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Preliminaries Bisimulation and Saturation Frame Definability

Language of FOML

The FOML-Language τ contains the following symbols:

1 A countably infinite set of variables.

2 ¬, ∧.

3 ∃.
4 ≡.

5 A countably infinite set of constants.

6 A countably infinite set of n-ary predicates for each n ≥ 1.

7 Modal operator 3
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Formula

Definition (FOML-Formula)

φ = P(t1, · · · , tn) | t1 = t2 | ¬φ | φ ∧ φ | ∃xφ | 3φ

where P is an n-ary predicate and t1, · · · , tn are τ -terms.

τ -terms and τ -atomic formulas are defined as in FOL.

Bound and free variables of a formula are as usual.

A τ - sentence is a formula without any free variable.

Xuezhe Dang Peking university Frame Definability of First-Order Modal Logic October 9, 2018 5 / 40



Preliminaries Bisimulation and Saturation Frame Definability

Constant Domain Model

Definition
A constant domain Kripke model is a quadruple M = 〈W ,R,D, I〉, where

W is a non-empty set of possible worlds.

R is a binary relation on W .

D is a non-empty set.
1 I(w, P) ⊆ Dn for w ∈ W and each n-ary predicate P.
2 I(w, c) = I(w ′, c) ∈ D, for each w, w ′ ∈ W and each constant c.
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Varying Domain Kripke Model

Definition
A varying domain Kripke model is a tuple M = 〈W ,R,D, I, {D(w)}w∈W 〉, where

〈W ,R,D, I〉 is a constant domain model.

For each w ∈ W , D(w) 6= ∅ is a domain of w and D =
⋃

w∈W D(w).

We write M = 〈W ,R,D, I〉 for short.
F = 〈W ,R〉 and S = 〈W ,R,D〉 are called frame and skeleton respectively.
(M,w) is called a pointed model.
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An assignment is a function σ, assigning to each variable v an element σ(v) in D.
σ(a/x) is an assignment which maps x to a and agrees with σ on all variables distinct
from x .
tM,σ is the interpretation of t in M under the assignment σ.

Definition
Let M be a varying domain model and σ, for every w ∈ W and every assignment σ,
a τ -formula φ(x1, · · · , xn) is satisfied at w with respect to σ is defined inductively as
follows

M,w �σ t1 = t2 ⇐⇒ tM,σ
1 = tM,σ

2
M,w �σ P(t1, · · · , tn) ⇐⇒ (tM,σ

1 , · · · , tM,σ
n ) ∈ I(w ,P)

M,w �σ ¬φ ⇐⇒ M,w 2σ ¬φ
M,w �σ φ ∧ ψ ⇐⇒ M,w �σ φ and M,w �σ ψ
M,w �σ ∃xφ(x) ⇐⇒ for some a ∈ D(w), M,w �σ(a/x) φ(x)
M,w �σ 3φ ⇐⇒ for some w ′ ∈ W with wRw ′, M,w ′ �σ φ

A formula φ is valid in a model M, denoted by M � φ, if for every w ∈ W and
every σ, M,w �σ φ.

A formula φ is valid in a frame F (or a skeleton S) iff φ is valid in every model
based on F (or S).
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Two Remarks

1 If the satisfaction of predicates in any world is restricted to its domain, [2]p201[4]
i.e. P(a1, · · · , an) is true in w if and only if ai ∈ D(w) for 1 ≤ i ≤ n and
(a1, · · · , an) ∈ I(w ,P), then the sentence ∀x3(P(x) ∨ ¬P(x)) is not valid.
ai might not exist in D(w), it does exist under alternative circumstances we are
willing to consider, and consequently talk about ai is meaningful [3]p102. We
follow this and have such sentences valid in our semantics.

2 In a varying domain model M, cM might not necessarily belong to D(w), for
w ∈ W . Then the sentence ∃x (x = c) is not valid in varying domian models.

We need to assume that in each w each constant c has the same interpretation,
otherwise for example the sentence c = c′ → 2(c = c′) is not valid.
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Definition (Submodel, Elementary Submodel)

For two first-order Kripke models, we call M a submodel of N, denoted by M ⊆ N, if

FM is a subframe of FN.

DM(w) ⊆ DN(w), for each w ∈ WM.

IM(w ,P) = IN(w ,P) ∩ Dn
M, for each w ∈ WM and each n-ary predicate P.

IM(c) = IN(c), for each constant symbol c.

The model M is an elementary submodel of N, denoted by M � N, if M ⊆ N and for
each w ∈ WM, a1, · · · , an ∈ DM and each formula φ(x1, · · · , xn),

M,w � φ(x1, · · · , xn) ⇐⇒ N,w � φ(x1, · · · , xn)
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Bisimulation

In this section we focus on varying domain models.

