Categorical Quantum Mechanics and Its Applications

Quanlong Wang
Department of Computer Science, University of Oxford

@ CLLC, Department of Philosophy, Peking University Beijing, 2018

Outline

Categorical Quantum Mechanics

Quantum Diagram Reasoning System

Applications of CQM

Processes as arrows

- Everything changes in the perceivable world. Nothing is static and permanent.

Processes as arrows

- Everything changes in the perceivable world. Nothing is static and permanent.
- A change f from object A to object B can be represented as

$$
A \xrightarrow{f} B
$$

Processes as arrows

- Everything changes in the perceivable world. Nothing is static and permanent.
- A change f from object A to object B can be represented as

$$
A \xrightarrow{f} B
$$

We only care about the change f itself, neither the constituents of the source object A nor the the constituents of the target object B.

Processes as arrows

- Everything changes in the perceivable world. Nothing is static and permanent.
- A change f from object A to object B can be represented as

$$
A \xrightarrow{f} B
$$

We only care about the change f itself, neither the constituents of the source object A nor the the constituents of the target object B.

- A change is also called a process.

Sequential composition of processes

- Two processes can happen in a time order:

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

Sequential composition of processes

- Two processes can happen in a time order:

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

- We then have a composite process $g \circ f$ which means first happend the process f then the process g :

$$
(A \xrightarrow{g \circ f} C)=(A \xrightarrow{f} B \xrightarrow{g} C)
$$

Sequential composition of processes

- Two processes can happen in a time order:

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

- We then have a composite process $g \circ f$ which means first happend the process f then the process g :

$$
(A \xrightarrow{g \circ f} C)=(A \xrightarrow{f} B \xrightarrow{g} C)
$$

We have to use brackets here to avoid confusion as follows:

$$
A \xrightarrow{g \circ f} C=A \xrightarrow{f} B \xrightarrow{g} C
$$

Associativity

- Finite sequential composition makes sense without brackets:

$$
A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n-1}} A_{n}
$$

which denotes a sequence of processes happened in time order.

Associativity

- Finite sequential composition makes sense without brackets:

$$
A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n-1}} A_{n}
$$

which denotes a sequence of processes happened in time order.

- This important property is called associativity.

Identity

- For any object A, there is a particular process 1_{A} called identity of A which performs nothing on A :

$$
A \xrightarrow{1_{A}} A
$$

Identity

- For any object A, there is a particular process 1_{A} called identity of A which performs nothing on A :

$$
A \xrightarrow{1_{A}} A
$$

- As a consequence, composite process with identity process involved has the following property:

$$
\begin{array}{r}
\left(A \xrightarrow{1_{A}} A \xrightarrow{f} B\right)=(A \xrightarrow{f} B)=\left(A \xrightarrow{f} B \xrightarrow{1_{B}} B\right) \\
\text { i.e., } \quad f \circ 1_{A}=f=1_{B} \circ f
\end{array}
$$

Categories

If we summarise the above properties of processes, then we have the definition of a category:
A category \mathbb{C} consists of:

- a class of objects ob(C);
- for each pair of objects A, B, a set $\mathfrak{C}(A, B)$ of morphisms from A to B;
- for each triple of objects A, B, C, a composition map

$$
\begin{array}{clc}
\mathfrak{C}(B, C) \times \mathfrak{C}(A, B) & \longrightarrow & \mathfrak{C}(A, C) \\
(g, f) & \mapsto & g \circ f ;
\end{array}
$$

- for each object A, an identity morphism $1_{A} \in \mathfrak{C}(A, A)$, satisfying the following axioms:
- associativity: for any $f \in \mathfrak{C}(A, B), g \in \mathfrak{C}(B, C), h \in \mathscr{C}(C, D)$, there holds $(h \circ g) \circ f=h \circ(g \circ f)$;
- identity law: for any $f \in \mathfrak{C}(A, B), 1_{B} \circ f=f=f \circ 1_{A}$.

Slogan

A category can be seen as a closed system of processes!

