Gödel's First Incompleteness Theorems for Non-Recursively Enumerable Theories

Conden Chao

With some further work on "S. Salehi and P. Seraji 2015"

Mar. 15th, 2016

To Commemorate the 110 Anniversary of Gödel's Birth 1906—2016

Outline

- 1 Introduction: Gödel's First Incompleteness Theorem
- ② Generalized Meta-theoretical Properties
- **3** Generalizing to Non-Recursively Enumerable Theories
- **4** Σ_n -soundness is sufficient
- **6** Π_n -soundness is also sufficient
- 6 *n*-consistency is also sufficient
- Consistency isn't sufficient
- Oconclusions: Diagrams for First Incompleteness

Outline

- 1 Introduction: Gödel's First Incompleteness Theorem
- Ø Generalized Meta-theoretical Properties
- **③** Generalizing to Non-Recursively Enumerable Theories
- Σ_n -soundness is sufficient
- **G** Π_n -soundness is also sufficient
- 6 *n*-consistency is also sufficient
- Consistency isn't sufficient
- Conclusions: Diagrams for First Incompleteness

- Arithmetic language \mathscr{L}_A : non-logical symbols are $\overline{0}$, \overline{S} , $\overline{+}$, $\overline{\times}$ and equality symbol is \equiv .
- $\bar{n} = \bar{S}^n \bar{0} = \bar{S} \cdots \bar{S} \bar{0}$. (*n* many \bar{S})
- $x \leq y$ is defined as $\exists z(z \neq x \equiv y)$ and $x \leq y$ is $x \leq y \land x \neq y$.
- The standard arithmetic model is $\mathcal{N} = (\mathbb{N}, 0, 1, \cdots, S, +, \times, \leq)$.
- Robinson arithmetic is the theory Q whose axioms are as follows

$$\begin{array}{rcl} Q_1 & : & \forall x \bar{S} x \neq \bar{0}; \\ Q_2 & : & \forall x \forall y (\bar{S} x \equiv \bar{S} y \rightarrow x \equiv y); \\ Q_3 & : & \forall x (x \neq \bar{0} \rightarrow \exists y (x \equiv \bar{S} y)); \\ Q_4 & : & \forall x (x \mp \bar{0} \equiv x); \\ Q_5 & : & \forall x \forall y (x \mp \bar{S} y \equiv \bar{S} (x \mp y)); \\ Q_6 & : & \forall x (x \bar{x} \bar{0} \equiv \bar{0}); \\ Q_7 & : & \forall x \forall y (x \bar{x} \bar{S} y \equiv x \bar{x} y \mp x). \end{array}$$

- Arithmetic language L_A: non-logical symbols are 0, S
 , +, × and equality symbol is ≡.
- $\bar{n} = \bar{S}^n \bar{0} = \bar{S} \cdots \bar{S} \bar{0}$. (*n* many \bar{S})
- $x \leq y$ is defined as $\exists z(z \neq x \equiv y)$ and $x \leq y$ is $x \leq y \land x \neq y$.
- The standard arithmetic model is $\mathcal{N} = (\mathbb{N}, 0, 1, \cdots, S, +, \times, \leq)$.
- Robinson arithmetic is the theory Q whose axioms are as follows

$$\begin{array}{rcl} Q_1 & : & \forall x \, \overline{S} \, x \, \overline{\neq} \, \overline{0}; \\ Q_2 & : & \forall x \, \forall y \big(\overline{S} \, x \equiv \overline{S} \, y \to x \equiv y \big); \\ Q_3 & : & \forall x \big(x \, \overline{\neq} \, \overline{0} \to \exists y \big(x \equiv \overline{S} \, y \big) \big); \\ Q_4 & : & \forall x \big(x \, \overline{+} \, \overline{0} \equiv x \big); \\ Q_5 & : & \forall x \, \forall y \big(x \, \overline{+} \, \overline{S} \, y \equiv \overline{S} \big(x \, \overline{+} \, y \big) \big); \\ Q_6 & : & \forall x \big(x \, \overline{\times} \, \overline{0} \equiv \overline{0} \big); \\ Q_7 & : & \forall x \, \forall y \big(x \, \overline{\times} \, \overline{S} \, y \equiv x \, \overline{\times} \, y \, \overline{+} \, x \big). \end{array}$$

- $(\Sigma_n, \Pi_n \text{ and } \Delta_n)$ Fix our arithmetic language \mathscr{L}_A (notably that \overline{n} (n > 0)and \leq are not non-logical symbols of it). The formulas $\Delta_0 = \Sigma_0 = \Pi_0$ is defined as follows:
 - * all the atomic formulas such as $\tau \equiv \sigma$, where τ, σ are terms, belong to Δ_0 ; * if $\phi, \psi \in \Delta_0$, then so $\neg \phi, \phi \land \psi, \phi \lor \psi \in \Delta_0$;
 - * if τ is a term with $x \notin Vr(\tau)$, and $\phi \in \Delta_0$, then so $\forall x \leq \tau \phi, \exists x \leq \tau \phi \in \Delta_0$.

And recursively we can define Σ_n , Π_n and Δ_n sets of formulas:

*
$$\phi \in \Sigma_n$$
 if $\phi = \exists \vec{x} \psi$ for some $\psi \in \Pi_{n-1}$;

* $\phi \in \Pi_n$ if $\phi = \forall \vec{x} \psi$ for some $\psi \in \Sigma_{n-1}$;

* $\phi \in \Delta_n$ if $\phi \in \Sigma_n \cap \Pi_n$.

• For all $n \in \mathbb{N}$, $\Sigma_n \cup \Pi_n \subseteq \Sigma_{n+1} \cap \Pi_{n+1}$.

• (Σ_1 -completeness of Q) If $T \supseteq Q$, then T is Σ_1 -complete, i.e., for any Σ_1 sentence ϕ if $\mathcal{N} \vDash \phi$ then $T \vdash \phi$.

- $(\Sigma_n, \Pi_n \text{ and } \Delta_n)$ Fix our arithmetic language \mathscr{L}_A (notably that \overline{n} (n > 0)and \leq are not non-logical symbols of it). The formulas $\Delta_0 = \Sigma_0 = \Pi_0$ is defined as follows:
 - * all the atomic formulas such as $\tau \equiv \sigma$, where τ, σ are terms, belong to Δ_0 ; * if $\phi, \psi \in \Delta_0$, then so $\neg \phi, \phi \land \psi, \phi \lor \psi \in \Delta_0$;

* if τ is a term with $x \notin Vr(\tau)$, and $\phi \in \Delta_0$, then so $\forall x \leq \tau \phi, \exists x \leq \tau \phi \in \Delta_0$.

And recursively we can define Σ_n , Π_n and Δ_n sets of formulas:

*
$$\phi \in \Sigma_n$$
 if $\phi = \exists \vec{x} \psi$ for some $\psi \in \Pi_{n-1}$;
* $\phi \in \Pi_n$ if $\phi = \forall \vec{x} \psi$ for some $\psi \in \Sigma_{n-1}$;
* $\phi \in \Delta_n$ if $\phi \in \Sigma_n \cap \Pi_n$.

• For all $n \in \mathbb{N}$, $\Sigma_n \cup \Pi_n \subseteq \Sigma_{n+1} \cap \Pi_{n+1}$.

• (Σ_1 -completeness of Q) If $T \supseteq Q$, then T is Σ_1 -complete, i.e., for any Σ_1 sentence ϕ if $\mathcal{N} \vDash \phi$ then $T \vdash \phi$.

- $(\Sigma_n, \Pi_n \text{ and } \Delta_n)$ Fix our arithmetic language \mathscr{L}_A (notably that \overline{n} (n > 0)and \leq are not non-logical symbols of it). The formulas $\Delta_0 = \Sigma_0 = \Pi_0$ is defined as follows:
 - * all the atomic formulas such as $\tau \equiv \sigma$, where τ, σ are terms, belong to Δ_0 ; * if $\phi, \psi \in \Delta_0$, then so $\neg \phi, \phi \land \psi, \phi \lor \psi \in \Delta_0$;
 - * if τ is a term with $x \notin Vr(\tau)$, and $\phi \in \Delta_0$, then so $\forall x \leq \tau \phi, \exists x \leq \tau \phi \in \Delta_0$.

And recursively we can define Σ_n , Π_n and Δ_n sets of formulas:

- * $\phi \in \Sigma_n$ if $\phi = \exists \vec{x} \psi$ for some $\psi \in \Pi_{n-1}$; * $\phi \in \Pi_n$ if $\phi = \forall \vec{x} \psi$ for some $\psi \in \Sigma_{n-1}$; * $\phi \in \Delta_n$ if $\phi \in \Sigma_n \cap \Pi_n$.
- For all $n \in \mathbb{N}$, $\Sigma_n \cup \Pi_n \subseteq \Sigma_{n+1} \cap \Pi_{n+1}$.
- (Σ_1 -completeness of Q) If $T \supseteq Q$, then T is Σ_1 -complete, i.e., for any Σ_1 sentence ϕ if $\mathcal{N} \vDash \phi$ then $T \vdash \phi$.

