Frame Definability of First-Order Modal Logic

Xuezhe Dang

Department of Philosophy Peking University

October 9, 2018

1 Preliminaries

2 Bisimulation and Saturation

3 Frame Definability

Outline

1 Preliminaries

2 Bisimulation and Saturation

3 Frame Definability

Xuezhe Dang Peking university

Language of FOML

The FOML-Language τ contains the following symbols:

- A countably infinite set of variables.
- 2 ¬,∧.
- 3
- 4 ≡.
- 5 A countably infinite set of constants.
- **6** A countably infinite set of *n*-ary predicates for each $n \ge 1$.
- 7 Modal operator ◊

Formula

Definition (FOML-Formula)

$$\phi = P(t_1, \cdots, t_n) \mid t_1 = t_2 \mid \neg \phi \mid \phi \land \phi \mid \exists x \phi \mid \diamond \phi$$

where *P* is an *n*-ary predicate and t_1, \dots, t_n are τ -terms.

- τ -terms and τ -atomic formulas are defined as in FOL.
- Bound and free variables of a formula are as usual.
- A τ sentence is a formula without any free variable.

Constant Domain Model

Definition

A constant domain Kripke model is a quadruple $\mathfrak{M} = \langle W, R, D, I \rangle$, where

- W is a non-empty set of possible worlds.
- R is a binary relation on W.
- D is a non-empty set.
- If $I(w, P) \subseteq D^n$ for $w \in W$ and each *n*-ary predicate *P*.
 - 2 $I(w, c) = I(w', c) \in D$, for each $w, w' \in W$ and each constant c.

Varying Domain Kripke Model

Definition

A varying domain Kripke model is a tuple $\mathfrak{M} = \langle W, R, D, I, \{D(w)\}_{w \in W} \rangle$, where

- \blacksquare $\langle W, R, D, I \rangle$ is a constant domain model.
- For each $w \in W$, $D(w) \neq \emptyset$ is a domain of w and $D = \bigcup_{w \in W} D(w)$.

We write $\mathfrak{M} = \langle W, R, D, I \rangle$ for short. $\mathfrak{F} = \langle W, R \rangle$ and $\mathfrak{S} = \langle W, R, D \rangle$ are called *frame* and *skeleton* respectively. (\mathfrak{M}, w) is called a *pointed model*. An **assignment** is a function σ , assigning to each variable v an element $\sigma(v)$ in D. $\sigma(a/x)$ is an assignment which maps x to a and agrees with σ on all variables distinct from x.

 $t^{\mathfrak{M},\sigma}$ is the interpretation of *t* in \mathfrak{M} under the assignment σ .

Definition

Let \mathfrak{M} be a **varying domain model** and σ , for every $w \in W$ and every assignment σ , a τ -formula $\phi(x_1, \dots, x_n)$ is satisfied at w with respect to σ is defined inductively as follows

- A formula ϕ is valid in a model \mathfrak{M} , denoted by $\mathfrak{M} \vDash \phi$, if for every $w \in W$ and every σ , \mathfrak{M} , $w \vDash_{\sigma} \phi$.
- A formula ϕ is valid in a frame \mathfrak{F} (or a skeleton \mathfrak{S}) iff ϕ is valid in every model based on \mathfrak{F} (or \mathfrak{S}).

Two Remarks

- If the satisfaction of predicates in any world is restricted to its domain, [2]p201[4] i.e. $P(a_1, \dots, a_n)$ is true in *w* if and only if $a_i \in D(w)$ for $1 \le i \le n$ and $(a_1, \dots, a_n) \in I(w, P)$, then the sentence $\forall_x \diamond (P(x) \lor \neg P(x))$ is not valid. a_i might not exist in D(w), it does exist under alternative circumstances we are willing to consider, and consequently talk about a_i is meaningful [3]p102. We follow this and have such sentences valid in our semantics.
- **2** In a varying domain model \mathfrak{M} , $c^{\mathfrak{M}}$ might not necessarily belong to D(w), for $w \in W$. Then the sentence $\exists_x (x = c)$ is not valid in varying domian models.

We need to assume that in each *w* each constant *c* has the same interpretation, otherwise for example the sentence $c = c' \rightarrow \Box(c = c')$ is not valid.

Definition (Submodel, Elementary Submodel)

For two first-order Kripke models, we call \mathfrak{M} a **submodel** of \mathfrak{N} , denoted by $\mathfrak{M} \subseteq \mathfrak{N}$, if

- $\mathfrak{F}_{\mathfrak{M}}$ is a subframe of $\mathfrak{F}_{\mathfrak{N}}$.
- $\square D_{\mathfrak{M}}(w) \subseteq D_{\mathfrak{N}}(w), \text{ for each } w \in W_{\mathfrak{M}}.$
- $I_{\mathfrak{M}}(w, P) = I_{\mathfrak{N}}(w, P) \cap D_{\mathfrak{M}}^n$, for each $w \in W_{\mathfrak{M}}$ and each *n*-ary predicate *P*.
- If $I_{\mathfrak{M}}(c) = I_{\mathfrak{M}}(c)$, for each constant symbol *c*.

Definition (Submodel, Elementary Submodel)

For two first-order Kripke models, we call \mathfrak{M} a **submodel** of \mathfrak{N} , denoted by $\mathfrak{M} \subseteq \mathfrak{N}$, if

- $\mathfrak{F}_{\mathfrak{M}}$ is a subframe of $\mathfrak{F}_{\mathfrak{N}}$.
- $\square D_{\mathfrak{M}}(w) \subseteq D_{\mathfrak{N}}(w), \text{ for each } w \in W_{\mathfrak{M}}.$
- $I_{\mathfrak{M}}(w, P) = I_{\mathfrak{N}}(w, P) \cap D_{\mathfrak{M}}^n$, for each $w \in W_{\mathfrak{M}}$ and each *n*-ary predicate *P*.
- If $I_{\mathfrak{M}}(c) = I_{\mathfrak{M}}(c)$, for each constant symbol *c*.

The model \mathfrak{M} is an **elementary submodel** of \mathfrak{N} , denoted by $\mathfrak{M} \preceq \mathfrak{N}$, if $\mathfrak{M} \subseteq \mathfrak{N}$ and for each $w \in W_{\mathfrak{M}}$, $a_1, \dots, a_n \in D_{\mathfrak{M}}$ and each formula $\phi(x_1, \dots, x_n)$,

$$\mathfrak{M}, w \vDash \phi(x_1, \cdots, x_n) \iff \mathfrak{N}, w \vDash \phi(x_1, \cdots, x_n)$$

1 Preliminaries

2 Bisimulation and Saturation

3 Frame Definability

Xuezhe Dang Peking university

Bisimulation

In this section we focus on varying domain models.

Let D^* be the set of all finite sequences over D. We use the abbreviations $w\bar{a}$ for $(w, a_1 \cdots a_n)$ and $\phi(\bar{x})$ for $\phi(x_1, \cdots, x_n)$.