Deficiency of arrows

The denotation of a process as an arrow has the following deficiencies:

Deficiency of arrows

The denotation of a process as an arrow has the following deficiencies:

- The expression of an equality of arrows has to resort to brackets:

$$
(A \xrightarrow{g \circ f} C)=(A \xrightarrow{f} B \xrightarrow{g} C)
$$

Deficiency of arrows

The denotation of a process as an arrow has the following deficiencies:

- The expression of an equality of arrows has to resort to brackets:

$$
(A \xrightarrow{g \circ f} C)=(A \xrightarrow{f} B \xrightarrow{g} C)
$$

- The simple property of an identity arrow is not shown as simple as a tautology:

$$
\left(A \xrightarrow{1_{A}} A \xrightarrow{f} B\right)=(A \xrightarrow{f} B)=\left(A \xrightarrow{f} B \xrightarrow{1_{B}} B\right)
$$

Processes as diagrams

We introduce boxes and wires to denote processes:

- A general process $A \xrightarrow{f} B$ can be represented by a box:

Processes as diagrams

We introduce boxes and wires to denote processes:

- A general process $A \xrightarrow{f} B$ can be represented by a box:

- The identity process $A \xrightarrow{1_{A}} A$ can be represented as a wire:

Efficiency of diagrams

Deficiency is now turned into efficiency:

- Equality of processes without brackets:

Efficiency of diagrams

Deficiency is now turned into efficiency:

- Equality of processes without brackets:

- Property of an identity is shown as a tautology:

Spatial composition of processes

Processes not only happen sequentially in time, but also happen simultaneously in space. Two arbitrary simultaneous processes f, g can be represented by diagrams as follows:

Spatial composition of processes

Processes not only happen sequentially in time, but also happen simultaneously in space. Two arbitrary simultaneous processes f, g can be represented by diagrams as follows:

Placing two diagrams in parallel can also be seen as a (spatial) composition denoted by \otimes. The resulted composite process from the above composition is just $f \otimes g$.

Empty process and naturality

- An object can be empty, which means it does not exist. Empty object is denoted by an empty diagram.

Empty process and naturality

- An object can be empty, which means it does not exist. Empty object is denoted by an empty diagram.
- An process can also be empty, which means nothing happened. Empty process is denoted by an empty diagram as well.

Empty process and naturality

- An object can be empty, which means it does not exist. Empty object is denoted by an empty diagram.
- An process can also be empty, which means nothing happened. Empty process is denoted by an empty diagram as well.
- Apparently, a box slides freely along a wire still represent the same process. Therefore, the following equalities are just a tautology:

Strict Monoidal Category

To sum up, we now arrive at the definition of Strict Monoidal Category which you definitely do not want to memorize.

A strict monoidal category consists of:

- a category \mathfrak{C};
- a unit object $I \in o b(\mathbb{C})$;
- a bifunctor $-\otimes-: \mathfrak{C} \times \mathfrak{C} \longrightarrow \mathfrak{C}$,
satisfying
- associativity: for each triple of objects A, B, C of \mathfrak{C}, $A \otimes(B \otimes C)=(A \otimes B) \otimes C$; for each triple of morphisms f, g, h of $\mathfrak{C}, f \otimes(g \otimes h)=(f \otimes g) \otimes h ;$
- unit law: for each object A of $\mathfrak{C}, A \otimes I=A=I \otimes A$; for each morphism f of $\mathfrak{C}, f \otimes 1_{I}=f=1_{l} \otimes f$.