Let D? be the set of all finite sequences over D. We use the abbreviations wā for
(w , a1 · · · an) and φ(x̄) for φ(x1, · · · , xn).

Definition
Let M and N be two Kripke models. The relation Z ⊆ (WM × D?M)× (WN × D?N) is a
bisimulation if for each ((w , ā), (v , b̄)) ∈ Z with |ā| = |b̄| the following three conditions
hold:

1 for each atomic formulas φ(x̄), we have M,w � φ(ā) if and only if N, v � φ(b̄).

2 (3-forth) If wRMw ′, then there is v ′ ∈ WN such thatvRNv ′ and (w ′, ā)Z (v ′, b̄).

(3-back) If vRNv ′, then there is w ′ ∈ WM such that wRMw ′ and (w ′, ā)Z (v ′, b̄).

3 (∃-forth) If c ∈ DM(w), then there is d ∈ DN(v) with (w , āc)Z (v , b̄d).

(∃-back) If d ∈ DN(v), then there is c ∈ DM(w) with (w , āc)Z (v , b̄d).

wā and vb̄ bisimilar, denoted by (M,wā) � (N, vb̄), if there is a bisimulation Z
between M and N such that (w , ā)Z (v , b̄).
(w , v) ∈ Z means (wλ, vλ) ∈ Z where λ is the empty sequence in D?M and D?N.
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Proposition

Suppose (M,wā) � (N, vb̄), then for any formula φ(x̄) with |x̄ | = |ā| = |b̄|,
M,w � φ(ā) ⇐⇒ N, v � φ(b̄).

Proof.
By induction on φ(x̄).

The case φ(x̄) is atomic formula is imediate.

φ(x̄) = ¬ψ(x̄). M,w � ¬ψ(ā) ⇐⇒ M,w 2 ψ(ā)
IH⇐⇒ N, v 2 ψ(b̄) ⇐⇒

N, v � ¬ψ(b̄).

φ(x̄) = (φ1 ∧ φ2)(x̄). M,w � (φ1 ∧ φ2)(ā) ⇐⇒ M,w � φ1(ā) ∧ φ2(ā) ⇐⇒
M,w � φ1(ā) and M,w � φ2(ā)

IH⇐⇒ N, v � φ1(b̄) and N, v � φ2(b̄) ⇐⇒
N, v � φ1(b̄) ∧ φ2(b̄) ⇐⇒ N, v � (φ1 ∧ φ2)(b̄).

φ(x̄) = ∃yψ(x̄)(y).
M,w � ∃yψ(ā)(y) =⇒ there is a c ∈ DM(w), such that M,w �

ψ(āc)
∃-forth
=⇒ there is d ∈ DN(v) and (w , āc)Z (v , b̄d)

IH
=⇒ N, v �

ψ(b̄d) =⇒ there is a d ∈ DN(v), such that N, v � ψ(b̄d) =⇒ N, v � ∃yψ(b̄)(y).
The other direction can be done using ∃-back condition and induction hypothesis.

φ(x̄) = 3ψ(x̄). M,w � 3ψ(ā) =⇒ for some w ′ ∈ WM with wRw ′,M,w ′ �

ψ(ā)
3-forth
=⇒ there is v ′ ∈ WN such that vRv ′ IH

=⇒ N, v ′ �σ ψ(b̄) =⇒ N, v �
3ψ(b̄). The other direction can be done using ∃-back condition and induction
hypothesis.
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The notation (M,wā) ≡ (N, vb̄) means that for every formula φ(x̄) with at most n free
variables among x̄ , we have M,w � φ(ā) if and only if N, v � φ(b̄).

Definition
Two pointed Kripke models (M,w) and (N, v) are elementary equivalent, denoted by
(M,w) ≡ (N, v), if for every sentence φ, we have M,w � φ if and only if N, v � φ.
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Translation

First-order modal logic can be viewed as a fragment of two-sorted first order logic.
For a FOML language τ , the corresponding two-sorted language τ cor ’s sorts are sW
and sO . sW corresponds to the set of possible worlds and sO the set of objects.

There are two extra binary predicates R(u, u′) and E(u, x). R(u, u′) means u is
related to u′ via the accessibility relation R and E(u, x) means the object x is in the
domain D(u).

τ cor contains all constant symbols of τ and for any n-ary predicate p(x1, · · · , xn) ∈ τ ,
τ cor includes an (n + 1)-ary predicate P(u, x1, · · · , xn).
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STu(t1 = t2) = t1 = t2.

