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Abstract

This paper is a survey on the Fräıssé limits of the classes of fi-

nite graphs, finite rational metric spaces and finite Kn-free graphs.

Hrushovski showed a property concerning extending partial isomor-

phisms for finite graphs, and this property turns out to yield results

for the Fräıssé limit of the class of finite graphs. Similar properties

were proven for the other two classes, which yielded analogue results

concerning the generic automorphisms of their Fräıssé limits.

1 Introduction

The beginning of the story we’re going to tell dated back to the 1950s.

Roland Fräıssé published an important paper [3], where he established a

method proven to be fruitful in constructing countably infinite homogeneous

structures. Following Hodges’s suggestion in [7], we now call this method

Fräıssé construction. Among all the structures we obtain from Fräıssé con-

struction, the first one that might draw most mathematician’s attention was

the Fräıssé limit of the class of finite graphs. In 1963, Erdős and Rényi [2]

proved that, if a countable graph is chosen at random by selecting edges

independently with probability 1/2, then the resulting graph is isomorphic

to the Fräıssé limit of the class of finite graphs with probability 1. This
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is why we call this graph the random graph. (The graph is also known as

Rado’s graph, since it was Rado who gave the first concrete construction of

it.)

In 1992, Hrushovski published his famous paper [9], where he proved

that, every finite graph can be extended to a finite supergraph, such that

all the partial isomorphisms of the original graph extend to automorphisms

of the supergraph. It is shown that, this result, together with other results

about generic automorphisms, yields several properties concerning the au-

tomorphism group of the random graph, for example, the small index prop-

erty as proven by Hodges, Hodkinson, Lascar and Shelah in [8]. Kechris

and Rosendal showed later in [10] that, their proof also applies to other

Fräıssé limits, when certain conditions are met for the Fräıssé classes. Inter-

esting enough, in many cases the conditions Kechris and Rosendal came up

with can be implied from results analogue to Hrushovski’s theorem for finite

graphs. This leads us to the concern whether it’s feasible to extend partial

isomorphisms within other Fräıssé classes. Herwig and Lascar established a

method in [6] which would help. All these results have brought about the

manufacturing of properties in a large number of seemingly different struc-

tures. To summarize their work, we will consider in this article several most

basic Fräıssé classes and prove parallel results for each of them.

This paper mainly consists of three parts. In the first part, we introduce

Fräıssé construction and define the structures with which we concern in

the following sections. In the second part, we give proofs of results that

allow us to extend arbitrary partial isomorphism, namely the Hrushovski

property, for the Fräıssé classes we mentioned in the first section. We also

answer one of Hrushovski’s questions he raised in [9]. In the last part,

we focus on the automorphism groups of the Fräıssé limits and apply the

Hrushovski property for each Fräıssé class to prove the existence of generic

automorphisms. These proofs based on more recent results are much shorter

than their original proofs. We also prove another result that shows the
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generic automorphisms are conjugate to their powers for these Fräıssé limits.

In this article we need some basic notions from first order logic, especially

model theory. We recall that, a language L is a collection of function sym-

bols, relational symbols and constant symbols. A language is relational if

it contains no function symbols and constants. An L-structure M is an un-

derlying set M with interpretation of each symbol in L. Two L-structures

M and N are isomorphic if there is a bijection f : M → N preserving the

interpretation of all symbols in L. A function g is a partial isomorphism

betweenM and N if it is an isomorphism between substructures ofM and

N . For an L-structure M and an L-formula φ, the notion that M satis-

fies φ (denoted by M |= φ) is defined by induction on the complexity of φ.

For a more detailed introduction to these notions, the reader may refer to

textbooks of model theory, such as Hodges [7] and Marker [12].

2 Fräıssé Limits

In his classic paper [3], Roland Fräıssé proved that, for a class K of struc-

tures with some certain properties, there exists a structure that contains

isomorphic copies of every structure in K. In order to state his theorem, we

first introduce some definitions.

Definition 2.1. Let K be a class of structures.

1. K has the hereditary property (HP for short), if for all A ∈ K and all

substructures B of A, we have B ∈ K.

2. K has the joint embedding property (JEP for short), if for all A,B ∈ K,

there is C ∈ K such that both A and B can be embedded in C.

3. K has the amalgamation property (AP for short), if for all A,B and

C in K with embeddings f1 : A→ B, f2 : A→ C, there is D ∈ K with

embeddings g1 : B → D, g2 : C → D such that g1 ◦ f1 = g2 ◦ f2.
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Definition 2.2. Let L be a relational language and M be an L-structure.

The age of M is the class K of all finite structures that can be embedded

in M.

Definition 2.3. Let L be a relational language and M be an L-structure.

We call M ultrahomogeneous if every isomorphism between two finite sub-

structures of M extends to an automorphism of M.

With the definitions above, we can now state Fräıssé’s theorem:

Theorem 2.4 (Fräıssé’s Theorem, [7, Thm 7.1.2]). Let L be a countable

language and let K be a non-empty finite or countable class of finite L-

structures which has HP, JEP and AP. Then there is an L-structure M,

unique up to isomorphism, such that M has cardinality at most ω, the class

K is the age of M and M is ultrahomogeneous.