Bisimulation

In this section we focus on varying domain models.

Let D^* be the set of all finite sequences over D. We use the abbreviations $w\bar{a}$ for $(w, a_1 \cdots a_n)$ and $\phi(\bar{x})$ for $\phi(x_1, \cdots, x_n)$.

Definition

Let \mathfrak{M} and \mathfrak{N} be two Kripke models. The relation $Z \subseteq (W_{\mathfrak{M}} \times D_{\mathfrak{M}}^*) \times (W_{\mathfrak{N}} \times D_{\mathfrak{N}}^*)$ is a **bisimulation** if for each $((w, \bar{a}), (v, \bar{b})) \in Z$ with $|\bar{a}| = |\bar{b}|$ the following three conditions hold:

- **1** for each atomic formulas $\phi(\bar{x})$, we have $\mathfrak{M}, w \models \phi(\bar{a})$ if and only if $\mathfrak{N}, v \models \phi(\bar{b})$.
- **2** (\diamond -forth) If $wR_{\mathfrak{M}}w'$, then there is $v' \in W_{\mathfrak{N}}$ such that $vR_{\mathfrak{N}}v'$ and $(w', \bar{a})Z(v', \bar{b})$.

(\diamond -back) If $vR_{\mathfrak{N}}v'$, then there is $w' \in W_{\mathfrak{M}}$ such that $wR_{\mathfrak{M}}w'$ and $(w', \bar{a})Z(v', \bar{b})$.

3 (\exists -forth) If $c \in D_{\mathfrak{M}}(w)$, then there is $d \in D_{\mathfrak{N}}(v)$ with $(w, \bar{a}c)Z(v, \bar{b}d)$.

 $(\exists$ -back) If $d \in D_{\mathfrak{M}}(v)$, then there is $c \in D_{\mathfrak{M}}(w)$ with $(w, \bar{a}c)Z(v, \bar{b}d)$.

 $w\bar{a}$ and $v\bar{b}$ **bisimilar**, denoted by $(\mathfrak{M}, w\bar{a}) \rightleftharpoons (\mathfrak{N}, v\bar{b})$, if there is a bisimulation Z between \mathfrak{M} and \mathfrak{N} such that $(w, \bar{a})Z(v, \bar{b})$. $(w, v) \in Z$ means $(w\lambda, v\lambda) \in Z$ where λ is the empty sequence in $D^*_{\mathfrak{M}}$ and $D^*_{\mathfrak{N}}$.

Proposition

Suppose
$$(\mathfrak{M}, w\bar{\mathbf{a}}) \rightleftharpoons (\mathfrak{N}, v\bar{\mathbf{b}})$$
, then for any formula $\phi(\bar{\mathbf{x}})$ with $|\bar{\mathbf{x}}| = |\bar{\mathbf{a}}| = |\bar{\mathbf{b}}|$,
 $\mathfrak{M}, w \vDash \phi(\bar{\mathbf{a}}) \iff \mathfrak{N}, v \vDash \phi(\bar{\mathbf{b}})$.

Proposition

Suppose $(\mathfrak{M}, w\bar{a}) \rightleftharpoons (\mathfrak{N}, v\bar{b})$, then for any formula $\phi(\bar{x})$ with $|\bar{x}| = |\bar{a}| = |\bar{b}|$, $\mathfrak{M}, w \vDash \phi(\bar{a}) \iff \mathfrak{N}, v \vDash \phi(\bar{b})$.

Proof.

By induction on $\phi(\bar{x})$.

- The case $\phi(\bar{x})$ is atomic formula is imediate.
- $\phi(\bar{x}) = (\phi_1 \land \phi_2)(\bar{x})$. $\mathfrak{M}, w \models (\phi_1 \land \phi_2)(\bar{a}) \iff \mathfrak{M}, w \models \phi_1(\bar{a}) \land \phi_2(\bar{a}) \iff \mathfrak{M}, w \models \phi_1(\bar{a}) \text{ and } \mathfrak{M}, w \models \phi_2(\bar{a}) \iff \mathfrak{N}, v \models \phi_1(\bar{b}) \text{ and } \mathfrak{N}, v \models \phi_2(\bar{b}) \iff \mathfrak{N}, v \models \phi_1(\bar{b}) \land \phi_2(\bar{b}) \iff \mathfrak{N}, v \models (\phi_1 \land \phi_2)(\bar{b}).$
- $\phi(\bar{x}) = \exists_y \psi(\bar{x})(y)$. $\mathfrak{M}, w \models \exists_y \psi(\bar{a})(y) \Longrightarrow$ there is a $c \in D_{\mathfrak{M}}(w)$, such that $\mathfrak{M}, w \models$ $\psi(\bar{a}c) \xrightarrow{\exists \text{-forth}}$ there is $d \in D_{\mathfrak{N}}(v)$ and $(w, \bar{a}c)Z(v, \bar{b}d) \xrightarrow{H} \mathfrak{N}, v \models$ $\psi(\bar{b}d) \Longrightarrow$ there is a $d \in D_{\mathfrak{N}}(v)$, such that $\mathfrak{N}, v \models \psi(\bar{b}d) \Longrightarrow \mathfrak{N}, v \models \exists_y \psi(\bar{b})(y)$. The other direction can be done using \exists -back condition and induction hypothesis. • $\phi(\bar{x}) = \Diamond \psi(\bar{x})$. $\mathfrak{M}, w \models \Diamond \psi(\bar{a}) \Longrightarrow$ for some $w' \in W_{\mathfrak{M}}$ with $wRw', \mathfrak{M}, w' \models$
- $φ(x) = φ(x). M, w ⊨ φ(a) \implies \text{for some } w ∈ w_{\mathfrak{M}} \text{ with } w_{\mathcal{H}}w, w ⊨ ψ(\bar{a}) \implies φ(\bar{a}) \implies φ(\bar{a}) \implies φ(\bar{a}) \implies φ(\bar{b}) \implies \mathfrak{N}, v ⊨ φ(\bar{b}) \implies \mathfrak{N}, v ⊨ φ(\bar{b}) \implies \mathfrak{N}, v ⊨ φ(\bar{b}). The other direction can be done using ∃-back condition and induction hypothesis.$

The notation $(\mathfrak{M}, w\bar{a}) \equiv (\mathfrak{N}, v\bar{b})$ means that for every formula $\phi(\bar{x})$ with at most *n* free variables among \bar{x} , we have $\mathfrak{M}, w \models \phi(\bar{a})$ if and only if $\mathfrak{N}, v \models \phi(\bar{b})$.

Definition

Two pointed Kripke models (\mathfrak{M}, w) and (\mathfrak{N}, v) are **elementary equivalent**, denoted by $(\mathfrak{M}, w) \equiv (\mathfrak{N}, v)$, if for every **sentence** ϕ , we have $\mathfrak{M}, w \vDash \phi$ if and only if $\mathfrak{N}, v \vDash \phi$.