STu(p(x1, · · · , xn)) = P(u, x1, · · · , xn).

STu(¬φ) = ¬STu(φ).

STu(φ ∧ ψ) = STu(φ) ∧ STu(ψ).

STu(3φ) = ∃u′(R(u, u′) ∧ STu′ (φ)).
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Let M∗ be a τ cor -structure of a first-order Kripke model M.

Proposition

Let φ(x1, · · · , xn) be a first-order modal formula. Then for all Kripke models M with
w ∈ W and a1 · · · an ∈ D,

M,w � φ(a1, · · · , an) ⇐⇒ M∗ � STu(φ)(w , a1, · · · , an).

Proof.
By induction on the complexity of φ(x1, · · · , xn).

Atomic formula, negation and conjunction cases are imediate.

φ(x1, · · · , xn) = ∃yψ(y)(x1, · · · , xn). M,w � ∃yψ(y)(a1, · · · , an) ⇐⇒
there is a b ∈ D(w) and M,w � ψ(b)(a1, · · · , an)

IH⇐⇒ there is a b ∈
D(w) and M∗ � STu(ψ(b))(w , a1, · · · , an) ⇐⇒ M∗ �
∃y (E(u, y)∧STu(ψ(b)))(w , a1, · · · , an) ⇐⇒ M∗ � STu(∃yψ(y))(w , a1, · · · , an).

φ(x1, · · · , xn) = 3ψ(x1, · · · , xn). M,w � 3ψ(a1, · · · , an) ⇐⇒ there is a w ′ ∈
WM, such that wRw ′ and M,w ′ � ψ(a1, · · · , an)

IH⇐⇒ there is a w ′ ∈
WM, such that wRw ′ and M∗ � STu(ψ)(w ′, a1, · · · , an) ⇐⇒ M∗ �
∃u′(R(u, u′) ∧ STu′ (ψ))(w , a1, · · · , an) ⇐⇒ M∗ � STu(3ψ)(w , a1, · · · , an)
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Modally-saturated model

For a varying domain Kripke model M = (W ,R,D, I) and a finite subset A ⊆ D, the
language τA is an expansion of τ by adding a new constant ca for every a ∈ A. The
τA-Kripke model MA expands M naturally by interpreting any constant ca as a itself.

Definition
Let Γ(x̄) be a set of τA-formula whose free variable are among x̄ = x1, · · · , xn. The set
of formulas Γ(x̄) is an ∃-type if (MA,w) if for all finite subsets Γ0(x̄) of Γ(x̄), we have
MA,w � ∃x̄

∧
Γ0(x̄). Similarly, Γ(x̄) is a 3-type of (MA,w) with respect to some

ā = a1, · · · , an ∈ D, if MA,w � 3
∧

Γ0(ā) for all finite Γ0 ⊆ Γ.
A type of (M,w) is either a 3-type or an ∃-type of (MA,w) for some finite subset
A ⊆ D.
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Modally-saturated model

Definition
An ∃-type Γ(x̄) of (MA,w) is realized in (M,w) if there are a1, · · · , an ∈ D(w) such
that MA,w � Γ(ā). Likewise, a 3-type Γ(x̄) with respect to a ā is realized in (M,w), if
there is an element w ′ ∈ W such that wRw ′ and MA,w � Γ(ā).

A model M is modally-saturated, or m-saturated for short, if for every w ∈ W and
each finite subset A of D, every type of (MA,w) is realized in (M,w).
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Analogy of the Hennessy-Milner Theorem

Theorem
Let M and N be two m-saturated Kripke models. Then (M,wā) ≡ (N, vb̄) if and only if
(M,wā) � (N, vb̄).

Proof.
The right to left direction has been shown in previous proposition. Atomic formula case
is trivial.
Show that Z = {(wā, vb̄) | (M,wā) ≡ (N, vb̄0)} is a bisimulation between M and N
with w0ā0Zv0b̄0.

3-forth . Assume that (w , ā), (w ′, ā′) ∈ (WM × D?M) such that wRMw ′ and
(M,wā) ≡ (N, vb̄0). Let Γ(x̄) be the set of formulas true at (M,w ′ā).

M,w ′ā � Γ(x̄) =⇒ every finite subset Γ0(x̄) of Γ(x̄),M,w ′ � ∧Γ0(ā) =⇒M,w �

3 ∧ Γ0(ā)
≡

=⇒ N, v � 3 ∧ Γ0(b̄)
Let B={b1,··· ,bn}

=⇒ NB , v � 3 ∧ Γ0(c̄b) =⇒

Γ(x̄) is a 3-type of (NB , v) w.r.t. c̄b ∈ DN(v)
N is m-saturated, thus Γ(x̄) is realized

=⇒
there is a v ′ ∈ WN s.t. NB , v ′ � Γ(c̄b) =⇒ N, v ′ � Γ(b̄) =⇒ N, v ′b̄ � Γ(x̄).

