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What is Reverse Mathematics

Reverse mathematics is a program in mathematical logic that
seeks to determine which axioms are required to prove
theorems of mathematics.

The program was founded by Harvey Friedman (1975, 1976).
A standard reference for the subject is Simpson’s (2009).

The object of reverse mathematics is non-set theoretic or
ordinary. The distinction between set-theoretic and ordinary
mathematics corresponds roughly to the distinction between
“uncountable mathematics” and “countable mathematics”.
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Reverse Methods

To show that a system S is required to prove a theorem T, two
proofs are required. The first proof shows T is provable from S;
this is an ordinary mathematical proof along with a justification
that it can be carried out in the system S. The second proof,
known as a reversal, shows that T itself implies S; this proof is
carried out in the base system. The reversal establishes that no
axiom system S’ that extends the base system can be weaker than
S while still proving T.



Second Order Arithmetic(Z2)

The language of second order arithmetic(L2) is a two-sorted
language. This means that there are two distinct sorts of
variables which are intended to range over all natural numbers
and all subsets of natural numbers. The first sort are called
number variables, denoted i, j, k,m, n, the other are called set
variables, denoted X,Y, Z. What’s more, the language
contains 2-nary functions + and ·, constants 0 and 1 and a
order <.

The Numerical terms are number variables, the constant
symbols 0 and 1, and t1 + t2 and t1 · t2 whenever t1 and t2
are numerical terms.
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Second Order Arithmetic(Z2)

Atomic formulas are t1 = t2, t1 < t2 and t1 ∈ X where t1, t2
are numerical terms and X is any set variable. Formulas are
built up from atomic formulas by means of propositional
connectives and number quantifiers ∀n, ∃n, and set
quantifiers ∀X, ∃X.



Second Order Arithmetic(Z2)

L2-structures. A model for L2 is an ordered 7-tuple

M = (|M |,S(M),+M , ·M , 0M , 1M , <M )

Where |M | is a set which serves as the range of the numbers,
S(M) is a set of subsets of |M | serving as the range of the
set variables. +M and ·M are binary operations on |M |, 0M
and 1M are distinguished elements of |M |, and <M is binary
relation on |M |. We always assume that the sets |M | and
S(M) are disjoint and nonempty.

Parameters. Let B be any subset of |M | ∪ S(M). By a
formula with parameters from B we mean a formula of the
extended language L2(B). Here L2(B) consists of L2

augmented by new constant symbols corresponding to the
elements of B.
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Second Order Arithmetic(Z2)

Definable. A set A ⊆ |M | is said to be definable over M
allowing parameters from B if there exists a formula ϕ(a) with
parameters from B and no free variables other than n such
that

A = {a ∈ |M | : M |= ϕ(a)}

Here M |= ϕ(a) means that M satisfies ϕ(a), i.e. ϕ(a) is true
in M .



Second Order Arithmetic(Z2)

(i) Basic Axioms:

∀m(m+ 1 6= 0),

∀m(m · 0 = 0),

∀m,n(m+ 1 = n+ 1→ m = n),

∀m,n(m · (n+ 1) = m · n+m),

∀m(m+ 0 = m),

∀m(¬m < 0),

∀m,n(m+ (n+ 1) = (m+ n) + 1),

∀m,n(m < n+ 1↔ (m = n ∨m < n)).

(ii) Induction Axiom:

(0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X))→ ∀n(n ∈ X).



Second Order Arithmetic(Z2)

(iii) Comprehension Scheme

∃X∀n(n ∈ X ↔ ϕ(n))

where ϕ(n) is any formula of L2 in which X does not occur freely.

Intuitively, the given instance of comprehension scheme says that
there exists a set X = {n : ϕ(n)} = the set of all n such that ϕ(n)
holds. This set is said to be definable by the given formula ϕ(n).

In the comprehension scheme, ϕ(n) may contain free variable in
addition to n. These free variables may be referred to as
parameters of this instance of the comprehension scheme.



Second Order Arithmetic(Z2)

Z2 is strong enough to develop analysis.