Introducing the swap

- Two objects (systems) can swap their positions, this can be represented by the following diagram:

Introducing the swap

- Two objects (systems) can swap their positions, this can be represented by the following diagram:

- Swapping a swap will undo a swap:

Naturality of swaps and SMC

- Boxes can move freely through a swap:

Naturality of swaps and SMC

- Boxes can move freely through a swap:

- Now we obtain a strict symmetric monoidal category : A strict monoidal category \mathfrak{C} is symmetric if it is equipped with a natural isomorphism

$$
\sigma_{A, B}: A \otimes B \rightarrow B \otimes A
$$

for all objects A, B, C of \mathfrak{C} satisfying:

$$
\sigma_{B, A} \circ \sigma_{A, B}=1_{A \otimes B}, \quad \sigma_{A, I}=1_{A}, \quad\left(1_{B} \otimes \sigma_{A, C}\right) \circ\left(\sigma_{A, B} \otimes 1_{C}\right)=\sigma_{A, B \otimes C}
$$

Introducing Cap and Cup

- All states in the classical world separate:

Introducing Cap and Cup

- All states in the classical world separate:

- There are entanglement states in the quantum world which are not separable. A cute way to express entanglement is to introduce the diagrams cap and cup as follows:

Introducing Cap and Cup

- All states in the classical world separate:

- There are entanglement states in the quantum world which are not separable. A cute way to express entanglement is to introduce the diagrams cap and cup as follows:

- Cap and cup satisfy the following rules:

Self-dual strict compact closed category

With the cap and cup, we have a self-dual strict compact closed category:
A self-dual strict compact closed category is a strict symmetric monoidal category \mathfrak{C} such that for each object A of \mathfrak{C}, there exists two morphisms

$$
\epsilon_{A}: A \otimes A \rightarrow I, \quad \eta_{A}: I \rightarrow A \otimes A
$$

satisfying:

$$
\left(\epsilon_{A} \otimes 1_{A}\right) \circ\left(1_{A} \otimes \eta_{A}\right)=1_{A}, \quad\left(1_{A} \otimes \epsilon_{A}\right) \circ\left(\eta_{A} \otimes 1_{A}\right)=1_{A} .
$$

How is CQM related to quantum theory

- Quantum theory is a linear theory.

How is CQM related to quantum theory

- Quantum theory is a linear theory.
- Each wire of a diagram is interpreted as a vector space \mathbb{C}^{n} with a computational basis $|0\rangle,|1\rangle, \cdots,|n-1\rangle$ and an inner product $\langle j \mid k\rangle=\delta_{j k}$.

How is CQM related to quantum theory

- Quantum theory is a linear theory.
- Each wire of a diagram is interpreted as a vector space \mathbb{C}^{n} with a computational basis $|0\rangle,|1\rangle, \cdots,|n-1\rangle$ and an inner product $\langle j \mid k\rangle=\delta_{j k}$.
- Each box is interpreted as a linear map (or a matrix under fixed bases) between vector spaces.

How is CQM related to quantum theory

- Quantum theory is a linear theory.
- Each wire of a diagram is interpreted as a vector space \mathbb{C}^{n} with a computational basis $|0\rangle,|1\rangle, \cdots,|n-1\rangle$ and an inner product $\langle j \mid k\rangle=\delta_{j k}$.
- Each box is interpreted as a linear map (or a matrix under fixed bases) between vector spaces.
- A swap is interpreted as the linear map $\sum_{i, j=0}^{n-1}|j i\rangle\langle i j|$.

How is CQM related to quantum theory

- Quantum theory is a linear theory.
- Each wire of a diagram is interpreted as a vector space \mathbb{C}^{n} with a computational basis $|0\rangle,|1\rangle, \cdots,|n-1\rangle$ and an inner product $\langle j \mid k\rangle=\delta_{j k}$.
- Each box is interpreted as a linear map (or a matrix under fixed bases) between vector spaces.
- A swap is interpreted as the linear map $\sum_{i, j=0}^{n-1}|j i\rangle\langle i j|$.
- A cup is interpreted as the linear map $\sum_{j=0}^{n-1} \mid j j$.

How is CQM related to quantum theory

- Quantum theory is a linear theory.
- Each wire of a diagram is interpreted as a vector space \mathbb{C}^{n} with a computational basis $|0\rangle,|1\rangle, \cdots,|n-1\rangle$ and an inner product $\langle j \mid k\rangle=\delta_{j k}$.
- Each box is interpreted as a linear map (or a matrix under fixed bases) between vector spaces.
- A swap is interpreted as the linear map $\sum_{i, j=0}^{n-1}|j i\rangle\langle i j|$.
- A cup is interpreted as the linear map $\sum_{j=0}^{n-1}|j j\rangle$.
- A cap is interpreted as the linear map $\sum_{j=0}^{d-1}\langle j j|$.