3-back case is similar.
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cont.

∃-forth . Assume that there is c ∈ DM(w). Let Γ(x̄y) be the set of formulas true at
(M,wāc), then

M,wāc � Γ(x̄y) =⇒ every finite subset Γ0(x̄y) ⊆ Γ(x̄y),
M,wāc � ∧Γ0(x̄y) =⇒M,wā � ∧Γ0(x̄c) =⇒M,wā � ∃y ∧ Γ0(x̄y) =⇒M,w �

∃y ∧ Γ0(āy)
≡

=⇒ N, v � ∃y ∧ Γ0(b̄y)
Let B={b1,··· ,bn}

=⇒ NB , v � ∃y ∧ Γ0(c̄by) =⇒

Γ(c̄by) is an ∃-type of NB , v
N is m-saturated, thus Γ(c̄by) is realized

=⇒ there is a d ∈
DN(v) s.t. NB , v � Γ(c̄bd) =⇒ N, v � Γ(b̄d) =⇒ N, vb̄d � Γ(x̄y)
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Theorem (Goldblatt-Thomason Theorem for PML)

Let K be an elementary class of frames. Then K is definable by a set of propositional
modal formulas if and only if

(GT1) it is closed under taking bounded morphic images, generated subframes,
disjoint unions.

(GT2) reflects ultrafilter extensions.

In this section we focus on constant domain models.

A τ -formula φ(x1, · · · , xn) is valid at a world w of the frame F, denoted by
F,w � φ(x1, · · · , xn), if for every constant domain τ -model M based on F, we have
M,w � ∀x1 · · · ∀xnφ(x1, · · · , xn).

φ(x1, · · · , xn) is valid on the frame F, denoted by F � φ(x1, · · · , xn), if it is valid at
every world w ∈ W .
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Definition (FOML-definable)

A class of Kripke frames K is FOML-definable if for some language τ there exists a set
of first-order modal τ -sentences Λ such that for any frame F, F ∈ K if and only if F � Λ.

More generally, a set of first-order modal formulas Λ with free variables among
x1, · · · , xn defines K if for any Kripke frame F, F ∈ K if and only if F � ∀x̄φ(x̄) for every
φ(x̄) ∈ Λ.
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Let θ(p1, · · · , pn) is a propositional modal formula and P1(x), · · · ,Pn(x) are atomic
formulas where 1 ≤ i ≤ n, is a unary predicate and x is a single variable. The
sbustitution of θ(p1, · · · , pn) is a first-order modal formula θ(P1(x), · · · ,Pn(x)) which
is obtained by uniformly replacing each proposition pi by an atomic formula Pi (x) for
some variable x .

Proposition

Let K be any class of frames. If K is PML-definable then it is also FOML-definable.

Proof.
Suppose K is definable by a set of propositional modal formulas ΛP . Let
τ = {P1,P2, · · · ,Pn, · · · } consist of countably many unary predicates and put ΛF to be
a set of all formulas of ∀xθ(P1(x), · · · ,Pn(x)) for θ ∈ ΛP , then for every F,
F ∈ K ⇐⇒ F � θ(p1, · · · , pn) ⇐⇒ for every M and w ,M,w � θ(p1, · · · , pn) ⇐⇒
for every a ∈ D,M,w � θ(P1(a), · · · ,Pn(a) ⇐⇒ F � ∀xθ(P1(x), · · · ,Pn(x).
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An Example

Example

The class of frames in which every world has a reflexive accessible world
(∀x∃y(Rxy ∧ Ryy)) is not definable by any set of propositional modal formulas [1],
since it does not reflect ultrafilter extensions. However, this class is definable by the
formula 3∀x(2P(x)→ P(x)).

This class of frames are not definable by any set of propositional modal formulas, since
it does not reflect ultrafilter extensions.(Bluebook P142)[5]
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Ultrafilter Extension

Definition (Filter)

A filter F over a set W is a subset of P(W ) such that

W ∈ F

X ,Y ∈ F implies X ∩ Y ∈ F

X ∈ F and X ⊆ Y implies Y ∈ F

A proper filter is a filter such that ∅ 6∈ F . An ultrafilter is a proper filter such that either
X ∈ F or W \ X ∈ F .

