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This paper presents a two-dimensional modal logic for rea-
soning about the changing patterns of knowledge and social
relationships in networks organised on the basis of a sym-
metric ‘friendship’ relation, providing a precise language for
exploring ‘logic in the community’ [11]. Agents are placed
in the model, allowing us to express such indexical facts as
‘I am your friend’ and ‘You, my friends, are in danger’.

The technical framework for this work is general dynamic
dynamic logic (GDDL) [4], which provides a general method
for extending modal logics with dynamic operators for rea-
soning about a wide range of model-transformations, start-
ing with those definable in propositional dynamic logic (PDL)
and extended to allow for the more subtle operators involved
in, for example, private communication, as represented in
dynamic epistemic logic (DEL) and related systems. We
provide a hands-on introduction to GDDL, introducing el-
ements of the formalism as we go, but leave the reader to
consult [4] for technical details.

Instead, the purpose of this paper is to investigate a num-
ber of conceptual issues that arise when considering com-
munication between agents in such networks, both from one
agent to another, and broadcasts to socially-defined groups
of agents, such as the group of my friends. All three compo-
nents of the communication (the sender, the message, and
the receivers) can be specified in a variety of ways that need
to be distinguished. For example, Charlie may tell Bella
‘you are in danger’ or ‘I am in danger’. He may broadcast
to all ‘my friends are in danger’, which if Bella is a friend,
will mean that that she is in danger, or send a message only
to his friends that they are in danger. All such possibilities,
together with their epistemic consequences, will be exam-
ined.

We extend the treatment of announcements to questions,
in which agents are taken to be sincere and cooperative in-
terlocutors, and consider network structure changing opera-
tions such as adding and deleting friends (with the permis-
sion of other agents) and, finally, explore the effect of all this
on the concept of common knowledge, which is more varied
and rich in the social network setting.

These issues are illustrated by a number of examples about
office gossip, cold-war spy networks and Facebook.

1. A LANGUAGE OF SOCIAL KNOWING
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Figure 1: A simple EFL model

We start with a language L of epistemic friendship logic
EFL based on atoms of two types: propositional variables
ρ ∈ Prop representing indexical propositions such as ‘I am
in danger’, and (a finite set of) agent nominals n ∈ ANom
which stand for indexical propositions asserting identifica-
tion: ‘I am n’. The language is then inductively defined
as:

ϕ ::= ρ | n | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | Fϕ | Aϕ

We read K as ‘I know that’ and F as ‘all my friends’ and
A as ‘every agent’. Models for this language are Kripke
models of the form M = 〈W,A, k, f, V 〉, where W is a set
(of epistemic states), A is a set (of agents), and

1. k is a family of equivalence relations ka for each agent
a ∈ A, representing the ignorance of a in distinguishing
epistemic possibilities (as for standard S5 epistemic
logic)

2. f is a family of symmetric and irreflexive relations fw
for each w ∈ W , representing the friendship relation
in state w.

3. g is a function mapping each agent nominal n ∈ ANom
to the agent g(n) ∈ A named by n. We abbreviate
g(n) to n when the model is clear from the context.

4. V is a valuation function mapping propositional vari-
ables Prop to subsets of W × A, with (w, a) ∈ V (p)
representing that the indexical proposition p holds of
agent a in state w.

For example, Figure 1 illustrates a simple model for a lan-
guage in which there is only one propositional variable p and
one agent name n. The set of states is W = {u0, u1} and the
set of agents is A = {a, b}, with g(n) = a, n naming agent a.
Both agents are ignorant about which state they are in, so
ka = kb is the universal relation. These are indicated by the
two columns of the diagram. The left column displays the



ka relation with a thick line; the right column displays the
kb relation, similarly. The lines are non-directional because
the relations are assumed to be symmetric. In more complex
diagrams, we will assume that the relations depicted are the
reflexive, transitive closures of what is shown explicitly. The
rows of the diagram show the relations fu0 (first row) and
fu1 (second row) with dotted lines. This represents the two
agents being friends in both states of W . Again these are
non-directional because we assume symmetry. But for these
lines we do not take the reflexive, transitive closure, since
we assume that fw is irreflexive and may or may not be
transitive. Finally, that p holds only of agent a in state u0,
i.e., that V (p) = {(u0, a)} is shown by labelling the lower
left node of the diagram with p.
Models are used to interpret L in a double-indexical way, as
follows:

M,w, a |= ρ iff (w, a) ∈ V (ρ), for ρ ∈ Prop

M,w, a |= n iff g(n) = a, for n ∈ ANom

M,w, a |= ¬ϕ iff M,w, a 6|= ϕ

M,w, a |= (ϕ∧ψ) iff M,w, a |= ϕ and M,w, a |= ψ

M,w, a |= Kϕ iff M, v, a |= ϕ for every v ∈ W
such that 〈w, v〉 ∈ ka(w)

M,w, a |= Fϕ iff M,w, b |= ϕ for every b ∈ A
such that 〈a, b〉 ∈ fw(a)

M,w, a |= Aϕ iff M,w, b |= ϕ for every b ∈ A.

As usual in modal logic, we can define the duals of the op-
erators, which we write inside angle brackets: 〈K〉 = ¬K¬
‘it is epistemically possible for me that’, 〈F 〉 = ¬F¬ ‘I have
a friend who’, and 〈A〉 = ¬A¬ ‘there is someone who’. The
English glosses are not so exact and require some manipula-
tion to get proper translations, because of the way pronouns
work in English. For example, if d represents ‘I am in dan-
ger’ then 〈F 〉Kd means ‘I have a friend who knows that he
is in danger’ rather than ‘I have a friend who I know that I
am in danger’ which is not even grammatically correct.
We also use abbreviations for the hybrid-logic-like operators
@nϕ = A(n→ ϕ) (equivalently, 〈A〉(n∧ϕ)).1 So, for exam-
ple, if n is Charlie then the operator @n simply shifts the
indexical subject to Charlie, so that @nd means ‘Charlie is
in danger’.
We say that M is a named agent model, if every agent in
M has a name, i.e., for each a ∈ A, there is an n ∈ ANom
such that g(n) = a. The model depicted in Figure 1 is not a
named agent model because agent b has no name. In what
follows we will assume that all agents are named, and so
use the letters representing the agents in the diagram also
as names in the language, abusing the distinction between
n and n.
The advantage of working with named agent models is that
we can define an operator ↓n by