• A k-ary predicate $P \subseteq \mathbb{N}^k$ is representable in T if, there is a formula $\phi(\vec{x})$ such that for any $n_0, \dots, n_{k-1} \in \mathbb{N}$

$$(n_0, \cdots, n_{k-1}) \in P \Longrightarrow T \vdash \phi(\overline{n_0}, \cdots, \overline{n_{k-1}}), (n_0, \cdots, n_{k-1}) \notin P \Longrightarrow T \vdash \neg \phi(\overline{n_0}, \cdots, \overline{n_{k-1}}).$$

• A function $f : \mathbb{N}^k \to \mathbb{N}$ is representable in $T \supseteq \mathbb{Q}$ if, there is a formula $\phi(\vec{x}, y)$ such that for any $n_0, \dots, n_{k-1} \in \mathbb{N}$

 $T \vdash \forall y [\phi(\overline{n_0}, \cdots, \overline{n_{k-1}}, y) \leftrightarrow y \equiv \overline{f(n_0, \cdots, n_{k-1})}].$

- (Representability Theorem) Any recursive function (and hence every recursive predicate) is representable in $T \supseteq Q$ and Δ_1 .
- If T is recursively axiomatizable then proof and provability are arithmetized as a binary predicate Be_T(m, n) and a uary predicate Beb_T(n) respectively.
 And so if T is recursively axiomatizable, by Representability theorem proof and provability can be expressed by formulas

$$be_{T}(x, y) \in \Delta$$
$$beb_{T}(y) = \exists x be_{T}(x, y) \in \Sigma$$

respectively.

• A k-ary predicate $P \subseteq \mathbb{N}^k$ is representable in T if, there is a formula $\phi(\vec{x})$ such that for any $n_0, \dots, n_{k-1} \in \mathbb{N}$

$$(n_0, \cdots, n_{k-1}) \in P \Longrightarrow T \vdash \phi(\overline{n_0}, \cdots, \overline{n_{k-1}}), (n_0, \cdots, n_{k-1}) \notin P \Longrightarrow T \vdash \neg \phi(\overline{n_0}, \cdots, \overline{n_{k-1}}).$$

• A function $f : \mathbb{N}^k \to \mathbb{N}$ is representable in $T \supseteq \mathbb{Q}$ if, there is a formula $\phi(\vec{x}, y)$ such that for any $n_0, \dots, n_{k-1} \in \mathbb{N}$

$$T \vdash \forall y [\phi(\overline{n_0}, \cdots, \overline{n_{k-1}}, y) \leftrightarrow y \equiv \overline{f(n_0, \cdots, n_{k-1})}].$$

- (Representability Theorem) Any recursive function (and hence every recursive predicate) is representable in $T \supseteq Q$ and Δ_1 .
- If T is recursively axiomatizable then proof and provability are arithmetized as a binary predicate Be_T(m, n) and a uary predicate Beb_T(n) respectively.
- And so if T is recursively axiomatizable, by Representability theorem proof and provability can be expressed by formulas

$$\mathsf{be}_{\mathcal{T}}(x,y) \in \Delta_1,$$

 $\mathsf{beb}_{\mathcal{T}}(y) = \exists x \mathsf{be}_{\mathcal{T}}(x,y) \in \Sigma_1$

respectively.

- The natural number $\sharp \phi$ is the Gödel's code of ϕ and $\lceil \phi \rceil = \overline{\sharp} \phi = \overline{S}^{\sharp \phi} \overline{0}$ is the term corresponding to the natural number $\sharp \phi$.
- (Fixed Point Lemma) Given any \mathscr{L}_A formula $\phi(x)$ with $Fr(\phi) = \{x\}$ and a theory $T \supseteq Q$, we can effectively find a γ such that $T \vdash \gamma \leftrightarrow \phi(\ulcorner \gamma \urcorner)$. *Proof.* Suppose $x_0, x_1, y \neq x$ and $\psi(x_0, y, x_1)$ represents sub in T. For any $\delta(x)$ and any $n \in \mathbb{N}, T \vdash \psi(\ulcorner \delta \urcorner, y, \bar{n}) \leftrightarrow y \equiv \ulcorner \delta(\bar{n}) \urcorner$. Setting $n = \sharp \delta$,

$$T \vdash \psi(\lceil \delta \rceil, y, \lceil \delta \rceil) \leftrightarrow y \equiv \lceil \delta(\lceil \delta \rceil) \rceil.$$
(1)

Let $\theta(x) = \forall y(\psi(x, y, x) \rightarrow \phi(x; y))$. It's enough to show $\eta = \theta(f \theta)$ is the desired fixed point of $\phi(x)$: in T we have

$$\begin{array}{ll} \gamma &=& \theta(\ulcorner \theta \urcorner) \\ \leftrightarrow & \forall y(\psi(\ulcorner \theta \urcorner, y, \ulcorner \theta \urcorner) \to \phi(x; y)) & \text{substitute } \ulcorner \theta \urcorner \text{ for } x \text{ in } \theta(x) \\ \leftrightarrow & \forall y(y \equiv \ulcorner \theta(\ulcorner \theta \urcorner) \urcorner \to \phi(x; y)) & \text{ by } (1) \text{ and } \phi(x) \\ = & \forall y(y \equiv \ulcorner \gamma \urcorner \to \phi(x; y)) & \text{ by } \gamma = \theta(\ulcorner \theta \urcorner) \\ \leftrightarrow & \phi(\ulcorner \gamma \urcorner). \end{array}$$

• For all $n \ge 1$, if $\phi(x) \in \Sigma_n$ then $\gamma \in \Pi_{n+1}$, and if $\phi(x) \in \Pi_n$ then $\gamma \in \Pi_n$.

- The natural number $\sharp \phi$ is the Gödel's code of ϕ and $\lceil \phi \rceil = \overline{\sharp} \phi = \overline{S}^{\sharp \phi} \overline{0}$ is the term corresponding to the natural number $\sharp \phi$.
- (Fixed Point Lemma) Given any \mathscr{L}_A formula $\phi(x)$ with $Fr(\phi) = \{x\}$ and a theory $T \supseteq Q$, we can effectively find a γ such that $T \vdash \gamma \leftrightarrow \phi(\lceil \gamma \rceil)$. *Proof.* Suppose $x_0, x_1, y \neq x$ and $\psi(x_0, y, x_1)$ represents sub in T. For any $\delta(x)$ and any $n \in \mathbb{N}, T \vdash \psi(\lceil \delta \rceil, y, \bar{n}) \leftrightarrow y \equiv \lceil \delta(\bar{n}) \rceil$. Setting $n = \sharp \delta$,

$$T \vdash \psi(\lceil \delta \rceil, y, \lceil \delta \rceil) \leftrightarrow y \equiv \lceil \delta(\lceil \delta \rceil) \rceil.$$
(1)

Let $\theta(x) = \forall y(\psi(x, y, x) \rightarrow \phi(x; y))$. It's enough to show $\gamma = \theta(\ulcorner \theta \urcorner)$ is the desired fixed point of $\phi(x)$: in T we have

$$\begin{array}{lll} \gamma &=& \theta(\ulcorner θ \urcorner) \\ \leftrightarrow & \forall y(\psi(\ulcorner θ \urcorner, y, \ulcorner θ \urcorner) \to \phi(x; y)) & \text{substitute } \ulcorner θ \urcorner \text{ for } x \text{ in } \theta(x) \\ \leftrightarrow & \forall y(y \equiv \ulcorner \theta(\ulcorner \theta \urcorner) \urcorner \to \phi(x; y)) & \text{ by } (1) \text{ and } \delta = \theta(x) \\ = & \forall y(y \equiv \ulcorner \gamma \urcorner \to \phi(x; y)) & \text{ by } \gamma = \theta(\ulcorner \theta \urcorner) \\ \leftrightarrow & \phi(\ulcorner \gamma \urcorner). \end{array}$$

• For all $n \ge 1$, if $\phi(x) \in \Sigma_n$ then $\gamma \in \Pi_{n+1}$, and if $\phi(x) \in \Pi_n$ then $\gamma \in \Pi_n$.

