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Abstract. While contemporary Game Theory has concentrated much
on strategy, there is somewhat less attention paid to the role of knowledge
and information transfer. There are exceptions to this rule of course,
especially starting with the work of Aumann [2], and with contributions
made by ourselves with coauthors Cogan, Krasucki and Pacuit [16,12].
But we have still only scratched the surface and there is still a lot more
that can be done. In this paper we point to the important role which
knowledge plays in social procedures (colorfully called Social Software

[14])
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The peculiar character of the problem of a rational economic order is
determined precisely by the fact that the knowledge of the circumstances
of which we must make use never exists in concentrated or integrated
form, but solely as the dispersed bits of incomplete and frequently con-
tradictory knowledge which all the separate individuals possess. The eco-
nomic problem of society is thus not merely a problem of how to allocate
“given” resources — if “given” is taken to mean given to a single mind
which deliberately solves the problem set by these “data.” It is rather
a problem of how to secure the best use of resources known to any of
the members of society, for ends whose relative importance only these
individuals know.

F. Hayek
Individualism and Economic Order

1 Introduction

The first third of the XXth century saw two important developments. One of
these was Ramsey’s tracing of personal probabilities to an agent’s choices [21].
This was a precursor to the work of de Finetti, von Neumann and Morgenstern,
and Savage [5, 9, 22]. The other one was Turing’s invention of the Turing machine
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[24] and the formulation of the Church-Turing thesis according to which all
computable functions on natural numbers were recursive or Turing computable.!

Game theory has depended heavily on the first of these developments, since
of course von Neumann and Morgenstern can be regarded as the fathers of Game
theory. But the other development has received less attention. That development
led to the development and design of computers and also to fields like Logic of
Programs, Complexity Theory and Analysis of Algorithms. It also resulted in
much deeper understanding of algorithms, but only of computer algorithms.
Social algorithms have remained largely unanalyzed mathematically except in
special subfields like Social Choice Theory [1] or Fair Division [3]. These fields,
however, do not tend to analyze complex social algorithms (even algorithms of
modest complexity like the two thousand year old Euclid’s algorithm) as is done
in computer science.?2 The typical game theoretic example tends to be either a
one shot game, or else such a game repeated.

A later development, going back to the work of Hintikka, Lewis and a little
later Aumann [7, 8, 2], brought in the issue of knowledge. The notion of common
knowledge is of course very important for Aumann as common knowledge of
rationality can be seen as a justification for backward induction arguments.

But knowledge too has received less attention than it might. We all know
that the Valerie Plame affair [20] had something to do with someone knowing
something which they should not have, and someone revealing something which
they should not have. But why should they not? Clearly because of certain
possible consequences. Knowledge and knowledge transfer are ubiquitous in how
social algorithms work. Note that the fact that the FBI bugged Burris’s phone
conversations with Blagojevich’s brother played an important role, and the fact
that we do not want the FBI to have unlimited right to listen in on conversations
are extremely important knowledge considerations.

We will try in this paper to bring attention to the importance of the two
issues of knowledge and logical structure of algorithms, and show the way to a
broader arena in which game theorists might want to play. Hopefully, in fact
almost certainly, there is a rich general theory to be developed.

! The research reported here was supported in part by a research grant from the PSC-

CUNY program. Previous versions of this paper were presented at a workshop on
knowledge at the University of Quebec in Montreal (2007), and at the World Game
Theory meeting at Northwestern University (2008)
But society itself is replete with extremely complex algorithms. Just consider the
complexity involved in Obama’s election to the presidency, the consequent vacating
of his senate seat, Blagojevich’s acquiring the right to name Obama’s successor,
Blagojevich naming Burris to Obama’s vacant seat, Blagojevich’s impeachment and
removal from office, demands, so far unsuccessful, for Burris to step down, and, no
doubt, quiet satisfaction on the part of the Republicans. And even Obama’s election
to the presidency is hardly a simple event since it involved factors like Hillary’s
association with her husband, a former president, an initital feeling on the part of
African-Americans that Obama, having no ancestry in the institution of slavery was
not “one of us,” etc. etc.
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The notion of algorithm is implicit in so many things which happen in ev-
eryday life. We humans are tool-making creatures (as are chimps to a somewhat
smaller extent) and both individual and social life is over-run with routines, from
cooking recipes (Savage’s celebrated eggs to omelette example [22] for instance)
to elections — a subject of much discussion going back to Condorcet.