Following Hodges’s terminology, a class which satisfies the conditions

of the theorem is called a Fräıssé class, with the uniquely determined L-

structure M to be its Fräıssé limit. We now introduce the three main

structures we’re concerned with in this article.

Example 2.5 (The random graph). Let K be the class of all finite graphs,

where the language of graphs contains only one binary relation symbol E and

no function symbols or constants. For every finite graph G, the universe of

the structure is the set of all vertices in G; for every two vertices v1, v2 ∈ G,

v1 and v2 are connected iff G |= E(v1, v2) ∧ E(v2, v1). It’s obvious that K
has HP, JEP and AP, and thus the class K has a unique Fräıssé limit, which

is called the random graph R.

The word “random” here is due to Erdős and Rényi, as introduced before.

Example 2.6 (The Henson graph). For each positive integer n, let Kn be

the class of all finite graphs which do not include Kn, i.e., the complete

graph of size n, as an induced subgraph. The language we work with and

its interpretation are the same as that in the previous example. It’s obvious
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that HP and JEP hold for Kn. To check AP, we take graph A,B,C ∈ Kn

with embeddings f1 : A → B, f2 : A → C. Without loss of generality, we

may assume A ⊆ B and A ⊆ C. Let D be the set of B ∪ C and define

two vertices to be adjacent in D iff they’re adjacent in either B or C. Since

neither B nor C contains Kn as an induced subgraph, D is Kn-free. Thus

AP holds for the class Kn. Since this Fräıssé class was first introduced and

studied by Henson in [4], we call the Fräıssé limit of the class Kn the Henson

graph Hn.

Example 2.7 (The rational Urysohn space). Let K be the class of all finite

rational metric spaces, i.e., the class of finite metric spaces that take dis-

tances in positive rational numbers. The language L we work with contains

a relation symbol Rr for each positive rational number r and no function

symbols or constants. For every finite rational metric space X, the universe

of the structure is the set of all points in X; for every two distinct points

a, b ∈ X, we have d(a, b) = r iff X |= Rr(a, b) ∧Rr(b, a).

Again, it’s obvious that K has HP and JEP. To check AP, we take finite

rational metric spaces A,B and C with embeddings f1 : A→ B, f2 : A→ C.

Without loss of generality, we may assume A ⊆ B and A ⊆ C. Let D be

the set B ∪ C. We define a metric on D by preserving the metric on B or

C when a, b ∈ B or a, b ∈ C and setting dD(a, b) to be the minimum of

dB(a, x) + dC(x, b) for all x ∈ A when a ∈ B \A and b ∈ C \A. It’s straight

forward to check that (D, dD) is a finite rational metric space, and therefore

AP holds for the class K. Due to Urysohn [17], we call the Fräıssé limit of

K the rational Urysohn space QU.

3 Hrushovski Property

In his famous work [9], Hrushovski proved the following result:

Theorem 3.1 (Hrushovski, [9]). Given a finite graph X, there is a finite

graph Z such that X is an induced subgraph of Z and every partial isomor-
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phism of X extends to an automorphism of Z.

Hrushovski’s original proof was somewhat abstract. Given a finite graph

X, let Y be the power set of X. Hrushovski considered the permutation

group of Y and picked one of its subgroups G generated by some certain

elements. Then he defined an equivalence relation ∼ on G × X, and by

endowing G×X/ ∼ with a graph structure, the desired graph Z is obtained.

The following shorter proof of the theorem was given by Cédric Milliet in

[13]. For a finite graph X, we build the desired graph Z in two steps. For the

first step, we extend X to a graph Y with uniform valency, i.e., all vertices

in Y have the same number of neighbours. For the second step, we embed

Y into a finite graph Z. Finally we prove that every partial isomorphism of

X now extends to an automorphism of Z.

Proof of Theorem 3.1. For the first step, let n be the maximum valency

of X. We assume that n is odd, otherwise replace n with n + 1. For

each vertex x in X, we add some new vertices adjacent to and only to x

so that the valency of x increases to n. In this new graph, each vertex

would have valency either n or 1. Enumerate all the vertices of valency

1 by x1, x2, ..., xm. We assume that n ≤ m, otherwise we may add an

isolated vertex to graph X before the construction begins. For each pair

1 ≤ i < j ≤ m, we link xi and xj iff j−i ≤ (n−1)/2 or i+m−j ≤ (n−1)/2.

In this way, each xi would have valency 1 + 2(n − 1)/2 = n. We have now

obtained a supergraph Y of X with uniform valency n.

For the second step, let E be the set of all edges in Y . We denote by

G(E,n) the set of all n-element subsets of E. Now we endow G(E,n) with

a graph structure such that two distinct vertices x, y ∈ G(E,n) are adjacent

iff x ∩ y 6= ∅. Then, there is a natural embedding of Y into Z = G(E,n)

sending each vertex of Y to the n-set consisting of all edges related to this

vertex in Y . Notice that, for every two vertices x, y ∈ Y ⊆ Z, we have

|x ∩ y| ≤ 1.
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At last, given a partial isomorphism σ of X, we extend it to an auto-

morphism of G(E,n). This can be done by building a permutation α of E

such that it induces a natural permutation of G(E,n) that extends σ.