- The natural number $\sharp \phi$ is the Gödel's code of ϕ and $\lceil \phi \rceil = \overline{\sharp} \phi = \overline{S}^{\sharp \phi} \overline{0}$ is the term corresponding to the natural number $\sharp \phi$.
- (Fixed Point Lemma) Given any \mathscr{L}_A formula $\phi(x)$ with $Fr(\phi) = \{x\}$ and a theory $T \supseteq Q$, we can effectively find a γ such that $T \vdash \gamma \leftrightarrow \phi(\lceil \gamma \rceil)$. *Proof.* Suppose $x_0, x_1, y \neq x$ and $\psi(x_0, y, x_1)$ represents sub in T. For any $\delta(x)$ and any $n \in \mathbb{N}, T \vdash \psi(\lceil \delta \rceil, y, \bar{n}) \leftrightarrow y \equiv \lceil \delta(\bar{n}) \rceil$. Setting $n = \sharp \delta$,

$$T \vdash \psi(\lceil \delta \rceil, y, \lceil \delta \rceil) \leftrightarrow y \equiv \lceil \delta(\lceil \delta \rceil) \rceil.$$
(1)

Let $\theta(x) = \forall y(\psi(x, y, x) \rightarrow \phi(x; y))$. It's enough to show $\gamma = \theta(\ulcorner \theta \urcorner)$ is the desired fixed point of $\phi(x)$: in T we have

$$\begin{array}{lll} \gamma &=& \theta(\ulcorner θ \urcorner) \\ \leftrightarrow & \forall y(\psi(\ulcorner θ \urcorner, y, \ulcorner θ \urcorner) \to \phi(x; y)) & \text{substitute } \ulcorner θ \urcorner \text{ for } x \text{ in } \theta(x) \\ \leftrightarrow & \forall y(y \equiv \ulcorner \theta(\ulcorner θ \urcorner) \urcorner \to \phi(x; y)) & \text{ by } (1) \text{ and } \delta = \theta(x) \\ &=& \forall y(y \equiv \ulcorner \gamma \urcorner \to \phi(x; y)) & \text{ by } \gamma = \theta(\ulcorner θ \urcorner) \\ \leftrightarrow & \phi(\ulcorner \gamma \urcorner). \end{array}$$

• For all $n \ge 1$, if $\phi(x) \in \Sigma_n$ then $\gamma \in \Pi_{n+1}$, and if $\phi(x) \in \Pi_n$ then $\gamma \in \Pi_n$.

Definition 1.1

T is ω -consistent if, there is no ϕ with $\phi = \exists x \psi(x)$ such that $T \vdash \exists x \psi(x)$ and $T \vdash \neg \psi(\overline{m})$ for all $m \in \mathbb{N}$.

Theorem 1.2 (Gödel's First Incompleteness)

Let $T \supseteq Q$ be a recursively axiomatizable theory. If T is ω -consistent, then there is a Π_1 sentence γ such that $T \not\vdash \gamma$ and $T \not\vdash \neg \gamma$.

Proof.

Let γ be the fixed point of $\neg beb(y)$. Then

$$T \vdash \gamma \leftrightarrow \neg \mathsf{beb}(\ulcorner \gamma \urcorner). \tag{2}$$

 γ is as desired: (a) If $T \vdash \gamma$, then $\mathcal{N} \models \operatorname{beb}(\ulcorner\gamma\urcorner)$, and $T \vdash \operatorname{beb}(\ulcorner\gamma\urcorner)$ by Σ_1 -completeness. But by (2) we have $T \vdash \neg \operatorname{beb}(\ulcorner\gamma\urcorner)$, a contradiction. So $T \nvDash \gamma$; (b) If $T \vdash \neg\gamma$, then by (2) we have $T \vdash \operatorname{beb}(\ulcorner\gamma\urcorner)$. Since $T \nvDash \gamma$, then for any $n \in \mathbb{N}$ we have $\neg \operatorname{Be}(n, \sharp\gamma)$, and by representability $T \vdash \neg \operatorname{beb}(\bar{n}, \ulcorner\gamma\urcorner)$ for any $n \in \mathbb{N}$. By the ω -consistency of T, $T \nvDash \exists x \operatorname{be}(x, \ulcorner\gamma\urcorner)$, i.e., $T \nvDash \operatorname{beb}(\ulcorner\gamma\urcorner)$, a contradiction. So $T \nvDash \neg\gamma$.

- The condition that T is recursively axiomatizable allows us to use a Σ_1 formula to express T in \mathscr{L}_A , and so we may write it as Axiom $_T \in \Sigma_1$.
- ω -consistency was weakened by G. Kreisel as 1-consistency: there is no $\phi \in \Sigma_1$ with $\phi = \exists x \psi(x)$ for some $\psi(x) \in \Pi_0$ such that $T \vdash \exists x \psi(x)$ and $T \vdash \neg \psi(\overline{m})$ for all $m \in \mathbb{N}$.
- The conclusion could be written as T isn't Π_1 -deciding (T is Π_1 -deciding if for any $\phi \in \Pi_1$ either $T \vdash \phi$ or $T \vdash \neg \phi$).

- The condition that T is recursively axiomatizable allows us to use a Σ_1 formula to express T in \mathscr{L}_A , and so we may write it as Axiom $_T \in \Sigma_1$.
- ω -consistency was weakened by G. Kreisel as 1-consistency: there is no $\phi \in \Sigma_1$ with $\phi = \exists x \psi(x)$ for some $\psi(x) \in \Pi_0$ such that $T \vdash \exists x \psi(x)$ and $T \vdash \neg \psi(\overline{m})$ for all $m \in \mathbb{N}$.
- The conclusion could be written as T isn't Π_1 -deciding (T is Π_1 -deciding if for any $\phi \in \Pi_1$ either $T \vdash \phi$ or $T \vdash \neg \phi$).

Corollary 1.3

1 If $Q \subseteq T$ and $Axiom_T \in \Sigma_1$ and T is 1-consistent, then T isn't Π_1 -deciding.

2 If $Q \subseteq T$ and $Axiom_T \in \Sigma_1$ and T is Σ_1 -sound, then T isn't Π_1 -deciding.

Proof.

(2) Σ_1 -soundness (T is Σ_1 -sound if, for any $\phi \in \Sigma_1$ with $T \vdash \phi$ we have $\mathcal{N} \vDash \phi$) is stronger than 1-consistency.

Theorem 1.4 (Gödel-Rosser's First Incompleteness)

Let $T \supseteq Q$ be a recursively axiomatizable theory. If T is consistent, then there is a Π_1 sentence γ such that $T \not\vdash \gamma$ and $T \not\vdash \neg \gamma$.

Theorem 1.4 (Gödel-Rosser's First Incompleteness)

Let $T \supseteq Q$ be a recursively axiomatizable theory. If T is consistent, then there is a Π_1 sentence γ such that $T \not\vdash \gamma$ and $T \not\vdash \neg \gamma$.

Similarly, since Σ_0 -soundness is equivalent to consistency whence $Q \subseteq T$, Gödel-Rosser's First Incompleteness theorem could be written as

Theorem 1.5

If $Q \subseteq T$ and $Axiom_T \in \Sigma_1$ and T is Σ_0 -sound, then T isn't Π_1 -deciding.

Corollary 1.6

1 If $Q \subseteq T$ and $Axiom_T \in \Sigma_1$ and T is Π_1 -sound, then T isn't Π_1 -deciding.

2 If $Q \subseteq T$ and $Axiom_T \in \Sigma_1$ and $T \subseteq Th(\mathcal{N})$, then T isn't Π_1 -deciding.

Outline

Introduction: Gödel's First Incompleteness Theorem

② Generalized Meta-theoretical Properties

- **③** Generalizing to Non-Recursively Enumerable Theories
- Σ_n -soundness is sufficient
- **5** Π_n -soundness is also sufficient
- 6 *n*-consistency is also sufficient
- Consistency isn't sufficient
- Conclusions: Diagrams for First Incompleteness

Notation 2.1

Let T be a theory and Γ a set of sentences, then

$$\Gamma(\mathcal{N}) = \{ \phi \in \Gamma \mid \mathcal{N} \vDash \phi \}$$

where \mathcal{N} is the standard arithmetic model. And so $\Sigma_n(\mathcal{N})$ and $\Pi_n(\mathcal{N})$ denotes Σ_n sentences and Π_n sentences respectively true in \mathcal{N} .

Notation 2.1

Let T be a theory and Γ a set of sentences, then

$$\Gamma(\mathcal{N}) = \{ \phi \in \Gamma \mid \mathcal{N} \vDash \phi \}$$

where \mathcal{N} is the standard arithmetic model. And so $\Sigma_n(\mathcal{N})$ and $\Pi_n(\mathcal{N})$ denotes Σ_n sentences and Π_n sentences respectively true in \mathcal{N} .

Lemma 2.2 (Cf. Corollary 1.76 of [6])

Remark 2.3

 $\phi \in \Sigma_n(\mathcal{N}) \text{ iff } \mathcal{N} \vDash \Sigma_n \text{-} \text{True}(\ulcorner \phi \urcorner) \text{ and } \phi \in \Pi_n(\mathcal{N}) \text{ iff } \mathcal{N} \vDash \Pi_n \text{-} \text{True}(\ulcorner \phi \urcorner).$

Definition 2.4 (Γ -consistency)

Let T be a theory and Γ a set of sentences, then T is $\Gamma\text{-consistent}$ with if $T+\Gamma$ is consistent.

