
Gödel’s First Incompleteness
Theorems for Non-Recursively Enumerable Theories

Conden Chao

With some further work on “S. Salehi and P. Seraji 2015”

Mar. 15th, 2016

To Commemorate the

110 Anniversary of Gödel’s Birth
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Introduction: Gödel’s First Incompleteness Theorem

* Arithmetic language LA: non-logical symbols are 0, S , +,× and equality
symbol is =.

* n = S n 0 = S · · · S 0. (n many S )

* x≤y is defined as ∃z(z +x =y) and x<y is x≤y ∧ x 6=y .

* The standard arithmetic model is N = (N, 0, 1, · · · , S , +,×,≤).

* Robinson arithmetic is the theory Q whose axioms are as follows

Q1 : ∀x S x 6= 0;
Q2 : ∀x∀y(S x = S y → x =y);
Q3 : ∀x(x 6= 0 → ∃y(x = S y));
Q4 : ∀x(x + 0 =x);
Q5 : ∀x∀y(x + S y = S (x +y));
Q6 : ∀x(x×0 = 0);
Q7 : ∀x∀y(x×S y =x×y +x).
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Introduction: Gödel’s First Incompleteness Theorem

* (Σn, Πn and ∆n) Fix our arithmetic language LA (notably that n (n > 0)
and ≤ are not non-logical symbols of it). The formulas ∆0 = Σ0 = Π0 is
defined as follows:

c all the atomic formulas such as τ=σ, where τ ,σ are terms, belong to ∆0;
c if φ,ψ ∈ ∆0, then so ¬φ,φ ∧ ψ,φ ∨ ψ ∈ ∆0;
c if τ is a term with x /∈ Vr(τ), and φ ∈ ∆0 , then so ∀x≤τφ, ∃x≤τφ ∈ ∆0.

And recursively we can define Σn, Πn and ∆n sets of formulas:

c φ ∈ Σn if φ = ∃ #—x ψ for some ψ ∈ Πn−1;
c φ ∈ Πn if φ = ∀ #—x ψ for some ψ ∈ Σn−1;
c φ ∈ ∆n if φ ∈ Σn ∩ Πn.

* For all n ∈ N, Σn ∪ Πn ⊆ Σn+1 ∩ Πn+1.

* (Σ1-completeness of Q) If T ⊇ Q, then T is Σ1-complete, i.e., for any Σ1

sentence φ if N � φ then T ` φ.
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Introduction: Gödel’s First Incompleteness Theorem

* A k-ary predicate P ⊆ Nk is representable in T if, there is a formula φ( #—x )
such that for any n0, · · · , nk−1 ∈ N

(n0, · · · , nk−1) ∈ P =⇒ T ` φ(n0 , · · · , nk−1 ),

(n0, · · · , nk−1) /∈ P =⇒ T ` ¬φ(n0 , · · · , nk−1 ).

* A function f : Nk → N is representable in T ⊇ Q if, there is a formula
φ( #—x , y) such that for any n0, · · · , nk−1 ∈ N

T ` ∀y [φ(n0 , · · · , nk−1 , y)↔ y = f (n0, · · · , nk−1)].

* (Representability Theorem) Any recursive function (and hence every recursive
predicate) is representable in T ⊇Q and ∆1.

* If T is recursively axiomatizable then proof and provability are arithmetized
as a binary predicate BeT (m, n) and a uary predicate BebT (n) respectively.

* And so if T is recursively axiomatizable, by Representability theorem proof
and provability can be expressed by formulas

beT (x , y) ∈ ∆1,
bebT (y) = ∃xbeT (x , y) ∈ Σ1

respectively.
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Introduction: Gödel’s First Incompleteness Theorem

* The natural number ]φ is the Gödel’s code of φ and pφq = ]φ = S ]φ0 is the
term corresponding to the natural number ]φ.