Denote the domain of σ by X1 ⊆ G(E,n) and the range of σ by X2 ⊆
G(E,n). Let e ∈ E. Then one of the following holds:

(1) e belongs to two elements a and b in X1. Then α(x) has to be the

unique element of σ(a) ∩ σ(b);

(2) e belongs to only one element a in X1. Notice that the cardinality

of edges that belong to only one element must be the same for a and σ(a).

Let α|a be one-to-one between these edges;

(3) e belongs to no elements in X1. Since σ is an isomorphism, we have

equally many edges in E that belongs to no elements in X1 and X2. Let α

be one-to-one between these edges.

Clearly, α defined above is a permutation of E and the permutation of

G(E,n) it induces extends σ.

On the size of Z

Hrushovski considered another question about extending partial isomor-

phisms in his original paper. Given a positive integer n, what is the min-

imum integer, denoted by f(n), such that each graph of size at most n

can be extended to a supergraph of size at most f(n) satisfying the condi-

tion of the theorem? By Hrushovski’s own proof of Theorem 3.1, when the

size of X is n, the graph Z constructed would be of size at most (2n2n)!.

Hrushovski wondered whether it’s possible to reduce the doubly-exponential

bound; moreover, he conjectured that the bound should be 2cn
2
. In fact,

Milliet’s construction of Z showed us an even more precise estimation.

Proposition 3.2. Let n be a positive integer large enough. Given a graph X

with n vertices, there is a graph Z with at most n3n vertices such that X em-

beds in Z and every partial isomorphism of X extends to an automorphism

of Z.
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Proof. We check the construction in Milliet’s proof.

In the first step, the maximum valency of X is at most n. Then we

attach to each point at most n + 1 new vertices. In the special case where

there are not enough new vertices, we add a new vertex before the whole

construction started. Thus, the graph Y we constructed is of size at most

(n+ 1)(n+ 2). Since Y is of uniform valency at most n+ 1, it has at most

(n+ 1)2(n+ 2)/2 edges.

Graph Z is constructed by taking all the n-subsets of the set of edges in

Y . Therefore, the size of graph Z is at most

(
(n+ 1)2(n+ 2)/2

n

)
<

(
n3

n

)
< n3n

for n large enough.

Remark. Note that n3n = 23n log2 n < 2cn
2

for n large enough. This esti-

mation does answer Hrushovski’s question.

Hrushovski property for metric spaces

Since finite graphs can be viewed as special cases of finite metric spaces,

a natural question to ask here is whether the analogue property holds for

finite metric space. We begin our exploration by adopting the same method

used above. For the first step, we can prove by induction that, given a finite

metric space with n elements, it can be extended to a finite metric space with

2n elements such that for each element x in the latter space, the multiset

{d(x, y)| y 6= x} is the same. This result is not hard to obtain. What bothers

us is the second step. Although it’s easy to establish a graph structure on

all the n-element sets of edges, defining a metric on all the n-element sets of

edges that preserves the metric of the given space seems to be much more

difficult. Indeed, such attempt is doomed to fail. The following example

shows why it does not work:
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Let X = {x1, x2, x3, y1}, with metric

d(xi, xj) = 1 for i 6= j;

d(xi, y1) = 3 for i = 1, 2, 3.

The metric space we obtain from the first step would be Y = {x1, x2, x3, x4,

y1, y2, y3, y4}, with metric

d(xi, xj) = d(yi, yj) = 1 for i 6= j;

d(xi, yj) = 3 for i, j = 1, 2, 3, 4.

Now we’d like to define a metric on the set Z of all the 7-element sets of

edges in Y , such that Y is embedded in Z. Following the spirit of our

previous proof, if two sets in Z share only one element, we should define

their distance to be the length of the element they share. But unfortunately,

even a request as humble as such would lead to the disastrous outcome of

violating the triangle inequality. Consider the images of x1 and y1 under

the embedding, namely the sets

a = {x1x2, x1x3, x1x4, x1y1, x1y2, x1y3, x1y4}

and

b = {y1y2, y1y3, y1y4, x1y1, x2y1, x3y1, x4y1};

we have a ∩ b = {x1y1} and thus d(a, b) = d(x1, y1) = 3 as expected. How-

ever, when we take

c = {x2y2, x2y3, x3y2, x3y3, x1x2, y1y2, x3x4} ∈ Z,

we have a ∩ c = {x1x2} and b ∩ c = {y1y2}, and thus d(a, c) = d(b, c) = 1,

contradicting with d(a, c) + d(b, c) ≤ d(a, b).

The key issue here is that, while the structure of graph is kind of “tol-
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erant” with whatever we attempt to define, the structure of metric space

has more restrictions: it has to obey the triangle inequality. Therefore,

constructing a finite graph is much easier than doing the same with finite

metric space. That’s why we can’t generalize Milliet’s proof of Hrushovski

Property of graphs to that of finite metric spaces.

