−→ B) = (A

f
−→ B) = (A

f
−→ B

1B
−→ B)
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Processes as diagrams

We introduce boxes and wires to denote processes:

I A general process A
f
−→ B can be represented by a box:

f

A

B

I The identity process A
1A
−→ A can be represented as a wire:

A
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Efficiency of diagrams
Deficiency is now turned into efficiency:
I Equality of processes without brackets:

A

g ◦ f

C

=

A

f
B

C
g

I Property of an identity is shown as a tautology:

B
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Spatial composition of processes

Processes not only happen sequentially in time, but also happen
simultaneously in space. Two arbitrary simultaneous processes
f , g can be represented by diagrams as follows:

g

A
f

C

B D

Placing two diagrams in parallel can also be seen as a (spatial)
composition denoted by ⊗. The resulted composite process from
the above composition is just f ⊗ g.
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Empty process and naturality

I An object can be empty, which means it does not exist. Empty
object is denoted by an empty diagram.

I An process can also be empty, which means nothing
happened. Empty process is denoted by an empty diagram as
well.

I Apparently, a box slides freely along a wire still represent the
same process. Therefore, the following equalities are just a
tautology:
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Strict Monoidal Category

To sum up, we now arrive at the definition of Strict Monoidal
Category which you definitely do not want to memorize.

A strict monoidal category consists of:
I a category C;
I a unit object I ∈ ob(C);
I a bifunctor − ⊗ − : C × C −→ C,

satisfying
I associativity: for each triple of objects A ,B ,C of C,

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C; for each triple of morphisms
f , g, h of C, f ⊗ (g ⊗ h) = (f ⊗ g) ⊗ h;

I unit law: for each object A of C, A ⊗ I = A = I ⊗ A ; for each
morphism f of C, f ⊗ 1I = f = 1I ⊗ f .



Introducing the swap

I Two objects (systems) can swap their positions, this can be
represented by the following diagram:

A

A

B

B

I Swapping a swap will undo a swap:

B
A

A
B

BA
=

A B
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Naturality of swaps and SMC

I Boxes can move freely through a swap:

B

=
f

A

B
g

C

D

A

D B

A

g f
D

C
C

I Now we obtain a strict symmetric monoidal category :
A strict monoidal category C is symmetric if it is equipped with
a natural isomorphism

σA ,B : A ⊗ B → B ⊗ A

for all objects A ,B ,C of C satisfying:

σB ,A◦σA ,B = 1A⊗B , σA ,I = 1A , (1B⊗σA ,C)◦(σA ,B⊗1C) = σA ,B⊗C .
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Introducing Cap and Cup
I All states in the classical world separate:

ψ ψ1 ψ2
=

I There are entanglement states in the quantum world which
are not separable. A cute way to express entanglement is to
introduce the diagrams cap and cup as follows:

I Cap and cup satisfy the following rules:

= , = , = =
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Self-dual strict compact closed category

With the cap and cup, we have a self-dual strict compact closed
category:
A self-dual strict compact closed category is a strict symmetric
monoidal category C such that for each object A of C, there exists
two morphisms

εA : A ⊗ A → I, ηA : I → A ⊗ A

satisfying:

(εA ⊗ 1A ) ◦ (1A ⊗ ηA ) = 1A , (1A ⊗ εA ) ◦ (ηA ⊗ 1A ) = 1A .



How is CQM related to quantum theory

I Quantum theory is a linear theory.

I Each wire of a diagram is interpreted as a vector space Cn

with a computational basis |0〉 , |1〉 , · · · , |n − 1〉 and an inner
product 〈j | k 〉 = δjk .

I Each box is interpreted as a linear map (or a matrix under
fixed bases) between vector spaces.

I A swap is interpreted as the linear map
∑n−1

i,j=0 |ji〉 〈ij|.

I A cup is interpreted as the linear map
∑n−1

j=0 |jj〉.