* (Fixed Point Lemma) Given any LA formula φ(x) with Fr(φ) = {x} and a
theory T ⊇Q, we can effectively find a γ such that T ` γ ↔ φ(pγq).
Proof. Suppose x0, x1, y 6= x and ψ(x0, y , x1) represents sub in T . For any
δ(x) and any n ∈ N, T ` ψ(pδq, y , n)↔ y =pδ(n)q. Setting n = ]δ,

T ` ψ(pδq, y , pδq)↔ y =pδ(pδq)q. (1)

Let θ(x) = ∀y(ψ(x , y , x)→ φ(x ; y)). It’s enough to show γ = θ(pθq) is the
desired fixed point of φ(x): in T we have

γ = θ(pθq)
↔ ∀y(ψ(pθq, y , pθq)→ φ(x ; y)) substitute pθq for x in θ(x)
↔ ∀y(y =pθ(pθq)q→ φ(x ; y)) by (1) and δ = θ(x)
= ∀y(y =pγq→ φ(x ; y)) by γ = θ(pθq)
↔ φ(pγq).

* For all n ≥ 1, if φ(x) ∈ Σn then γ ∈ Πn+1, and if φ(x) ∈ Πn then γ ∈ Πn.
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Introduction: Gödel’s First Incompleteness Theorem

Definition 1.1

T is ω-consistent if, there is no φ with φ = ∃xψ(x) such that T ` ∃xψ(x) and
T ` ¬ψ(m) for all m ∈ N.

Theorem 1.2 (Gödel’s First Incompleteness)

Let T ⊇Q be a recursively axiomatizable theory. If T is ω-consistent, then there
is a Π1 sentence γ such that T 6` γ and T 6` ¬γ.

Proof.

Let γ be the fixed point of ¬beb(y). Then

T ` γ ↔ ¬beb(pγq). (2)

γ is as desired: (a) If T ` γ, then N � beb(pγq), and T ` beb(pγq) by
Σ1-completeness. But by (2) we have T ` ¬beb(pγq), a contradiction. So T 6` γ;
(b) If T ` ¬γ, then by (2) we have T ` beb(pγq). Since T 6` γ, then for any
n ∈ N we have ¬Be(n, ]γ), and by representability T ` ¬be(n , pγq) for any
n ∈ N. By the ω-consistency of T , T 6` ∃xbe(x , pγq), i.e., T 6` beb(pγq), a
contradiction. So T 6` ¬γ. r



Introduction: Gödel’s First Incompleteness Theorem

* The condition that T is recursively axiomatizable allows us to use a Σ1

formula to express T in LA, and so we may write it as AxiomT ∈ Σ1.

* ω-consistency was weakened by G. Kreisel as 1-consistency: there is no
φ ∈ Σ1 with φ = ∃xψ(x) for some ψ(x) ∈ Π0 such that T ` ∃xψ(x) and
T ` ¬ψ(m) for all m ∈ N.

* The conclusion could be written as T isn’t Π1-deciding (T is Π1-deciding if
for any φ ∈ Π1 either T ` φ or T ` ¬φ).

Corollary 1.3

1 If Q⊆ T and AxiomT∈ Σ1 and T is 1-consistent, then T isn’t Π1-deciding.

2 If Q⊆ T and AxiomT∈ Σ1 and T is Σ1-sound, then T isn’t Π1-deciding.

Proof.

(2) Σ1-soundness (T is Σ1-sound if, for any φ ∈ Σ1 with T ` φ we have N � φ)
is stronger than 1-consistency. r
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Introduction: Gödel’s First Incompleteness Theorem

Theorem 1.4 (Gödel-Rosser’s First Incompleteness)

Let T ⊇Q be a recursively axiomatizable theory. If T is consistent, then there is a
Π1 sentence γ such that T 6` γ and T 6` ¬γ.

Similarly, since Σ0-soundness is equivalent to consistency whence Q ⊆ T ,
Gödel-Rosser’s First Incompleteness theorem could be written as

Theorem 1.5

If Q⊆ T and AxiomT∈ Σ1 and T is Σ0-sound, then T isn’t Π1-deciding.

Corollary 1.6

1 If Q⊆ T and AxiomT∈ Σ1 and T is Π1-sound, then T isn’t Π1-deciding.

2 If Q⊆ T and AxiomT∈ Σ1 and T ⊆ Th(N ), then T isn’t Π1-deciding.
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Generalized Meta-theoretical Properties

Notation 2.1

Let T be a theory and Γ a set of sentences, then

Γ (N ) = {φ ∈ Γ | N � φ}

where N is the standard arithmetic model. And so Σn(N ) and Πn(N ) denotes Σn

sentences and Πn sentences respectively true in N .