If T is any subsystem of Z2, a model of T is any L2-structure
satisfying the axioms of T . By Gödel’s completeness theorem
applied to the two sorted language L2. We have the following
important principle: a given L2-sentence σ is a theorem of T
if and only if all model of T satisfies σ.

We shall see that subsystems of Z2 provide a setting in which
the Main Question can be investigated in a precise and fruitful
way.
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RCA0

Recursive Comprehension Axiom(RCA). The RCA scheme
consists of all formulas of the form

∀n(ϕ(n)↔ ψ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n))

where ϕ(n) is any Σ0
1 formula, ψ(n) is any Π0

1, n is any
number variable, and X is a set variable which does not occur
freely in ϕ(n).
In the RCA, note that ϕ(n) and ψ(n) may contain
parameters, i.e., free set variables and free number variables in
addition to n. Thus all L2-structure satisfies RCA if and only
if S(M) contains all subsets of |M | which are ∆0

1 definable
over M allowing parameters from |M | ∪ S(M).



RCA0

RCA0 is the subsystems of Z2 consisting of the basic axioms,
the Σ0

1 induction scheme, and the RCA scheme.

The system RCA0 plays two key roles in Reverse Mathematics.
First, the development of ordinary mathematics within RCA0

correspond roughly to the positive content of what is known
as “computable mathematics” or “recursive analysis”. Thus
RCA0 is a kind of formalized recursive mathematics.
Second, RCA0 frequently play the role of a weak base theory
in Reverse Mathematics. Most of the results of Reverse
Mathematics will be stated formally as theorems of RCA0.
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Mathematics in RCA0

Within RCA0, we define a paring map (i, j) = (i+ j)2 + i,
where of course i2 = i · i.
Within RCA0, a finite sequence of natural numbers is a finite
set X such that ∀n(n ∈ X → ∃i∃j(n = (i, j))) and
∀i∀j∀k((i, j) ∈ X ∧ (i, k) ∈ X → j = k) and
∃l∀i(i < l↔ ∃j((i, j) ∈ X)).

Function. The following definitions are made in RCA0. Let X
and Y be sets of natural numbers. We write X ⊆ Y to mean
∀n(n ∈ X → n ∈ Y ).
We define X × Y to be the set of all k such that
∃i ≤ k∃j ≤ k(i ∈ X ∧ j ∈ Y ∧ (i, j) = k).
We define a function f : X → Y to be a set f ⊆ X × Y such
that ∀i∀j∀k(((i, j) ∈ f ∧ (i, k) ∈ f)→ j = k) and
∀i∃j(i ∈ X → (i, j) ∈ f).
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Mathematics in RCA0

Lemma 1 (Composition)

The following is provable in RCA0 If f : X → Y and g : Y → Z
the there exists h = g ◦ f : X → Z defined by h(i) = g(f(i)).

Within RCA0, the set of all s ∈ Seq such that lh(s)=k is denoted
Nk. This set exists by Σ0

0 comprehension. If f : Nk → N and
s = 〈n1, ..., nk〉 ∈ Nk, we sometimes write f(n1, ..., nk) instead of
f(s).

Lemma 2 (Primitive recursion)

The following is provable in RCA0. Given f : Nk → N and
g : Nk+2 → N, there exists a unique h : Nk+1 → N defined by

h(0, n1, ..., nk) = f(n1, ..., nk)
h(m,n1, ..., nk) = g(h(m,n1, ..., nk),m, n1, ..., nk).



Mathematics in RCA0

Lemma 1 (Composition)

The following is provable in RCA0 If f : X → Y and g : Y → Z
the there exists h = g ◦ f : X → Z defined by h(i) = g(f(i)).

Within RCA0, the set of all s ∈ Seq such that lh(s)=k is denoted
Nk. This set exists by Σ0

0 comprehension. If f : Nk → N and
s = 〈n1, ..., nk〉 ∈ Nk, we sometimes write f(n1, ..., nk) instead of
f(s).

Lemma 2 (Primitive recursion)

The following is provable in RCA0. Given f : Nk → N and
g : Nk+2 → N, there exists a unique h : Nk+1 → N defined by

h(0, n1, ..., nk) = f(n1, ..., nk)
h(m,n1, ..., nk) = g(h(m,n1, ..., nk),m, n1, ..., nk).