Now the question comes. Does the class of finite metric spaces in fact

have Hroshovski Property? The positive answer to this question is revealed

by Solecki in [15].

Solecki’s proof is based the following profound lemma, which was estab-

lished by Herwig and Lascar in [6].

Definition 3.3. Let M and M′ be L-structures. A weak homomorphism

fromM toM′ is a map f from M to M ′ such that, for every n-ary relation

symbol R of L and elements a1, a2, ..., an in M such thatM |= R(a1, ..., an),

we have M′ |= R(f(a1), ..., f(an)).

Let T be a class of L-structures. We say that M is T -free if there is no

weak homomorphism from every structure in T to M.

Lemma 3.4 (Herwig and Lascar, [6, Thm 3.2]). Let L be a finite relational

language and T a finite class of finite L-structures. If for every finite T -free

L-structure C1, there is a T -free L-structure C2 such that C1 ⊆ C2 and

every partial isomorphism of C1 extends to an automorphism of C2, then

there exists a finite T -free L-structure C3 such that C1 ⊆ C3 and every

partial isomorphism of C1 extends to an automorphism of C3.

The notion of T -free in the context of metric spaces is precisely the

triangle inequality, which would be shown in the proof below. What the

lemma states is the following: if we can find an infinite metric space such

that all partial isometries extend to total isometries, such operation can also

be done within finite metric spaces. With this powerful lemma as our new

weapon, we now stand in the face of the proof.

10



Theorem 3.5 (Solecki, [15, Thm 2.1]). Given a finite metric space X, there

is a finite metric space Z such that X ⊆ Z as metric spaces and every partial

isometry of X extends to an isometry of Z.

Proof. Given a finite metric space (X, d) where the distance takes value in

D = {d(x1, x2)|x1, x2 ∈ X,x1 6= x2}. Let L be the language with a binary

relation symbol Rr for each r ∈ D and no function symbols or constants.

For each positive integer n and sequence α = (r0, r1, ..., rn) ∈ Dn+1 such

that r1 + ...+rn ≤ r0, letMα be the L-structure with n+1 distinct elements

x0, x1, ..., xn such thatMα |= Rri(xi−1, xi)∧Rri(xi, xi−1) for each 1 ≤ i ≤ n
and Mα |= Rr0(x0, xn)∧Rr0(xn, x0) and no other relations holding between

pairs of elements in Mα. Intuitively, Mα’s are the cases where the triangle

inequality does not hold.

Let T be the class of all Mα’s. Notice that D is a finite set of positive

numbers and thus there are only finitely many α’s satisfying the require-

ments. Therefore, T is finite. Since X is a metric space, it is T -free.

In order to use Lemma 3.4, we need to extend X to an infinite T -free

L-structure M such that every partial isomorphism of X extends to an

automorphism of M. Let D′ be the additive semigroup generated by D,

and let L′ be the language including the distances in D′. Applying the

argument in Example 2.7, the class of all finite metric spaces whose distance

takes value in D′ has a Fräıssé limit M. By the ultrahomogeneity of M,

every partial isometry ofX now extends to a total isometry ofM. Therefore,

when we viewM as an L-structure (forgetting all the distance relations that

are not in L), every partial isomorphism of X extends to an automorphism

of M. By Lemma 3.4, there is a finite T -free L-structure Y extending X

such that every partial isomorphism of X extends to an automorphism of

Y . Notice that this is not yet the result we desire, since Y is only a finite

T -free L-structure, not a finite metric space.

We say that a sequence y0, y1, ..., yn of elements in Y is a chain between

y0 and yn if for each 1 ≤ i ≤ n there is ri ∈ D such that Y |= Rri(yi−1, yi)∧
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Rri(yi, yi−1), and we define r1 + ... + rn to be the length of such a chain.

Let Z be the substructure of Y consisting of all y ∈ Y which is connected

to some element in X by a chain. Clearly X ⊆ Z as L-structures.

Now we define a metric ρ on Z. If a = b, then ρ(a, b) = 0. Otherwise, we

define ρ(a, b) to be the length of the shortest chain between a and b. Since

each element of Z is connected by a chain to some element in X and two

distinct elements in X are always connected to each other, ρ is well-defined

on Z. It’s obvious that ρ satisfies the triangle inequality and thus is a metric

on Z. It remains to show that ρ restricted to X coincides with d and that

every partial isometry of X extends to a total isometry of Z.

For the first statement, we take a, b ∈ X and check whether d(a, b) =

ρ(a, b). The inequality ρ(a, b) ≤ d(a, b) is clear since a, b is itself a chain.

We assume towards contradiction that ρ(a, b) < d(a, b). This indicates that

there is a chain between a and b with distances r1, ...rn ∈ D such that

r1 + ...+ rn < d(a, b), which contradicts to the fact that Y is T -free.

For the second statement, we take p to be a partial isometry of X. By the

result of Lemma 3.4, p is extended to an automorphism p′ of Y . Notice that

the definition of chains and their length are preserved under automorphisms.