Lemma 2.2 (Cf. Corollary 1.76 of [6])

1 Σn(N ) is defined by a Σn formula Σn-True(x).

2 Πn(N ) is defined by a Πn formula Πn-True(x).

Remark 2.3

φ ∈ Σn(N ) iff N � Σn-True(pφq) and φ ∈ Πn(N ) iff N � Πn-True(pφq).
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Generalized Meta-theoretical Properties

Definition 2.4 (Γ -consistency)

Let T be a theory and Γ a set of sentences, then T is Γ -consistent with if T + Γ
is consistent.

* We will survey the relations between Σn(N )- and Πn(N )-consistency later.
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Generalized Meta-theoretical Properties

Definition 2.5 (Γ -deciding)

Let T be a theory and Γ a set of sentences, then T is Γ -deciding if, for any φ ∈ Γ
either T ` φ or T ` ¬φ; otherwise T isn’t Γ -deciding.

Lemma 2.6

1 Σn+1-deciding implies Πn-deciding and Σn-deciding;

2 Πn+1-deciding implies Σn-deciding and Πn-deciding;

3 Σn-deciding is equivalent to Πn-deciding

4 Syntactic completeness implies Σn-deciding and Πn-deciding.

Σ0-deciding

��

Σ1-decidingoo

��{{

· · · Σn−1-deciding

��

Σn-decidingoo

��zz

Σn+1-decidingoo

��zz

· · · complete

��
Π0-deciding

OO

Π1-decidingoo

OOcc

· · · Πn−1-deciding

OO

Πn-decidingoo

OOdd

Πn+1-decidingoo

OOdd

· · · complete

OO
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Generalized Meta-theoretical Properties

Definition 2.7 (n-consistency)

Let T be a theory and Γ a set of sentences.

* T is ω-cosistent if, there is no φ with φ = ∃xψ(x) such that T ` ∃xψ(x) and
T ` ¬ψ(m) for all m ∈ N; otherwise T is ω-inconsistent.

* T is n-cosistent if, there is no φ ∈ Σn with φ = ∃xψ(x) for some
ψ(x) ∈ Πn−1 such that T ` ∃xψ(x) and T ` ¬ψ(m) for all m ∈ N;
otherwise T is n-inconsistent.

Lemma 2.8

1 n-consistency implies consistency;

2 (n + 1)-consistency implies n-consistency.

3 ω-consistency implies n-consistency and consistency.
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Generalized Meta-theoretical Properties

Definition 2.9 (Γ -soundness with respect to N )

Let T be a theory and Γ a set of sentences.

* T is sound (with respect to N ) if, for any φ with T ` φ we have N � φ;
otherwise T isn’t sound.

* T is Γ -sound (with respect to N ) if, for any φ ∈ Γ with T ` φ we have
N � φ; otherwise T isn’t Γ -sound.



Generalized Meta-theoretical Properties

Lemma 2.10

1 Σn+1-soundness implies Σn-soundness and Πn-soundness;

2 Πn+1-soundness implies Πn-soundness and Σn-soundness;

3 Σn-soundness implies Πn+1-soundness, and hence Πn-soundness;

4 Soundness implies Σn-soundness and Πn-soundness.

Proof.

(3). Let φ ∈ Πn+1 be such that φ = ∀xθ(x) for some θ ∈ Σn and T ` ∀xθ(x).
Then T ` θ(m) for all m ∈ N, and by Σn-soundness N � θ(m) for all m ∈ N.
Hence N � ∀xθ(x). r
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Generalized Meta-theoretical Properties

Definition 2.11 (completeness, and Γ -completeness with respect to N )

Let T be a theory and Γ a set of sentences.

* T is (syntactically) complete if, for any φ either T ` φ or T ` ¬φ; otherwise
T isn’t complete.

* T is (semantically) complete (with respect to N ) if, for any φ with N � φ
we have T ` φ; otherwise T isn’t complete.

* T is (semantically) Γ -complete (with respect to N ) if, for any φ ∈ Γ with
N � φ we have T ` φ; otherwise T isn’t Γ -complete.