Over the last ten years or so, a field called Social Software [14] has come
into existence which carries out a systematic study of such questions, and the
purpose of this paper is to give an introduction to the knowledge-theoretic issues.
We will proceed by means of examples.

2 Structure

Normally, a piece of social software or social algorithm has a logical structure.
As was argued in [14], this structure must address three important aspects,
namely incentives, knowledge, and logical structure. For normally, an algorithm
has logical structure, “A happens before B, which is succeeded by action C' if
condition X holds and by action D if X does not hold.”

But quite often, the logical structure of the algorithm is parasitic on logical
(or algorithmic) properties of existing physical or social structures. Clearly a
prison needs a certain physical structure in order to be able to confine people,
and a classroom needs a blackboard or a lectern in order for it to be usable as
the venue of a lecture. Thus the teacher can now perform actions like write “No
class tomorrow” on the blackboard and the students can read what she wrote
or copy it in their notebooks. The physical properties of the blackboard enable
certain actions with their own algorithmic properties. The fact that there is no
class the next day now becomes common knowledge and the students can make
plans to use the time that has been freed up.

2.1 Queues

A social structure with certain logical properties is a queue.

The queue is a very popular institution which occurs both in daily life and
in computer programs. In a computer program, a queue is a FIFO structure,
where FIFO means, “First in, first out.” There are two operations, one by which
an element is deleted from the front of the queue, and a second one where an
element is added to the back of the queue. In real life, the queue could consist
of people waiting at a bank to be served. The person deleted is the one who was
at the front of the queue but is no longer in the queue, and who receives service
from a teller. An element which is added is a new customer who has just arrived
and who goes to the back of the queue.

Clearly the queue implements our notions of fairness, (which can be proved
rigorously as a theorem) that someone who came earlier gets service earlier, and
in a bank this typically does happen. If someone in a bank tries to rush to the
head of the line, people will stop him. Thus ‘violations easily detectable’ is a
crucial knowledge property.
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We also have queues at bus stops and quite often the queue breaks down;
there is a rush for seats at the last moment. Presumably the difference arises
because things happen much faster in a bus queue than they do in a bank. At
a bus stop, when the bus arrives, everything happens very fast and people are
more interested in getting on the bus than in enforcing the rules.

Consider now, by comparison, the problem of parking, which is a similar
problem. A scarce resource needs to be allocated on the basis of some sort of
priority, which, now, is more difficult to determine. When people are looking
for parking in a busy area, they tend to cruise around until they find a space.
There is no queue as such, but in general we still want that someone who arrives
first should find a parking space and someone who arrives later may not. This is
much more likely in a university or company parking lot, which is compact, and
may even have a guard, rather than on the street, where parking is distributed,
and priority does play some role but it is only probabilistic. Clearly the lack
of information about where the parking space is, and who came first, plays an
important role.

This fact has unfortunate consequences as Shoup [23] points out.

When my students and I studied cruising for parking in a 15-block
business district in Los Angeles, we found the average cruising time was
3.3 minutes, and the average cruising distance half a mile (about 2.5
times around the block). This may not sound like much, but with 470
parking meters in the district, and a turnover rate for curb parking of 17
cars per space per day, 8,000 cars park at the curb each weekday. Even
a small amount of cruising time for each car adds up to a lot of traffic.

QOver the course of a year, the search for curb parking in this 15-block
district created about 950,000 excess vehicle miles of travel — equivalent
to 38 trips around the earth, or four trips to the moon. And here’s an-
other inconvenient truth about underpriced curb parking: cruising those
950,000 miles wastes 47,000 gallons of gas and produces 730 tons of the
greenhouse gas carbon dioxide. If all this happens in one small business
district, imagine the cumulative effect of all cruising in the United States.

Shoup regards this problem as one of incentive and suggests that parking fees
be raised so that occupancy of street parking spaces is only 85%. But clearly
this will penalize the less affluent drivers. The new fees will likely be still less
than the cost of garage parking, affluent drivers will abandon garage parking for
street parking, and the less affluent drivers will be priced out. Note by contrast
that we do not usually charge people for standing in a queue. We could, and
surely queues would also be shorter if people had to pay to stand in them. But
this has not occurred to anyone as a solution to the ‘standing in line problem.’