Mathematics in RCA0

Lemma 1 (Composition)

The following is provable in RCA0 If f : X → Y and g : Y → Z
the there exists h = g ◦ f : X → Z defined by h(i) = g(f(i)).

Within RCA0, the set of all s ∈ Seq such that lh(s)=k is denoted
Nk. This set exists by Σ0

0 comprehension. If f : Nk → N and
s = 〈n1, ..., nk〉 ∈ Nk, we sometimes write f(n1, ..., nk) instead of
f(s).

Lemma 2 (Primitive recursion)

The following is provable in RCA0. Given f : Nk → N and
g : Nk+2 → N, there exists a unique h : Nk+1 → N defined by

h(0, n1, ..., nk) = f(n1, ..., nk)
h(m,n1, ..., nk) = g(h(m,n1, ..., nk),m, n1, ..., nk).



Mathematics in RCA0

Lemma 3 (Minimization)

The following is provable in RCA0. Let f : Nk+1 → N be such that
for all 〈n1, ..., nk〉 ∈ Nk there exists m ∈ N such that
f(m,n1, ..., nk) = 1. Then there exists g : Nk → N defined by
g(n1, ..., nk)= least m such that f(m,n1, ..., nk) = 1.

Bounded Σ0
k comprehension. For each k ∈ ω the scheme of

bounded Σ0
k comprehension consists of all axioms of the form

∀n∃X∀i(i ∈ X ↔ (i < n ∧ ϕ(i)))

where ϕ(i) is any Σ0
k formula in which X does not occur freely.

Theorem 4

RCA0 proves bounded Σ0
1 comprehension.
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Mathematics in RCA0

Within RCA0 we can define N, Z, Q obviously.

A sequence of rational numbers is defined in RCA0 to be a
function f : N→ Q. We usually denote such a sequence as
〈qk : k ∈ N〉 where qk = f(k).

A real number is defined in RCA0 to be a sequence of rational
numbers 〈qk : k ∈ N〉 such that ∀k∀i(|qk − qk+i| ≤ 2−k). Two
real numbers 〈qk : k ∈ N〉 and q′k : k ∈ N are said to be equal
if ∀k(|qk − q′k| ≤ 2−k+1).

The sum of two real numbers x = 〈qk : k ∈ N〉 and
y = 〈q′k : k ∈ N〉 is defined by

x+ y = 〈qk+1 + q′k+1 : k ∈ N〉

We note that |(qk+1 + q′k+1)− (qk+i+1 + q′k+i+1| ≤
|qk+1 − qk+i+1|+ |q′k+1 − q′k+i+1| ≤ 2−k−1 + 2−k−1 = 2−k, so
x+ y is a real number.
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Mathematics in RCA0

Trivially −x = 〈−qk : k ∈ N〉.
We define x ≤ y if and only if ∀k(qk ≤ q′k + 2−k+1).

It is straightforward to verify in RCA0 that system
(R,+,−, 0, 1, <) obey all the axioms for an ordered Abelian
group. Note that formulas such as x ≤ y, x = y, x+ y = z
are Π0

1 while x < y, x 6= 0,... are Σ0
1.

Multiplication of real numbers x = 〈qk : k ∈ N〉 and
y = 〈q′k : k ∈ N〉 is defined by

x · y = 〈qn+k · q′n+k : k ∈ N〉

where n is as small as possible such that 2n ≥ |q0|+ |q′0|+ 2.
It is easy to verify that x · y is a real number.

More details in Simpson’s 2009.
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ACA0

Arithmetical formulas. A formula of L2, or more generally a
formula of L2(|M | ∪ S(M)) where M is any L2-structure, is
said to be arithmetical if it contains no set quantifiers, i.e., all
of the quantifiers appearing in the formula are number
quantifiers.

Arithmetical comprehension. The arithmetical comprehension
scheme is the restriction of the comprehension scheme to
arithmetical formulas ϕ(n). Thus we have the universal
closure of

∃X∀n(n ∈ X ↔ ϕ(n))

whenever ϕ(n) is a formula of L2 which is arithmetical and in
which X does not occur freely. The axiom asserts the
existence of subsets of N which are definable from given sets
by formulas with no set quantifiers.
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ACA0 is the subsystem of Z2 whose axioms are the
arithmetical comprehension scheme, the induction axiom and
the basic axioms.