Generalized Meta-theoretical Properties

Lemma 2.12

1 Σn+1-completeness implies Σn-completeness and Πn-completeness;

2 Πn+1-completeness implies Πn-completeness and Σn-completeness;

3 Σn-completeness doesn’t imply Πn-completeness;

4 Πn-completeness implies Σn+1-completeness, and hence Σn-completeness;

5 Semantical completeness implies Σn-completeness and Πn-completeness.

Proof.

(3) Q is Σ1-complete but not Π1-complete (by Gödel’s First Incompleteness).
(4) Let φ ∈ Σn+1 be such that φ = ∃xθ(x) for some θ ∈ Πn and N � ∃xθ(x). So
N � θ(m) for some m ∈ N. By Πn-complete T ` θ(m). Hence T ` φ. r
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Generalized Meta-theoretical Properties

Lemma 2.13

1 Soundness is equivalent to Th(N )-consistency, and N � T ;

2 Πn-soundness is equivalent to Σn(N )-consistency for all n ∈ N;

3 Σn-soundness is equivalent to Πn(N )-consistency for all n ∈ N;

4 Σn-soundness implies n-consistency for all n ∈ N;

5 n-consistency doesn’t imply Σn-soundness for all n ≥ 3;

6 n-consistency and Σn−1-completeness imply Σn-soundness for all n ∈ N.

And if Q ⊆ T , then

7 Σ2-soundness is equivalent to 2-consistency;

8 Σ1-soundness is equivalent to 1-consistency;

9 Σ0-soundness is equivalent to consistency.



Generalized Meta-theoretical Properties
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Generalized Meta-theoretical Properties

Definition 2.14 (Γ -definable theories)

Let T be a theory and Γ a set of formulas.

* T is definable if there is some Ω of sentences axiomatizing T and some
formula AxiomT (x) such that

Ω = {φ | N � AxiomT (pφq) and φ is a sentence}.
* T is Γ -definable if there is some Ω of sentences axiomatizing T and some

formula AxiomT (x) ∈ Γ such that

Ω = {φ | N � AxiomT (pφq) and φ is a sentence}.



Generalized Meta-theoretical Properties

Lemma 2.15

1 Σn-definability implies Σn+1- and Πn+1-definability;

2 Πn-definability implies Πn+1- and Σn+1-definability;

3 Σn+1-definability implies Πn-definability;

4 T is recursively enumerable iff T is Σ0-definable iff T is Σ1-definable.

Proof I.

(3) Suppose T is axiomatized by Ω and AxiomT (x) = ∃x1 · · · ∃xmψ(x , x1, · · · , xm)
with ψ ∈ Πn defines ]Ω. Then AxiomT (x) is equivalent to ∃yδ(x , y) with
δ(x , y) = ∃x1≤y · · · ∃xm≤yψ(x , x1, · · · , xm) ∈ Πn. So

Ω ′ = {φ ∧ (k = k ) | N � δ(pφq, k ) and φ ∈ Ω}

also axiomatizes T . And it’s easy to see that Ω ′ is defined by the Πn formula

Axiom′T (x) = ∃y≤x∃z≤x [δ(x , y) ∧ (x =pγy ∧ (γz =γz )q)],

where γy is the formula by encoding y and γz is the term by encoding z .
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Generalized Meta-theoretical Properties

Proof II.

(4) Clearly ‘Σ1-definability =⇒ Σ0-definability’ follows from (3) and
‘Σ0-definability =⇒ Recursive enumerability’ is trivial. While ‘Recursive
enumerability =⇒ Σ1-definability’ follows from the following claim.

If T is recuresively enumerable then T is axiomatized by a recursive set.

Suppose T is axiomatized by a recursively enumerable set Ω. Then there is some
effective algorithm enumerating Ω as φ1,φ2, · · · . For any n, let

ψn =df φn ∧ (φn ∧ · · · ))︸ ︷︷ ︸
n many

.

and Ω ′ be the set of such ψn. Clearly T is axiomatized by the recursive Ω ′. r
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Generalizing to Non-Recursively Enumerable Theories

Notation 3.1

Suppose the set of axioms for T is defined by AxiomT (x) and Q ⊆ T . We define
be(x , y)T and bebT (y) corresponding to concepts ‘proof in T ’ and ‘provable in T ’
respectively as:

beT (x , y) =df ∃x1 · · · ∃xk (AxiomT (x1)∧· · ·∧AxiomT (xk )∧beQ(x , pχx1∧· · ·∧χxk→χyq)),
bebT (y) =df ∃x∃x1 · · · ∃xk (AxiomT (x1)∧· · ·∧AxiomT (xk )∧beQ(x , pχx1∧· · ·∧χxk→χyq)).

where χx is the formula by encoding x .