Translation

First-order modal logic can be viewed as a **fragment** of two-sorted first order logic. For a FOML language τ , the corresponding two-sorted language τ^{corr} 's sorts are s_W and s_O . s_W corresponds to the set of **possible worlds** and s_O the set of **objects**.

There are two extra binary predicates R(u, u') and E(u, x). R(u, u') means u is related to u' via the accessibility relation R and E(u, x) means the object x is in the domain D(u).

 τ^{cor} contains all constant symbols of τ and for any *n*-ary predicate $p(x_1, \dots, x_n) \in \tau$, τ^{cor} includes an (n + 1)-ary predicate $P(u, x_1, \dots, x_n)$.

Translation

First-order modal logic can be viewed as a **fragment** of two-sorted first order logic. For a FOML language τ , the corresponding two-sorted language τ^{corr} 's sorts are s_W and s_O . s_W corresponds to the set of **possible worlds** and s_O the set of **objects**.

There are two extra binary predicates R(u, u') and E(u, x). R(u, u') means u is related to u' via the accessibility relation R and E(u, x) means the object x is in the domain D(u).

 τ^{cor} contains all constant symbols of τ and for any *n*-ary predicate $p(x_1, \dots, x_n) \in \tau$, τ^{cor} includes an (n + 1)-ary predicate $P(u, x_1, \dots, x_n)$.

Definition

A first-order modal τ -formula can be inductively translated to a τ^{cor} -formula as follows:

$$ST_u(t_1 = t_2) = t_1 = t_2.$$

$$\mathbf{ST}_u(p(x_1,\cdots,x_n))=P(u,x_1,\cdots,x_n).$$

$$ST_u(\neg \phi) = \neg ST_u(\phi).$$

$$\blacksquare ST_u(\phi \land \psi) = ST_u(\phi) \land ST_u(\psi).$$

$$\blacksquare ST_u(\Diamond \phi) = \exists u'(R(u, u') \land ST_{u'}(\phi)).$$

 $\blacksquare ST_u(\exists x\phi(x)) = \exists x(E(u,x) \land ST_u(\phi)).$

Let \mathfrak{M}^* be a τ^{cor} -structure of a first-order Kripke model \mathfrak{M} .

Proposition

Let $\phi(x_1, \dots, x_n)$ be a first-order modal formula. Then for all Kripke models \mathfrak{M} with $w \in W$ and $a_1 \dots a_n \in D$,

 $\mathfrak{M}, w \vDash \phi(a_1, \cdots, a_n) \iff \mathfrak{M}^* \vDash ST_u(\phi)(w, a_1, \cdots, a_n).$

Proof.

By induction on the complexity of $\phi(x_1, \cdots, x_n)$.

Atomic formula, negation and conjunction cases are imediate.

■
$$\phi(x_1, \dots, x_n) = \exists_y \psi(y)(x_1, \dots, x_n)$$
. $\mathfrak{M}, w \models \exists_y \psi(y)(a_1, \dots, a_n) \iff$
there is a $b \in D(w)$ and $\mathfrak{M}, w \models \psi(b)(a_1, \dots, a_n) \xleftarrow{H}$ there is a $b \in$
 $D(w)$ and $\mathfrak{M}^* \models ST_u(\psi(b))(w, a_1, \dots, a_n) \iff \mathfrak{M}^* \models$
 $\exists_y (E(u, y) \land ST_u(\psi(b)))(w, a_1, \dots, a_n) \iff \mathfrak{M}^* \models ST_u(\exists_y \psi(y))(w, a_1, \dots, a_n).$
■ $\phi(x_1, \dots, x_n) = \Diamond \psi(x_1, \dots, x_n)$. $\mathfrak{M}, w \models \Diamond \psi(a_1, \dots, a_n) \iff$ there is a $w' \in$
 $W_{\mathfrak{M}}$, such that wRw' and $\mathfrak{M}, w' \models \psi(a_1, \dots, a_n) \iff$ there is a $w' \in$
 $W_{\mathfrak{M}}$, such that wRw' and $\mathfrak{M}^* \models ST_u(\psi)(w', a_1, \dots, a_n) \iff \mathfrak{M}^* \models$
 $\exists u'(R(u, u') \land ST_{u'}(\psi))(w, a_1, \dots, a_n) \iff \mathfrak{M}^* \models ST_u(\Diamond \psi)(w, a_1, \dots, a_n)$

Modally-saturated model

For a varying domain Kripke model $\mathfrak{M} = (W, R, D, I)$ and a finite subset $A \subseteq D$, the language τ_A is an expansion of τ by adding a new constant c_a for every $a \in A$. The τ_A -Kripke model \mathfrak{M}_A expands \mathfrak{M} naturally by interpreting any constant c_a as *a* itself.

Definition

Let $\Gamma(\bar{x})$ be a set of τ_A -formula whose free variable are among $\bar{x} = x_1, \cdots, x_n$. The set of formulas $\Gamma(\bar{x})$ is an \exists -**type** if (\mathfrak{M}_A, w) if for all finite subsets $\Gamma_0(\bar{x})$ of $\Gamma(\bar{x})$, we have $\mathfrak{M}_A, w \vDash \exists \bar{x} \land \Gamma_0(\bar{x})$. Similarly, $\Gamma(\bar{x})$ is a \diamond -**type** of (\mathfrak{M}_A, w) with respect to some $\bar{a} = a_1, \cdots, a_n \in D$, if $\mathfrak{M}_A, w \vDash \diamond \land \Gamma_0(\bar{a})$ for all finite $\Gamma_0 \subseteq \Gamma$. A type of (\mathfrak{M}, w) is either a \diamond -*type* or an \exists -*type* of (\mathfrak{M}_A, w) for some finite subset $A \subseteq D$.

Modally-saturated model

Definition

An \exists -type $\Gamma(\bar{x})$ of (\mathfrak{M}_A, w) is **realized** in (\mathfrak{M}, w) if there are $a_1, \dots, a_n \in D(w)$ such that $\mathfrak{M}_A, w \models \Gamma(\bar{a})$. Likewise, a \diamond -type $\Gamma(\bar{x})$ with respect to a \bar{a} is realized in (\mathfrak{M}, w) , if there is an element $w' \in W$ such that wRw' and $\mathfrak{M}_A, w \models \Gamma(\bar{a})$.

A model \mathfrak{M} is **modally-saturated**, or m-saturated for short, if for every $w \in W$ and each finite subset A of D, every type of (\mathfrak{M}_A, w) is realized in (\mathfrak{M}, w) .

Analogy of the Hennessy-Milner Theorem

Theorem

Let \mathfrak{M} and \mathfrak{N} be two m-saturated Kripke models. Then $(\mathfrak{M}, w\bar{a}) \equiv (\mathfrak{N}, v\bar{b})$ if and only if $(\mathfrak{M}, w\bar{a}) \rightleftharpoons (\mathfrak{N}, v\bar{b}).$

Proof.