I A cap is interpreted as the linear map
∑d−1

j=0 〈jj|.
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ONB measurements in CQM

I Suppose we wish to measure a quantum state ρ in an ONB
(orthonormal basis) {|xi〉}, where ρ is a positive operator. The
probability of getting the i−th measurement outcome is
computed using the Born rule:
Prob(i, ρ) = Tr(|xi〉 〈xi | ρ) = 〈xi |ρ|xi〉

I We can encode this probability distribution in this ONB:
m(ρ) =

∑
i(〈xi |ρ|xi〉) |xi〉.

I The operator ρ can be represented as ρ , which

corresponds to a state vector ρ := ρ
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ONB measurements in CQM

I Then the diagram for the probability distribution vector can be
derived as:

ρ

i

i∑
i i

=
i

ρ
∑

i
i

i

= i
∑

i ρ

ii
=

ρ

I Operate on a state then obtain a probability distribution, that is

exactly a measurement: =
i

i∑
i i
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CQM as graphical calculus

I CQM has the framework of symmetric monoidal categories as
a backbone, thus being a mathematically strict theory instead
of a mere notation system.

I The Key idea of Categorical Quantum Mechanics (CQM) is to
represent quantum processes by string diagrams and then
reason with diagrams by graphical rewriting, in an intuitive
way, while the underlying mathematics is hidden.

I By rewriting we mean replace a sub-diagram with another
diagram according to a graphical rule. Here is an example:

=

· · ·...
...
...

· · · · · · · · ·

· · ·· · · · · ·· · ·

...

...
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CQM for qubits

I So far only a few rules are introduced in CQM, thus weak for
quantum reasoning.

I However, if we concentrate on qubit quantum
mechanics(QM), then CQM become powerful by evolving into
so-called ZX-calculus.

I Qubit QM means complex vector spaces of dimensions 2n

and linear maps between them. Therefore, everything is
based on the computational basis {|0〉 , |1〉}.

I The way for evolving into ZX-calculus is to fill in the boxes with
spiders.
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Generators of the ZX-calculus

R(n,m)
Z ,α : n → m

m

n

...
α

...
R(n,m)

X ,α : n → m

m

n

α
...

...

H : 1→ 1 H σ : 2→ 2

I : 1→ 1 e : 0→ 0 ·

·
·
·

·

·

· ··

·

·

·
·

·

·

·

Ca : 0→ 2 Cu : 2→ 0

Table: Generators of qubit ZX-calculus

where m, n ∈ N, α ∈ [0, 2π), and e represents an empty diagram.



Generators of the ZX-calculus

L : 1→ 1 λ T : 1→ 1

Table: New generators with λ ≥ 0.



Structural rules of the ZX-calculus

= = = =
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Non-structural rules of the ZX-calculus

...
β...
...

α
...

...

= α+β

...

...

(S1) = (S2)

= (S3) H
H

= (H2)

=H H (H3) α

...

...

=

...

α

HH

HH

...

(H)

= (B1) = (B2)

H =

π/2

π/2

-π/2
(EU)

π

α
=

-α
πα

π
(K2)

··

·
·

·
·

· ·

·
· ·

·

··

·

·

= (IV)

Figure: Non-structural ZX-calculus rules, where α, β ∈ [0, 2π).

Note that all the rules enumerated in Figures 1 still hold when they are
flipped upside-down. Due to the rule (H) and (H2), the rules in Figure 1
have a property that they still hold when the colours green and red
swapped.



Non-structural rules of the ZX-calculus

=
π

π

(TR1) = (TR2)

=

π

(TR3) =1 − 1√
2

π

·

··

·

·
·
·

·

··

·
·
·

·
··

(IV2)

=
π

π (TR6) = (TR8)

=

π

π H (TR9) = (TR12)

λ

λ
=

λ
α α

α

(TR13′)
αλ1

βλ2
=
λ

γ
(AD′)

1 = (L3) =
λ1

λ2
λ1 · λ2 (L4)

Figure: Extended ZX-calculus rules, where λ, λ1, λ2 ≥ 0, α, β, γ ∈ [0, 2π); in (AD′),
λe iγ = λ1e iβ + λ2e iα.The upside-down version of these rules still hold.