Remark 3.2

* If AxiomT (x) ∈ Σn, then bebT (y) ∈ Σn and ¬bebT (y) ∈ Πn.

* If AxiomT (x) ∈ Πn, then bebT (y) ∈ Σn+1 and ¬bebT (y) ∈ Πn+1.
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Generalizing to Non-Recursively Enumerable Theories

We generalize Corollary 1.6 (2) i.e., ‘If Q⊆ T and AxiomT∈ Σ1 and T ⊆ Th(N ),
then T isn’t Π1-deciding’ to non-recursively enumerable (non-r.e.) theories:

Theorem 3.3

If Q⊆ T and AxiomT∈ Σn and T ⊆ Th(N ), then T isn’t Πn-deciding.

Proof.

Let γ be the fixed point of ¬bebT (y)

T ` γ ↔ ¬bebT (pγq). (3)

Clearly γ could be Πn, and it suffices to show γ is independent of T :

* T 6` γ. If T ` γ. Then N � beb(pγq) and N � γ. And since
N � γ ↔ ¬bebT , then N � ¬beb(pγq), a contradiction.

* T 6` ¬γ. If T ` ¬γ. Then N � ¬γ. And since N � γ ↔ ¬bebT , then
N � bebT (pγq), and hence T ` γ, a contradiction to to T 6` γ.

We can also show that N � γ. r
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Generalizing to Non-Recursively Enumerable Theories

Corollary 3.4

If Q⊆ T and AxiomT∈ Πn and T ⊆ Th(N ), then T isn’t Πn+1-deciding.

Proof.

This is because AxiomT ∈ Πn ⊆ Σn+1. r
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Σn-soundness is sufficient

Theorem 4.1

If Q⊆ T and AxiomT∈ Πn and T is Σn-sound, then T isn’t Πn+1-deciding.

Proof I.

Define
proT (y) =df ∃x [beT (x , y) ∧ ∀z<x¬beT (z , ¬(y))].

Set T ∗ = T + Πn(N ). Then T ∗ is Πn-complete and Σn+1-complete, and
consistent by Σn-soundness. One claim is needed.

Lemma 4.2

For all n ∈ N, Q` ∀x(x≤n ↔
∨

q≤n x = q) and Q` ∀x(x≤n ∨ n≤x).

Claim

1 If T ` δ, then T ∗ ` proT (pδq).

2 If T ` ¬δ, then T ∗ ` ¬proT (pδq).
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Σn-soundness is sufficient

Proof II.

Let’s turn to the theorem, and let γ be the fixed point of ¬proT (y). Then

T ` γ ↔ ¬proT (pγq). (4)

Clearly γ could be Πn+1. It suffices to show that γ is independent of T : if T ` γ,
then by the Claim 1 we have T ∗ ` proT (pγq), but (4) gives us T ∗ ` ¬proT (pγq),
a contradiction to consistency of T ∗, and so T 6` γ; if T ` ¬γ, then by the Claim
2 we have T ∗ ` ¬proT (pγq), but (4) gives us T ∗ ` proT (pγq), also a
contradiction to consistency of T ∗, and so T 6` ¬γ. r



Σn-soundness is sufficient

Corollary 4.3

1 if Q⊆ T and AxiomT∈ Σn and T is Σn−1-sound, then T isn’t Πn-deciding.

2 if Q⊆ T and AxiomT∈ Σn and T is Σn-sound, then T isn’t Πn-deciding.

Proof.

(1) By Lemma 2.15 (3), AxiomT could also be Πn−1, and then by Theorem 4.1 T
isn’t Πn-deciding.
(2) By (1) and Σn-soundness implies Σn−1-soundness. r
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Πn-soundness is sufficient

Theorem 5.1

If Q⊆ T and AxiomT∈ Πn and T is Πn+1-sound, then T isn’t Πn+1-deciding.

Proof.