Therefore, if two elements a, b ∈ Y are connected to each other by a chain,

p′(a) and p′(b) would also be connected by a chain of the same length. This

not only ensures that p′|Z is an automorphism of Z but also shows that p′|Z
preserves metric. Therefore, p′|Z is a total isometry of Z that extends p.

Hrushovski property for Kn-free graphs

It is not hard to see that Lemma 3.4 and the existence of the Fräıssé limit

play the most important roles in the proof of the theorem. In fact, the proof

of the theorem can be generalized to obtain similar results for other classes

of structures. We take the class of finite Kn-free graphs as an example. This

theorem was first proven by Herwig in [5] before Lemma 3.4 was established:

Theorem 3.6 (Herwig, [5, Thm 2]). Given a finite Kn-free graph X, there

12



is a finite Kn-free graph Z such that X is an induced subgraph of Z and

every partial isomorphism of X extends to an automorphism of Z.

Proof. Let L be the language of graph with only one binary relation symbol

E. Take Tn to be the class of all L-structures M with exactly n elements

such that, for each pair a, b of distinct elements inM, we haveM |= E(a, b)∨
E(b, a).

Given a finite Kn-free graph X, by Example 2.6, it can be embedded into

the Henson graph Hn such that every partial isomorphism of X extends to

an automorphism of Hn. By Lemma 3.4, there is a finite Tn-free L-structure

Z such that every partial isomorphism of X extends to an automorphism

of Z. Define a graph structure on Z such that two vertices a, b in Z are

adjacent iff Z |= E(a, b) ∨ E(b, a). Clearly Z is now a Kn-free graph. Thus

we have proved the theorem.

4 Generic Automorphisms

In this section, we concern the automorphism groups of the Fräıssé limits we

introduced in Section 2, namely the random graph R, the rational Urysohn

space QU and the Henson graph Hn. We denote by Aut(R), Aut(QU)

and Aut(Hn) their automorphism groups and equip them with pointwise

convergence topology as discrete sets. Thus, the basic open sets in each of

the Polish groups are of the form:

{h ∈ Aut(R)| h|A = g|A} for some finite A ⊆ R and g ∈ Aut(R)

{h ∈ Aut(QU)| h|A = g|A} for some finite A ⊆ QU and g ∈ Aut(QU)

{h ∈ Aut(Hn)| h|A = g|A} for some finite A ⊆ Hn and g ∈ Aut(Hn)

Definition 4.1. We say that an automorphism g of a structure is generic

if its conjugacy class is comeager under the pointwise convergence topology.

To see how this definition might work, we take a look at a simple example,
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which can be found in several different papers such as Truss [16] and Lascar

[11].

Proposition 4.2 (Folklore). The countably infinite set Ω with empty lan-

guage has a generic automorphism.

Proof. Since the language is empty, an automorphism of Ω is precisely a

permutation of Ω. We assert that a permutation σ of Ω is generic iff it

contains no infinite cycles and infinitely many n-cycles for each n.

Firstly, every two permutations of Ω with the same cycle type are clearly

conjugate. We only have to show that the class of all permutations of this

cycle type is comeager.

For each positive integer n and k, let An,k be the class of permuta-

tions with at least k disjoint n-cycles. Then An,k is the union of {σ ∈
Aut(Ω)| σ|Ω0 = τ} for all |Ω0| = nk and τ a permutation of Ω0 with k dis-

joint n-cycles. Since each {σ ∈ Aut(Ω)| σ|Ω0 = τ} is a basic open set, An,k

is open. Now, given a basic open set D, the permutations in D are only

determined within a finite set and may behave as whatever we want outside

the set. Thus the intersection of An,k and D is always non-empty, which

implies that An,k is dense.

Now enumerate the elements of Ω by ω1, ω2, ... and let Bn,k = {σ ∈
Aut(Ω)| σk(ωn) = ωn}. By an argument similar to that for An,k, one can

show that each Bn,k is dense open.

Finally, let

A =

∞⋂
n=1

∞⋂
k=1

An,k, B =

∞⋂
n=1

∞⋃
k=1

Bn,k.

Then A is precisely the class of permutations with infinitely many n-

cycles for each n, and B the class of permutations without infinite cycles.

Since each An,k and Bn,k is dense open, A∩B is a dense Gδ, which completes

the proof.

What is special about the above example is that the conjugacy class

of Aut(Ω) is uniquely determined by its cycle type. For other structures
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where the language is not empty, it would be a lot harder to decide how

a conjugacy class might look like. The existence of generic automorphisms

for the random graph was established by Truss in [16], whose outline was

similar to that in the above case, but with a much more complicated de-

scription of the comeager conjugacy class and a much longer proof. The

result concerning rational Urysohn space was first proven by Solecki in [15],

with a completely different approach that avoids showing explicitly what the

comeager conjugacy class may look like. Both Truss and Solecki’s proofs are

closely related to the specific structure they concern, and it seems hard to

apply their methods to other structures.