The first order arithmetic(Z1) is sometimes known as Peano
Arithmetic(PA), let L1 be the language of Z1. It’s easy to see
that for any L1-sentence σ, σ is a theorem of ACA0 if and only
if σ is a theorem of Z1. In other wards, for any L1-sentence,
ACA0 is a conservative extension of first order arithmetic.

ACA0 is strong to discuss sequential compactness, countable
vector spaces, maximal ideals in countable commutative rings,
countable abelian groups and Ramsey’s theorem.
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WKL0

Trees. Within RCA0 we let

Seq = ω<ω =
⋃
k∈ω

ωk

denote the set of (codes for) finite sequences of natural
numbers. For σ, τ ∈ ω<ω, there is σ_τ ∈ ω<ω which is the
concatenation, σ followed by τ .
A tree is a set T ⊆ ω<ω such that any initial segment of a
sequence in T belongs to T .
A path or infinite path through T is a function f : ω → ω
such that for all k ∈ ω, the initial sequence

f [k] = 〈f(0), f(1), ..., f(k − 1)〉

belong to T .



WKL0

Weak König’s Lemma. The following definitions are made in
RCA0. We use {0, 1}<ω or 2<ω to denote the full binary tress.
Weak König’s lemma is the following statement: Every infinite
subtree of 2<ω has an infinite path.

WKL0 is defined to be the subsystem of Z2 consisting of
RCA0 plus weak König’s lemma.

In fact, WKL0 is strong enough to prove many well known
nonconstructive theorems that are extremely important for
mathematical practice but not probable in RCA0.
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WKL0

Theorem 5

Within RCA0 one can prove that WKL0 is equivalent to each of
the following ordinary mathematical statements:
1. The Heine/Borel covering lemma: Every covering of the closed
interval [0,1] by a sequence of open intervals has a finite
subcovering.
2. Every covering of a compact metric space by a sequence of
open sets has a finite subcovering.
3. The maximum principle: Every continuous real-valued function
on [0,1], or on any compact metric space has, or attains, a
supremum.
4. Gödel’s completeness theorem: every finite, or countable, set of
sentences in the predicate calculus has a countable model.
5. Every countable commutative ring has a prime ideal.
6. The separable Hahn/Banach theorem.



WKL0

We have seen that WLK0 is much stronger than RCA0 with
respect to mathematical practice. Nevertheless, it can be
shown that WKL0 is the same strength as RCA0 in a proof
theoretic sense. Namely, the first order part of WKL0 is the
same as that of RCA0, viz. Σ0

1-PA.

Another key conservation result is that WKL0 is conservative
over the formal system known as PRA or primitive recursive
arithmetic, with respect to Π0

2 sentences. In particular, we can
find a primitive recursive function f : ω → ω such that
ϕ(m, f(m)) holds for all m ∈ ω. It means that a large portion
of infinitistic mathematical practice is in fact finitistically
reducible. Thus we have a significant partial realization of
Hilbert’s program of finitistic reductionism.
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Seetapun Enigma

Ramsey’s Theorem. The following definitions are made in
RCA0. For any countable X ⊆ ω and k ∈ ω, let [X]k be the
set of all increasing sequences of length k of elements of X.
In symbols, s ∈ [X]k if and only if s ∈ ωk and
∀j < k(s(j) ∈ X ∧ ∀i < j(s(i) < s(j))). By ω → (ω)kl , we
mean the assertion that for some l ∈ ω and all f : [ω]k → l,
there exists i < l and an infinite set X ⊆ ω such that
f(m1, ...,mk) = i for all 〈m1, ...,m2〉 ∈ [X]k.

It’s easy to show that for each k, l ∈ ω, ω → (ω)kl is provable
in ACA0.

Over RCA0, ACA0 is equivalent to ω → (ω)kl where k, l ∈ ω
and k ≥ 3.
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Seetapun Enigma

In 1980’s English Logician Seetapun showed that there is an
ω-model of WKL0 + ω → (ω)2l in which ACA0 fails.