↓n ϕ :=
∨

m∈ANom

(m ∧ ϕ[nm])

where ϕ[nm] is the result of replacing agent nominal n by m

1Although reminiscent of hybrid logic, the ‘agent nominals’
n, binder ↓ n and now the operator @n are not exactly
the same as their hybrid-logic namesakes, but are rather
some sort of two-dimensional cousins. A true nominal, for
example, is a proposition that is logically compelled to be
satisfied by exactly one evaluation index, which in the case
of our models, would have to be the pair 〈w, a〉.

in ϕ. This provides a way of referring to ‘me’ inside the
scope of other operators, by shifting the referent of n to the
current agent. When M is a named agent model,

M,w, a |=↓n ϕ iff M [na], w, a |= ϕ.

where M [na] is the result of changing M so that n now

names a.2 This allows us to express such propositions as,
↓n FK〈F 〉n, which says ‘all my friends know they are friends
with me’, at least on the assumption that every agent has
a name. The assumption is not so restrictive, since in all
applications we have so far considered, we can assume that
a finite set of agents is specified in advance.3

Relations and change.
We will define a class of operators D and corresponding ac-
tions on models such that for each ∆ ∈ D and each M model
for L, there is an L model ∆M , and for each state w of M ,
a state ∆w of ∆M . We then extend L to a language L(D)
of dynamic epistemic friendship logic (DEFL) by adding the
elements of D as propositional operators and defining

M,w, a |= ∆ϕ iff ∆M,∆w, a |= ϕ

To define D, we use the language of propositional dynamic
logic (PDL) with basic programs K, F and A, given by

T π::=K | F | A | ϕ? | (π;π) | (π ∪ π) | π∗
F ϕ::=ρ | n | ¬ϕ | (ϕ ∨ ϕ) | 〈π〉ϕ

for ρ ∈ Prop and n ∈ ANom. The denotation of program
terms π ∈ T and formulas ϕ ∈ F in a model M are defined
in the manner shown in Table 1. Note in particular, the

[[ρ]]M = V (ρ), for ρ ∈ Prop
[[n]]M = W × {g(n)}, for n ∈ ANom
[[(ϕ ∧ ψ)]]M = [[ϕ]]M ∩ [[ψ]]M

[[¬ϕ]]M = W \ [[ϕ]]M

[[〈π〉ϕ]]M = {w ∈ W | w[[π]]Mv and v ∈ [[ϕ]]M

for some v ∈W }
[[K]]M = {〈(w, a), (v, a)〉 | ka(w, v)}
[[F ]]M = {〈(w, a), (w, b)〉 | fw(a, b)}
[[A]]M = {〈(w, a), (w, b)〉 | a, b ∈ A, w ∈W}
[[ϕ?]]M = {〈w,w〉 | w ∈ [[ϕ]]M}
[[π1;π2]]M = {〈w, v〉 | w[[π1]]Ms and s[[π2]]Mv for

some s ∈W}
[[π1 ∪ π2]]M = [[π1]]M ∪ [[π2]]M

[[π∗]]M = {〈w, v〉|w = v or wi[[π]]Mwi+1 for
some n ≥ 0, w0, . . . , wn ∈ W , w0 =
w and wn = v}

Table 1: Semantics of PDL terms and formulas

clauses for K, F and A, in which these program terms refer
to the accessibility relations of the corresponding operators
of EFL, when interpreted two-dimensionally. Complex pro-
gram terms are built up in the usual way: (π1;π2) for the

2More precisely, M [na] = 〈W×A, k, f, g[na], V 〉 where for m ∈

ANom, g[na](m) = a if m = n and g(m), otherwise.
3↓ n can be introduced as a primitive, but without the
restriction to named agent models, the resulting logic can
be shown to be undecidable by encoding tiling problems (in
the manner of [2]).



relational composition of π1 and π2, (π1∪π2) for their union
(or choice), ϕ? for the ‘test’ consisting of a link from (w, a)
to itself iff M,w, a |= ϕ, and π∗ for the reflexive, transitive
closure of π, which is understood as a form of iteration.
Note also that we have abused notation so that formulas ϕ
of EFL, written with existential operators 〈K〉, 〈F 〉 and 〈A〉,
are also programs formulas (in F ). This is justified by the
obvious semantic equivalence:

M,w, a |= ϕ iff (w, a) ∈ [[ϕ]]M

Now the class of dynamic operators will be defined using the
theory of General Dynamic Dynamic Logic (GDDL) given in
[4], which applies to any language of PDL. We refer the
reader to that paper for full technical details, but we will
introduce those parts of the theory that are required for
present purposes.
The simplest GDDL operators are called PDL-transformations.
These consist of assignment statements which transform mod-
els by redefining the basic programs. For example, the op-
erator [K := π] acts on model M to produce a new model
[K := π]M such that

[[K]][K:=π]M = [[π]]M

On states, there is no change: [K := π]w = w, so the result-
ing DEFL operator has the following semantics:

M,w, a |=[K:=π]ϕ iff [K:=π]M,w, a |= ϕ

We must be a little careful in the choice of π so as to en-
sure that the resulting model [K := π]M is still a model
for EFL. For example, consider the program term n?;K.
In M , this relates (u0, a) to (u1, b) in case (u0, a) ∈ [[n]]M

and (u0, a)[[K]]M (u1, b), which only holds when g(n) = a,
a = b, and ka(u0, u1). Then [K := n?;K]M is the structure
〈W,A, k′, f, V 〉 in which k′a = ka and k′b = ∅, for b 6= a.
This is not a model for EFL. To make it into a model for
EFL, we need to make each ka reflexive. This can be done
with the program term >?, since [[>?]]M is the identity re-
lation. Thus taking π to be (n?;K) ∪ >? we get the model