An algorithmic solution to the problem of parking might well be possible
using something like a GPS system. If information about empty parking spaces
was available to a central computer which could also accept requests from cars
for parking spaces, and allocate spaces to arriving cars, then a solution could in
fact be implemented. The information transfer and the allocation system would
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in effect convert the physically distributed parking spaces into the algorithmic
equivalent of a queue. There would be little wasteful consumption of gasoline,
and the drivers would save a great deal of time and frustration.

And here indeed is an implementation of the alternate solution
Find a Place to Park on Your GPS — Spark Parking Makes it Possible

Navigation Developers Can Access Spark Parking Points of Interest
Through New Tele Atlas ContentLink Program

San Francisco, CA, March 21, 2007

Running late for a meeting and worried about finding a place to
park? Unhappy about paying outrageous valet parking fees at your fa-
vorite restaurant? These headaches will soon be a thing of the past.
Spark Parking’s detailed parking location information data is now avail-
able through the newly released Tele Atlas ContentLinkSM portal for
application developers to incorporate into a range of GPS devices and
location-based services and applications.

Spark Parking’s detailed parking information provides the locations
of every paid parking facility in each covered city — from the enormous
multi-level garages to the tiny surface lots hidden in alleys. In addition,
Spark Parking includes facility size, operating hours, parking rates, avail-
able validations, and many more details not previously available from any
source. As a result, drivers will easily be able to find parking that meets
their needs and budgets.

http://www.pr.com/press-release/33381

SAN FRANCISCO

Where’s the bus? NextMuni can tell you.

System uses GPS to let riders know when streetcar will arrive
Rachel Gordon, Chronicle Staff Writer

Thursday, March 29, 2007

San Francisco’s Municipal Railway may have a hard time running on
time, but at least the transit agency is doing more to let riders know
when their next bus or streetcar is due to arrive.

The ”NextMuni” system, which tracks the location of vehicles via
satellite, is now up and running on all the city’s electrified trolley bus
lines. It had been available only on the Metro streetcar lines and the
22-Fillmore, a trolley bus line that served as an early test.

The whereabouts of the Global Positioning System-equipped vehicles
are fed into a centralized computer system that translates the data into
user-friendly updates available on the Internet and on cell phones and
personal digital assistants.

http://www.sfgate.com/
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Ultimately, the difference between queues and searching for parking is struc-
tural. In one case there is an easy algorithmic solution which respects priority
(more or less) and in the other case such solutions are harder to find — except
when we are dealing with parking lots or use sophisticated new technology.

2.2 Keys

Here is another example. When you rent an apartment, you receive a key from
the landlord. The key serves two purposes. Its possession is proof of a right, the
right to enter the apartment. But its possession is also a physical enabler. The
two are not the same of course, since if you lose your key, you still have the right,
for it is still your apartment. But you are not enabled, as you cannot get in. If
some stranger finds the key, then he is enabled, but does not have the right.
Thus the two properties of a key do not coincide perfectly. But normally the two
do coincide.

There are other analogs of a key which perform similar functions to a key. A
password to a computer account is like a key, but does not need to be carried in
your pocket. An ID card establishes your right to enter, but you typically need
a guard to be present, to see your card and to let you into the building. If the
building is locked and the guard is not present, you are out of luck.

In any case, these various generalized keys differ algorithmically in some
crucial ways. Stealing someone’s identity was at one time very difficult. You had
to look like that person, know some personal facts, and you had to stay away
from that person’s dog who knew perfectly well that you had the wrong smell.
You needed a different ‘ID’ for the dog than you needed for people.

But nowadays identity theft is extremely easy. Lots of Social Security num-
bers, and mothers’ maiden names are out there for the taking, and people who
do not look like you at all can make use of them. Personal appearance or brass
keys which originally provided proof of “right to entry,” have been replaced by
electronic items which are very easy to steal.

Let = be an individual, and let R(z) mean that = has the right to use the
resources controlled by the key, and E(z) mean that x is enabled by the key.
Then we have two important conditions.

— Safety: E(x) — R(z). Whoever is enabled has the right
— Liveness: R(z) — E(x). Whoever has the right is enabled.

Of course safety could be thought of in terms of the contrapositive,
~ R(z) — ~ E(X)

namely, whoever does not have the right is not enabled. Usually, safety is more
important than liveness. If you lose your key and someone finds it, you are in
trouble. But liveness also matters. A good notion of key must provide for both
properties.

At one time, university libraries tended to be open. People not connected
to the university, even if they did not have the right, were still able to enter
the library. There was open access corresponding to the fact that liveness was
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thought of as more important than safety. But the trend in the last few decades
has been in the opposite direction and entry to libraries is strictly controlled, at
least in the US.