ONB measurements in CQM

- Suppose we wish to measure a quantum state ρ in an ONB (orthonormal basis) $\left\{\left|x_{i}\right\rangle\right\}$, where ρ is a positive operator. The probability of getting the i-th measurement outcome is computed using the Born rule:

$$
\operatorname{Prob}(i, \rho)=\operatorname{Tr}\left(\left|x_{i}\right\rangle\left\langle x_{i}\right| \rho\right)=\left\langle x_{i}\right| \rho\left|x_{i}\right\rangle
$$

ONB measurements in CQM

- Suppose we wish to measure a quantum state ρ in an ONB (orthonormal basis) $\left\{\left|x_{i}\right\rangle\right\}$, where ρ is a positive operator. The probability of getting the i-th measurement outcome is computed using the Born rule:

$$
\operatorname{Prob}(i, \rho)=\operatorname{Tr}\left(\left|x_{i}\right\rangle\left\langle x_{i}\right| \rho\right)=\left\langle x_{i}\right| \rho\left|x_{i}\right\rangle
$$

- We can encode this probability distribution in this ONB: $m(\rho)=\sum_{i}\left(\left\langle x_{i}\right| \rho\left|x_{i}\right\rangle\right)\left|x_{i}\right\rangle$.

ONB measurements in CQM

- Suppose we wish to measure a quantum state ρ in an ONB (orthonormal basis) $\left\{\left|x_{i}\right\rangle\right\}$, where ρ is a positive operator. The probability of getting the i-th measurement outcome is computed using the Born rule:

$$
\operatorname{Prob}(i, \rho)=\operatorname{Tr}\left(\left|x_{i}\right\rangle\left\langle x_{i}\right| \rho\right)=\left\langle x_{i}\right| \rho\left|x_{i}\right\rangle
$$

- We can encode this probability distribution in this ONB: $m(\rho)=\sum_{i}\left(\left\langle x_{i}\right| \rho\left|x_{i}\right\rangle\right)\left|x_{i}\right\rangle$.
- The operator ρ can be represented as

$$
\stackrel{\rho}{\rho} \text {, which }
$$

corresponds to a state vector

ONB measurements in CQM

- Then the diagram for the probability distribution vector can be derived as:

ONB measurements in CQM

- Then the diagram for the probability distribution vector can be derived as:
- Operate on a state then obtain a probability distribution, that is exactly a measurement: $Q=\sum_{i}$

CQM as graphical calculus

- CQM has the framework of symmetric monoidal categories as a backbone, thus being a mathematically strict theory instead of a mere notation system.

CQM as graphical calculus

- CQM has the framework of symmetric monoidal categories as a backbone, thus being a mathematically strict theory instead of a mere notation system.
- The Key idea of Categorical Quantum Mechanics (CQM) is to represent quantum processes by string diagrams and then reason with diagrams by graphical rewriting, in an intuitive way, while the underlying mathematics is hidden.

CQM as graphical calculus

- CQM has the framework of symmetric monoidal categories as a backbone, thus being a mathematically strict theory instead of a mere notation system.
- The Key idea of Categorical Quantum Mechanics (CQM) is to represent quantum processes by string diagrams and then reason with diagrams by graphical rewriting, in an intuitive way, while the underlying mathematics is hidden.
- By rewriting we mean replace a sub-diagram with another diagram according to a graphical rule. Here is an example:

CQM for qubits

- So far only a few rules are introduced in CQM, thus weak for quantum reasoning.

CQM for qubits

- So far only a few rules are introduced in CQM, thus weak for quantum reasoning.
- However, if we concentrate on qubit quantum mechanics(QM), then CQM become powerful by evolving into so-called ZX-calculus.