[[K]][K:=(n?;K)∪>?]M which is the structure 〈W,A, k′′, f, V 〉 in
which k′′a = ka and k′′b is the identity relation for all b 6= a.
The application of [K := (a?;K)∪>?] to a particular model
is illustrated in Figure 2. Here, M is a named agent model,

M [K := (n?; k) ∪ >?]M

u1

u0
p

a b

u1

u0
p

a b

Figure 2: A simple PDL-transformation.

so we allow ourselves the abuse of notation involved in writ-
ing a for the name of a. In this model there are two friends,
a and b, who are both ignorant about whether they are in
state u0 or u1. p holds only of agent a in state u0, so in par-
ticular, M,u0, b |= (K¬p∧¬K〈F 〉p), which means that agent
b knows that she is not p but does not know whether she
has a friend who is p. After the action [K := (n?;K) ∪ >?]
we get the model shown on the right, in which ka is as be-
fore but now kb is the identity relation. In the transformed

model, agent b now knows that she has a friend who is p.
Thus we get the dynamic fact:

M,u0, b |= [K := (n?;K) ∪ >?]K〈F 〉p

In effect, the PDL-transformation, [K := (n?;K) ∪ >?] is
the action of revealing everything to every agent other than
n. We will consider more subtle forms of epistemic change
in subsequent sections. Now it is time for a more extended
example.

The Spy Network.
To take a Cold War example, suppose we are reasoning
about the effect of a spy network being exposed.

Bella (b) is friends with Charlie (c) and Erik (e),
neither of whom are friends with each other. Un-
known to the others is that Erik is a spy (s). The
others are not spies, and Erik knows that because
all spies know who else is a spy (we suppose).
Bella knows that Charlie is not a spy, but Char-
lie does not know about her. After the network
is exposed, all the spies and their friends will be
interrogated by the police. But just before this
happens a message is relayed to all agents reveal-
ing whether or not they are in danger, that is,
whether they are a spy (which they would know
in any case) or a friend of a spy.

A model M of the initial situation is depicted in Figure 3,
with u0 representing the actual state. In EFL we can state
pertinent facts such as @b(K¬s∧¬K〈F 〉s) ‘Bella knows that
she is not a spy but doesn’t know if a friend of hers is a
spy’. We will write d ‘I am in danger’ as an abbreviation for
(s∨ 〈F 〉s) ‘either I’m a spy or I have a spy as a friend’, and,
for convenience, we have labelled those state-agent pairs at
which d holds. Thus we can read that @b(d ∧ ¬Kd) ‘Bella
is in danger but doesn’t know it’, whereas @bK@c¬d ‘Bella
knows that Charlie is not in danger’.
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Figure 3: Spy Network

Now consider the PDL-term cutK(ϕ) defined by

(ϕ?;K;ϕ?) ∪ (¬ϕ?;K; ¬ϕ?)

This relates 〈w, a〉 to 〈v, b〉 iff a = b, ka(w, v), and either
ϕ is true of a in both states w and v or false of a in both



states. Thus the operator [K := cutK(ϕ)] produces a new
model [K := cutK(ϕ)]M from M by removing the ka links
between states with conflicting values for ϕ (about a). Ef-
fectively, this ‘reveals’ to each agent whether or not ϕ holds
(for them). This operator was first introduced in [14].
In our example, the situation after the revelation of d ‘you
are in danger’ is given by the model [K :=cutK(d)]M , shown
in the right part of Figure 3. Notice that the kc link between
u1 and u2 are cut because M,u1, c 6|= d but M,u2, c |= d;
Charlie finds out that he is not in danger. Similarly, the kb
link between u0 and u1 is cut because Bella finds out that
she is in danger (@bKd). Finally, the ke link between u1

and u2 is cut because everyone now knows that Erik knows
whether he is in danger (although only Bella knows which).
Moreover, in the language of DEFL we can represent reason-
ing about these changes, such as the valid schema

[K :=cutK(ϕ)]A(Kϕ ∨K¬ϕ)

which states (for non-epistemic facts ϕ such as d = 〈F 〉s)
that after ϕ is revealed, everyone knows whether ϕ or not.

GDDL operators.
More complicated operators can be constructed from finite
relational structures whose elements are each associated with
a PDL transformation, and whose combined effect on the a
model is calculated by ‘integrating’ them according to a fur-
ther such transformation. A GDDL operator ∆ is something
that looks like this:

∆0

d0

∆1

d1

K′

K :=π

This represents an action d0 (highlighted as the action that
is actual performed) whose effect on the model is given by
the PDL-transformation ∆0. There is also an action d1 with
associated PDL-transformation ∆1, and the relationship be-
tween d0 and d1 is marked as K′.4 The effect of the operator
on an EFL model M with domain W is computed by forming
a product model M ′ (in the manner of [1]) whose domain
is W × {d0, d1}, in which the elements (w, di) represent the
state resulting from action d0 when the initial state is w.
The model M ′ consists of copies of two models [∆0]M with
domain W × {d0} and [∆1]M with domain W × {d1}, and
a duplication of the model occurring in ∆ itself, with, in

this case, (w, d0)[[K′]]M
′
(w, d1) for each w, v ∈ W . Finally,

the model [∆]M is computed by applying the ‘integrating’
transformation [K := π] to M ′. This uses a PDL program
term π to compute the new value for K from a combination
of relations in the copied models [∆0]M and [∆1]M and the
new relation K′ from ∆ itself.5

This somewhat complex operation is best explained by look-
ing at a simple example. Consider the case in which ∆0 is

4In the general case, as explained in [4], there may be many
actions and many new relation symbols; also, propositional
variables.
5Again, the general case is more flexible, allowing any of
the basic expressions K, F , agent nominal and propositional
variable to be reinterpreted at the integrating stage.

the PDLtransformation [K := (a?;K) ∪ >?] considered ear-
lier, and ∆1 is the identity transformation, I. We will also
take π to be (K ∪ a?;K′)∗.