Fortunately, a necessary and sufficient condition for a Fräıssé limit to

have generic automorphisms was later given by Kechris and Rosendal in

[10], which allows us to obtain results on structures of different kinds with

a single method. To state their result, we first introduce some notations:

Definition 4.3. For a class K of structures, we say that K has the weak

amalgamation property (WAP for short), if for all S ∈ K, there is A ∈ K
with an embedding e : S → A, such that for all B,C ∈ K with embeddings

f1 : A → B, f2 : A → C, there are D ∈ K and embeddings g1 : B → D,

g2 : C → D such that g1 ◦ f1 ◦ e = g2 ◦ f2 ◦ e.

For each Fräıssé class K, we associate it with the class Kp of all systems

S = 〈A,ψ〉 such that A ∈ K and ψ is a partial isomorphism of A. We nat-

urally say that S = 〈A,ψ〉 is embedded in T = 〈B,φ〉 when A is embedded

in B and φ extends ψ.

Theorem 4.4 (Kechris and Rosendal, [10, Thm 3.4]). Let K be a Fräıssé

class with its Fräıssé limit F . Then the following are equivalent:

(1) F has a generic automorphism;

(2) Kp has JEP and WAP.

Kechris and Rosendal’s proof of the theorem in their paper involves the

concept of “turbulence” and several properties related to it. We now skip
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the proof to some corollaries of the theorem concerning the Fräıssé classes

mentioned before. Note that the way we prove these corollaries differ from

their original proofs.

Corollary 4.5 (Truss, [16, Thm 3.2]). The random graph R has a generic

automorphism.

Proof. Let K be the class of all finite graphs. Given S = 〈A,ψ〉 and T =

〈B,φ〉 in Kp, we take U = 〈A t B,ψ t φ〉, where two vertices in A t B are

adjacent iff they’re adjacent in either A or B. It’s obvious that both S and

T embed in U , and thus Kp has JEP.

Given S = 〈A,ψ〉 in Kp, by Theorem 3.1 there is T = 〈B,φ〉 in Kp
such that A embeds in B and φ is an automorphism of B extending ψ. For

every two systems T1 = 〈B1, φ1〉 and T2 = 〈B2, φ2〉 in Kp with embeddings

f1 : B → B1 and f2 : B → B2 such that both φ1 and φ2 extend φ, take

C = B1 tB B2, where two vertices in C are adjacent iff they’re adjacent in

either B1 or B2. Since φ is an automorphism of B, φ1 and φ2 coincides on B

when viewed as partial isomorphisms of C, and thus φ1 ∪ φ2 is well-defined

on C. It’s obvious that φ1 ∪ φ2 is a partial isomorphism of C that extends

both φ1 and φ2. Thus WAP holds for Kp.
By Theorem 4.4, the random graph R has a generic automorphism.

The same proof also applies to the case of Henson graph.

Corollary 4.6. The Henson graph Hn has a generic automorphism.

Proof. Let Kn be the class of all finite Kn-free graphs. The rest of the proof

is nearly identical to that of Corollary 4.5, except that we need to check

each graph we construct is Kn-free.

Given S = 〈A,ψ〉 and T = 〈B,φ〉 in Knp , we take U = 〈A t B,ψ t φ〉,
where two vertices in A tB are adjacent iff they’re adjacent in either A or

B. Obviously A t B is Kn-free and both S and T embeds in U . Therefore

Knp has JEP.
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Given S = 〈A,ψ〉 in Knp , by Theorem 3.6 there is T = 〈B,φ〉 in Knp
such that A embeds in B and φ is an automorphism of B extending ψ. For

every two systems T1 = 〈B1, φ1〉 and T2 = 〈B2, φ2〉 in Knp with embeddings

f1 : B → B1 and f2 : B → B2 such that both φ1 and φ2 extend φ, take

C = B1 tB B2, where two vertices in C are adjacent iff they’re adjacent in

either B1 or B2. Since φ is an automorphism of B, φ1 and φ2 coincides on B

when viewed as partial isomorphisms of C, and thus φ1 ∪ φ2 is well-defined

on C. Since both B1 and B2 are Kn-free, so is C. It’s straight forward to

check that φ1 ∪ φ2 is a partial isomorphism of C that extends both φ1 and

φ2. Thus WAP holds for Knp .

By Theorem 4.4, the Henson graph Hn has a generic automorphism.

At last, we consider the case of rational Urysohn space.

Corollary 4.7 (Solecki, [15, Cor 4.1]). The rational Urysohn space QU has

a generic isometry.

Proof. Let K be the class of all finite rational metric spaces.

To check JEP, given S = 〈A,ψ〉 and T = 〈B,φ〉 in Kp, we take C = AtB.

The metric on C preserves that on both A and B, and for a ∈ A, b ∈ B,

dC(a, b) = 2 max{d(A), d(B)}. It’s clear that φtψ is now a partial isometry

of C.