Definition (Ultrafilter Extension)

For a Kripke frame F = (W ,R), the ultrafilter extension ueF of F is defined as the
frame (Uf (W ),Rue). Uf (W ) is the set of ultrafilters over W and Rue is a binary relation
over Uf (W ). For all u, u′ ∈ Uf (W ), Rueuu′ if
m3(X) = {w ∈ W | Rww ′ for some w ′ ∈ X} ∈ u for every X ∈ u′, where

The principal ultrafilter generated by w is the filter generated by the singleton set
{w}: πw = {X ⊆ W | w ∈ X}.
A class of frames K reflects ultrafilter extensions if ueF ∈ K implies F ∈ K .
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Figure: The Frame N = (N, <)

There are two kinds of ultrafilters over an infinite set: the principal ultrafilters that are
1− 1 sorrespondence with the points of the set, and the non-principal ones that
contain all co-finite sets, and only infinite sets.

For any pair of ultrafilters u, u′, if u′ is non-principal, then for any X ∈ u′, since X is
infinite, then for any n ∈ N, there is an m ∈ X such that n < m. This shows that
m3(X) = N. Because N is an element of every ultrafilter. Therefore for any ultrafilter u,
m3(X) ∈ u, this means Rueuu′.

Figure: The Ultrafilter Extension of N
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Example

The class of frames in which every world has a reflexive accessible world
(∀x∃y(Rxy ∧ Ryy)) is not definable by any set of propositional modal formulas [1],
since it does not reflect ultrafilter extensions. However, this class is definable by the
formula 3∀x(2P(x)→ P(x)).

This class of frames are definable by the formula 3∀x(2P(x)→ P(x)).
3∀x(2P(x)→ P(x)) is clearly valid in this class of frame.

For the converse, suppose that F is a frame with some world w0 that does not have any
reflexive successor. Let M = (F,D, I) be a constant domain model based on F such
that |D| ≥ |{w ′|Rw0w ′}|. Moreover, for each w ′ there exists a distinct element dw′ ∈ D
such that P(dw′ ) is false in w ′ but it is true in all successors of w ′. Then for any w ′
with Rw0w ′ we have M,w ′ 6� ∀x (2P(x)→ P(x)). So M,w0 6� 3∀x (2P(x)→ P(x)).
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Bounded Morphic Images, Generated Subframes and Disjoint Unions

Definition (Bounded Morphic Images)

Let F and G be two Kripke frames. A function f : WF → WG is a bounded morphism
from F to G if

RFww ′ implies RGf (w)f (w ′)

if RGf (w)v , then there exists w ′ ∈ WF such that f (w ′) = v and RFww ′.

If f is a surjective, then we say G is a bounded morphic image of F, F � G.

Definition (Generated Subframe)

A frame F is a generated subframe of G, denoted by F � G, if WF ⊆ WG and
RF = RG � WF and for every w ∈ WF if RGww ′ then w ′ ∈ WF.

Definition (Disjoint Union)

Suppose 〈Fi : i ∈ I〉 is a family of disjoint Kripke frames. The disjoint union of Fi ’s is a
frame F = ]i∈IFi in which W =

⋃
i∈I Wi and R =

⋃
i∈I Ri .
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Proposition

The validity of first-order modal sentences is preserved under bounded morphic
images, generated subframes, and disjoint unions.

Proof.
The proof is a generalization of the proof of the theorem for the propositional version.[1]
Here, we take bounded morphic images case as an example.

Assume that F � F′. If F � φ, then F′ � φ

Assume that f is a surjective bounded morphism form F onto F′. For every first-order
modal sentence φ, suppose that F′ 2 φ.Then there is a model M′ = (W ′,R′,D′, I′)
based on F′ = (W ′,R′) and a w ′ ∈ W ′ s.t. M′,w ′ 2 φ.
Let M = (W ,R,D, I) be a model based on F = (W ,R), where for every w ∈ W ,
D(w) = D′(f (w)), for every w ∈ W and every constant c, I(w , c) = I′(f (w), c), and for
every n-ary predicate P, I(w ,P) = {(a1, · · · , an) ∈ Dn | (a1, · · · , an) ∈ I′(f (w),P)}.
Since f is surjective, then there is a w ∈ W s.t. f (w) = w ′. By induction on sentence
φ, we have M′,w ′ 2 φ ⇐⇒ M,w 2 φ.

φ = c1 = c2. M′,w ′ 2 c1 = c2 ⇐⇒ I′(w ′, c1) 6= I′(w ′, c2) ⇐⇒ I′(f (w), c1) 6=
I′(f (w), c2) ⇐⇒ I(w , c1) 6= I(w , c2) ⇐⇒ M,w 2 c1 = c2.

