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1. Contradiction derivating

In Asher [1] Nicholas Asher proposed a new quantificational type to model
first-order properties. And for this type he proposed two rules for this type:
∃introduction and ∃exploitation. But these two rules together will lead to an
unwanting result: subtyping hierarchies of properties would be deflated into only
2 levels, even worse, there is a contradiction. To keep the method of modeling
first-order properties via existential types, we have to modify the ∃explpitation
rule. I will discuss the contradiction, modification and concequences in detail.

The quantificational type is defined as

If σ is a simple type, and τ is any expression denoting a type
and x is a variable ranging over types, then ∃x⊑ στ is a type. To
illustrate, a term t is of this quantificational type if there is a subtype
x of σ such that t is of type τ [x].

Two rules of “∃” are

... A is any type expression with an occurrence of β and B a
type expression where β does not occur, then

Type theoretic∃introduction:

β ⊑ α

A ⊑ (∃x ⊑ αA(xβ )

Type theoretic∃exploitation:

β ⊑ α, A ⊑ B

(∃x ⊑ αA(xβ )) ⊑ B

From the rules and functional type we can deduce:

Theorem 1. If we have at least 2 types, which forming a chain under subtyping
relation as a0 ⊑ ... ⊑ ai... ⊑ aj ..., with whenever i ̸= j, ai ̸= aj; and the
functional types: (a0 ⇒ T ), ..., (ai ⇒ T ), ..., (aj ⇒ T ), ..., for any type T,

then by rules of ∃, we have: for any n ∈ N, (an ⇒ T ) equals to (∃x ⊑
an+1(x ⇒ T ));

by transitivity of subtyping ⊑ we have more: for any n,m ∈ N, if n < m,
then (an ⇒ T ) =(∃x ⊑ an+1(x ⇒ T )).

Corollary 2. Given a subtype chain a0 ⊑ ... ⊑ ai... ⊑ aj ..., with ai, aj pair-
wisely distinct, for any n,m, l ∈ N, if n < l, m < l, then (an ⇒ T ) = (am ⇒ T ).

Corollary 3. Given a subtype chain a0 ⊑ ... ⊑ ai... ⊑ aj ..., with ai, aj pair-
wisely distinct, for any n,m, l ∈ N, if n > l, m > l, then (∃x ⊑ an(x ⇒
T )) =(∃x ⊑ am(x ⇒ T )).
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Proof. Suppose we have a type T, and two distinctive types satisfying ai ⊑ aj ,
thus (aj ⇒ T ) ⊑ (ai ⇒ T ).

From ∃ introduction, we have

1 : (ai ⇒ T ) ⊑ (∃x ⊑ aj(x ⇒ T )).

Since aj ⊑ aj , (aj ⇒ T ) ⊑ (ai ⇒ T ), and aj does not occur in (ai ⇒ T ), from
∃ exploitation, we have

2 : (∃x ⊑ aj(x ⇒ T )) ⊑ (ai ⇒ T ).

Combining 1 and 2 we have

(an ⇒ T ) = (∃x ⊑ an+1(x ⇒ T )).

The corollaries are easy to prove with the transitivity of subtying relation.

The corollaries lead to a contradiction, since we have assumed that ai, aj
are distinct, thus (aj ⇒ T ) and (ai ⇒ T ) would never the same.

This contradition comes from the quantificational type. One can image this
type (∃x ⊑ αA(xβ )) as an expansion from the original type A. For two types

A and B with A ⊑ B, since it’s possible that some of A(xβ )s are larger than
B, so this expansion would make A larger than B, so the contradiction occurs.
Hence to avoid the contradiction we have to modify the ∃exploitation rule, to
add some constrained conditions .

A quantificational type is used to model a first-order property. The most
natural idea is that first-order properties are of type “(x ⇒ T )”, for x a subtype
of e, and T the type of proposition. But types like (x ⇒ T ) are monotonic
reversely for x. “⇒” reverses the antecedents’ order. For any type c, d, c⊑d
iff (d ⇒ T ) ⊑ (c ⇒ T ), while we prefer to remain the order, for example,
maintaining the order from “tiger is a subtype of animal” to “being a tiger is
a subtype of being an animal”. This is the motivation that the quantificational
type is introduced.