[K := (a?;K) ∪ >?]

d0

I

d1

K′

K :=(K ∪ a?;K′)∗

The action of this GDDL operator on the model M consid-
ered earlier, is show in Figure 4. It represents a situation in
which an action d0 gives complete information to all agents
other than a. The occurrence of d0 is known to all agents
other than a, who stays completely in the dark. Not only is
ka unchanged in both [∆0]M (the top half of the diagram)
and [∆1]M (the bottom half), but a is also ignorant about
which of these two submodels she is in, as represented by the
vertical lines in connecting the two halves of the a column:
(w, d0)ka(w, d1) for all w ∈ W . Once again, we must check

M ∆M

v

w
p

a b

(v, d0)

(w, d0)

(v, d1)

(w, d1)

p

p

a b

Figure 4: A simple GDDL operator in action.

that the resulting model is an EFL model. In this case, it
is. The ka and kb relations are transitive thanks to the ap-
plication of the ∗ operator in the integrating transformation
[K :=(K ∪ a?;K′)∗].
We’ll say that a GDDLtransformation ∆ is a general EFL dy-
namic operator if it is in the language of PDL terms defined
above, possibly augmented with internal relations such as
K′ and also preserves the property of being a EFL-model:
whenever M is a EFL-model, so is ∆M .

2. SOCIAL ANNOUNCEMENTS
We now turn to direct communications, or ‘announcements’,
within a social network. In the standard analysis of public
announcement (PAL [7]), only the effect of announcement is
modelled without reference to the agent who made the an-
nouncement and with the simplifying assumption that the
message is received by all agents. In dynamic epistemic logic
(following [1]), private announcements, in which a message
is received by a limited set of agents are also considered.
In the general case, within a social network, an announce-
ment consists of an agent (the sender) transmitting some
information (the message) to one or more other agents (the
receivers) and each of these three components can be de-
scribed in different ways, from different perspectives.6 In
this section, we will map out some of the subtleties.
6We are aware of the attempts by others in this respect. [8]



As a starting point, we ignore the sender and define a basic
act of communication in which a message ψ is sent (anony-
mously, we suppose) to a group of agents θ by

sendθ(ψ) = [K := (θ?; cutK(ψ)) ∪ (¬θ?;K)]

The action sendθ(ψ) reveals the truth or falsity of ψ (which
may be different for different agents) to all agents satisfying
θ, and leaves the ka relation unchanged for agents a not
satisfying θ.
To see how this works, consider send〈F 〉b(d) in the case of
our spy network. This is an anonymous announcement to
the friends of Bella (but not to Bella herself) whether or not
they are in danger. The effect of this action is shown in Fig-
ure 5. The formula θ describing the receivers of the message
is 〈F 〉b, which is satisfied by Charlie and Erik in the actual
state u0. Thus only the relations kc and ke are changed; kb
remains the same. This is by no means our final analysis of
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Figure 5: Restricting to Bella’s friends

communication. For one thing, actions of this sort are only
‘semi-private’, i.e., directed at particular individuals, but
with others not involved in the communication still aware
that it has occurred. Later, we will need to make the anal-
ysis more complex to cope with a great degree of privacy,
in which only the sender and receivers are aware that the
communication has occurred. For example, after the com-
munication to Bella’s friends, Bella knows something that
she didn’t know before: before she knew that Charlie was
not in danger, now she knows that Charlie knows this:

M,u0, b |= [send〈F 〉b(d)]K@cK¬d

Yet before we get to the issue of privacy, we will bring the
sender into our model, and explore some subtle distinctions
about the nature of the message itself.

analysed specific types of communication network (i.e., com-
munications that take place between one agent and another,
or between an agent and a group of agents) when considering
the issue of how distributed knowledge can be established
by a group of agents through communication. Communi-
cation graphs were adopted by [6] to study communication
between agents. Agent i directly receiving information from
agent j is represented by an edge from agent i to agent j
in such graph. Neither approach considers groups of agents
described in terms of social relations.

Announcements about the sender.
The first case is that of a message sent by agent n to agents
described by θ with a message ψ, which is understood to be
about the sender, for example ‘I am in danger’. We define
[n / ψ! : θ]ϕ, the statement that ϕ holds such a communica-
tion, as

(@nKψ → [sendθ(@nψ)]ϕ)

To make sense of this, we will look at a progression of simpler
cases. First, with θ = >, the formula [n/ψ! :>]ϕ means that
ϕ holds after agent n publicly announces that ψ, noting that
it simplifies to (@nKψ → [K :=cutK(@nψ)]ϕ).
We make the rather strong assumption that the message is
known by the sender.7 Suppose, for example, that Erik,
unable to keep his secret any longer, told everyone that he
is a spy. After this, everyone would know that he is a spy
(and Bella, his friend, would know that she is in danger).
This follows from the validity of [e / s! :>]AK@es.

8 Note
that [b / s! :>]AK@bs is also true (since it is valid!). This
says that everyone would know that Bella is a spy after she
announced it. But the reason is quite different: Bella could
not announce that she is a spy, because she knows that she
isn’t.9

The second case is an announcement to a particular agent.
In this case, θ is an agent nominal m and the formula [n /
ψ! :m]ϕ means that ϕ holds after agent n announces to m
that ψ. For example, Erik may be more cautious in his
admission, telling only Bella, after which she, but not Char-
lie would know: [e / s! : b]@bK@es and (¬(b ∨ K@es) →
[e / s! : b]¬K@es) are both valid, and the latter says that
an agent who is neither Bella nor (already) knows that Erik
is a spy, still doesn’t know this after he announces it to Bella.
In the most general case, θ is a description of a group of
agents. For example, [b / ¬s! : 〈F 〉b]ϕ states that ϕ would
hold after Bella tells her friends that she is not a spy. Again
we have a useful validity: [b / ¬s! : 〈F 〉b]@bFK@b¬s, which
says that if Bella were to tell her friends that she is not a
spy then they would all know that she isn’t a spy.