CQM for qubits

- So far only a few rules are introduced in CQM, thus weak for quantum reasoning.
- However, if we concentrate on qubit quantum mechanics(QM), then CQM become powerful by evolving into so-called ZX-calculus.
- Qubit QM means complex vector spaces of dimensions 2^{n} and linear maps between them. Therefore, everything is based on the computational basis $\{|0\rangle,|1\rangle\}$.

CQM for qubits

- So far only a few rules are introduced in CQM, thus weak for quantum reasoning.
- However, if we concentrate on qubit quantum mechanics(QM), then CQM become powerful by evolving into so-called ZX-calculus.
- Qubit QM means complex vector spaces of dimensions 2^{n} and linear maps between them. Therefore, everything is based on the computational basis $\{|0\rangle,|1\rangle\}$.
- The way for evolving into ZX-calculus is to fill in the boxes with spiders.

Generators of the ZX-calculus

Table: Generators of qubit ZX-calculus
where $m, n \in \mathbb{N}, \alpha \in[0,2 \pi)$, and e represents an empty diagram.

Generators of the ZX-calculus

Table: New generators with $\lambda \geq 0$.

Structural rules of the ZX-calculus

$\square=1=\square$

Non-structural rules of the ZX-calculus

Figure: Non-structural ZX -calculus rules, where $\alpha, \beta \in[0,2 \pi)$.

Note that all the rules enumerated in Figures 1 still hold when they are flipped upside-down. Due to the rule (H) and $(\mathrm{H} 2)$, the rules in Figure 1 have a property that they still hold when the colours green and red swapped.

Non-structural rules of the ZX-calculus

Figure: Extended ZX -calculus rules, where $\lambda, \lambda_{1}, \lambda_{2} \geq 0, \alpha, \beta, \gamma \in[0,2 \pi)$; in (AD^{\prime}), $\lambda e^{i \gamma}=\lambda_{1} e^{i \beta}+\lambda_{2} e^{i \alpha}$. The upside-down version of these rules still hold.

Standard interpretation for the ZX-calculus

Standard interpretation for the ZX-calculus

$$
\begin{aligned}
& \llbracket \nVdash=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \llbracket \Omega=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right), \llbracket \backsim=\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right), \\
& \llbracket \lambda\left\|=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad \llbracket \frac{1}{\top}\right\|=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

$\llbracket D_{1} \otimes D_{2} \rrbracket=\llbracket D_{1} \rrbracket \otimes \llbracket D_{2} \rrbracket, \quad \llbracket D_{1} \circ D_{2} \rrbracket=\llbracket D_{1} \rrbracket \circ \llbracket D_{2} \rrbracket$,

Three properties of the ZX-calculus

- Now we are ready to define three important properties of the ZX-calculus: soundness, universality and completeness. Note that if a diagram D_{1} in the $Z X$-calculus can be rewritten into another diagram D_{2} using the $Z X$ rules, then we denote this as $Z X \vdash D_{1}=D_{2}$.

Three properties of the ZX-calculus

- Now we are ready to define three important properties of the ZX-calculus: soundness, universality and completeness. Note that if a diagram D_{1} in the $Z X$-calculus can be rewritten into another diagram D_{2} using the $Z X$ rules, then we denote this as $Z X \vdash D_{1}=D_{2}$.
- Definition

The ZX -calculus is called sound if for any two diagrams D_{1} and D_{2}, $Z X \vdash D_{1}=D_{2}$ must imply that $\llbracket D_{1} \rrbracket=\llbracket D_{2} \rrbracket$.

Three properties of the ZX-calculus

- Now we are ready to define three important properties of the ZX-calculus: soundness, universality and completeness. Note that if a diagram D_{1} in the $Z X$-calculus can be rewritten into another diagram D_{2} using the $Z X$ rules, then we denote this as $Z X \vdash D_{1}=D_{2}$.
- Definition

The ZX -calculus is called sound if for any two diagrams D_{1} and D_{2}, $Z X \vdash D_{1}=D_{2}$ must imply that $\llbracket D_{1} \rrbracket=\llbracket D_{2} \rrbracket$.