The right to left direction has been shown in previous proposition. Atomic formula case is trivial.

Show that $Z = \{(w\bar{a}, v\bar{b}) \mid (\mathfrak{M}, w\bar{a}) \equiv (\mathfrak{N}, v\bar{b}_0)\}$ is a bisimulation between \mathfrak{M} and \mathfrak{N} with $w_0 \bar{a_0} Z v_0 b_0$.

• \diamond -forth . Assume that $(w, \bar{a}), (w', \bar{a}') \in (W_{\mathfrak{M}} \times D^{\star}_{\mathfrak{M}})$ such that $wR_{\mathfrak{M}}w'$ and $(\mathfrak{M}, w\bar{a}) \equiv (\mathfrak{N}, v\bar{b_0})$. Let $\Gamma(\bar{x})$ be the set of formulas true at $(\mathfrak{M}, w'\bar{a})$.

 $\mathfrak{M}, w'\bar{a} \models \Gamma(\bar{x}) \Longrightarrow$ every finite subset $\Gamma_0(\bar{x})$ of $\Gamma(\bar{x}), \mathfrak{M}, w' \models \wedge \Gamma_0(\bar{a}) \Longrightarrow \mathfrak{M}, w \models$ $\Diamond \wedge \Gamma_0(\bar{a}) \stackrel{\equiv}{\Longrightarrow} \mathfrak{N}, v \models \Diamond \wedge \Gamma_0(\bar{b}) \stackrel{Let B = \{\underline{b}_1, \cdots, \underline{b}_n\}}{\longrightarrow} \mathfrak{N}_B, v \models \Diamond \wedge \Gamma_0(\bar{c}_h) \Longrightarrow$ $\Gamma(\bar{x})$ is a \diamond -type of (\mathfrak{N}_B, v) w.r.t. $\bar{c_b} \in D_{\mathfrak{N}}(v) \overset{\mathfrak{N} \text{ is m-saturated, thus } \Gamma(\bar{x}) \text{ is realized}$ there is a $v' \in W_{\mathfrak{N}}$ s.t. $\mathfrak{N}_{B}, v' \models \Gamma(\bar{c}_{b}) \Longrightarrow \mathfrak{N}, v' \models \Gamma(\bar{b}) \Longrightarrow \mathfrak{N}, v'\bar{b} \models \Gamma(\bar{x}).$

cont.

■ ∃-forth . Assume that there is $c \in D_{\mathfrak{M}}(w)$. Let $\Gamma(\bar{x}y)$ be the set of formulas true at $(\mathfrak{M}, w\bar{a}c)$, then

$$\begin{split} \mathfrak{M}, & w\bar{a}c \vDash \Gamma(\bar{x}y) \Longrightarrow every \text{ finite subset } \Gamma_{0}(\bar{x}y) \subseteq \Gamma(\bar{x}y), \\ \mathfrak{M}, & w\bar{a}c \vDash \wedge \Gamma_{0}(\bar{x}y) \Longrightarrow \mathfrak{M}, & w\bar{a} \vDash \wedge \Gamma_{0}(\bar{x}c) \Longrightarrow \mathfrak{M}, & w\bar{a} \vDash \exists_{y} \wedge \Gamma_{0}(\bar{x}y) \Longrightarrow \mathfrak{M}, & w \vDash \exists_{y} \wedge \Gamma_{0}(\bar{x}y) \Longrightarrow \mathfrak{M}, & v \vDash \exists_{y} \wedge \Gamma_{0}(\bar{c}_{b}y) \Longrightarrow \mathfrak{M}, & v \vDash \mathfrak{M}, & v \rightthreetimes \mathfrak{M}, & v \vDash \mathfrak{M}, & v \rightthreetimes \mathfrak{M}, & v \vDash\mathfrak{M}, & v \vDash \mathfrak{M}, & v \vDash\mathfrak{M}, & v \rightthreetimes \mathfrak{M}, & v \vDash \mathfrak{M}, & v \vDash\mathfrak{M}, & v \rightthreetimes \mathfrak{M}, & v \vDash \mathfrak{M}, & v \vDash \mathfrak{M}, & v \rightthreetimes \mathfrak{M}, & v \rightthreetimes \mathfrak{M}, & v \rightthreetimes \mathfrak{M}, & v \rightthreetimes \mathfrak{M}, & v \ast \mathfrak{M}, & v \ast$$

Outline

1 Preliminaries

2 Bisimulation and Saturation

3 Frame Definability

Theorem (Goldblatt-Thomason Theorem for PML)

Let K be an elementary class of frames. Then K is definable by a set of propositional modal formulas if and only if

- (GT1) it is closed under taking bounded morphic images, generated subframes, disjoint unions.
- (GT2) reflects ultrafilter extensions.

In this section we focus on constant domain models.

A τ -formula $\phi(x_1, \dots, x_n)$ is valid at a world w of the frame \mathfrak{F} , denoted by $\mathfrak{F}, w \vDash \phi(x_1, \dots, x_n)$, if for every constant domain τ -model \mathfrak{M} based on \mathfrak{F} , we have $\mathfrak{M}, w \vDash \forall x_1 \dots \forall x_n \phi(x_1, \dots, x_n)$.

 $\phi(x_1, \dots, x_n)$ is valid on the frame \mathfrak{F} , denoted by $\mathfrak{F} \models \phi(x_1, \dots, x_n)$, if it is valid at every world $w \in W$.

Definition (FOML-*definable*)

A class of Kripke frames K is FOML-definable if for some language τ there exists a set of first-order modal τ -sentences Λ such that for any frame $\mathfrak{F}, \mathfrak{F} \in K$ if and only if $\mathfrak{F} \models \Lambda$.

More generally, a set of first-order modal **formulas** Λ with free variables among x_1, \dots, x_n defines K if for any Kripke frame $\mathfrak{F}, \mathfrak{F} \in K$ if and only if $\mathfrak{F} \models \forall \bar{x} \phi(\bar{x})$ for every $\phi(\bar{x}) \in \Lambda$.

Let $\theta(p_1, \dots, p_n)$ is a propositional modal formula and $P_1(x), \dots, P_n(x)$ are atomic formulas where $1 \le i \le n$, is a unary predicate and x is a single variable. The **sbustitution** of $\theta(p_1, \dots, p_n)$ is a first-order modal formula $\theta(P_1(x), \dots, P_n(x))$ which is obtained by **uniformly replacing** each proposition p_i by an atomic formula $P_i(x)$ for some variable x.

Let $\theta(p_1, \dots, p_n)$ is a propositional modal formula and $P_1(x), \dots, P_n(x)$ are atomic formulas where $1 \le i \le n$, is a unary predicate and x is a single variable. The **sbustitution** of $\theta(p_1, \dots, p_n)$ is a first-order modal formula $\theta(P_1(x), \dots, P_n(x))$ which is obtained by **uniformly replacing** each proposition p_i by an atomic formula $P_i(x)$ for some variable x.