Announcements about the receivers.
Announcements that are indexical about the receiver such
as ‘you are in danger’ (announced to Bella by Erik) or ‘you
are my friends’ (announced by Bella to her friends) can be
expressed with a slight change that captures the different
preconditions for announcements. We define [n :ψ!.θ]ϕ, the
statement that ϕ holds after agent n announces message ψ
(about θ) to agents satisfying θ as

(@nA(θ → ψ)→ [sendθ(ψ)]ϕ)

Again, we first consider the simple case of public announce-
ment, represented by [n :ψ! . >]ϕ, which can be seen to be
equivalent to (@nKAψ → [K := cutK(ψ)]ϕ). Consider, for
example, my announcing to everyone ‘you are in danger’.

7The standard assumption of PAL that announcements are
true is thus equivalent to supposing that they are made by
God, or some other omniscient entity. [5] studied differ-
ent types of agent (truth-teller, liar and bluffer) , how they
make announcements, and are subsequently interpreted in
communication.
8In fact, the information that Erik is a spy becomes common
knowledge, as we will see in Section 6.
9It would be enough for Bella merely not to know that she
is a spy for the announcement to be impossible.



The precondition that I know everyone is in danger is cap-
tured by the antecedent KAd, and after the announcement
everyone knows that she is in danger, as is represented by
the validity of ↓n [n : d! .>]AKd.
The case of agent-to-agent announcement displays a nice
symmetry between the two kinds of indexical message. Agent
n announcing ‘you are in danger’ to agent m is equivalent
to announcing (again to m) that m is in danger. More gen-
erally, the following equivalences are valid

[n :ψ! . m]ϕ ↔ [n /@mψ! :m]ϕ
[n / ψ! :m]ϕ ↔ [n : @nψ! . m]ϕ

This symmetry between announcements is more delicate when
announcing to groups. Announcing ‘you are in danger’ to
each of my friends is only the same as announcing to them
‘all my friends are in danger’ on the assumption that each
friend knows only that she is my friend, and knows nothing
about the others. Without this assumption,

[n :ψ! . 〈F 〉n]ϕ ↔ [n /@nFψ! : 〈F 〉n]ϕ

is not always valid.10

For announcement to friends, an interesting new phenomenon
arises. Consider the case of my announcing ‘you are my
friend’ to my friends. That ϕ holds after such an announce-
ment is represented by [n : 〈F 〉n! . 〈F 〉n]. The message is
the same as the description of the set of receivers, so when
this is expanded, we find that the precondition for the an-
nouncement is ↓ n KA(〈F 〉n → 〈F 〉n), which is valid, so
the announcement can always be made, by anyone. But
nonetheless, it can be informative, as can be seen from the
validity of ↓n [n : 〈F 〉n! . 〈F 〉n]FK〈F 〉n, which says that af-
ter my making this announcement, my friends all know that
they are my friends, something they may not have known
before.
Finally, we note that any sender-indexical announcement to
a group θ is equivalent to a receiver-indexical announcement
to the same group θ in the case that there is at least one
receiver (A¬θ is false). The trick is that the statement ψ
about n (the sender) is then equivalent to the statement @nψ
about any (every) receiver. More formally, the following is
valid:11

(¬A¬θ → [n / ψ! : θ]ϕ ↔ [n : @nψ! . θ]ϕ)

Private announcements.
Communications of the form [n / ψ! : θ] and [n : ψ! . θ] are
only semi-private. Their effect on the model ensures that

10For a simple counterexample, consider ψ to be d and the
model M (shown left).
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The precondition of [b : d!. 〈F 〉b] is @bKA(〈F 〉b→ d), which
is equivalent to the precondition @bKFd of [b/@bFd! : 〈F 〉b]
which is satisfied in M , and the resulting two models are
shown middle and right. Yet these are easily distinguished,
by taking ϕ to be @aK@cd.

11The key observation here is that the precondition for the
sender-indexical announcement is @nKψ, which is equiva-
lent to the precondition @nKUA(θ → @nψ) when UA¬θ is
false.

every agent will know that the announcement has occurred,
if the sender satisfies the precondition, so, for example,

↓n [n / d! :m]AK(@nKd→ @mK@nd)

is valid: after I announce to m that I am in danger, everyone
will know that if I know I am in danger then m also knows
it. This is (typically) an unjustified violation of the privacy
of the communication between me and m.
To make the action sendθ(ψ) private, we embed it in a GDDL
operator similar to the one given in our earlier example.
Thus, for the sender-indexical12 version, that ϕ would hold
after the private announcement of ψ by n to agents θ is be
represented as

(@nKψ →

sendθ(@nψ)

d

I

e

K′

K := (K ∪ (¬θ?;K′))∗

ϕ)

Call this formula [[[n/ψ! : θ ]]]ϕ. Inside the GDDL operator, the
internal relation K′ represents ignorance about whether the
communication sendnθ (ψ) has occurred or not, the latter pos-
sibility represented by the identity transformation, I. The
integrating transformation [K := (K ∪ (¬θ?;K′))∗] restricts
ignorance of the K′ kind to agents other than θ and factors
this in to the new epistemic relation. The ∗ is needed to
ensure that the result is an equivalence relation. We will see
an example of this operator in action at the end of the next
section.

3. KNOWING YOUR FRIENDS
So far, the friendship relation in our models has been rel-
atively tame, remaining fixed across epistemic states. We
have used it to determine which group of agents receive a
message, and even to specify the content of a message, but
we have not yet considered ignorance about who is friends
with whom. This is where it gets really interesting. We will
explore some of the possibilities with an everyday example
of infidelity and gossip.

Peggy (p) knows that Roger (r) is cheating (c) on
his wife, Mona (m). What’s more, Roger knows
that Peggy knows, because they met accidentally
while he was with his mistress. Mona does not
know about the affair, and both Peggy and Roger
know this. The situation (for Roger) deteriorates
when he discovers that Peggy is a terrible gossip.
She is bound to have told all her friends about
his affair. What Roger does not know is whether
Mona is a friend of Peggy (she is).

We can represent the epistemic state of this network before
Peggy’s announcement with the model depicted in Figure 6,
assuming that married couples are also friends. (The grey
construction lines are only included to make the diagram
easier to read; they have no epistemic or social significance.)