The existence of an ω-model of WLK0 in which ω → (ω)2l
fails is due to Hirst, 1987.

In 1990’s, Seetapun gave the conjecture that over RCA0,
ω → (ω)22 is equivalent to WKL0.

Cholak, Jockusch and Slaman showed the following results.
(1). The existence of an ω-model of RCA0 which ω → (ω)22
fails;
(2). Over RCA0, ω → (ω)22 is provable in WKL0.

In 2010, Liu Lu showed that there is an ω-model of
RCA0 + ω → (ω)22 which WKL0 fails.
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Π1
1-CA0

Π1
1-CA0 is the subsystems of Z2 whose axioms are the basic

axioms, the induction axiom, and the comprehension scheme
restricted to L2-formulas ϕ(n) which are Π1

1. Thus we have
the universal closure of

∃X∀n(n ∈ X ↔ ϕ(n))

for all Π1
1 formulas ϕ(n) in which X does not occur freely.

There are certain exceptional theorems of ordinary
mathematics which can proved in Π1

1-CA0 but cannot be
proved in ACA0. The exceptional theorems come from several
branches of mathematics including countable algebra, the
topology of the real line, countable combinatorics, and
classical descriptive set theory.
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Π1
1-CA0

Example:

Within ACA0 we define a countable linear ordering to be a
structure 〈A,<A〉, where A ⊆ ω and <A⊆ A×A is an irreflexive
linear ordering of A. The countable linear ordering 〈A,<A〉 is
called countable well ordering if there is no sequence 〈an : n ∈ ω〉
of elements of A such that an+1 <A an for all n ∈ ω. Two
countable well ordering 〈A,<A〉, 〈B,<B〉 are said to be
comparable if they are isomorphic if one of them is isomorphic to a
proper initial segment of the order.
The fact that any countable well ordering are comparable turn out
to be proved in Π1

1-CA0 but not in ACA0. Thus Π1
1-CA0, but not

ACA0, is strong enough to develop a good theory of countable
ordinal numbers.



ATR0

Arithmetical Transfinite Recursion(ATR). Consider an
arithmetical formula θ(n,X) with a free number variable n
and a free set variable X. Note that θ(n,X) may also contain
parameters. Fixing these parameters, we may view θ as an
“arithmetical operator” Θ : P (ω)→ P (ω), defined by

Θ(X) = {n ∈ ω : θ(n,X)}.

Now let 〈A,<A〉 be any countable well ordering, and consider
the set Y ⊆ ω obtained by transfinitely iterating the operator
Θ along 〈A,<A〉. This set Y is defined by the following
conditions: Y ⊆ ω ×A and, for each a ∈ A, Ya = Θ(Y a),
where Ya = {m : (m, a) ∈ Y } and
Y a = {(n, b) : n ∈ Ya ∧ b <A a}.
ATR is the axiom scheme asserting that such a set Y exists.



ATR0

Informally, arithmetical transfinite recursion can be described
as the assertion that the Turing jump operator can be iterated
along any countable well ordering starting any set.

We define ATR0 to consist of ACA0 plus the scheme of
arithmetical transfinite recursion. It is easy to see that ATR0

is a subsystem of Π1
1-CA0. Furthermore, it is a proper

subsystem.

ATR0 is sufficiently strong to accommodate a large portion of
mathematical practice beyond ACA0, including many basic
theorems of infinitary combinatorics and classical descriptive
theory.
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Big Five and Programs of Foundation

As a perhaps not unexpected byproduct, we note that these same
five systems turn out to correspond to various well known,
philosophically motivated programs in foundations of mathematics,
as indicated in following table.

RCA0 Constructivism Bishop

WKL0 Finitistic reductionism Hilbert

ACA0 Predicativism Weyl, Feferman

ATR0 Predicative reductionism Friedman, Simpson

Π1
1-CA0 Impredicativity Feferman et al.
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Reverse mathematics and higher recursion theory.

Reverse mathematics and ordinal analysis.

Reverse mathematics and set theory.
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