Proposition

Let K be any class of frames. If K is PML-definable then it is also FOML-definable.

Proof.

Suppose *K* is definable by a set of propositional modal formulas Λ_P . Let $\tau = \{P_1, P_2, \dots, P_n, \dots\}$ consist of countably many unary predicates and put Λ_F to be a set of all formulas of $\forall_X \theta(P_1(x), \dots, P_n(x))$ for $\theta \in \Lambda_P$, then for every \mathfrak{F} , $\mathfrak{F} \in K \iff \mathfrak{F} \models \theta(p_1, \dots, p_n) \iff$ for every \mathfrak{M} and $w, \mathfrak{M}, w \models \theta(p_1, \dots, p_n) \iff$ for every $\mathfrak{A} \in D, \mathfrak{M}, w \models \theta(P_1(a), \dots, P_n(a) \iff \mathfrak{F} \models \forall_X \theta(P_1(x), \dots, P_n(x))$.

An Example

Example

The class of frames in which every world has a reflexive accessible world $(\forall x \exists y (Rxy \land Ryy))$ is not definable by any set of propositional modal formulas [1], since it does not reflect ultrafilter extensions. However, this class is definable by the formula $\Diamond \forall x (\Box P(x) \rightarrow P(x))$.

This class of frames are not definable by any set of propositional modal formulas, since it **does not reflect ultrafilter extensions**.(Bluebook P142)[5]

Ultrafilter Extension

Definition (Filter)

A filter F over a set W is a subset of $\mathcal{P}(W)$ such that

■ *W* ∈ *F*

$$X, Y \in F \text{ implies } X \cap Y \in F$$

• $X \in F$ and $X \subseteq Y$ implies $Y \in F$

A proper filter is a filter such that $\emptyset \notin F$. An ultrafilter is a proper filter such that either $X \in F$ or $W \setminus X \in F$.

Ultrafilter Extension

Definition (Filter)

A filter F over a set W is a subset of $\mathcal{P}(W)$ such that

 $W \in F$

$$X, Y \in F \text{ implies } X \cap Y \in F$$

• $X \in F$ and $X \subseteq Y$ implies $Y \in F$

A proper filter is a filter such that $\emptyset \notin F$. An ultrafilter is a proper filter such that either $X \in F$ or $W \setminus X \in F$.

Definition (Ultrafilter Extension)

For a Kripke frame $\mathfrak{F} = (W, R)$, the **ultrafilter extension** \mathfrak{ueg} of \mathfrak{F} is defined as the frame $(Uf(W), R^{ue})$. Uf(W) is the set of ultrafilters over W and R^{ue} is a binary relation over Uf(W). For all $u, u' \in Uf(W), R^{ue}uu'$ if $m_{\diamond}(X) = \{w \in W \mid Rww' \text{ for some } w' \in X\} \in u$ for every $X \in u'$, where

The **principal ultrafilter** generated by *w* is the filter generated by the singleton set $\{w\}$: $\pi_w = \{X \subseteq W \mid w \in X\}$. A class of frames *K* **reflects ultrafilter extensions** if $\mathfrak{ue}\mathfrak{F} \in K$ implies $\mathfrak{F} \in K$.

Figure: The Frame $\mathfrak{N} = (\mathbb{N}, <)$

Figure: The Frame $\mathfrak{N} = (\mathbb{N}, <)$

There are two kinds of ultrafilters over an infinite set: the principal ultrafilters that are 1 - 1 sorrespondence with the points of the set, and the non-principal ones that contain all co-finite sets, and only infinite sets.

For any pair of ultrafilters u, u', if u' is non-principal, then for any $X \in u'$, since X is infinite, then for any $n \in \mathbb{N}$, there is an $m \in X$ such that n < m. This shows that $m_{\Diamond}(X) = \mathbb{N}$. Because \mathbb{N} is an element of every ultrafilter. Therefore for any ultrafilter u, $m_{\Diamond}(X) \in u$, this means $R^{ue}uu'$.

Figure: The Frame $\mathfrak{N} = (\mathbb{N}, <)$

There are two kinds of ultrafilters over an infinite set: the principal ultrafilters that are 1 - 1 sorrespondence with the points of the set, and the non-principal ones that contain all co-finite sets, and only infinite sets.

For any pair of ultrafilters u, u', if u' is non-principal, then for any $X \in u'$, since X is infinite, then for any $n \in \mathbb{N}$, there is an $m \in X$ such that n < m. This shows that $m_{\bigcirc}(X) = \mathbb{N}$. Because \mathbb{N} is an element of every ultrafilter. Therefore for any ultrafilter u, $m_{\bigcirc}(X) \in u$, this means $R^{ue}uu'$.

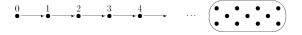


Figure: The Ultrafilter Extension of n

Example

The class of frames in which every world has a reflexive accessible world $(\forall x \exists y (Rxy \land Ryy))$ is not definable by any set of propositional modal formulas [1], since it does not reflect ultrafilter extensions. However, this class is definable by the formula $\Diamond \forall x (\Box P(x) \rightarrow P(x))$.

This class of frames are definable by the formula $\Diamond \forall x (\Box P(x) \rightarrow P(x))$. $\Diamond \forall x (\Box P(x) \rightarrow P(x))$ is clearly valid in this class of frame.

For the converse, suppose that \mathfrak{F} is a frame with some world w_0 that does not have any reflexive successor. Let $\mathfrak{M} = (\mathfrak{F}, D, I)$ be a **constant domain model** based on \mathfrak{F} such that $|D| \ge |\{w' | Rw_0w'\}|$. Moreover, for each w' there exists a distinct element $d_{w'} \in D$ such that $P(d_{w'})$ is false in w' but it is true in all successors of w'. Then for any w' with Rw_0w' we have $\mathfrak{M}, w' \nvDash \forall_x (\Box P(x) \to P(x))$. So $\mathfrak{M}, w_0 \nvDash \forall_x (\Box P(x) \to P(x))$.

Bounded Morphic Images, Generated Subframes and Disjoint Unions

Definition (Bounded Morphic Images)

Let \mathfrak{F} and \mathfrak{G} be two Kripke frames. A function $f: W_{\mathfrak{F}} \to W_{\mathfrak{G}}$ is a bounded morphism from \mathfrak{F} to \mathfrak{G} if

- $\blacksquare R_{\mathfrak{F}} ww' \text{ implies } R_{\mathfrak{G}} f(w) f(w')$
- if $R_{\mathfrak{G}}f(w)v$, then there exists $w' \in W\mathfrak{F}$ such that f(w') = v and $R_{\mathfrak{F}}ww'$.

If *f* is a *surjective*, then we say \mathfrak{G} is a *bounded morphic image* of $\mathfrak{F}, \mathfrak{F} \twoheadrightarrow \mathfrak{G}$.