φ = P(c1, · · · , cn). M′,w ′ 2 P(c1, · · · , cn) ⇐⇒ (I′(w ′, c1), · · · , I′(w ′, cn)) 6∈
I′(w ′,P) ⇐⇒ (I′(f (w), c1), · · · , I′(f (w), cn)) 6∈ I′(f (w),P) ⇐⇒
(I(w , c1), · · · , I(w , cn)) 6∈ I(w ,P) ⇐⇒ M,w 2 P(c1, · · · , cn).

Xuezhe Dang Peking university Frame Definability of First-Order Modal Logic October 9, 2018 30 / 40



Preliminaries Bisimulation and Saturation Frame Definability

Proposition

The validity of first-order modal sentences is preserved under bounded morphic
images, generated subframes, and disjoint unions.

Proof.
The proof is a generalization of the proof of the theorem for the propositional version.[1]
Here, we take bounded morphic images case as an example.

Assume that F � F′. If F � φ, then F′ � φ

Assume that f is a surjective bounded morphism form F onto F′. For every first-order
modal sentence φ, suppose that F′ 2 φ.Then there is a model M′ = (W ′,R′,D′, I′)
based on F′ = (W ′,R′) and a w ′ ∈ W ′ s.t. M′,w ′ 2 φ.
Let M = (W ,R,D, I) be a model based on F = (W ,R), where for every w ∈ W ,
D(w) = D′(f (w)), for every w ∈ W and every constant c, I(w , c) = I′(f (w), c), and for
every n-ary predicate P, I(w ,P) = {(a1, · · · , an) ∈ Dn | (a1, · · · , an) ∈ I′(f (w),P)}.
Since f is surjective, then there is a w ∈ W s.t. f (w) = w ′. By induction on sentence
φ, we have M′,w ′ 2 φ ⇐⇒ M,w 2 φ.

φ = c1 = c2. M′,w ′ 2 c1 = c2 ⇐⇒ I′(w ′, c1) 6= I′(w ′, c2) ⇐⇒ I′(f (w), c1) 6=
I′(f (w), c2) ⇐⇒ I(w , c1) 6= I(w , c2) ⇐⇒ M,w 2 c1 = c2.

φ = P(c1, · · · , cn). M′,w ′ 2 P(c1, · · · , cn) ⇐⇒ (I′(w ′, c1), · · · , I′(w ′, cn)) 6∈
I′(w ′,P) ⇐⇒ (I′(f (w), c1), · · · , I′(f (w), cn)) 6∈ I′(f (w),P) ⇐⇒
(I(w , c1), · · · , I(w , cn)) 6∈ I(w ,P) ⇐⇒ M,w 2 P(c1, · · · , cn).

Xuezhe Dang Peking university Frame Definability of First-Order Modal Logic October 9, 2018 30 / 40



Preliminaries Bisimulation and Saturation Frame Definability

cont.

φ = 3ψ.

M,w � 3ψ ⇐⇒ there is a v ∈ W ,wRv and M, v � ψ
definition of bounded morphism⇐⇒

there is a f (v) ∈ W ′, f (w)R′f (v) and M, v � ψ
IH⇐⇒ there is a f (v) ∈

W ′, f (w)R′f (v) and M′, f (v) � ψ ⇐⇒ M′, f (w) � 3ψ ⇐⇒ M′,w ′ � 3ψ.

φ = ∃yφ(y). M,w � ∃yφ(y) ⇐⇒ there is a a ∈ D(w) s.t. M,w � φ(a)
IH⇐⇒

there is a a ∈ D′(f (w)) s.t. M′,w ′ � φ(a) ⇐⇒ there is a a ∈
D′(w ′) s.t. M′,w ′ � φ(a) ⇐⇒ M′,w ′ � ∃yφ(y)

Hence, F 2 φ.
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Definition (Universal)

A first-order modal formula φ(x1, · · · , xn) is universal if it is in the form
∀y1, · · · , ∀ymψ(x1, · · · , xn, y1, · · · , ym) where ψ is a quantifier-free formula.

Proposition

Let K be an elementary class of frames definable by a set of universal modal
sentences in some language τ . Then K is definable by a set of propositional modal
formulas.