To check WAP, given S = 〈A,ψ〉 in Kp, by Theorem 3.5 there is T =

〈B,φ〉 in Kp such that A embeds in B and φ is a total isometry of B

extending ψ. For every two systems T1 = 〈B1, φ1〉 and T2 = 〈B2, φ2〉 in

Kp with embeddings f1 : B → B1 and f2 : B → B2 such that both φ1 and

φ2 extend φ, take C = B1 tB B2. Define a metric dC on C such that it

preserves the metric on both B1 and B2 and for b1 ∈ B1 \ B, b2 ∈ B2 \ B
we take dC(b1, b2) to be the minimum of dB1(b1, c) + dB2(b2, c) for all c ∈ B.

It’s not hard to see that φ1 ∪ φ2 is now a partial isometry of C extending

both φ1 and φ2.

Therefore, by Theorem 4.4, the rational Urysohn space has a generic

isometry.
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5 Powers of Generic Automorphism

Although Theorem 4.4 and its corollaries showed us the existence of generic

automorphisms of many structures, we don’t yet know much about how

those generic automorphisms may behave. Rosendal showed in [14] that the

conjugacy class of generic isometries of the rational Urysohn space is closed

under powers. His theorem depends upon a lemma.

Lemma 5.1 (Rosendal, [14, Prop 11]). Let X ⊆ Y be finite rational metric

spaces, with an isometry f of X and an isometry g of Y , such that fn = g|X .

Then, there is a finite rational metric space Z extending Y and an isometry

h of Z such that h extends f and hn|Y = g.

With the lemma above, Rosendal showed that:

Theorem 5.2 (Rosendal, [14, Prop 12]). Let n be a positive integer. The

generic isometry of the rational Urysohn space QU is conjugate with its nth

power.

Now, we’re going to mimic Rosendal’s proof to obtain similar results for

the random graph and the Henson graphs. We begin with two analogue

lemmas.

Lemma 5.3. Let X ⊆ Y be finite graphs, with an automorphism f of X

and an automorphism g of Y , such that fn = g|X . Then, there is a finite

graph Z extending Y and an automorphism h of Z such that h extends f

and hn|Y = g.

Proof. We follow Rosendal’s outline in the proof of Lemma 5.1.

Let Y1, ..., Yn be n exact copies of Y and embed X into each Yi by

li(x) = f−i(x). For x ∈ Y \X, we denote the copy of x in Yi by xi. We take

Z =
⊔
X Yi and endow it with a graph structure. For every two vertices a, b

of Z, EZ(a, b) iff EYi(a, b) for some i.

We define a permutation h of Z as follows:
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1. h(x) = f(x) for x ∈ X;

2. h(xi) = xi+1 for x ∈ Y \X and 1 ≤ i < n;

3. h(xn) = (gx)1 for x ∈ Y \X.

Now we check that h is an automorphism of Z. First, suppose x, y ∈ X:

EZ(hx, hy)⇔ EZ(fx, fy)⇔ EY (lifx, lify)⇔ EY (f1−ix, f1−iy)

⇔ EY (f−ix, f−iy)⇔ EZ(x, y)

Second, suppose x ∈ X and y ∈ Y \X. For 1 ≤ i < n:

EZ(hx, hyi)⇔ EZ(fx, yi+1)⇔ EYi+1(li+1fx, y)⇔ EYi+1(f−ix, y)

⇔ EYi(lix, y)⇔ EZ(x, yi)

EZ(hx, hyn)⇔ EZ(fx, (gy)1)⇔ EY1(l1fx, gy)⇔ EY1(x, gy)

⇔ EY1(g−1x, y)⇔ EY1(f−nx, y)⇔ EYn(lnx, y)⇔ EZ(x, yn)

Finally, for x, y ∈ Y \X and 1 ≤ i < j ≤ n:

EZ(hxi, hyi)⇔ EZ(xi+1, yi+1)⇔ EYi+1(x, y)⇔ EYi(x, y)⇔ EZ(xi, yi)

EZ(hxi, hyj)⇔ EZ(xi+1, yj+1)⇔ ⊥⇔ EZ(xi, yj)

In conclusion, we’ve shown that h is an automorphism of Z.

Now we view g and f as automorphisms of the first copy Y1 of Y .

Obviously h extends f . It remains to check hn|Y1 = g. Take x ∈ X

and y ∈ Y \ X. Then we have hnx = hn−1fx = ... = fnx = gx and

hn(y1) = hn−1(y2) = ... = h(yn) = (gy)1 = g(y1). This completes the

proof.

The same proof also applies to Kn-free graphs.

Lemma 5.4. Let X ⊆ Y be finite Kn-free graphs, with an automorphism f

of X and an automorphism g of Y , such that fn = g|X . Then, there is a

finite Kn-free graph Z extending Y and an automorphism h of Z such that
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h extends f and hn|Y = g.

Proof. This is just a special case of the above lemma. There is only one

more thing we have to check: when the given graphs X and Y are Kn-free,

Z as constructed above is also Kn-free. Since Z =
⊔
X Yi, where each Yi is

an exact copy of Y , the result follows immediately.

Now we come to the theorems:

Theorem 5.5. Let n be a positive integer. The generic automorphism of

the random graph R is conjugate with its nth power.