Definition (Generated Subframe)

A frame \mathfrak{F} is a *generated subframe* of \mathfrak{G} , denoted by $\mathfrak{F} \to \mathfrak{G}$, if $W_{\mathfrak{F}} \subseteq W_{\mathfrak{G}}$ and $R_{\mathfrak{F}} = R_{\mathfrak{G}} \upharpoonright W_{\mathfrak{F}}$ and for every $w \in W_{\mathfrak{F}}$ if $R_{\mathfrak{G}} ww'$ then $w' \in W_{\mathfrak{F}}$.

Definition (Disjoint Union)

Suppose $\langle \mathfrak{F}_i : i \in I \rangle$ is a family of disjoint Kripke frames. The *disjoint union* of \mathfrak{F}_i 's is a frame $\mathfrak{F} = \bigoplus_{i \in I} \mathfrak{F}_i$ in which $W = \bigcup_{i \in I} W_i$ and $R = \bigcup_{i \in I} R_i$.

Proposition

The validity of **first-order modal sentences** is preserved under bounded morphic images, generated subframes, and disjoint unions.

Proposition

The validity of **first-order modal sentences** is preserved under bounded morphic images, generated subframes, and disjoint unions.

Proof.

The proof is a generalization of the proof of the theorem for the propositional version.[1] Here, we take bounded morphic images case as an example.

Assume that
$$\mathfrak{F} \twoheadrightarrow \mathfrak{F}'$$
. If $\mathfrak{F} \vDash \phi$, then $\mathfrak{F}' \vDash \phi$

Assume that *f* is a surjective bounded morphism form \mathfrak{F} onto \mathfrak{F}' . For every first-order modal sentence ϕ , suppose that $\mathfrak{F}' \nvDash \phi$. Then there is a model $\mathfrak{M}' = (W', R', D', I')$ based on $\mathfrak{F}' = (W', R')$ and a $w' \in W'$ s.t. $\mathfrak{M}', w' \nvDash \phi$. Let $\mathfrak{M} = (W, R, D, I)$ be a model based on $\mathfrak{F} = (W, R)$, where for every $w \in W$, D(w) = D'(f(w)), for every $w \in W$ and every constant *c*, I(w, c) = I'(f(w), c), and for every *n*-ary predicate *P*, $I(w, P) = \{(a_1, \cdots, a_n) \in D^n \mid (a_1, \cdots, a_n) \in I'(f(w), P)\}$. Since *f* is surjective, then there is a $w \in W$ s.t. f(w) = w'. By induction on sentence ϕ , we have $\mathfrak{M}', w' \nvDash \phi \iff \mathfrak{M}, w \nvDash \phi$.

■
$$\phi = \Diamond \psi$$
.
 $\mathfrak{M}, w \models \Diamond \psi \iff there is a v \in W, wRv and \mathfrak{M}, v \models \psi \stackrel{definition of bounded morphism}{\iff}$
there is a $f(v) \in W', f(w)R'f(v) and \mathfrak{M}, v \models \psi \stackrel{H}{\iff} there is a f(v) \in$
 $W', f(w)R'f(v) and \mathfrak{M}', f(v) \models \psi \iff \mathfrak{M}', f(w) \models \Diamond \psi \iff \mathfrak{M}', w' \models \Diamond \psi$.
■ $\phi = \exists_y \phi(y). \mathfrak{M}, w \models \exists_y \phi(y) \iff there is a a \in D(w) s.t. \mathfrak{M}, w \models \phi(a) \stackrel{H}{\iff}$
there is a $a \in D'(f(w)) s.t. \mathfrak{M}', w' \models \phi(a) \iff there is a a \in$
 $D'(w') s.t. \mathfrak{M}', w' \models \phi(a) \iff \mathfrak{M}', w' \models \exists_y \phi(y)$

Definition (Universal)

A first-order modal formula $\phi(x_1, \dots, x_n)$ is universal if it is in the form $\forall y_1, \dots, \forall y_m \psi(x_1, \dots, x_n, y_1, \dots, y_m)$ where ψ is a quantifier-free formula.

Definition (Universal)

A first-order modal formula $\phi(x_1, \dots, x_n)$ is universal if it is in the form $\forall y_1, \dots, \forall y_m \psi(x_1, \dots, x_n, y_1, \dots, y_m)$ where ψ is a quantifier-free formula.

Proposition

Let K be an elementary class of frames definable by a set of universal modal sentences in some language τ . Then K is definable by a set of propositional modal formulas.

Definition (Universal)

A first-order modal formula $\phi(x_1, \dots, x_n)$ is universal if it is in the form $\forall y_1, \dots, \forall y_m \psi(x_1, \dots, x_n, y_1, \dots, y_m)$ where ψ is a quantifier-free formula.

Proposition

Let K be an elementary class of frames definable by a set of universal modal sentences in some language τ . Then K is definable by a set of propositional modal formulas.

Proof.

Suppose that the class *K* is defined by a set of universal modal sentences Λ ($\mathfrak{F} \in K \iff \mathfrak{F} \models \Lambda$ for every \mathfrak{F}). By the previous proposition *K* has property *GT*1. We show *K* **reflects ultrafilter extensions**, and hence by Goldblatt-Thomason theorem we get the desired result.

Assume that $\mathfrak{u}\mathfrak{F} \in K$ for some \mathfrak{F} . To show $\mathfrak{F} \models \Lambda$, suppose $\mathfrak{F} \nvDash \Lambda$, then there is a universal sentence $\phi = \forall \overline{x}\psi(\overline{x}) \in \Lambda$ and a modal \mathfrak{M} based on \mathfrak{F} and a $w \in W_{\mathfrak{F}}$ such that $\mathfrak{M}, w \nvDash \phi$. Let $\mathfrak{u}\mathfrak{F}$ be a model based on $\mathfrak{u}\mathfrak{F}$ with $D_{\mathfrak{M}}$ as domain. For each $u \in Uf(W)$ and each *n*-ary predicate $P, (a_1, \cdots, a_n) \in I^{\mathfrak{u}\mathfrak{c}}(u, P)$ if and only if $\{w \in W_{\mathfrak{F}} \mid (a_1, \cdots, a_n) \in f^{\mathfrak{M}}(w, P)\} \in u$. By induction on the quantifier-free formula ψ , we have $\mathfrak{M}, w \vDash \psi(a_1, \cdots, a_n) \iff \mathfrak{u}\mathfrak{c}(\mathfrak{M}), \pi_w \vDash \psi(a_1, \cdots, a_n)$. Hence $\mathfrak{u}\mathfrak{c}(\mathfrak{M}), \pi_w \nvDash \phi$, a contradiction.