Standard interpretation for the ZX-calculus

�������������������������
m

n
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α

...
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= |0〉⊗m 〈0|⊗n + e iα |1〉⊗m 〈1|⊗n ,
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m

n

α
...

...
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= |+〉⊗m 〈+|⊗n + e iα |−〉⊗m 〈−|⊗n ,



Standard interpretation for the ZX-calculus

������H ������ = 1
√

2

(
1 1
1 −1

)
,

������� ·

·
·
·

·

·

· ··

·

·

·
·

·

·

· ������� = 1,

������������ = (
1 0
0 1

)
,

������ ������ =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,
�������

������� =

1
0
0
1

 ,
� �

=
(
1 0 0 1

)
,

������ ������ = (
1 1
0 1

)
,

������λ������ = (
1 0
0 λ

)
.

~D1 ⊗ D2� = ~D1� ⊗ ~D2�, ~D1 ◦ D2� = ~D1� ◦ ~D2�,



Three properties of the ZX-calculus

I Now we are ready to define three important properties of the
ZX-calculus: soundness, universality and completeness. Note
that if a diagram D1 in the ZX-calculus can be rewritten into
another diagram D2 using the ZX rules, then we denote this
as ZX ` D1 = D2.

I Definition
The ZX-calculus is called sound if for any two diagrams D1 and D2,
ZX ` D1 = D2 must imply that ~D1� = ~D2�.

I Definition
The ZX-calculus is called universal if for any linear map L , there
must exist a diagram D in the ZX-calculus such that ~D� = L .
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Three properties of the ZX-calculus

I Definition
The ZX-calculus is called complete if for any two diagrams D1 and
D2, ~D1� = ~D2� must imply that ZX ` D1 = D2.



Examples of quantum diagram reasoning
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Basic quantum gates in ZX

Z =

(
1 0
0 −1

)
7→ π X =

(
0 1
1 0

)
7→ π

S =

(
1 0
0 i

)
7→

π
2 T =

(
1 0
0 e i π4

)
7→

π
4

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 7→ H

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 7→



Simplify quantum circuits in ZX-calculus

π

βα π−α

π

−β

π

βα π−α

π

−β

−α

π

πα β

π

??,S1,
K2=

β

−β

π

−β

−β

α

π

−α

π

β −β

−α

π

α

β

π
π

−β

π

βB2
=

α −α

π

−α

S1
=

α

π

B1,S2
=

ππ

α −α

S1,S2
=

S1
=

S1
=



Toffoli gate in standard form
The Toffoli gate is known as the “controlled-controlled-not” gate.
The standard circuit form of Toffoli gate is given as follows:

We express the circuit form of Toffoli gate in ZX-calculus as follows:

π
4

π
4

−π
4

−π
4

π
4

H H−π
4

π
4



Toffoli gate in ZX form with triangles
I The quantum AND gate has the following form in ZX:

QAND =
−1

where the triangle with a −1 on the top-left corner is the
inverse of the normal triangle.

I Then we can have a simple form of Toffoli gate in ZX-calculus
with trianlges as follows:

−1
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Graphical calculus for Linguistics

This picture is from the slides “From quantum foundations to
cognition via pictures” made by Bob Coecke.
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Compositional cognition

This picture is from the slides “From quantum foundations to
cognition via pictures” made by Bob Coecke.



Cognitive concepts in conceptual space

This picture is from the slides “From quantum foundations to
cognition via pictures” made by Bob Coecke.



Composing concepts in string diagrams

This picture is from the slides “From quantum foundations to
cognition via pictures” made by Bob Coecke.



Further work

I Generalise the completeness result of the ZX-calculus from
qubit to qudit for arbitrary dimension d.

I Achieve a complete axiomatization of the ZX-calculus with
mixed dimensions.

I Formalise the Causality theory in the ZX-calculus.
I Efficient algorithm for Toffoli+H quantum circuits.
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