This is because Πn+1-soundness is equivalent to Σn-soundness. r

Corollary 5.2

If Q⊆ T and AxiomT∈ Σn and T is Πn-sound, then T isn’t Πn-deciding.

Proof.

Since AxiomT ∈ Σn then AxiomT ∈ Πn−1, and then the conclusion suffices from
Theorem 5.1. r
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n-consistency is sufficient

Lemma 6.1

Th(N ) is the only complete and ω-consistent extension of PA (indeed Q).

Lemma 6.2

If Q⊆ T and T is Πn-deciding and T is n-consistent, then T is Πn-complete.

Proof I.

Suppose T isn’t Πn-complete, then there is some φ ∈ Πn such that N � φ and
T 6` φ; by Πn-decidability of T we have T ` ¬φ, and so

N � φ and T ` ¬φ and φ ∈ Πn. (5)

We may write φ = ∀x∃yψ(x , y) for some ψ ∈ Πn−2. By T ` ∃x¬∃yψ(x , y) and
the n-consistency of T we have T 6` ∃yψ(k , y) for some k ∈ N. Since T is
Πn-deciding then T ` ∀y¬ψ(k , y). Since N � ∀x∃yψ(x , y), then N � ψ(k , l ) for
some l ∈ N, and clearly T ` ¬ψ(k , l ). So for χ = ψ(k , l ) we have

N � χ and T ` ¬χ and χ ∈ Πn−2. (6)
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the n-consistency of T we have T 6` ∃yψ(k , y) for some k ∈ N. Since T is
Πn-deciding then T ` ∀y¬ψ(k , y). Since N � ∀x∃yψ(x , y), then N � ψ(k , l ) for
some l ∈ N, and clearly T ` ¬ψ(k , l ). So for χ = ψ(k , l ) we have

N � χ and T ` ¬χ and χ ∈ Πn−2. (6)



n-consistency is sufficient

Proof II.

Proceeding in this way (from n to n − 2) we can show that there is some δ such
that

N � δ and T ` ¬δ and either δ ∈ Π1(n is odd) or δ ∈ Π0(n is even). (7)

If δ ∈ Π1 then write δ = ∀xθ(x) for some θ ∈ Π0. By T ` ∃x¬θ(x) and the
1-consistency of T we have T 6` θ(m) for some m ∈ N. Since T is Π0-deciding
then T ` ¬θ(m). And also we have N � ∀xθ(x), then N � θ(m). So for there is
some γ (either δ in (7) or θ(m)) such that

N � γ and T ` ¬γ and γ ∈ Π0. (8)

By Σ1-completeness of T ⊇ Q and N � γ we have T ` γ. Also we have T ` ¬γ,
a contradiction to the consistency of T following from its n-consistency. r



n-consistency is sufficient

Theorem 6.3

If Q⊆ T and AxiomT∈ Πn and T is n-consistent, then T isn’t Πn+1-deciding.

Proof.

Let T satisfy the conditions in the theorem. If T isn’t Πn-deciding, then T isn’t
Πn+1-deciding. So we suppose T is Πn-deciding, then T is Πn-complete by
Lemma 6.2, and so Πn(N ) ⊆ T , and so T is Σn-sound. Then T isn’t
Πn+1-deciding by Theorem 4.1. r

* It is interesting to note that for n > 3 all the incompleteness proofs
(presented as above) with the assumption of Σn(Πn−1)-soundness are
constructive, while all the incompleteness proofs with the assumption of
n-consistency are all non-constructive (i.e., the independent sentence is not
constructed explicitly, and only its mere existence is proved).
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n-consistency is sufficient

Corollary 6.4

1 If Q⊆ T and AxiomT∈ Σn and T is (n − 1)-consistent, then T isn’t Πn-deciding.

2 If Q⊆ T and AxiomT∈ Σn and T is n-consistent, then T isn’t Πn-deciding.

3 If Q⊆ T and AxiomT∈ Σn and T is ω-consistent, then T isn’t Πn-deciding.

4 If Q⊆ T and AxiomT∈ Πn−1 and T is ω-consistent, then T isn’t Πn-deciding.

Proof.