Goldblatt-Thomason Theorem for FOML

Theorem (Goldblatt-Thomason Theorem for FOML)

Let *K* be an elementary class of frames. Then *K* is definable by a set of first-order modal τ -sentences if and only if it is closed under bounded morphic images, generated subframes, and disjoint unions.[5]

Goldblatt-Thomason Theorem for FOML

Theorem (Goldblatt-Thomason Theorem for FOML)

Let *K* be an elementary class of frames. Then *K* is definable by a set of first-order modal τ -sentences if and only if it is closed under bounded morphic images, generated subframes, and disjoint unions.[5]

Proof.

Let ϕ be first-order modal τ sentence and $Th(K) = \{\phi \mid K \vDash \phi\}$. We need to show that for any frame $\mathfrak{F} \vDash Th(K) \Longrightarrow \mathfrak{F} \in K$.

Assume that $\mathfrak{F} \models Th(K)$ where $\mathfrak{F} = (W_{\mathfrak{F}}, R_{\mathfrak{F}})$. By GT1, since any frame is a bounded morphic image of the disjoint union of its pointed-generated subframs, we assume that \mathfrak{F} is point-generated by w_0 .

Let τ_1 be a language consisting of a unary predicate *P*, a binary predicate *R* and new constants c_w , for each $w \in W_{\mathfrak{F}}$. Put

 $\tau' = \tau_1 \cup \{ R_{\theta} \mid \theta(\bar{x}) \text{ is an } \mathcal{L}_R \text{ - formula} \}$

where for each first-order \mathcal{L}_R - formula $\theta(x_1, \dots, x_k)$ we add a k-ary predicate $R_{\theta}(x_1, \dots, x_k)$.

Define a τ_1 -model $\mathfrak{M} = (\mathfrak{F}, D, I)$ based on \mathfrak{F} where $D = W\mathfrak{F}$, in each world w, $l(w, P) = \{w\}$ and R(w, w') holds if and only if $(w, w') \in R_{\mathfrak{F}}$. Interpret each constant c_w as w. τ_1 model \mathfrak{M} can be viewed as a τ' model by interpreting each predicate R_{θ} as

$$I(w, R_{\theta}) = \{(w_1, \cdots, w_k) \in D^k \mid \mathfrak{M}, w \vDash \theta(w_1, \cdots, w_k)\}$$

By induction on \mathcal{L}_R -formulas we have for each \mathcal{L}_R -formula $\theta(x_1, \dots, x_n)$ and $w, w' \in W$, $I(w, R_{\theta}) = I(w', R_{\theta})$. Moreover

$$I(w, R_{\theta}) = \{(w_1, \cdots, w_k) \in D^k \mid \mathfrak{M} \vDash \theta(w_1, \cdots, w_k)\}$$

Let Δ be the set of τ' -sentences true in (\mathfrak{M}, w_0) . Since \mathfrak{F} is pointe-generated by w_0 , for each $w \in W$ the length of the shortest path from w_0 to w, n_w is finite. For all $w, w' \in W$, $n \in \mathbb{N}$, and \mathcal{L}_R -formulas $\theta(\bar{x}), \theta_1(\bar{x}), \theta_2(\bar{x})$. Δ contains, in particular, the following sentences.

 $\square \Diamond^{n_W} P(c_W).$ $\square^n C_w \neq C_{w'}, \text{ if } w \neq w'.$ $\square^n \exists_X (P(x) \land \forall_V (P(y) \to x = y)).$ $\blacksquare \square^n R(c_w, w_{w'}), \text{ if } (w, w') \in R_{\mathfrak{F}}.$ 5 $\Box^n \neg R(c_w, c_{w'})$, if $(w, w') \notin R_{\mathfrak{F}}$. $\square^n \forall_X \forall_V (P(x) \land \Diamond P(y) \to R(x, y)).$ 7 $\Box^n \forall_x \forall_y (P(x) \land R(x, y) \to \Diamond P(y)).$ $\forall x_1, \cdots, x_k (\theta(x_1, \cdots, x_k)) \to \Box^n \theta(x_1, \cdots, x_k))$ $\square \square^n \forall_x \forall_y (R_{B(x,y)}(x,y) \leftrightarrow R(x,y)).$ $\square \Box^n \forall_x, \cdots, x_k (R_{\neg \theta}(x_1, \cdots, x_k) \leftrightarrow \neg R_{\theta}(x_1, \cdots, x_k)).$ $\blacksquare \Box^n \forall x, \cdots, x_k (R_{\theta_1 \land \theta_2}(x_1, \cdots, x_k) \leftrightarrow (R_{\theta_1}(x_1, \cdots, x_k) \land R_{\theta_2}(x_1, \cdots, x_k))).$ $\square \square^n \forall_x, \cdots, x_k (R_{\exists_v \theta(y, x_1, \cdots, x_k)}(x_1, \cdots, x_k) \leftrightarrow \exists_y R_{\theta_{(y, x_1, \cdots, x_k)}}(y, x_1, \cdots, x_k)).$ $\square \square^n \forall x, \cdots, x_k (R_\theta(x_1, \cdots, x_k) \leftrightarrow \theta(x_1, \cdots, x_k)).$

1-7 describe the properties of predicates P and R in \mathfrak{M} . 8, equivalent to 9, expresses the validity of each \mathcal{L} -formula is equivalent to its satisfiability inside \mathfrak{M} . 10-13 state the inductive interpretation of the auxiliary predicates in \mathfrak{M} . 14 is the conjunction of 10-13.

Xuezhe Dang Peking university

Claim 1. Δ is finitely satisfiable in K.

For if not, there is a finite subset δ of Δ which is not satisfiable in any constant domain model based on the frames of K, then $\neg \land \sigma \in Th(K)$, hence $\mathfrak{F} \vDash \neg \land \sigma$ which contradicts $\mathfrak{M}, w_0 \vDash \land \sigma$. Since K is an elementary class of frames, it is closed under ultraproducts. Hence, there is a frame $\mathfrak{G} \in K$, a constant domain model $\mathfrak{N} = (\mathfrak{G}, D_{\mathfrak{N}}, I_{\mathfrak{N}})$ based on \mathfrak{G} and a point v_0 such that $\mathfrak{N}, v_0 \vDash \Delta$. Once again, w.l.o.g, we assume that \mathfrak{G} is generated by v_0 . Let $\mathfrak{G}' = (W', R')$ where $W' = \{a \in D_{\mathfrak{N}} \mid \mathfrak{N}, v \vDash P(a), \text{ for some } v \in \mathfrak{G}\}$, and $(a, b) \in R'$ if and only if $\mathfrak{N} \vDash R(a, b)$.

Claim 2. $\mathfrak{G} \twoheadrightarrow \mathfrak{G}'$

Define $h : \mathfrak{G} \to \mathfrak{G}'$ by letting h(v) be the unique element a_v of $D_{\mathfrak{N}}$ such that $P(a_{a_v})$ holds in $v \in \mathfrak{G}$. h is a well-defined surjective function since \mathfrak{G} is generated by v_0 and it satisfies 3. By 6-9, h is a bounded morphism.