By definition ∃x⊑ στ(x) equals to
∨
x⊑σ τ(x), given β is a simple type symbol

occuring free in τ , and x replaces every free occurence of β. So any type of first-
order properties, ∃x⊑ σ(x ⇒ T ), would be in fact a disjunctive type (finite or
infinite depends on the subtypes’ cardinal of σ). For example, since we have
physical, informational objects’s types, p, i, are both subtypes of entities’, e;
and cats’ type, c, is a subtype of physical objects’ hence also a subtype of e;
etc.; then ∃x⊑ e(x ⇒ T ) (being an entity) would be

(e ⇒ T ) ∨ (p ⇒ T ) ∨ (i ⇒ T ) ∨ (c ⇒ T ) ∨ ... .

And ∃x⊑ p(x ⇒ T ) “being an physical object” would be

(p ⇒ T ) ∨ (c ⇒ T ) ∨ ... .
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Since a type always has more subtypes than any of its subtypes, the funtional
types derived from that type would be more than any of its subtypes, hence the
order is preserved. But from this analysis it’s also easy to see the source of the
contradiction, i.e., some of the disjuncts will be too large as the subtyping goes
on.

2. Modification on ∃ exploitation rule; Branching

We have analyzed the nature of existential types. Now it’s natural to require
all the disjunct are small enough to keep safe. We require on the A( γβ )s such

that every A( γβ ) is a subtype of B. Thus our new ∃ exploitation rule would be
Given A is any type expression with an occurrence of β and B a type ex-

pression where β does not occur, then
Type theoretic∃∗exploitation:

β ⊑ α, A ⊑ B, A(
γ
β ) ⊑ B(for any subtype γ of α)

(∃x ⊑ αA(xβ )) ⊑ B
.

∃∗exploitation is sound. Since every discjunt of (∃x ⊑ αA(xβ )) is a subtype
of B now, and subtyping relation is closed under disjuntion operator, hence
trivially (∃x ⊑ αA(xβ )) ⊑ B.

Our previous proof of theorem 1 will be stuck, so the contradiction is pre-
vented. Replacing the rule ∃∗exploitation for ∃exploitation, since there is some
subtype ak of aj such that (ai ⇒ T ) ⊑ (ak ⇒ T ), which not satisfying our

restriction “A(
γ
β ) ⊑ B(for any subtype γ of α)”.

3. Consequence of the modified rule ∃∗exploitation

Further, with this new exploitation rule and the definition of existential
types, i.e. the representation of first-order properties, we have an interesting
result: the structure of first-order properties (under subtyping relation) is fork-
ing (at least binary branched). It means that every first-order property would
have (if it has a proper sub-property) at least 2 other properties as its proper
subtypes.

To proof this, let’s first check two lemmas.

Lemma 4. For any subtyping chain of e which has a minimium element a,
the chain of corresponding (x ⇒ T ) has a maximium element namely (a ⇒ T ),
hence for any b in this chain,∃xx⊑b(x ⇒ T ) =∃xx⊑a(x ⇒ T ).

Proof. Since a is the minimium element, having no other subtypes but itself, by
definition of existential types we have ∃xx⊑a(a ⇒ T ) = (a ⇒ T ).

Since for every b in this chain we have a⊑b, thus (b ⇒ T ) ⊑ (a ⇒ T ); and
for any subtype c of b, (c ⇒ T ) ⊑ (a ⇒ T ); b doesn’t occur in (a ⇒ T ); by
∃∗exploitation we have ∃xx⊑b(x ⇒ T ) ⊑ (a ⇒ T ).

The other direction (a ⇒ T ) ⊑ ∃xx⊑b(x ⇒ T ) is trivial.
Hence we have ∃xx⊑b(x ⇒ T ) =∃xx⊑a(x ⇒ T ).



4

Lemma 5. If a set/class A of several types could form a tree under subtyping
relation, with the root r is the greatest element, B is the set of all leaves(the
minimium elements) in A, then

∃xx⊑r(x ⇒ T ) =
∨
b∈B

(b ⇒ T ).