- Definition

The ZX-calculus is called universal if for any linear map L, there must exist a diagram D in the $Z X$-calculus such that $\llbracket D \rrbracket=L$.

Three properties of the ZX-calculus

- Definition

The ZX -calculus is called complete if for any two diagrams D_{1} and $D_{2}, \llbracket D_{1} \rrbracket=\llbracket D_{2} \rrbracket$ must imply that $Z X \vdash D_{1}=D_{2}$.

Examples of quantum diagram reasoning

Examples of quantum diagram reasoning

$$
\begin{aligned}
& \text { COCOC= }
\end{aligned}
$$

Examples of quantum diagram reasoning

Examples of quantum diagram reasoning

Basic quantum gates in ZX

$$
\begin{aligned}
& S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) \mapsto-\frac{\pi}{2}-\quad T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right) \mapsto-\left(\frac{\pi}{4}-\right. \\
& C Z=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \mapsto \xrightarrow{+} \\
& \text { CNOT }=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \mapsto \square
\end{aligned}
$$

Simplify quantum circuits in ZX-calculus

$B 1, S 2 \quad S \underline{=}$

Toffoli gate in standard form

The Toffoli gate is known as the "controlled-controlled-not" gate. The standard circuit form of Toffoli gate is given as follows:

We express the circuit form of Toffoli gate in ZX-calculus as follows:

Toffoli gate in ZX form with triangles

- The quantum AND gate has the following form in ZX:

where the triangle with a -1 on the top-left corner is the inverse of the normal triangle.

Toffoli gate in ZX form with triangles

- The quantum AND gate has the following form in ZX:

where the triangle with a -1 on the top-left corner is the inverse of the normal triangle.
- Then we can have a simple form of Toffoli gate in ZX-calculus with trianlges as follows:

Graphical calculus for Linguistics

Relative pronouns:

M. Sadrzadeh, B. Coecke \& S. Clark (2013-2014) The Frobenius anatomy of word meaning I \& II. Journal of Logic and Computation. arXiv:1404.5278

This picture is from the slides "From quantum foundations to cognition via pictures" made by Bob Coecke.

QUANTUM LINGUISTICS Leap forward for artificial intelligence NewScientist

Video Article: The Quantum Linguist

Bob Coecke has developed a new visual language that could be used to spell out a theory of quantum gravity-and help us understand human speech.
by Sophle Hebden

SCIENTIFIC AMERICAN ${ }^{\mathrm{m}}$

This picture is from the slides "From quantum foundations to cognition via pictures" made by Bob Coecke.

Compositional cognition

J. Bolt, B. Coecke, F. Genovese, M. Lewis, D. Marsden \& R. Piedeleu (2017) Interacting Conceptual Spaces I : Grammatical Composition of Concepts. arXiv:1703.08314
Y. Al-Mehairi, B. Coecke \& M. Lewis (2016) Compositional Distributional Cognition. Ql'16.

This picture is from the slides "From quantum foundations to cognition via pictures" made by Bob Coecke.

Cognitive concepts in conceptual space

This picture is from the slides "From quantum foundations to cognition via pictures" made by Bob Coecke.

Composing concepts in string diagrams

This picture is from the slides "From quantum foundations to cognition via pictures" made by Bob Coecke.

Further work

- Generalise the completeness result of the ZX-calculus from qubit to qudit for arbitrary dimension d.

Further work

- Generalise the completeness result of the ZX-calculus from qubit to qudit for arbitrary dimension d.
- Achieve a complete axiomatization of the ZX-calculus with mixed dimensions.

Further work

- Generalise the completeness result of the ZX-calculus from qubit to qudit for arbitrary dimension d.
- Achieve a complete axiomatization of the ZX-calculus with mixed dimensions.
- Formalise the Causality theory in the ZX-calculus.

Further work

- Generalise the completeness result of the ZX-calculus from qubit to qudit for arbitrary dimension d.
- Achieve a complete axiomatization of the ZX-calculus with mixed dimensions.
- Formalise the Causality theory in the ZX-calculus.
- Efficient algorithm for Toffoli+H quantum circuits.