12The receiver-indexical version is obtained by changing the
message and the precondition as in the simple semi-private
case.
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Figure 6: Roger’s Quandry

Note that the friendship relations are now different in dif-
ferent states. At u (the actual state) for Roger r, the state-
ments listed in Table 2 are all true. As a result, we can
compute that at w in the original model for Roger r, the
formula

↓n [p /@nc! : 〈F 〉p]@mK@nc

is true, i.e., “I don’t know that Mona will know about my
cheating after Peggy tells her friends about it.” That some

c I’m cheating

↓n K(@pK@nc∧
@m¬K@nc)

I know that Peggy (but
not Mona) knows I am
cheating.

↓n @pK@nK@pK@nc Peggy knows I know she
knows I am cheating

¬K@m〈F 〉p∧
¬K@m¬〈F 〉p

I don’t know whether
Peggy and Mona are
friends.

↓n @pK@n¬K@m〈F 〉p Peggy knows I don’t
know whether she and
Mona are friends.

Table 2: Facts about Roger

proposition ϕ holds after the announcement ‘Roger is cheat-
ing!’ that Peggy makes to her friends is given by [p/@rc! : 〈F 〉p]ϕ,
which expands and simplifies to

(@pK@rc→ [K :=(〈F 〉p?; cutK(@rc)) ∪ (¬〈F 〉p?;K)]ϕ)

When evaluated at u, the presupposition that Peggy knows
that Roger is cheating is satisfied, and so the formula ϕ
is evaluated in the transformed model shown in Figure 7.
(Note the missing vertical line in the middle.)
This is all very well, but Roger needs a little more privacy.

Before returning home to face Mona, Roger is
uneasy. He would really like to know whether or
not she knows about his affair. He already knows
that she knows if and only if she is friends with
Peggy. So if Peggy told him that they are friends,

c

c
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v

u

v′

u′

Figure 7: After Peggy’s gossip

he would be prepared for Mona’s fury. But for
his planned excuses to be convincing, Mona must
not know that he knows she knows (about the
affair). It is therefore very important that Peggy
tells him in private.

Now let us suppose that the ever-loquacious Peggy announces
to Robert privately that Mona is her friend, represented as
[[[ p / 〈F 〉m! : r ]]]. Now, whether the crucial proposition ϕ

(@rK@mK@rc ∧ ¬@mK@rK@mK@rc)

(that Roger knows Mona knows he has been cheating but
Mona doesn’t know that he knows) holds must be deter-
mined by evaluating it in the model obtained by transform-
ing the one in Figure 7 using the following GDDL operator,
call it ∆:

sendr(@p〈F 〉m)

d

I

e

K′

K :=(K ∪ (m?;K′))∗

The result is shown in Figure 8.
The upper half of the diagram represent the result of ac-
tion d, Peggy telling Roger that she is friends with Mona
(sendr(@p〈F 〉m)), whereas the lower half represent the re-
sult of action e, nothing (I); it is just a copy of the model
in Figure 7. Mona is the only one of the three who doesn’t
know which action has taken place, and her ignorance is
represented by the lines connected corresponding states in
the upper and lower halves (in the m column). We see that
K@mK@rc holds of r in state (u, d), so Roger can meet
Mona prepared.13

We may wonder about the accuracy of the model in repre-
senting Roger and Mona as friends after Peggy’s announce-
ment. Changes to the social network will be considered in
Section 5.

4. ASKING QUESTIONS
As well as making announcements, agents in a social network
can ask questions. Our approach to modelling questions will

13Even the additional level of privacy offered here is still not
perfect, as it involves some change in Mona’s knowledge.
She goes from knowing that Roger doesn’t know that she is
friends with Peggy to not knowing this. However, one may
just think that privacy is a matter of degree.
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Figure 8: Peggy to Roger, privately.

assume that agents are cooperative to the extent that they
answer those questions to which they know the answer.14

A more elaborate model would consider the preferences of
agents, but that is beyond the scope of the current paper.
With this assumption, the effect of asking whether ψ of an
agent a who knows that ψ is the same as an announcement
by a that ψ. Likewise, the effect of asking whether ψ of an
agent a who knows that ¬ψ is the same as an announcement
by a that ¬ψ. In the case that a does not know whether ψ,
we assume that this also is communicated (possibly by the
mere absence of an expected reply). With this in mind, we
define [n/ψ?:m]ϕ, the proposition that ϕ holds after agent
n asks agent m whether ψ as

([m / ψ! :n]ϕ ∧ [m / ¬ψ! :n]ϕ ∧ [m / ¬(Kψ ∨K¬ψ)! :n]ϕ

In other words, ϕ holds after n asks m whether ψ just in
case ϕ holds after in all three cases: (1) m answers ‘yes’,
so announcing ψ to n (2) m answers ‘no’, so announcing
¬ψ to n and (3) m answers ‘I don’t know’, so announcing
¬(Kψ∨K¬ψ) to n. This ensures that the following are valid:

(@mK@np→ [n / p?:m]@nKp)
(@mK@n¬p→ [n / p?:m]@nK¬p)
(@m¬(K@np ∨K@n¬p)
→ [n / p?:m]@nK@m¬(K@np ∨K@n¬p))

So, for example, after Charlie c asks Erik e whether he
(Charlie) is in danger, d, he will either know that he is in
danger Kd or know that he is not in danger K¬d, or know
that Erik doesn’t know whether or not he (Charlie) is in
danger, ↓n K@e¬(K@nd ∨K@n¬d).
Sender-indexical questions can be distinguished from receiver-
indexical questions in a way that parallels the distinction for
announcements. The question ‘Are you in danger?’ from n
to m, answered positively amounts to an announcement by

14For dealing with questions in terms of issue management in
standard dynamic epistemic logic, we refer to [13]. Here we
take a short-cut that reduces the action of asking a question
to that of announcing the answer.

m to n of ‘I am in danger’, and similarly with the ‘you’ and
‘I’ reversed.
As with announcements, this model of questions assumes
that the answers are only semi-private. For example, after
Charlie asks Erik whether he is in danger, a third-party will
know that Charlie either knows whether he is in danger or
knows that Erik doesn’t know the answer. To make ques-
tioning more private, we need private announcements too.
Here we will give one simple example.