Definition 2.4 (Γ -consistency)

Let T be a theory and Γ a set of sentences, then T is Γ -consistent with if $T + \Gamma$ is consistent.

• We will survey the relations between $\Sigma_n(\mathcal{N})$ - and $\Pi_n(\mathcal{N})$ -consistency later.

Definition 2.5 (Γ -deciding)

Let T be a theory and Γ a set of sentences, then T is Γ -deciding if, for any $\phi \in \Gamma$ either $T \vdash \phi$ or $T \vdash \neg \phi$; otherwise T isn't Γ -deciding.

Definition 2.5 (Γ -deciding)

Let T be a theory and Γ a set of sentences, then T is Γ -deciding if, for any $\phi \in \Gamma$ either $T \vdash \phi$ or $T \vdash \neg \phi$; otherwise T isn't Γ -deciding.

Lemma 2.6

- **1** Σ_{n+1} -deciding implies Π_n -deciding and Σ_n -deciding;
- **2** Π_{n+1} -deciding implies Σ_n -deciding and Π_n -deciding;
- **3** Σ_n -deciding is equivalent to Π_n -deciding
- **4** Syntactic completeness implies Σ_n -deciding and Π_n -deciding.

Definition 2.5 (Γ -deciding)

Let T be a theory and Γ a set of sentences, then T is Γ -deciding if, for any $\phi \in \Gamma$ either $T \vdash \phi$ or $T \vdash \neg \phi$; otherwise T isn't Γ -deciding.

Lemma 2.6

- **1** Σ_{n+1} -deciding implies Π_n -deciding and Σ_n -deciding;
- **2** Π_{n+1} -deciding implies Σ_n -deciding and Π_n -deciding;
- **3** Σ_n -deciding is equivalent to Π_n -deciding
- **4** Syntactic completeness implies Σ_n -deciding and Π_n -deciding.

Definition 2.7 (*n*-consistency)

Let T be a theory and Γ a set of sentences.

- T is ω -cosistent if, there is no ϕ with $\phi = \exists x \psi(x)$ such that $T \vdash \exists x \psi(x)$ and $T \vdash \neg \psi(\overline{m})$ for all $m \in \mathbb{N}$; otherwise T is ω -inconsistent.
- T is n-cosistent if, there is no $\phi \in \Sigma_n$ with $\phi = \exists x \psi(x)$ for some $\psi(x) \in \Pi_{n-1}$ such that $T \vdash \exists x \psi(x)$ and $T \vdash \neg \psi(\overline{m})$ for all $m \in \mathbb{N}$; otherwise T is n-inconsistent.

Definition 2.7 (*n*-consistency)

Let T be a theory and Γ a set of sentences.

- T is ω -cosistent if, there is no ϕ with $\phi = \exists x \psi(x)$ such that $T \vdash \exists x \psi(x)$ and $T \vdash \neg \psi(\overline{m})$ for all $m \in \mathbb{N}$; otherwise T is ω -inconsistent.
- *T* is *n*-cosistent if, there is no $\phi \in \Sigma_n$ with $\phi = \exists x \psi(x)$ for some $\psi(x) \in \Pi_{n-1}$ such that $T \vdash \exists x \psi(x)$ and $T \vdash \neg \psi(\overline{m})$ for all $m \in \mathbb{N}$; otherwise *T* is *n*-inconsistent.

Lemma 2.8

- 1 *n*-consistency implies consistency;
- **2** (n+1)-consistency implies n-consistency.
- ${f 3}$ ω -consistency implies n-consistency and consistency.

Definition 2.9 (Γ -soundness with respect to \mathcal{N})

Let T be a theory and Γ a set of sentences.

- T is sound (with respect to N) if, for any ϕ with $T \vdash \phi$ we have $N \vDash \phi$; otherwise T isn't sound.
- T is Γ -sound (with respect to \mathcal{N}) if, for any $\phi \in \Gamma$ with $T \vdash \phi$ we have $\mathcal{N} \vDash \phi$; otherwise T isn't Γ -sound.

Lemma 2.10

- **1** Σ_{n+1} -soundness implies Σ_n -soundness and Π_n -soundness;
- **2** Π_{n+1} -soundness implies Π_n -soundness and Σ_n -soundness;
- **3** Σ_n -soundness implies Π_{n+1} -soundness, and hence Π_n -soundness;
- **4** Soundness implies Σ_n -soundness and Π_n -soundness.

Lemma 2.10

- **1** Σ_{n+1} -soundness implies Σ_n -soundness and Π_n -soundness;
- **2** Π_{n+1} -soundness implies Π_n -soundness and Σ_n -soundness;
- **3** Σ_n -soundness implies Π_{n+1} -soundness, and hence Π_n -soundness;
- **4** Soundness implies Σ_n -soundness and Π_n -soundness.

Proof.

(3). Let $\phi \in \Pi_{n+1}$ be such that $\phi = \forall x \theta(x)$ for some $\theta \in \Sigma_n$ and $T \vdash \forall x \theta(x)$. Then $T \vdash \theta(\overline{m})$ for all $m \in \mathbb{N}$, and by Σ_n -soundness $\mathcal{N} \vDash \theta(\overline{m})$ for all $m \in \mathbb{N}$. Hence $\mathcal{N} \vDash \forall x \theta(x)$.

Lemma 2.10

- **1** Σ_{n+1} -soundness implies Σ_n -soundness and Π_n -soundness;
- **2** Π_{n+1} -soundness implies Π_n -soundness and Σ_n -soundness;
- **3** Σ_n -soundness implies Π_{n+1} -soundness, and hence Π_n -soundness;
- **4** Soundness implies Σ_n -soundness and Π_n -soundness.

Proof.

(3). Let $\phi \in \Pi_{n+1}$ be such that $\phi = \forall x \theta(x)$ for some $\theta \in \Sigma_n$ and $T \vdash \forall x \theta(x)$. Then $T \vdash \theta(\overline{m})$ for all $m \in \mathbb{N}$, and by Σ_n -soundness $\mathcal{N} \vDash \theta(\overline{m})$ for all $m \in \mathbb{N}$. Hence $\mathcal{N} \vDash \forall x \theta(x)$.

Definition 2.11 (completeness, and Γ -completeness with respect to \mathcal{N})

Let T be a theory and Γ a set of sentences.

- T is (syntactically) complete if, for any ϕ either $T \vdash \phi$ or $T \vdash \neg \phi$; otherwise T isn't complete.
- T is (semantically) complete (with respect to \mathcal{N}) if, for any ϕ with $\mathcal{N} \vDash \phi$ we have $T \vdash \phi$; otherwise T isn't complete.
- T is (semantically) Γ -complete (with respect to \mathcal{N}) if, for any $\phi \in \Gamma$ with $\mathcal{N} \vDash \phi$ we have $T \vdash \phi$; otherwise T isn't Γ -complete.

Lemma 2.12

- **1** Σ_{n+1} -completeness implies Σ_n -completeness and Π_n -completeness;
- **2** Π_{n+1} -completeness implies Π_n -completeness and Σ_n -completeness;
- **3** Σ_n -completeness doesn't imply Π_n -completeness;
- **4** Π_n -completeness implies Σ_{n+1} -completeness, and hence Σ_n -completeness;
- **6** Semantical completeness implies Σ_n -completeness and Π_n -completeness.

Lemma 2.12

- **1** Σ_{n+1} -completeness implies Σ_n -completeness and Π_n -completeness;
- **2** Π_{n+1} -completeness implies Π_n -completeness and Σ_n -completeness;
- **3** Σ_n -completeness doesn't imply Π_n -completeness;
- **4** Π_n -completeness implies Σ_{n+1} -completeness, and hence Σ_n -completeness;
- **6** Semantical completeness implies Σ_n -completeness and Π_n -completeness.

Proof.

(3) Q is Σ_1 -complete but not Π_1 -complete (by Gödel's First Incompleteness). (4) Let $\phi \in \Sigma_{n+1}$ be such that $\phi = \exists x \theta(x)$ for some $\theta \in \Pi_n$ and $\mathcal{N} \vDash \exists x \theta(x)$. So $\mathcal{N} \vDash \theta(\overline{m})$ for some $m \in \mathbb{N}$. By Π_n -complete $T \vdash \theta(\overline{m})$. Hence $T \vdash \phi$.

Lemma 2.12

- **1** Σ_{n+1} -completeness implies Σ_n -completeness and Π_n -completeness;
- **2** Π_{n+1} -completeness implies Π_n -completeness and Σ_n -completeness;
- **3** Σ_n -completeness doesn't imply Π_n -completeness;
- **4** Π_n -completeness implies Σ_{n+1} -completeness, and hence Σ_n -completeness;
- **6** Semantical completeness implies Σ_n -completeness and Π_n -completeness.

Proof.