Proof.
Suppose that the class K is defined by a set of universal modal sentences Λ
(F ∈ K ⇐⇒ F � Λfor every F). By the previous proposition K has property GT1. We
show K reflects ultrafilter extensions, and hence by Goldblatt-Thomason theorem
we get the desired result.
Assume that ueF ∈ K for some F. To show F � Λ, suppose F 2 Λ, then there is a
universal sentence φ = ∀x̄ψ(x̄) ∈ Λ and a modal M based on F and a w ∈ WF such
that M,w 2 φ. Let ueF be a model based on ueF with DM as domain. For each
u ∈ Uf (W ) and each n-ary predicate P, (a1, · · · , an) ∈ Iue(u,P) if and only if
{w ∈ WF | (a1, · · · , an) ∈ IM(w ,P)} ∈ u. By induction on the quantifier-free formula
ψ, we have M,w � ψ(a1, · · · , an) ⇐⇒ ue(M), πw � ψ(a1, · · · , an).
Hence ue(M), πw 2 φ, a contradiction.
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Goldblatt-Thomason Theorem for FOML

Theorem (Goldblatt-Thomason Theorem for FOML)

Let K be an elementary class of frames. Then K is definable by a set of first-order
modal τ -sentences if and only if it is closed under bounded morphic images, generated
subframes, and disjoint unions.[5]

Proof.
Let φ be first-order modal τ sentence and Th(K ) = {φ | K � φ}. We need to show that
for any frame F � Th(K ) =⇒ F ∈ K .
Assume that F � Th(K ) where F = (WF,RF). By GT1, since any frame is a bounded
morphic image of the disjoint union of its pointed-generated subframs, we assume that
F is point-generated by w0.
Let τ1 be a language consisting of a unary predicate P, a binary predicate R and new
constants cw , for each w ∈ WF. Put

τ ′ = τ1 ∪ {Rθ | θ(x̄) is an LR - formula}

where for each first-order LR - formula θ(x1, · · · , xk ) we add a k-ary predicate
Rθ(x1, · · · , xk ).
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cont.
Define a τ1-model M = (F,D, I) based on F where D = WF, in each world w,
I(w ,P) = {w} and R(w ,w ′) holds if and only if (w ,w ′) ∈ RF. Interpret each constant
cw as w. τ1 model M can be viewed as a τ ′ model by interpreting each predicate Rθ
as

I(w ,Rθ) = {(w1, · · · ,wk ) ∈ Dk |M,w � θ(w1, · · · ,wk )}

By induction on LR -formulas we have for each LR -formula θ(x1, · · · , xn) and
w ,w ′ ∈ W, I(w ,Rθ) = I(w ′,Rθ). Moreover

I(w ,Rθ) = {(w1, · · · ,wk ) ∈ Dk |M � θ(w1, · · · ,wk )}

Let ∆ be the set of τ ′-sentences true in (M,w0). Since F is pointe-generated by w0,
for each w ∈ W the length of the shortest path from w0 to w,nw is finite. For all
w ,w ′ ∈ W, n ∈ N, and LR -formulas θ(x̄),θ1(x̄),θ2(x̄). ∆ contains, in particular, the
following sentences.
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cont.

1 3nw P(cw ).

2 2ncw 6= cw′ , if w 6= w ′.

3 2n∃x (P(x) ∧ ∀y (P(y)→ x = y)).

4 2nR(cw ,ww′ ), if (w ,w ′) ∈ RF.

5 2n¬R(cw , cw′ ), if (w ,w ′) 6∈ RF.

6 2n∀x∀y (P(x) ∧3P(y)→ R(x , y)).

7 2n∀x∀y (P(x) ∧ R(x , y)→ 3P(y)).

8 ∀x1 , · · · , xk (θ(x1, · · · , xk )→ 2nθ(x1, · · · , xk ))

9 ∀x1 , · · · , xk (3nθ(x1, · · · , xk )→ θ(x1, · · · , xk ))

10 2n∀x∀y (RR(x,y)(x , y)↔ R(x , y)).

11 2n∀x , · · · , xk (R¬θ(x1, · · · , xk )↔ ¬Rθ(x1, · · · , xk )).

12 2n∀x , · · · , xk (Rθ1∧θ2 (x1, · · · , xk )↔ (Rθ1 (x1, · · · , xk ) ∧ Rθ2 (x1, · · · c, xk ))).

13 2n∀x , · · · , xk (R∃yθ(y,x1,··· ,xk )(x1, · · · , xk )↔ ∃y Rθ(y,x1,··· ,xk )
(y , x1, · · · , xk )).

14 2n∀x , · · · , xk (Rθ(x1, · · · , xk )↔ θ(x1, · · · , xk )).

1-7 describe the properties of predicates P and R in M. 8, equivalent to 9, expresses
the validity of each L-formula is equivalent to its satisfiability inside M. 10-13 state the
inductive interpretation of the auxiliary predicates in M. 14 is the conjunction of 10-13.
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cont.
Claim 1. ∆ is finitely satisfiable in K .