In any case the structural problem (of safety) can be addressed at the incen-
tive level, for instance by instituting heavy penalties for stealing identities. But
we could also look for a structural solution without seeking to penalize anyone.

Toddlers are apt to run away and get into trouble, but we do not solve the
problem by punishing them — we solve it by creating barriers to such escape,
e.g., safety gates. A magnetic card which you can swipe also serves as a purely
structural solution to the safety problem.

Another interesting example is a fence. A farmer may have a fence to keep
his sheep in, and the fence prevents certain kinds of movement — namely sheep
running away. Here the fence is a physical barrier and implements the safety
condition in a purely physical way. But sometimes, on a university campus, we
will see a very low fence around a grassy area. Almost anyone can walk over the
fence, so the fence is no longer a physical obstacle. Rather the value of the fence
is now informational, it says, Thou shalt not cross! With the yellow tape which
the police sometimes put up, perhaps around a crime scene, or perhaps simply
to block off some intersection, the Thou shalt not cross acquires quite a bit of
punch.

3 Crime and Punishment

We offer a simple model to explain certain common situations where knowledge
plays a role and can be used for reward or punishment.

3.1 Prisoner’s dilemma

In this game, two men are arrested and invited to testify against each other. If
neither testifies, then there is a small penalty since there is no real evidence. But
if one defects (testifies) and the other does not, then the defecter goes free and
the other gets a large sentence. If both defect they both get medium sentences.
Jointly they are better off (The payoffs are 3 each) if neither defects, but for both
of them, defecting is the dominant strategy. It yields better payoffs regardless of
how the other acts. But if they both defect, then they end up with (1,1) which
is worse. If one defects and the other remains honest then the honest one suffers
for his honesty.

Coop Def
Coop | 3,3 |0,4
Def | 4,0 | 1,1

There is a unique, rather bad Nash equilibrium at SE with (1,1), while the
(3,3) solution on NW, though better for both, is not a Nash equilibrium.



8 Rohit Parikh

Let us change this now into a three person game, where the third agent S
(Society) has a payoff equal to the sum of the payoffs of the two original agents.

Consider now the expanded game G. In G, after the first two players make
their moves, the third player moves and can choose among p, (punish Row), p.
(punish Column), p, (punish both), and n (no action). p,, as we might expect,
results in a negative payoff for Row of say 5. If Row has defected, S can play p,
which results in a negative payoff of 5 for the Row player. Similarly for Column
and p.. G is a full information game in that after Row and Column have made
their moves, S knows what moves they made. Since S also suffers when Row or
Column betrays his partner, S has an incentive to punish the erring player and
the threat of S’s punishment will keep the two players honest. We now get (from
the point of view of Row and Column)

Coop  Def
Coop | 3,3 0,—1
Def | —1,0 |—4,—4

and the NE solution with payoffs of (3,3) becomes the unique Nash equilib-
rium.

The game G’ is just like the game G, except that S lacks information as to
who made which move. If the societal payoff is only 4 or less, S knows that one
of Row and Column cheated but it does not know which one. Thus it has no
way to punish, and cheating can take place with impunity.

Clearly socially responsible behavior is more likely in G than in G’ and the
difference arises from the fact that in G, S has some information which it does
not have in G’.

This, of course is why the FBI taps the phones of suspected criminals. A
social agency has the incentive to punish anti-social behavior, and in order to
do this, it needs to get information and change a G’-like situation into a G-like
situation.?

Naturally, the agency S might not be benign. S could easily be a Mafia boss
who needs to know when some member of the mob “sings”, i.e., betrays the oath
of silence. The singer could then be punished if and when he comes out of prison.

The FBI could itself have non-benign reasons for tapping phones. For instance
we know that Martin Luther King’s phone was tapped in order for the FBI to
have power over him. This situation can be represented game theoretically, by
turning G into a four payer game where the FBI like agent (call is S1) which has
the power to punish is not society at large but an agent of society, and society,
while wishing to control anti-social behavior on the part of Row and Column,
alse needs to control its own agent whose job it is to keep Row and Column in
check but who may have its own payoff function distinct from social welfare.

We shall not go more into this in this paper.