(3) Q is Σ_1 -complete but not Π_1 -complete (by Gödel's First Incompleteness). (4) Let $\phi \in \Sigma_{n+1}$ be such that $\phi = \exists x \theta(x)$ for some $\theta \in \Pi_n$ and $\mathcal{N} \vDash \exists x \theta(x)$. So $\mathcal{N} \vDash \theta(\overline{m})$ for some $m \in \mathbb{N}$. By Π_n -complete $T \vdash \theta(\overline{m})$. Hence $T \vdash \phi$.

Lemma 2.13

- **1** Soundness is equivalent to $\mathsf{Th}(\mathcal{N})$ -consistency, and $\mathcal{N} \vDash \mathsf{T}$;
- **2** Π_n -soundness is equivalent to $\Sigma_n(\mathcal{N})$ -consistency for all $n \in \mathbb{N}$;
- **3** Σ_n -soundness is equivalent to $\Pi_n(\mathcal{N})$ -consistency for all $n \in \mathbb{N}$;
- **4** Σ_n -soundness implies n-consistency for all $n \in \mathbb{N}$;
- **5** *n*-consistency doesn't imply Σ_n -soundness for all $n \ge 3$;
- **6** *n*-consistency and Σ_{n-1} -completeness imply Σ_n -soundness for all $n \in \mathbb{N}$.

And if $Q \subseteq T$, then

- **7** Σ_2 -soundness is equivalent to 2-consistency;
- **8** Σ_1 -soundness is equivalent to 1-consistency;
- **9** Σ_0 -soundness is equivalent to consistency.

Definition 2.14 (Γ -definable theories)

Let T be a theory and Γ a set of formulas.

T is definable if there is some Ω of sentences axiomatizing T and some formula Axiom_T(x) such that

 $\Omega = \{ \phi \mid \mathcal{N} \vDash \mathsf{Axiom}_{\mathcal{T}}(\ulcorner \phi \urcorner) \text{ and } \phi \text{ is a sentence} \}.$

• T is Γ -definable if there is some Ω of sentences axiomatizing T and some formula Axiom_T $(x) \in \Gamma$ such that

 $\Omega = \{ \phi \mid \mathcal{N} \vDash \mathsf{Axiom}_{\mathcal{T}}(\ulcorner \phi \urcorner) \text{ and } \phi \text{ is a sentence} \}.$

Lemma 2.15

- **1** Σ_n -definability implies Σ_{n+1} and Π_{n+1} -definability;
- **2** Π_n -definability implies Π_{n+1} and Σ_{n+1} -definability;
- **3** Σ_{n+1} -definability implies Π_n -definability;
- **4** T is recursively enumerable iff T is Σ_0 -definable iff T is Σ_1 -definable.

Lemma 2.15

- **1** Σ_n -definability implies Σ_{n+1} and Π_{n+1} -definability;
- **2** Π_n -definability implies Π_{n+1} and Σ_{n+1} -definability;
- **3** Σ_{n+1} -definability implies Π_n -definability;
- **4** T is recursively enumerable iff T is Σ_0 -definable iff T is Σ_1 -definable.

Proof I.

(3) Suppose T is axiomatized by Ω and $\operatorname{Axiom}_{T}(x) = \exists x_1 \cdots \exists x_m \psi(x, x_1, \cdots, x_m)$ with $\psi \in \Pi_n$ defines $\sharp \Omega$. Then $\operatorname{Axiom}_{T}(x)$ is equivalent to $\exists y \delta(x, y)$ with $\delta(x, y) = \exists x_1 \leq y \cdots \exists x_m \leq y \psi(x, x_1, \cdots, x_m) \in \Pi_n$. So

$$\varOmega' = \{ \phi \land (\bar{k} \equiv \bar{k}) \mid \mathcal{N} \vDash \delta(\ulcorner \phi \urcorner, \bar{k}) \text{ and } \phi \in \Omega \}$$

also axiomatizes T. And it's easy to see that Ω' is defined by the Π_n formula

$$\operatorname{Axiom}_{\mathcal{T}}'(x) = \exists y \leq x \exists z \leq x [\delta(x, y) \land (x \equiv \lceil \gamma_y \land (\gamma_z \equiv \gamma_z) \rceil)],$$

where γ_y is the formula by encoding y and γ_z is the term by encoding z.

Proof II.

(4) Clearly ' Σ_1 -definability $\Longrightarrow \Sigma_0$ -definability' follows from (3) and ' Σ_0 -definability \Longrightarrow Recursive enumerability' is trivial. While 'Recursive enumerability $\Longrightarrow \Sigma_1$ -definability' follows from the following claim.

If T is recuresively enumerable then T is axiomatized by a recursive set.

Suppose T is axiomatized by a recursively enumerable set Ω . Then there is some effective algorithm enumerating Ω as ϕ_1, ϕ_2, \cdots . For any n, let

$$\psi_n =_{df} \underbrace{\phi_n \wedge (\phi_n \wedge \cdots))}_{n \text{ many}}.$$

and Ω' be the set of such ψ_n . Clearly T is axiomatized by the recursive Ω' .

Proof II.

(4) Clearly ' Σ_1 -definability $\Longrightarrow \Sigma_0$ -definability' follows from (3) and ' Σ_0 -definability \Longrightarrow Recursive enumerability' is trivial. While 'Recursive enumerability $\Longrightarrow \Sigma_1$ -definability' follows from the following claim.

If T is recursively enumerable then T is axiomatized by a recursive set.

Suppose T is axiomatized by a recursively enumerable set Ω . Then there is some effective algorithm enumerating Ω as ϕ_1, ϕ_2, \cdots . For any n, let

$$\psi_n =_{df} \underbrace{\phi_n \wedge (\phi_n \wedge \cdots))}_{n \text{ many}}.$$

and Ω' be the set of such ψ_n . Clearly T is axiomatized by the recursive Ω' .

Outline

- Introduction: Gödel's First Incompleteness Theorem
- Ø Generalized Meta-theoretical Properties

3 Generalizing to Non-Recursively Enumerable Theories

- Σ_n -soundness is sufficient
- **5** Π_n -soundness is also sufficient
- 6 *n*-consistency is also sufficient
- Consistency isn't sufficient
- Conclusions: Diagrams for First Incompleteness

Notation 3.1

Suppose the set of axioms for T is defined by $Axiom_T(x)$ and $Q \subseteq T$. We define $be(x, y)_T$ and $beb_T(y)$ corresponding to concepts 'proof in T' and 'provable in T' respectively as:

 $be_{T}(x, y) =_{df} \qquad \exists x_{1} \cdots \exists x_{k} (Axiom_{T}(x_{1}) \wedge \cdots \wedge Axiom_{T}(x_{k}) \wedge be_{Q}(x, \lceil \chi_{x_{1}} \wedge \cdots \wedge \chi_{x_{k}} \rightarrow \chi_{y} \rceil)), \\ beb_{T}(y) =_{df} \qquad \exists x \exists x_{1} \cdots \exists x_{k} (Axiom_{T}(x_{1}) \wedge \cdots \wedge Axiom_{T}(x_{k}) \wedge be_{Q}(x, \lceil \chi_{x_{1}} \wedge \cdots \wedge \chi_{x_{k}} \rightarrow \chi_{y} \rceil)).$

where χ_x is the formula by encoding *x*.

Notation 3.1

Suppose the set of axioms for T is defined by $Axiom_T(x)$ and $Q \subseteq T$. We define $be(x, y)_T$ and $beb_T(y)$ corresponding to concepts 'proof in T' and 'provable in T' respectively as:

 $be_{T}(x, y) =_{df} \qquad \exists x_{1} \cdots \exists x_{k} (Axiom_{T}(x_{1}) \wedge \cdots \wedge Axiom_{T}(x_{k}) \wedge be_{Q}(x, \lceil \chi_{x_{1}} \wedge \cdots \wedge \chi_{x_{k}} \rightarrow \chi_{y} \rceil)), \\ beb_{T}(y) =_{df} \qquad \exists x \exists x_{1} \cdots \exists x_{k} (Axiom_{T}(x_{1}) \wedge \cdots \wedge Axiom_{T}(x_{k}) \wedge be_{Q}(x, \lceil \chi_{x_{1}} \wedge \cdots \wedge \chi_{x_{k}} \rightarrow \chi_{y} \rceil)).$

where χ_x is the formula by encoding *x*.

Remark 3.2

- If $Axiom_T(x) \in \Sigma_n$, then $beb_T(y) \in \Sigma_n$ and $\neg beb_T(y) \in \Pi_n$.
- If $Axiom_T(x) \in \Pi_n$, then $beb_T(y) \in \Sigma_{n+1}$ and $\neg beb_T(y) \in \Pi_{n+1}$.

We generalize Corollary 1.6 (2) i.e., 'If $Q \subseteq T$ and $Axiom_T \in \Sigma_1$ and $T \subseteq Th(\mathcal{N})$, then T isn't Π_1 -deciding' to non-recursively enumerable (non-r.e.) theories:

Theorem 3.3

If $Q \subseteq T$ and $Axiom_T \in \Sigma_n$ and $T \subseteq Th(\mathcal{N})$, then T isn't Π_n -deciding.