(1) By Theorem 6.3 and Σn-definability is equivalent to Πn−1-definability.
(2) By (1) and n-consistency implies (n − 1)-consistency.
(3) By (2) and ω-consistency implies n-consistency.
(3) By (3) and Σn-definability is equivalent to Πn−1-definability. r
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Consistency isn’t sufficient

Lemma 7.1

There is a complete (and consistent) theory T such that Q ⊆ T and T is
Σn+2-definable and T is Σn-sound.

Proof I.

Let S = Q + Πn(N )(clearly S = Q = Q + Π0(N ) when n = 0). We get the
completion of S in Lindenbaum’s way: enumerate all the sentences as φ0,φ1, · · ·
and define

T0 = S ;

Tn+1 =

{
Tn ∪ {φn} Tn ∪ {φn} is consistent,

Tn ∪ {¬φn} otherwise;

T =
⋃

n∈N Tn.

Clearly Q ⊆ T , and T is Σn-sound since Πn(N ) ⊆ S ⊆ T . It suffices to show that
T is Σn+2-definable.
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Consistency isn’t sufficient

Proof II.

Now define AxiomT (x) as

∃y

[
finseq(y) ∧ y`en(y)−1 =x∧

∀k<`en(y)
[
Sent(yk ) ∧ ∀z≤y

[
Senth(z , k)∧

[con′(S + y � k + z)→ yk =z ∨ ¬con′(S + y � k + z)→ yk =¬(z)]
]]]

.

And

con′(S + y � k + z) = ∀v∀w(Πn-true(v)→ ¬bebQ(w , pδv ∧ δy0 ∧ · · · ∧ δyk−1 ∧ δz → ⊥q)).

It’s easy to check that AxiomT (x) ∈ Σn+2 and T is defined by it. r



Consistency isn’t sufficient

Theorem 7.2 (Optimal Gödel-Rosser’s First Incompleteness)

If Q ⊆ T and T is Σn+2-definable and T is consistent, then T may be complete.

Proof.

This is the case for n = 0 in Σn-sound since Σ0-soundness is equivalent to
consistency under Q ⊆ T . r



Consistency isn’t sufficient

Corollary 7.3

1 If Q ⊆ T and AxiomT ∈ Σn and T is Σn−2-sound, then T may be Πn-deciding.

2 If Q ⊆ T and AxiomT ∈ Σn and T is Πn−1-sound, then T may be Πn-deciding.

3 If Q ⊆ T and AxiomT ∈ Σn and T is (n − 2)-consistent, then T may be Πn-deciding.

4 If Q ⊆ T and AxiomT ∈ Πn−1 and T is Σn−2-sound, then T may be Πn-deciding.

5 If Q ⊆ T and AxiomT ∈ Πn−1 and T is Πn−1-sound, then T may be Πn-deciding.

6 If Q ⊆ T and AxiomT ∈ Πn−1 and T is (n − 2)-consistent, then T may be Πn-deciding.

Proof.

(1) Suppose for sake of a contradiction that none of such T is Πn-deciding, then none of such T
is complete, a contradiction to Lemma 7.1.
(2) By (1) and Σn−2-soundness is equivalent to Πn−1-soundness.
(3) By (1) and Σn−2-soundness implies (n − 2)-consistency.
(4) By (1) and Σn-definability is equivalent to Πn−1-definability.
(5) By (2) and Σn-definability is equivalent to Πn−1-definability.
(6) By (3) and Σn-definability is equivalent to Πn−1-definability. r
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Conclusions: Diagrams for First Incompleteness
First Incompleteness Theorems for Σn-definable Theories(n > 1)

Gödel-Rosser’s 1st 1.5 Q ⊆ T ∧ AxiomT ∈ Σ1 ∧ T is Σ0-sound =⇒ T isn’t Π1-deciding

Corollary 1.3 (2) Q ⊆ T ∧ AxiomT ∈ Σ1 ∧ T is Σ1-sound =⇒ T isn’t Π1-deciding

Corollary 7.3 (1) Q ⊆ T ∧ AxiomT ∈ Σn ∧ T is Σn−2-sound =6 ⇒ T isn’t Πn-deciding

Corollary 4.3 (1) Q ⊆ T ∧ AxiomT ∈ Σn ∧ T is Σn−1-sound =⇒ T isn’t Πn-deciding

Corollary 4.3 (2) Q ⊆ T ∧ AxiomT ∈ Σn ∧ T is Σn-sound =⇒ T isn’t Πn-deciding

Theorem 3.3 Q ⊆ T ∧ AxiomT ∈ Σn ∧ T is sound =⇒ T isn’t Πn-deciding

Gödel-Rosser’s 1st 1.5 Q ⊆ T ∧ AxiomT ∈ Σ1 ∧ T is Π0-sound =⇒ T isn’t Π1-deciding