3 Of course all this is rather obvious, but it is important to point to the game theo-
retic reason not only behind punishment, but behind the acquisition of information
relevant to it.
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4 Cooperative Knowledge

Distributed Algorithms are much studied by computer scientists. A lot of com-
mercial activity which goes on on the web has the property of being a distributed
algorithm with many players. And of course the market is itself a very old dis-
tributed algorithm.

In such algorithms, it is crucial to make sure that when agents have to act,
they have the requisite knowledge. And models for calculating such knowledge
have existed for some time; we ourselves have participated in constructing such
models [19, 18]. See also [4].

The notion of common knowledge as the route to consensus was introduced by
Aumann in [2]. There is subsequent work by various people, including Geanako-
plos and Polemarchakis [6] and ourselves [16]. Aumann simply assumed common
knowledge, and showed that two agents would agree on the value of a random
variable if they had common knowledge of their beliefs about it. [6] showed that
even if the agents did not have common knowledge to start with, if they ex-
changed values, they would arrive at consensus, and common knowledge of that
fact. Parikh and Krasucki [16] carried this one step further and considered many
agents exchanging values in pairwise interactions. No common knowledge could
now arise, as most agents would remain unaware of individual transactions they
were not a party to. Nonetheless there would be consensus. Thus this exchange
of values could be seen as a distributed algorithm which achieved a result.

Issues about how knowledge enters into social algorithms are discussed in
[10,12,19).

[19] actually ddiscusses how a framework for defining knowledge can be devel-
oped. A finite number of agents have some private information to start with, and
they exchange messages. Each exchange of messages reveals something about the
situation, or, in technical terms, it reduces the size of the relevant Kripke struc-
ture or Aumann structure. An agent who has seen some events but not others
can make guesses as to what other events could have taken place and it knows
some fact ¢ iff ¢ would be true regardless of how the unseen events went. This
framework is used in both [12, 10].

[10] discusses agents who are connected along some graph, and knowledge
can move only along the edges of a graph. Thus if agent ¢ is not connected to
agent j, then ¢ cannot directly obtain information from j, but might get such
information via a third agent k, as in fact Novak got some information from
Judith Miller. Such edges may be approved or disapproved, and if information
transfer took place along a disapproved edge, then that could be cause for legal
sanctions, not because harm had occurred, but because harm could occur and
the algorithm was no longer secure.

It is shown in [10] that the graph completely determines the logical properties
of possible states of knowledge, and vice versa. Indeed, an early version of that
paper already discussed the Plame case before it hit the headlines.

In [12] we consider how obligations arise from knowledge. We consider the
following examples:
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Example 1: Uma is a physician whose neighbour is ill. Uma does not know and
has not been informed. Uma has no obligation (as yet) to treat the neighbour.
Example 2: Uma is a physician whose neighbour Sam is ill. The neighbour’s
daughter Ann comes to Uma’s house and tells her. Now Uma does have an
obligation to treat Sam, or perhaps call in an ambulance or a specialist.
Example 3: Mary is a patient in St. Gibson’s hospital. Mary is having a heart
attack. The caveat which applied in case a) does not apply here. The hospital
has an obligation to be aware of Mary’s condition at all times and to provide
emergency treatment as appropriate.

In such cases, when an agent cannot herself take a requisite action, it is
incumbent upon her to provide such information to the agent who can take
such action. Or, as in the case of the hospital, the agent has an obligation not
only to act, but also to gather knowledge so as to be able to act when the occasion
arises. A milder example of such situations consists of requiring homeowners to
install fire alarms. Homeowners are not only required (advised) to take action
when there is a fire, they are also required to set up a system such that if there
s a fire, they will know about it.

Again the semantics from [19] is used. Various possible sequences of events are
possible, depending on the actions taken by the agents. Some of these sequences
are better than others, and some, indeed, are disastrous, as when a patient is
not treated for lack of information. It is shown how having information creates
obligations on the agents, and also how the need to convey information arises,
when one knows that an agent who could carry out some required action lacks
the requisite information.

5 Summary

We have given examples of situations where knowledge transfer and algorithmic
structure can affect or even determine the sorts of social algorithms which are
possible. As we have said earlier, understanding the role of knowledge in the
working of society is a big project. The importance of knowledge has always
been recognized, even in the Indian school of Navya-Nyaya, by Plato’s Socrates
(especially the dialogues Meno, and Theaetetus), and by Confucius. But its
importance in the actual running of society has been only recently begun to be
appreciated by those who do formal work. The work we described above indicates
how rich the domain of interest is here.
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