We generalize Corollary 1.6 (2) i.e., 'If $Q \subseteq T$ and $Axiom_T \in \Sigma_1$ and $T \subseteq Th(\mathcal{N})$, then T isn't Π_1 -deciding' to non-recursively enumerable (non-r.e.) theories:

Theorem 3.3

If $Q \subseteq T$ and $Axiom_T \in \Sigma_n$ and $T \subseteq Th(\mathcal{N})$, then T isn't Π_n -deciding.

Proof.

Let γ be the fixed point of $\neg beb_T(y)$

$$\mathcal{T} \vdash \gamma \leftrightarrow \neg \mathsf{beb}_{\mathcal{T}}(\ulcorner \gamma \urcorner).$$

(3)

Clearly γ could be Π_n , and it suffices to show γ is independent of T:

- $T \not\vdash \gamma$. If $T \vdash \gamma$. Then $\mathcal{N} \models \mathsf{beb}(\ulcorner \gamma \urcorner)$ and $\mathcal{N} \models \gamma$. And since $\mathcal{N} \models \gamma \leftrightarrow \neg \mathsf{beb}_{\mathcal{T}}$, then $\mathcal{N} \models \neg \mathsf{beb}(\ulcorner \gamma \urcorner)$, a contradiction.
- $T \not\vdash \neg \gamma$. If $T \vdash \neg \gamma$. Then $\mathcal{N} \vDash \neg \gamma$. And since $\mathcal{N} \vDash \gamma \leftrightarrow \neg \text{beb}_T$, then $\mathcal{N} \vDash \text{beb}_T(\ulcorner \gamma \urcorner)$, and hence $T \vdash \gamma$, a contradiction to to $T \not\vdash \gamma$. We can also show that $\mathcal{N} \vDash \gamma$.

Corollary 3.4

If $Q \subseteq T$ and $Axiom_T \in \Pi_n$ and $T \subseteq Th(\mathcal{N})$, then T isn't Π_{n+1} -deciding.

Proof.

This is because Axiom $_T \in \Pi_n \subseteq \Sigma_{n+1}$.

Outline

- Introduction: Gödel's First Incompleteness Theorem
- Ø Generalized Meta-theoretical Properties
- Generalizing to Non-Recursively Enumerable Theories
- **4** Σ_n -soundness is sufficient
- **5** Π_n -soundness is also sufficient
- 6 *n*-consistency is also sufficient
- Consistency isn't sufficient
- Conclusions: Diagrams for First Incompleteness

Σ_n -soundness is sufficient

Theorem 4.1

If $Q \subseteq T$ and $Axiom_T \in \Pi_n$ and T is Σ_n -sound, then T isn't Π_{n+1} -deciding.

Σ_n -soundness is sufficient

Theorem 4.1

If $Q \subseteq T$ and $Axiom_T \in \Pi_n$ and T is Σ_n -sound, then T isn't Π_{n+1} -deciding.

Proof I.

Define

$$\operatorname{pro}_{T}(y) =_{df} \exists x [\operatorname{be}_{T}(x, y) \land \forall z \leq x \neg \operatorname{be}_{T}(z, \neg(y))].$$

Set $T^* = T + \Pi_n(\mathcal{N})$. Then T^* is Π_n -complete and Σ_{n+1} -complete, and consistent by Σ_n -soundness. One claim is needed.

Theorem 4.1

If $Q \subseteq T$ and $Axiom_T \in \Pi_n$ and T is Σ_n -sound, then T isn't Π_{n+1} -deciding.

Proof I.

Define

$$\operatorname{pro}_{T}(y) =_{df} \exists x [\operatorname{be}_{T}(x, y) \land \forall z \leq x \neg \operatorname{be}_{T}(z, \neg(y))].$$

Set $T^* = T + \Pi_n(\mathcal{N})$. Then T^* is Π_n -complete and Σ_{n+1} -complete, and consistent by Σ_n -soundness. One claim is needed.

Lemma 4.2

For all
$$n \in \mathbb{N}$$
, $\mathsf{Q} \vdash \forall x (x \leq \bar{n} \leftrightarrow \bigvee_{q \leq n} x \equiv \bar{q})$ and $\mathsf{Q} \vdash \forall x (x \leq \bar{n} \lor \bar{n} \leq x)$.

Claim

1 If
$$T \vdash \delta$$
, then $T^* \vdash \text{pro}_T(\lceil \delta \rceil)$.

② If
$$T \vdash \neg \delta$$
, then $T^* \vdash \neg \text{pro}_T(\ulcorner δ \urcorner)$.

Proof II.

Let's turn to the theorem, and let γ be the fixed point of $\neg \text{pro}_T(y)$. Then

$$\mathcal{T} \vdash \gamma \leftrightarrow \neg \mathsf{pro}_{\mathcal{T}}(\ulcorner \gamma \urcorner). \tag{4}$$

Clearly γ could be Π_{n+1} . It suffices to show that γ is independent of T: if $T \vdash \gamma$, then by the Claim 1 we have $T^* \vdash \operatorname{pro}_{\mathcal{T}}(\ulcorner \gamma \urcorner)$, but (4) gives us $T^* \vdash \neg \operatorname{pro}_{\mathcal{T}}(\ulcorner \gamma \urcorner)$, a contradiction to consistency of T^* , and so $T \nvDash \gamma$; if $T \vdash \neg \gamma$, then by the Claim 2 we have $T^* \vdash \neg \operatorname{pro}_{\mathcal{T}}(\ulcorner \gamma \urcorner)$, but (4) gives us $T^* \vdash \operatorname{pro}_{\mathcal{T}}(\ulcorner \gamma \urcorner)$, also a contradiction to consistency of T^* , and so $T \nvDash \neg \gamma$.

Σ_n -soundness is sufficient

Corollary 4.3

1 if $Q \subseteq T$ and $Axiom_T \in \Sigma_n$ and T is Σ_{n-1} -sound, then T isn't Π_n -deciding.

2 if $Q \subseteq T$ and $Axiom_T \in \Sigma_n$ and T is Σ_n -sound, then T isn't Π_n -deciding.

Proof.

(1) By Lemma 2.15 (3), Axiom_T could also be Π_{n-1}, and then by Theorem 4.1 T isn't Π_n-deciding.
(2) By (1) and Σ_n-soundness implies Σ_{n-1}-soundness.

Outline

- Introduction: Gödel's First Incompleteness Theorem
- Ø Generalized Meta-theoretical Properties
- Generalizing to Non-Recursively Enumerable Theories
- Σ_n -soundness is sufficient
- **6** Π_n -soundness is also sufficient
- 6 *n*-consistency is also sufficient
- Consistency isn't sufficient
- (a) Conclusions: Diagrams for First Incompleteness

Π_n -soundness is sufficient

Theorem 5.1

If $Q \subseteq T$ and $Axiom_T \in \Pi_n$ and T is Π_{n+1} -sound, then T isn't Π_{n+1} -deciding.

Proof.

This is because Π_{n+1} -soundness is equivalent to Σ_n -soundness.

Π_n -soundness is sufficient

Theorem 5.1

If $Q \subseteq T$ and $Axiom_T \in \Pi_n$ and T is Π_{n+1} -sound, then T isn't Π_{n+1} -deciding.

Proof.

This is because Π_{n+1} -soundness is equivalent to Σ_n -soundness.

Corollary 5.2

If $Q \subseteq T$ and $Axiom_T \in \Sigma_n$ and T is Π_n -sound, then T isn't Π_n -deciding.

Proof.

Since $Axiom_T \in \Sigma_n$ then $Axiom_T \in \Pi_{n-1}$, and then the conclusion suffices from Theorem 5.1.

Outline

- Introduction: Gödel's First Incompleteness Theorem
- ② Generalized Meta-theoretical Properties
- Generalizing to Non-Recursively Enumerable Theories
- Σ_n -soundness is sufficient
- **5** Π_n -soundness is also sufficient
- 6 *n*-consistency is also sufficient
- Consistency isn't sufficient
- Conclusions: Diagrams for First Incompleteness

n-consistency is sufficient

Lemma 6.1

 $\mathsf{Th}(\mathcal{N})$ is the only complete and ω -consistent extension of PA (indeed Q).

Lemma 6.2

If $Q \subseteq T$ and T is Π_n -deciding and T is n-consistent, then T is Π_n -complete.

Lemma 6.1

 $\mathsf{Th}(\mathcal{N})$ is the only complete and ω -consistent extension of PA (indeed Q).

Lemma 6.2

If $Q \subseteq T$ and T is Π_n -deciding and T is n-consistent, then T is Π_n -complete.

Proof I.