For if not, there is a finite subset δ of ∆ which is not satisfiable in any constant domain
model based on the frames of K , then ¬

∧
σ ∈ Th(K ), hence F � ¬

∧
σ which

contradicts M,w0 �
∧
σ.

Since K is an elementary class of frames, it is closed under ultraproducts. Hence ,
there is a frame G ∈ K , a constant domain model N = (G,DN, IN) based on G and a
point v0 such that N, v0 � ∆. Once again, w.l.o.g, we assume that G is generated by v0.
Let G′ = (W ′,R′) where W ′ = {a ∈ DN | N, v � P(a), for some v ∈ G}, and
(a, b) ∈ R′ if and only if N � R(a, b).

Claim 2. G � G′

Define h : G→ G′ by letting h(v) be the unique element av of DN such that P(aav )
holds in v ∈ G. h is a well-defined surjective function since G is generated by v0 and it
satisfies 3. By 6-9, h is a bounded morphism.
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cont.
Claim 3. F is isomorphic to a first-order elementary LR-substurcture of G′.

Let i : F→ G′ be defined as i(w) = cN
w , which is well defined by 1. By 2,4 and 5 the

map i is an LR-embedding, since for any w ,w ′ ∈ WF,
F � wRFw ′ ⇐⇒ G′ � i(w)Ri(w ′)
To show it is the desired elementary embedding, we expand F and G′ to first-order
τ ′-structures and show i is a τ ′-embedding.
First, interpret each constant cw as w in F and as a = cN

w in G′. Interpret each Rθ ∈ τ ′
in F as

(w1, · · · ,wk ) ∈ RF
θ if M � Rθ(w1, · · · ,wk )

for w1, · · · ,wk ∈ F, and as

(a1, · · · , ak ) ∈ RG′
θ if N � Rθ(a1, · · · , ak )

, for a1, · · · , ak ∈ G′.

For each LR-formula θ(y,x1,··· ,xk ) and constant symbols cw1 , · · · , cwk , both F and
G′ satisfy the formula (Rθ(cw1 , · · · , cwk )↔ θ(cw1 , · · · , cwk )).

The argument goes by induction on θ(y,x1,··· ,xk ). For sturcture G′, ∧ and ¬ cases are
easy. For θ(x1, · · · , xk ) = ∃yψ(y , x1, · · · , xk ).
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cont.
We first show that G′ � R∃yψ(cw1 , · · · , cwk ) ⇐⇒ G′ � ∃y Rψ(y , cw1 , · · · , cwn ).

=⇒: G′ � R∃yψ(cw1 , · · · , cwk )
by definition

=⇒ N � R∃yψ(cw1 , · · · , cwk )
13

=⇒ N �

∃y Rψ(y , cw1 , · · · , cwk )
(M,w0)≡(N,v0)

=⇒ M � ∃y Rψ(y , cw1 , · · · , cwk ) =⇒
there exists w ∈ F, s.t. M � Rψ(cw , cw1 , · · · , cwk ) =⇒ N �

Rψ(cw , cw1 , · · · , cwk )
by definition

=⇒ G′ � Rψ(cw , cw1 , · · · , cwk ) =⇒ G′ �
∃y Rψ(y , cw1 , · · · , cwk ).
⇐=: G′ � ∃y Rψ(y , cw1 , · · · , cwk ) =⇒ G′ � Rψ(a, cw1 , · · · , cwk ) for some a ∈ G′ =⇒
N � Rψ(a, cw1 , · · · , cwk ) =⇒ N � ∃y Rψ(y , cw1 , · · · , cwk )

13
=⇒ N �

R∃yψ(cw1 , · · · , cwk ) =⇒ G′ � R∃yψ(cw1 , · · · , cwk ).

The case for structure F can be done analogously.
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cont.
The inductive definitions of Rθ ’s imply that both structures F and G′ satisfy
(Rθ(cw1 , · · · , cwk )↔ θ(cw1 , · · · , cwk )). Since

F � Rθ(cw1 , · · · , cwk ) if and only if M � Rθ(cw1 , · · · , cwk )

G′ � Rθ(cw1 , · · · , cwk ) if and only if N � Rθ(cw1 , · · · , cwk )

therefore
F � Rθ(cw1 , · · · , cwk ) if and only if G′ � Rθ(cw1 , · · · , cwk )

F � θ(cw1 , · · · , cwk ) if and only if G′ � θ(cw1 , · · · , cwk )

Hence, i is an elementary LR -embedding. By closure of K under bounded morphic
images, G′ ∈ K . Scine K is an elementary class of frames, Claim 3 implies that
F ∈ K .
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