Claim 3. \mathfrak{F} is isomorphic to a first-order elementary $\mathcal{L}_{\mathcal{R}}$ -substurcture of \mathfrak{G}' .

Let $i: \mathfrak{F} \to \mathfrak{G}'$ be defined as $i(w) = c_w^{\mathfrak{N}}$, which is well defined by 1. By 2,4 and 5 the map *i* is an $\mathcal{L}_{\mathcal{R}}$ -embedding, since for any $w, w' \in W_{\mathfrak{F}}$, $\mathfrak{F} \models wR_{\mathfrak{F}}w' \iff \mathfrak{G}' \models i(w)Ri(w')$

To show it is the desired elementary embedding, we expand \mathfrak{F} and \mathfrak{G}' to first-order τ' -structures and show i is a τ' -embedding.

First, interpret each constant c_w as w in \mathfrak{F} and as $a = c_w^{\mathfrak{N}}$ in \mathfrak{G}' . Interpret each $R_{\theta} \in \tau'$ in \mathfrak{F} as

$$(w_1, \cdots, w_k) \in R_{\theta}^{\mathfrak{F}}$$
 if $\mathfrak{M} \vDash R_{\theta}(w_1, \cdots, w_k)$

for $w_1, \cdots, w_k \in \mathfrak{F}$, and as

$$(a_1, \cdots, a_k) \in R_{\theta}^{\mathfrak{G}'}$$
 if $\mathfrak{N} \vDash R_{\theta}(a_1, \cdots, a_k)$

, for $a_1, \cdots, a_k \in \mathfrak{G}'$.

For each $\mathcal{L}_{\mathcal{R}}$ -formula $\theta_{(y,x_1,\cdots,x_k)}$ and constant symbols c_{w_1},\cdots,c_{w_k} , both \mathfrak{F} and \mathfrak{G}' satisfy the formula $(R_{\theta}(c_{w_1},\cdots,c_{w_k}) \leftrightarrow \theta(c_{w_1},\cdots,c_{w_k}))$.

The argument goes by induction on $\theta_{(y,x_1,\dots,x_k)}$. For sturcture \mathfrak{G}' , \wedge and \neg cases are easy. For $\theta(x_1,\dots,x_k) = \exists_y \psi(y,x_1,\dots,x_k)$.

We first show that
$$\mathfrak{G}' \models R_{\exists_y\psi}(c_{w_1}, \cdots, c_{w_k}) \iff \mathfrak{G}' \models \exists_y R_{\psi}(y, c_{w_1}, \cdots, c_{w_n}).$$

$$\implies : \mathfrak{G}' \models R_{\exists_y\psi}(c_{w_1}, \cdots, c_{w_k}) \stackrel{by \text{ definition}}{\Longrightarrow} \mathfrak{N} \models R_{\exists_y\psi}(c_{w_1}, \cdots, c_{w_k}) \stackrel{13}{\Longrightarrow} \mathfrak{N} \models$$

$$\exists_y R_{\psi}(y, c_{w_1}, \cdots, c_{w_k}) \stackrel{(\mathfrak{M}, w_0) \equiv (\mathfrak{N}, v_0)}{\Longrightarrow} \mathfrak{M} \models \exists_y R_{\psi}(y, c_{w_1}, \cdots, c_{w_k}) \implies$$
there exists $w \in \mathfrak{F}$, s.t. $\mathfrak{M} \models R_{\psi}(c_w, c_{w_1}, \cdots, c_{w_k}) \implies \mathfrak{N} \models$

$$R_{\psi}(c_w, c_{w_1}, \cdots, c_{w_k}) \stackrel{by \text{ definition}}{\Longrightarrow} \mathfrak{G}' \models R_{\psi}(c_w, c_{w_1}, \cdots, c_{w_k}) \implies \mathfrak{G}' \models$$

$$\exists_y R_{\psi}(y, c_{w_1}, \cdots, c_{w_k}).$$

$$\iff : \mathfrak{G}' \models \exists_y R_{\psi}(y, c_{w_1}, \cdots, c_{w_k}) \implies \mathfrak{G}' \models R_{\psi}(a, c_{w_1}, \cdots, c_{w_k}) \text{ for some } a \in \mathfrak{G}' \implies$$

$$\mathfrak{N} \models R_{\psi}(a, c_{w_1}, \cdots, c_{w_k}) \implies \mathfrak{N} \models \exists_y R_{\psi}(y, c_{w_1}, \cdots, c_{w_k}) \stackrel{13}{\Longrightarrow} \mathfrak{N} \models$$

$$R_{\exists_y \psi}(c_{w_1}, \cdots, c_{w_k}) \implies \mathfrak{G}' \models R_{\exists_y \psi}(c_{w_1}, \cdots, c_{w_k}).$$

The case for structure \mathfrak{F} can be done analogously.

The inductive definitions of R_{θ} 's imply that both structures \mathfrak{F} and \mathfrak{G}' satisfy $(R_{\theta}(c_{w_1}, \cdots, c_{w_k}) \leftrightarrow \theta(c_{w_1}, \cdots, c_{w_k}))$. Since

$$\mathfrak{F} \vDash R_{ heta}(c_{w_1}, \cdots, c_{w_k})$$
 if and only if $\mathfrak{M} \vDash R_{ heta}(c_{w_1}, \cdots, c_{w_k})$

$$\mathfrak{B}' \vDash R_{\theta}(c_{w_1}, \cdots, c_{w_k})$$
 if and only if $\mathfrak{N} \vDash R_{\theta}(c_{w_1}, \cdots, c_{w_k})$

therefore

$$\mathfrak{F} \vDash R_{\theta}(c_{w_1}, \cdots, c_{w_k}) \text{ if and only if } \mathfrak{G}' \vDash R_{\theta}(c_{w_1}, \cdots, c_{w_k})$$
$$\mathfrak{F} \vDash \theta(c_{w_1}, \cdots, c_{w_k}) \text{ if and only if } \mathfrak{G}' \vDash \theta(c_{w_1}, \cdots, c_{w_k})$$

Hence, i is an elementary \mathcal{L}_R -embedding. By closure of K under bounded morphic images, $\mathfrak{G}' \in K$. Scine K is an elementary class of frames, Claim 3 implies that $\mathfrak{F} \in K$.

References

Patrick Blackburn, Maarten De Rijke, and Yde Venema.
 Modal Logic.
 Cambridge University Press, 2005.

Dov M Gabbay, Dimitrij Skvortsov, and Valentin Shehtman. *Quantification in nonclassical logic*, volume 153. Elsevier, 2009.

Mendelsohn and L Richard. *First-order modal logic.* Kluwer Academic, 1998.

Johan van Benthem et al.

Frame correspondences in modal predicate logic.

Proofs, categories and computations: Essays in honor of Grigori Mints, pages 1–14, 2010.

R. Zoghifard and M. Pourmahdian.

First-order modal logic: Frame definability and a lindström theorem. *Studia Logica*, 106(4):699–720, Aug 2018.