Suppose T isn't Π_n -complete, then there is some $\phi \in \Pi_n$ such that $\mathcal{N} \vDash \phi$ and $T \nvDash \phi$; by Π_n -decidability of T we have $T \vdash \neg \phi$, and so

$$\mathcal{N} \vDash \phi \text{ and } \mathcal{T} \vdash \neg \phi \text{ and } \phi \in \Pi_n.$$
 (5)

We may write $\phi = \forall x \exists y \psi(x, y)$ for some $\psi \in \Pi_{n-2}$. By $T \vdash \exists x \neg \exists y \psi(x, y)$ and the *n*-consistency of T we have $T \not\vdash \exists y \psi(\bar{k}, y)$ for some $k \in \mathbb{N}$. Since T is Π_n -deciding then $T \vdash \forall y \neg \psi(\bar{k}, y)$. Since $\mathcal{N} \vDash \forall x \exists y \psi(x, y)$, then $\mathcal{N} \vDash \psi(\bar{k}, \bar{l})$ for some $l \in \mathbb{N}$, and clearly $T \vdash \neg \psi(\bar{k}, \bar{l})$. So for $\chi = \psi(\bar{k}, \bar{l})$ we have

$$\mathcal{N} \vDash \chi$$
 and $\mathcal{T} \vdash \neg \chi$ and $\chi \in \Pi_{n-2}$. (6)

Proof II.

Proceeding in this way (from n to n-2) we can show that there is some δ such that

 $\mathcal{N} \vDash \delta$ and $\mathcal{T} \vdash \neg \delta$ and either $\delta \in \Pi_1(n \text{ is odd})$ or $\delta \in \Pi_0(n \text{ is even})$. (7)

If $\delta \in \Pi_1$ then write $\delta = \forall x \theta(x)$ for some $\theta \in \Pi_0$. By $T \vdash \exists x \neg \theta(x)$ and the 1-consistency of T we have $T \not\vDash \theta(\overline{m})$ for some $m \in \mathbb{N}$. Since T is Π_0 -deciding then $T \vdash \neg \theta(\overline{m})$. And also we have $\mathcal{N} \vDash \forall x \theta(x)$, then $\mathcal{N} \vDash \theta(\overline{m})$. So for there is some γ (either δ in (7) or $\theta(\overline{m})$) such that

$$\mathcal{N} \vDash \gamma \text{ and } \mathcal{T} \vdash \neg \gamma \text{ and } \gamma \in \Pi_0.$$
 (8)

By Σ_1 -completeness of $T \supseteq Q$ and $\mathcal{N} \vDash \gamma$ we have $T \vdash \gamma$. Also we have $T \vdash \neg \gamma$, a contradiction to the consistency of T following from its *n*-consistency.

Theorem 6.3

If $Q \subseteq T$ and $Axiom_T \in \Pi_n$ and T is n-consistent, then T isn't Π_{n+1} -deciding.

Proof.

Let T satisfy the conditions in the theorem. If T isn't Π_n -deciding, then T isn't Π_{n+1} -deciding. So we suppose T is Π_n -deciding, then T is Π_n -complete by Lemma 6.2, and so $\Pi_n(\mathcal{N}) \subseteq T$, and so T is Σ_n -sound. Then T isn't Π_{n+1} -deciding by Theorem 4.1.

Theorem 6.3

If $Q \subseteq T$ and $Axiom_T \in \Pi_n$ and T is n-consistent, then T isn't Π_{n+1} -deciding.

Proof.

Let T satisfy the conditions in the theorem. If T isn't Π_n -deciding, then T isn't Π_{n+1} -deciding. So we suppose T is Π_n -deciding, then T is Π_n -complete by Lemma 6.2, and so $\Pi_n(\mathcal{N}) \subseteq T$, and so T is Σ_n -sound. Then T isn't Π_{n+1} -deciding by Theorem 4.1.

• It is interesting to note that for n > 3 all the incompleteness proofs (presented as above) with the assumption of $\Sigma_n(\Pi_{n-1})$ -soundness are constructive, while all the incompleteness proofs with the assumption of *n*-consistency are all non-constructive (i.e., the independent sentence is not constructed explicitly, and only its mere existence is proved).

n-consistency is sufficient

Corollary 6.4

- **1** If $Q \subseteq T$ and $Axiom_T \in \Sigma_n$ and T is (n-1)-consistent, then T isn't Π_n -deciding.
- **2** If $Q \subseteq T$ and $Axiom_T \in \Sigma_n$ and T is n-consistent, then T isn't Π_n -deciding.
- **3** If $Q \subseteq T$ and $Axiom_T \in \Sigma_n$ and T is ω -consistent, then T isn't Π_n -deciding.
- **4** If $Q \subseteq T$ and $Axiom_T \in \Pi_{n-1}$ and T is ω -consistent, then T isn't Π_n -deciding.

Proof.

(1) By Theorem 6.3 and Σ_n -definability is equivalent to Π_{n-1} -definability.

- (2) By (1) and *n*-consistency implies (n-1)-consistency.
- (3) By (2) and ω -consistency implies *n*-consistency.
- (3) By (3) and Σ_n -definability is equivalent to Π_{n-1} -definability.

Outline

- Introduction: Gödel's First Incompleteness Theorem
- ② Generalized Meta-theoretical Properties
- Generalizing to Non-Recursively Enumerable Theories
- Σ_n -soundness is sufficient
- **5** Π_n -soundness is also sufficient
- 6 *n*-consistency is also sufficient
- Consistency isn't sufficient
- (a) Conclusions: Diagrams for First Incompleteness

Lemma 7.1

There is a complete (and consistent) theory T such that $Q \subseteq T$ and T is Σ_{n+2} -definable and T is Σ_n -sound.

Lemma 7.1

There is a complete (and consistent) theory T such that $Q \subseteq T$ and T is Σ_{n+2} -definable and T is Σ_n -sound.

Proof I.

Let $S = Q + \Pi_n(\mathcal{N})$ (clearly $S = Q = Q + \Pi_0(\mathcal{N})$ when n = 0). We get the completion of S in Lindenbaum's way: enumerate all the sentences as ϕ_0, ϕ_1, \cdots and define

$$T_0 = S;$$

$$T_{n+1} = \begin{cases} T_n \cup \{\phi_n\} & T_n \cup \{\phi_n\} \text{ is consistent,} \\ T_n \cup \{\neg \phi_n\} & \text{otherwise;} \\ T = \bigcup_{n \in \mathbb{N}} T_n. \end{cases}$$

Clearly $Q \subseteq T$, and T is Σ_n -sound since $\Pi_n(\mathcal{N}) \subseteq S \subseteq T$. It suffices to show that T is Σ_{n+2} -definable.

Proof II.

Now define $A_{xiom_T}(x)$ as

$$\exists y \Big[\mathsf{finseq}(y) \land y_{\ell \mathsf{en}(y)-1} \equiv x \land \\ \forall k \geq \ell \mathsf{en}(y) \Big[\mathsf{Sent}(y_k) \land \forall z \leq y \big[\mathsf{Senth}(z, k) \land \\ [\mathsf{con}'(S+y \upharpoonright k+z) \to y_k \equiv z \lor \neg \mathsf{con}'(S+y \upharpoonright k+z) \to y_k \equiv \neg(z)] \Big] \Big].$$

And

 $\operatorname{con}'(S + y \upharpoonright k + z) = \forall v \forall w (\Pi_n \operatorname{-true}(v) \to \neg \operatorname{beb}_Q(w, \lceil \delta_v \land \delta_{y_0} \land \cdots \land \delta_{y_{k-1}} \land \delta_z \to \bot \urcorner)).$ It's easy to check that $\operatorname{Axiom}_T(x) \in \Sigma_{n+2}$ and T is defined by it.

Theorem 7.2 (Optimal Gödel-Rosser's First Incompleteness)

If $Q \subseteq T$ and T is Σ_{n+2} -definable and T is consistent, then T may be complete.

Proof.

This is the case for n = 0 in Σ_n -sound since Σ_0 -soundness is equivalent to consistency under $\mathbb{Q} \subseteq \mathcal{T}$.

Corollary 7.3

1 If $Q \subseteq T$ and $Axiom_T \in \Sigma_n$ and T is Σ_{n-2} -sound, then T may be Π_n -deciding.

2 If $Q \subseteq T$ and $Axiom_T \in \Sigma_n$ and T is Π_{n-1} -sound, then T may be Π_n -deciding.

3 If $Q \subseteq T$ and $Axiom_T \in \Sigma_n$ and T is (n-2)-consistent, then T may be Π_n -deciding.

4 If $Q \subseteq T$ and $Axiom_T \in \Pi_{n-1}$ and T is Σ_{n-2} -sound, then T may be Π_n -deciding.

5 If $Q \subseteq T$ and $Axiom_T \in \Pi_{n-1}$ and T is Π_{n-1} -sound, then T may be Π_n -deciding.

(6) If $Q \subseteq T$ and $A \times iom_T \in \Pi_{n-1}$ and T is (n-2)-consistent, then T may be Π_n -deciding.

Proof.

(1) Suppose for sake of a contradiction that none of such T is Π_n -deciding, then none of such T is complete, a contradiction to Lemma 7.1.