Proof. By lemma 7 and the definition of existential types.

It should be noted that by lemma 5, in order to make a first-order property
meaningful, we should demand urelements in our types, and ⊥ is not a subtype
of any basic type. Or else the first-order property is either unintelligible or
absurd. And since on the bottom level types are incompatible each other, the
type theory is akin La Monadologie.

Theorem 6. The type structure of first-order properties is forking (at least
binary branched).

Proof. By lemma 7&8, since every un-forking branch would crash into mere one
first-order property.

Theorem 9 shows that for any two property, if one is the unique imediate
sub-property of the other, then they are the same property. For example, if
“being extensive” is the unique imediate sub-property of “being physical”, then
“being extensive” is the same first-order property as “being physical”.

4. Indiscernibility

We may consider the transformation from a to (a ⇒ T ), and to ∃xx⊑a(x ⇒
T ) as maps, mapping some type a to a-like first-order property ∃xx⊑a(x ⇒ T ):
given any basic type a, the corresponding first-order property is ∃xx⊑a(x ⇒
T ), for short, fop(a). In our theory the map fop have all the basic types as
its domain, and the first-order property part of quantificational types as its
codomain. It’s easy to see that fop is a homomorphism under subtyping relation.

In a chain of basic types, even if the nodes are distinct, from lemma 7 we
still have their corresponding first-order-property types are indisernibles. This
kind of reprentation for first-order properties reveals the meaning of “identity
of indicernibles” principle: types which make no privileged differences are not
real types. Given any two basic types a, b, if a has only b as its subtype, then
it’s meanningless to distinguish b from a.

It’s reasonable for the nature of typing “to distinguish”. A type sysytem, as
a way of sorting entities, is a classification of entities. If a type (not including
the toppest type, ENTITY) makes no contribution to the classification, then
this type is a redundance. By Occam’s Razor we should shave it. Using quan-
tificational types we deflate these redundances into one type, which persists the
distinguishing nature of typing.
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Some may argues that some type indeed has another type as its unique
proper subtype, for example, EXTENSIVE⊑PHYSICAL. I agree with this sub-
typing, but these two basic types forms a undividable cluster, since everything
that is extensive is physical, vice visa. The types EXTENSIVE and PHYSI-
CAL merge into one cluster. In fact this subtyping is not complete: we have
PHYSICAL⊑EXTENSIVE. Now by antisymmetry of⊑, PHYSICAL=EXTENSIVE.
Some may insists that at most we could admit they are equal, but never the
same. He may argue that equal properties are still differents, so the types should
also be different. Even every triangle is a trilateral, the property “being a trian-
gle” is still not the same as “being a trilateral”. Though the former is a property
on angle, while the latter is on lateral.

5. Getting rid of indiscernibility

The indicernibility result comes from two sources: 1, the representaion of
first-order properties in quantificational types; 2, the antisymmetry of subtyping
relation ⊑. In order to get rid of indisernibility, one may abondon any of these
sources. I have tried to defend the reason of quantification types, and I will
consider the consequence of dropping antisymmetry.

Antisymmetry of ⊑ says, for any types a, b, if a⊑b and b⊑a, then a=b.
There is no two distinct types each being a subtype of the other. By dropping
antisymmetry, our lemmas will fail hence we have chains and an unforking type
theory.

But there are payoffs that we may encounter deductive (still have equiv-
allent) and philosophical difficulties. On one hand, any deduction relying on
antisymmetry would be invalid unless we find a alternative without antisymme-
try. And would a type theory without antisymmetry fruitful enough? On the
other hand, we may encounter redundences and deletion. Redundences come
from ontology explosion, since now we don’t have an standard to count two
types as one, then whether a⊓a equals to a, or a⊓a⊓a, ..., etc? There will be
too many distinct types. Deletion comes from Quine’s standpoint. Since an-
tisymmetry is a standard of identity, which telling that under what condition
two types are one, according to his famous remark “no entity without identity”,
cancelling antisymmetry would lead to the deletion of some types.

6. Modified type composition logic

Since we have modified the ∃-exploitation rule to avoid contradition, now
we can define our new type composition logic.