Proof. We only need to show that there exist two generic automorphisms f

and g such that f = gn.

Recall that the basic open sets of Aut(R) are of the form:

U(g,A) = {h ∈ Aut(R)| h|A = g|A},

where A ⊆ R is finite and g ∈ Aut(R). Let V = ∩iVi be the comeager

conjugacy class of Aut(R) with each Vi dense open and enumerate the points

in R by a1, a2, .... We build two sequences of partial automorphisms fi and

gi with finite domains Ai ⊆ R such that:

(1) ai ∈ Ai, Ai ⊆ Ai+1;

(2) fi+1 extends fi, gi+1 extends gi;

(3) U(fi+1, Ai+1) ⊆ Vi, U(gi+1, Ai+1) ⊆ Vi
(4) gni = fi.

To start with, we set A0 = ∅ with empty automorphisms f0 = g0. For

the induction step, suppose Ai, fi and gi are given. Since R is universal and

homogeneous, there is a finite B ⊇ Ai ∪{ai+1} and a partial isomorphism h

with domain B such that h extends gi. Since U(h,B) is open and Vi is dense

open, there is U(k0, C0) ⊆ U(h,B)∩Vi. By Theorem 3.1, we can extend the

partial isomorphism k0 of C0 ∪ k0(C0) to an automorphism k of some finite

C ⊆ R. Therefore, U(k,C) ⊆ U(k0, C0) ⊆ Vi. Repeat this construction
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for U(kn, C), we obtain an automorphism p of some finite D ⊆ R such

that U(p,D) ⊆ Vi, C ⊆ D and p extends kn. By Lemma 5.3, there is an

automorphism q of some finite E ⊇ D such that q|C = k and qn|D = p. In

conclusion, we have:

gi ⊆ h ⊆ k ⊆ q, gni ⊆ hn ⊆ kn ⊆ p ⊆ qn;

Ai ∪ {ai+1} ⊆ B ⊆ C ⊆ D ⊆ E;

U(q, E) ⊆ U(k,C) ⊆ Vi, U(qn, E) ⊆ U(p,D) ⊆ Vi.

Therefore, take Ai+1 = E, fi+1 = qn and gi+1 = q, and the induction step

is complete.

Finally, let f = ∪ifi and g = ∪igi. By (1) and (2), f and g are both

automorphisms of R. By (3), f, g ∈ ∩iVi = V and thus are both generic

automorphisms. By (4), f = gn. The desired result follows.

With nearly an identical proof, we also have:

Theorem 5.6. Let m be a positive integer. The generic automorphism of

the Henson graph Hm is conjugate with its nth power for each n ≥ 1.

Proof. Denote the basic open sets of Aut(Hm) by:

U(g,A) = {h ∈ Aut(Hm)| h|A = g|A},

where A ⊆ Hm is finite and g ∈ Aut(Hm). Let V = ∩iVi be the comeager

conjugacy class of Aut(Hm) with each Vi dense open and enumerate the

points in R by a1, a2, .... Build two sequences of partial automorphisms fi

and gi with finite domains Ai ⊆ Hm such that:

(1) ai ∈ Ai, Ai ⊆ Ai+1;

(2) fi+1 extends fi, gi+1 extends gi;

(3) U(fi+1, Ai+1) ⊆ Vi, U(gi+1, Ai+1) ⊆ Vi
(4) gni = fi.
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Set A0 = ∅ with empty automorphisms f0 = g0. For the induction step,

suppose Ai, fi and gi are given. By the universality and homogeneity of

Hm, there is a finite B ⊇ Ai ∪ {ai+1} and a partial isomorphism h with

domain B such that h extends gi. Since U(h,B) is open and Vi is dense

open, there is U(k0, C0) ⊆ U(h,B)∩Vi. By Theorem 3.6, we can extend the

partial isomorphism k0 of C0 ∪ k0(C0) to an automorphism k of some finite

C ⊆ Hm. Therefore, U(k,C) ⊆ U(k0, C0) ⊆ Vi. Repeat this for U(kn, C) to

obtain an automorphism p of some finite D ⊆ Hm such that U(p,D) ⊆ Vi,

C ⊆ D and p extends kn. By Lemma 5.4, there is an automorphism q of

some finite E ⊇ D such that q|C = k and qn|D = p. In conclusion, we have:

gi ⊆ h ⊆ k ⊆ q, gni ⊆ hn ⊆ kn ⊆ p ⊆ qn;

Ai ∪ {ai+1} ⊆ B ⊆ C ⊆ D ⊆ E;

U(q, E) ⊆ U(k,C) ⊆ Vi, U(qn, E) ⊆ U(p,D) ⊆ Vi.

Therefore, take Ai+1 = E, fi+1 = qn and gi+1 = q, and the induction step

is complete.

At last, take f = ∪ifi and g = ∪igi. By (1) and (2), f and g are both

automorphisms of Hm. By (3), f, g ∈ ∩iVi = V and thus are both generic

automorphisms. By (4), f = gn. This completes the proof.
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