Roger approaches Peggy in private and asks her
directly whether or not she and Mona are friends.
Being sincere and cooperative, Peggy answers that
they are. Mona, of course, knows nothing of their
conversation.

This private question [[[ r : 〈F 〉m?: p ]]] is defined by direct anal-
ogy with the semi-private question [r / 〈F 〉m?: p] so that ϕ
holds after the question is asked just in case

[[[ p/〈F 〉m! : r ]]]ϕ∧[[[ p/¬〈F 〉m! : r ]]]ϕ∧[[[ p/¬(K〈F 〉m∨K¬〈F 〉m)! : r ]]]ϕ

In this case, only the precondition of [[[ p / 〈F 〉m! : r ]]] is satis-
fied, and so the results are just as depicted in Figure 8.
Questions to groups present some further challenges. How
would sincere and cooperative friends answer the question
‘Am I in danger?’? For our present strategy to work they
would have to do so by making an announcement. The prob-
lem is that if I have more than one friend who knows the
answer, more than one announcement will follow. But in
which order? Clearly, we must consider all possible orders,
which in the general case involves quantification over an ar-
bitrary number of friends. In finite named agent models this
is possible, but a bit ugly, so we will pass over the details
here.

5. CHANGING THE NETWORK
What makes networking intriguing is the dynamics of net-
work changes. You can be friends with someone one day on
Facebook, but you may drop him as a friend the following
day or add someone else. Those acts, though simple, have a
direct impact on information flow in communities. Consider
the following:

Roger, scared of the possibility that Mona will
find out about his affair from Peggy, does all that
he can to distance them. His smear campaign is
designed to break their friendship and so protect
his information.

To define the operation of deleting a friendship link, we first
define the result of cutting the friendship link between agents
n and m in one direction

cutF (n,m) = (¬n?;F ) ∪ (F ; ¬m?)

Then, to deleting the link between n and m we need to cut
in both directions:15

[−Fn,m] = [F := cutF (n,m)][F := cutF (m,n)]

It is then fairly easy to show that [[F ]][−Fnm]M= [[F ]]M \
{〈n,m〉, 〈m,n〉}, as required.16

15It is also interesting to consider asymmetric relationships
such as “following” on Twitter or “subscribing” on Facebook,
as studied in [9].

16This follows from the fact that a[[F ]][F :=cutF (n,m)]Mb iff
a[[F ]]Mb and 〈a, b〉 6= 〈n,m〉.



Now how is this going to help Roger? Well, after the applica-
tion of [−Fmp] to the model of Figure ??, Peggy’s announce-
ment to her friends that Roger is cheating has no effect; in
fact, she has no friends to receive the message. So the model
is unchanged. In other words, in this original model, it is
true for Roger that

[−Fmp] ↓n [p /@nc! : 〈F 〉p]@m¬K@nc

‘after Peggy loses Mona as a friend, even after she tells her
friends that I am cheating, Mona won’t know.’
Next we consider adding a friend. In the basic case, we can
define the operation [+Fn,m] by analogy with deletion, but
more simply, as

[F =: F ∪ (n?;A;m?)]

But a more interesting model of adding friends follows the
protocol of Facebook and other online social networks, where-
by one must first request friendship. To capture this aspect
of network change, we need to represent whether or not an
agent wants to be friends with another agent. In a fuller
account, this could be done with a preference order, show-
ing that the agent prefers states in which they are friends to
those in which they are not. But for now, suppose that there
is some additional indexical relation dw in our models, with
dw(a, b) interpreted to mean that in state w, agent a wants
to become friends with agent b. Let D be the corresponding
modal operator.
The question ‘do you want to be my friend?’ from n to m
is thus represented by [n / 〈D〉n?:m], but as a request we
interpret this as involving an action: if the answer is ‘yes’
then we become friends; otherwise, there is no change to
the social network, thought there are consequent epistemic
changes, such as my learning that you don’t want to be my
friend. That ϕ holds after this ‘friend request’ is therefore
represented by

[add(m)]ϕ = ↓n [n / 〈D〉n?:m]((K@m〈D〉n ∧ [+Fn,m]ϕ)
∨(¬K@m〈D〉n ∧ ϕ))

A private version of this operation can be obtained by replac-
ing the announcement and network change by a GDDL-based
version.
The following validity shows some of the epistemic conse-
quence of friend requests:

↓n ((¬〈F 〉m ∧ ¬K@m〈D〉n)→
[add(m)]((K@mK〈D〉n ∧ 〈F 〉m) ∨ (K@m¬K〈D〉n ∧ ¬〈F 〉m))

If I’m not friends with m and don’t know that she wants to
be my friend, then were I to ask her, I would either know that
she knows she wants to be friends and we would be friends,
or know that she doesn’t know she wants to be friends and
we wouldn’t be friends.

6. COMMON KNOWLEDGE
In the context of social networks or communities, common
knowledge is clearly an important notion. One can easily
imagine the situations in which we want to reason about
whether or not something is commonly known in some com-
munity or among my friends. There are at least two sub-
tleties involved in making this precise. The first has to do
with identifying the group of agents who are said to have
common knowledge. This may be by means of a specific

list (‘Charlie, Bella, and Erik’), or a description (‘Charlie’s
friends’) or even an indexical description (‘friends of mine’).
Secondly, the information that is shared may be rigid ( ‘it is
common knowledge that Charlie is not a spy’) or indexical
(e.g. ‘it is common knowledge among Charlie’s friends that I
am in danger’ or ‘it is common knowledge among my friends
that they are in danger.’)
To capture all these cases, first define Ka to be (A; a?;K).
Then [Ka]ϕ means that agent a knows that ϕ, as justified
by the following equivalence:

M,w, b |= [Ka]ϕ iff M, v, a |= ϕ for all v ∈W such
that ka(w, v).