- (2) By (1) and Σ_{n-2} -soundness is equivalent to Π_{n-1} -soundness.
- (3) By (1) and Σ_{n-2} -soundness implies (n-2)-consistency.
- (4) By (1) and Σ_n -definability is equivalent to Π_{n-1} -definability.
- (5) By (2) and Σ_n -definability is equivalent to Π_{n-1} -definability.
- (6) By (3) and Σ_n -definability is equivalent to Π_{n-1} -definability.

Outline

- Introduction: Gödel's First Incompleteness Theorem
- ② Generalized Meta-theoretical Properties
- Generalizing to Non-Recursively Enumerable Theories
- Σ_n -soundness is sufficient
- **5** Π_n -soundness is also sufficient
- 6 *n*-consistency is also sufficient
- Consistency isn't sufficient
- (3) Conclusions: Diagrams for First Incompleteness

Conclusions: Diagrams for First Incompleteness

First Incompleteness Theorems for Σ_n -definable Theories(n > 1)

Gödel-Rosser's 1 st 1.5	$Q \subseteq \mathit{T} \land Axiom_{\mathit{T}} \in \mathit{\Sigma}_1 \land \mathit{T}$ is	Σ_0 -sound	\Rightarrow	T isn't Π_1 -deciding
Corollary 1.3 (2)	$Q \subseteq \mathit{T} \land Axiom_{\mathit{T}} \in \mathit{\Sigma}_1 \land \mathit{T}$ is	Σ_1 -sound	\Rightarrow	T isn't Π_1 -deciding
Corollary 7.3 (1)	$Q \subseteq T \land Axiom_{T} \in \Sigma_n \land T$ is	Σ_{n-2} -sound	\Rightarrow	Τ isn't Π _n -deciding
Corollary 4.3 (1)	$Q \subseteq T \land Axiom_{T} \in \Sigma_n \land T$ is	Σ_{n-1} -sound	\Rightarrow	Τ isn't Π _n -deciding
Corollary 4.3 (2)	$Q \subseteq \mathit{T} \land Axiom_{\mathit{T}} \in \mathit{\Sigma_n} \land \mathit{T}$ is	Σ_n -sound	\Rightarrow	T isn't Π_n -deciding
Theorem 3.3	$Q \subseteq T \land Axiom_{T} \in \Sigma_n \land T$ is	sound	\Rightarrow	Τ isn't Π _n -deciding
Gödel-Rosser's 1 st 1.5	$Q \subseteq \mathit{T} \land Axiom_{\mathit{T}} \in \mathit{\Sigma}_1 \land \mathit{T} is$	Π_0 -sound	\Rightarrow	${\cal T}$ isn't ${\it \Pi}_1$ -deciding
Corollary 1.6 (1)	$Q \subseteq \mathit{T} \land Axiom_{\mathit{T}} \in \mathit{\Sigma}_1 \land \mathit{T}$ is	Π_1 -sound	\Rightarrow	T isn't Π_1 -deciding
Corollary 7.3 (2)	$Q \subseteq \mathit{T} \land Axiom_{\mathit{T}} \in \mathit{\Sigma}_{\mathit{n}} \land \mathit{T}$ is	Π_{n-1} -sound	\Rightarrow	T isn't Π_n -deciding
Corollary 5.2	$Q \subseteq T \land Axiom_{T} \in \Sigma_n \land T$ is	П _n -sound	$(\Rightarrow$	T isn't Π_n -deciding
Theorem 3.3	$Q \subseteq T \land Axiom_{T} \in \Sigma_n \land T$ is	sound	\Rightarrow	Τ isn't Π _n -deciding
Gödel-Rosser's 1 st	$Q \subseteq T \land Axiom_{T} \in \Sigma_1 \land T$ is	consistent	\Rightarrow	T isn't Π_1 -deciding
Gödel's 1 st 1.3 (1)	$Q \subseteq \mathit{T} \land Axiom_{\mathit{T}} \in \mathit{\Sigma}_1 \land \mathit{T}$ is	1-consistent	\Rightarrow	T isn't Π_1 -deciding
Corollary 7.3 (3)	$Q \subseteq T \land Axiom_{T} \in \Sigma_n \land T$ is	(n - 2)-consistent	\neq	T isn't Π_n -deciding
Corollary 6.4 (1)	$Q \subseteq T \land Axiom_{T} \in \Sigma_n \land T$ is	(n-1)-consistent	\Rightarrow	T isn't Π_n -deciding
Corollary 6.4 (2)	$Q \subseteq T \land Axiom_{T} \in \Sigma_n \land T$ is	<i>n</i> -consistent	\Rightarrow	T isn't Π_n -deciding
Corollary 6.4 (3)	$Q \subseteq T \land Axiom_{T} \in \Sigma_n \land T$ is	ω -consistent	\Rightarrow	T isn't Π_n -deciding

Conclusions: Diagrams for First Incompleteness

First Incompleteness Theorems for Π_k -definable Theories(k > 0)

Corollary 7.3 (4)	$Q \subseteq T \land Axiom_{T} \in \varPi_k \land T$ is	Σ_{k-1} -sound	\Rightarrow	T isn't Π_{k+1} -deciding
Theorem 4.1	$Q \subseteq \mathit{T} \land Axiom_{\mathit{T}} \in \mathit{\Pi}_k \land \mathit{T}$ is	Σ_k -sound	\Rightarrow	T isn't Π_{k+1} -deciding
Corollary 3.4	$Q \subseteq T \land Axiom_{T} \in \varPi_k \land T$ is	sound	\Rightarrow	T isn't Π_{k+1} -deciding
Corollary 7.3 (5)	$Q \subseteq T \land Axiom_{T} \in \mathit{\Pi}_k \land T$ is	Π_k -sound	$\neq \rightarrow$	${\mathcal T}$ isn't ${\mathcal \Pi}_{k+1}$ -deciding
Theorem 5.1	$Q \subseteq T \land Axiom_{T} \in \varPi_k \land T$ is	Π_{k+1} -sound	\Rightarrow	${\mathcal T}$ isn't ${\mathcal \Pi}_{k+1}$ -deciding
Theorem 3.3	$Q \subseteq T \land Axiom_{T} \in \varPi_k \land T$ is	sound	\Rightarrow	${\mathcal T}$ isn't ${\mathcal \Pi}_{k+1}$ -deciding
Corollary 7.3 (6)	$Q \subseteq T \land Axiom_{T} \in \mathit{\Pi}_k \land T$ is	(k-1)-consistent	\Rightarrow	T isn't Π_{k+1} -deciding
Theorem 6.3	$Q \subseteq T \land Axiom_{T} \in \mathit{\Pi}_k \land T$ is	k-consistent	\Rightarrow	T isn't Π_{k+1} -deciding
Corollary 6.4 (4)	$Q \subseteq T \land Axiom_{T} \in \mathit{\Pi}_k \land T$ is	ω -consistent	\Rightarrow	T isn't Π_{k+1} -deciding

References I

G. Boolos.

The Provability of Logic. Cambridge University Press, 1st edition, 2003.

C. Chao.

Notes on Incompleteness. Personal Notes, V 9.9, 2016.

N. J. Cutland.

Computability: an Introduction to Recursive Function Theory. Cambridge University Press, 1980.

H. B. Enderton.

A Mathematical Introduction to Logic. Harcourt Acdamic Press., 2nd edition, 2001.

] T. Franzén.

Gödel's Theorem: an Incomplete Guide to Its Use and Abuse. A K Peters Ltd., 1980.

P. Hájek and P. Pudlák *Metamathematis of First-Oder Arithmetic*. Springer, 1993.

Z. Hao, R. Yang and Y. Yang.
Mathematical Logic: Proofs and Their Limitaions.
Writing in Chinese, Fudan University Press, 2014.

D. Isaacson.

Necessary and sufficient conditions for undecidability of the Gödel sentence and its truth.

In D. DeVidi, M. Hallett, and P. Clarke, editors, *Logic, Mathematics, Philosophy: Vintage Enthusiasms. Essays in honour of John L. Bell,* volume 75 of *The Western Ontario Series in Philosophy of Science*, chapter 7, pages 135–152. Springer Netherlands, 2011.

G. Kreisel.

A refinement of ω -consistency (abstract). The Journal of Symbolic Logic, 22:108–109, 1957.

References III

P. Lindström.

Aspects of Incompleteness. Springer, 1997.

A. B. Matos.

What are the recursion theoretic properties of a set of axioms? understanding a paper by William Craig.

http://www.dcc.fc.up.pt/~acm/craig.pdf, 2014.

🔋 S. Salehi and P. Seraji.

Gödel-Rosser's incompleteness theorems for non-recursively enumerable theories.

CoRR, abs/1506.02790, 2016.

P. Smith.

An Introduction to Gödel's Theorems. Cambridge University Press, 2nd edition, 2013.

THANKS!