Corollary 1.6 (1) Q ⊆ T ∧ AxiomT ∈ Σ1 ∧ T is Π1-sound =⇒ T isn’t Π1-deciding

Corollary 7.3 (2) Q ⊆ T ∧ AxiomT ∈ Σn ∧ T is Πn−1-sound =6 ⇒ T isn’t Πn-deciding

Corollary 5.2 Q ⊆ T ∧ AxiomT ∈ Σn ∧ T is Πn-sound =⇒ T isn’t Πn-deciding

Theorem 3.3 Q ⊆ T ∧ AxiomT ∈ Σn ∧ T is sound =⇒ T isn’t Πn-deciding

Gödel-Rosser’s 1st Q ⊆ T ∧ AxiomT ∈ Σ1 ∧ T is consistent =⇒ T isn’t Π1-deciding

Gödel’s 1st 1.3 (1) Q ⊆ T ∧ AxiomT ∈ Σ1 ∧ T is 1-consistent =⇒ T isn’t Π1-deciding

Corollary 7.3 (3) Q ⊆ T ∧ AxiomT ∈ Σn ∧ T is (n − 2)-consistent =6 ⇒ T isn’t Πn-deciding

Corollary 6.4 (1) Q ⊆ T ∧ AxiomT ∈ Σn ∧ T is (n − 1)-consistent =⇒ T isn’t Πn-deciding

Corollary 6.4 (2) Q ⊆ T ∧ AxiomT ∈ Σn ∧ T is n-consistent =⇒ T isn’t Πn-deciding

Corollary 6.4 (3) Q ⊆ T ∧ AxiomT ∈ Σn ∧ T is ω-consistent =⇒ T isn’t Πn-deciding



Conclusions: Diagrams for First Incompleteness
First Incompleteness Theorems for Πk -definable Theories(k > 0)

Corollary 7.3 (4) Q ⊆ T ∧ AxiomT ∈ Πk ∧ T is Σk−1-sound =6 ⇒ T isn’t Πk+1-deciding

Theorem 4.1 Q ⊆ T ∧ AxiomT ∈ Πk ∧ T is Σk -sound =⇒ T isn’t Πk+1-deciding

Corollary 3.4 Q ⊆ T ∧ AxiomT ∈ Πk ∧ T is sound =⇒ T isn’t Πk+1-deciding

Corollary 7.3 (5) Q ⊆ T ∧ AxiomT ∈ Πk ∧ T is Πk -sound =6 ⇒ T isn’t Πk+1-deciding

Theorem 5.1 Q ⊆ T ∧ AxiomT ∈ Πk ∧ T is Πk+1-sound =⇒ T isn’t Πk+1-deciding

Theorem 3.3 Q ⊆ T ∧ AxiomT ∈ Πk ∧ T is sound =⇒ T isn’t Πk+1-deciding

Corollary 7.3 (6) Q ⊆ T ∧ AxiomT ∈ Πk ∧ T is (k − 1)-consistent =6 ⇒ T isn’t Πk+1-deciding

Theorem 6.3 Q ⊆ T ∧ AxiomT ∈ Πk ∧ T is k-consistent =⇒ T isn’t Πk+1-deciding

Corollary 6.4 (4) Q ⊆ T ∧ AxiomT ∈ Πk ∧ T is ω-consistent =⇒ T isn’t Πk+1-deciding



References I

G. Boolos.
The Provability of Logic.
Cambridge University Press, 1st edition, 2003.

C. Chao.
Notes on Incompleteness.
Personal Notes, V 9.9, 2016.

N. J. Cutland.
Computability: an Introduction to Recursive Function Theory.
Cambridge University Press, 1980.

H. B. Enderton.
A Mathematical Introduction to Logic.
Harcourt Acdamic Press., 2nd edition, 2001.

T. Franzén.
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