Here ϕ could be an indexical proposition, so, for example,
‘Charlie knows that he is not a spy’ would be represented
by [Kc]¬s, whereas ‘Bella knows that Charlie is not a spy’
would have to be represented as [Kb]@c¬s. Now, for com-
mon knowledge, define

cθ = (A; θ?;K)∗;A; θ?

and interpret [cθ]ϕ to mean, roughly, that there is common
knowledge among θ-agents that ϕ. So this enables us to
talk, in our formal language, about the common knowledge
of some group.This definition seems more general than the
standard notion of common knowledge (see e.g. [3]) . It is
justified by the following applications, each of which can be
suitably generalised.

1. Common knowledge among an enumerated set of agents
about a non-indexical proposition. For example, that
there is common knowledge between Bella (b) and Char-
lie (c) that Charlie is not a spy (s) can be represented
by [c(b∨c)]@c¬s.

17 To justify this claim, first note that
the standard way of defining common knowledge for a
group of agents G is to introduce a new operator CG
such that

M,w, a |= CGϕ iff M, v, a |= ϕ for all 〈u, v〉 ∈
(
⋃
a′∈G ka′)

∗

We can then prove that, for example, [c(b∨c)]@c¬s is

equivalent to C{b,c}@c¬s.
18

2. Common knowledge among a non-indexically described
group of agents about a non-indexical proposition. For
example, that it is common knowledge among Peggy’s
(p) friends that Roger (r) is cheating (c) can be repre-
sented as [c〈F 〉p]@rc. This implies that every friend of
Peggy knows that Roger is cheating (@pFK@rc), but
also that each of them knows that all of Peggy’s friends
know this (@pFK@pFK@rc), and that each of them
knows they all know that (@pFK@pFK@pFK@rc),
and so on. As such, it is not equivalent to any state-
ment of the form CGϕ. In particular, if, say, Peggy’s
only friends are Mona (m) and Nancy (n), it may

17Another concrete and interesting area of application is our
ordinary email exchange, see an interesting analysis in [12].

18The argument is simple. First note that (A; (b∨ c)?;K)∗ is

equivalent to (Kb ∪Kc)
∗. Also, since @c¬s is non-indexical,

[A; (b∨ c)?]@c¬s is equivalent to @c¬s. Thus [c(b∨c)]@c¬s is

equivalent to [(Kb ∪Kc)
∗]@c¬s, which is obviously equiva-

lent to C{b,c}@c¬s.



not have the same truth value as C{m,n}@rc, which is
compatible with Mona’s and Nancy’s ignorance about
what Peggy’s friends (in general) know.

3. Common knowledge among a non-indexically described
group of agents about a proposition that is indexi-
cal with respect to each member of the group. This
is the subtlest case. For example, after the spy net-
work has been exposed, that it is common knowledge
among Erik’s (e) friends that they are in danger (d)
is represented by [c〈F 〉e]d. This implies that every
friend of Erik (the spy) knows that s/he is in danger
(@eFKd), that each of them knows they all know this
(@eFK@eFKd), and so on. Again, this is compati-
ble with their ignorance about the friendship relation,
so long as in all epistemically indistinguishable states,
the friends of Erik (whoever they may be) are still in
danger. The reason to have the final part A; θ? in the
above definition of cθ is this: when ϕ is indexical, we
need to ensure that it is about the members of θ. When
ϕ is not indexical, this part is redundant.

4. Common knowledge among an indexically described
group of agents about a non-indexical proposition. For
example, that it is common knowledge among my friends
that Roger is cheating is represented by ↓n [c〈F 〉n]@rc.
This is a straightforward generalisation of the previ-
ous case to an indexically specified description, with
the 〈F 〉n using the nominal n, which is bound to the
speaker by ↓n .

5. Common knowledge among an indexically described
group of agents about a proposition that is indexical
with respect to the speaker. For example, that there
is common knowledge among my friends that I am not
a spy is represented by ↓n [c〈F 〉n]@n¬s. This is really
no more complicated than the last case. Again, the in-
dexical work is all done by ↓n in creating a temporary
name ‘n’ for the speaker. Within that context, both
the description of group (〈F 〉n) and the content of the
common knowledge @n¬s are both non-indexical.

6. Common knowledge among an indexically described
group of agents about a proposition that is indexical
with respect to each member of the group. For exam-
ple, that it is common knowledge among my friends
that they are in danger represented by ↓ n [c〈F 〉n]d.
This is an obvious generalisation of the previous cases.

Other useful specifications of groups of agents as the sub-
jects of common knowledge include ‘common knowledge of
ϕ in my community’ (↓ n [c〈f∗〉n]ϕ), ‘common knowledge
of ϕ among those who know they are in danger’ ([cKd]ϕ),
‘common knowledge of ϕ among those who know they are
my friends’ (↓n [cK〈F 〉n]ϕ).

7. CONCLUDING REMARKS
What has emerged from this study is an appreciation of the
diversity of subtle logic distinctions when combining epis-
temic and social relations, especially when allowing indexi-
cal propositions, as are very common in the social setting.
Although Facebook was an inspiration for this work, we have
only scratched the surface. Facebook offers many interest-
ing features that would be good to model, such as the wall,

commenting, and liking. There are many directions in which
the rather tight assumptions of epistemic friendship logic can
be relaxed, such as by dropping symmetry for friendship, al-
lowing degrees or hierarchies of friends (as in [10]), diluting
knowledge to belief and adding preference.

8. REFERENCES
[1] A. Baltag, L. S. Moss, and S. Solecki. The logic of

public announcements, common knowledge and
private suspicious. Technical Report SEN-R9922,
CWI, Amsterdam, 1999.

[2] P. Blackburn and J. Seligman. What are hybrid
languages? In M. Kracht, M. de Rijke, H. Wansing,
and M. Zakharyaschev, editors, Advances in Modal
Logic, volume 1 of , pages 41–62. CSLI Publications,
Stanford University, 1998.

[3] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.
Reasoning about Knowledge. The MIT Press, 1995.

[4] P. Girard, J. Seligman, and F. Liu. General dynamic
dynamic logic. In T. Bolander, T. Braüner,
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