Definition 7. Alphabet. At first, we specify a language L , whose alphabet is,
an at most countable list x0, x1, x2, ... for basic types variables and an at

most countable list c0, c1, c2, ... for basic types constants;
type constructors ⊔, ⊓, ⇒, ·,∃;
subtyping relation ⊑;
connectives ∨, ∧, →;
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identity and equivalence symbols =, ≡;
coercion ◃, ▹;
brackets ), (;
particularly we use ⊥ for a special basic type, the bottom type.

Definition 8. Terms. There is only three kinds of terms,
(1) a basic type symbol is a term;
(2) for any terms t, s, any ⊛ in {⊔, ⊓, ⇒, ·}, (t⊛ s) is a term;
(3) for any term t, if a constant c is contained in t, then for any variable x

and any constant d,∃x ⊑ dt(xc ) is a term, where t(xc ) stands for substituting
one or more occurence c with x in t.

Definition 9. Formulae. There is only one kind of formulae.
For any terms t, s, any ⊛ in {⊑, ∨, ∧, →, =, ≡, ◃, ▹}, (t⊛ s) is a formula.
Usually the brackets are omitted when no ambiguity occurs.

Definition 10. Type System. Corresonding to terms now we define a type
system T , T is a tuple < T,⊑> where

⊑ is the subtyping relation (binary, reflexive, transitive) on T ;
T includes a collection of basic types;
T is the minimium collection that for any types α, β in T , any type expression

A denoting α, the union type α ⊔ β (where there is a γ, α ⊑ γ, β ⊑ γ),
intersection type α⊓β, function type α ⇒ β, dot typeα ·β, and existential type
∃x ⊑ dA(xc ) are also in T .

The relationship of types obeys serveral rules. Given any types α, β, γ, δ,
and any set of type formulae Γ,

comutative:

Γ

(α⊛ β) ⊑ (β ⊛ α)
,

for any ⊛ in {⊔, ⊓, ·, =, ≡};
substitution:

Γ, (α⊛ β)

A ⊑ A( β
α )

,

for any ⊛ in {=, ≡};
coercive-substitution:

Γ, (α⊛ β)

A⊛A( β
α )

,

for any ⊛ in {◃, ▹};
⊔+:

Γ

α ⊑ (α ⊔ β)
,

provided there is a δ with α ⊑ δ and β ⊑ δ;
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⊔−: if Γ
α⊑γ , and

Γ
β⊑γ , then

Γ

(α ⊔ β) ⊑ γ
;

⊓+:

Γ

(α ⊓ β) ⊑ (α ⊓ β)
;

⊓−:

Γ

(α ⊓ β) ⊑ α
;

⇒:

Γ, α ⊑ β, γ ⊑ δ

(β ⇒ γ) ⊑ (α ⊑ δ)
;

·+:

Γ, α ⊓ β=⊥
α ◃ (α · β)

,

provided there is a δ with α ⊑ δ and β ⊑ δ, and α ◃ (α · β) means type
α is coerced to α · β;

·−:

Γ

A ▹ A( α
α·β )

,

where A is a type expression, A( α
α·β ) is the result by replacing one or more

occurence of α · β with α;

∃introduction:

Γ, β ⊑ α

A ⊑ (∃x ⊑ αA(xβ )
;

∃∗−exploition:

Γ, β ⊑ α, A ⊑ B

(∃x ⊑ αA(xβ )) ⊑ B
,

provided A(
γ
β ) ⊑ B(for any subtype γ of α).

As for rules of these form,
Γ, α

β
,
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it would be easier to understand Γ as a set/collection of types, and we have a
set ∆(not necessarilly different from Γ) satisfying α ∈ ∆. So this rule says if
α ∈ ∆, after we make a union of Γ ∪∆, we can infer β ∈ Γ ∪∆.

from Γ, α ⊢ β ⇒ α
confusion on the levels. language, syntactic, semantic.
What’s a logic system? Montague used an artificial language, intensional

logic, as a medium.
modus ponen
the uniqueness of pullback
.

[1] Asher, N.: 2011, Lexical Meaning in Context, Cambridge University Press.


