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Introduction

Suppose I toss two coins for 15 times respectively, and the results are:

Coin I : 111111111111111

Coin II : 100110110001010

Now consider a third coin:

Coin III : 111111100000000

Why do we feel that the sequence 100110110001010 is more “random” than
111111111111111 and 111111100000000? How do I express this notion of
randomness in a more formal way?
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Introduction

Consider the following sequences:

Sequence I : 111111111111111

Sequence II : 111111100000000

Sequence III : 100110110001010

To describe sequence I, I may say “1 times 15”.
To describe sequence II, I may say “1 times 7 and 0 times 8”.
To describe sequence III, I have no other way but to read it word by word,
“100110110001010”.

This leads to the definition of Kolmogorov Complexity.
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Coding Function

The first thing we need to clarify is the notion of “description”.

In the following, we suppose every string to be binary, and do not distinguish
between a string and its enumeration as a natural number.

Definition (Coding Function)

Any function f : N→ N can be considered as a coding function.
The domain of f is the set of code words.
Moreover, we often require f to be computable.

Note that f may not be injective/surjective.
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Complexity w.r.t. f

Given a coding function f , we define the complexity of a string (i.e. a natural
number) with respect to f :

Definition (Complexity w.r.t. f )

Cf (n) =

{
min{l(s) : f (s) = n} f −1(n) is non-empty

∞ otherwise

And since the complexity is f -related, we can compare the “power” of two
coding functions.

Definition (Universal Function)

We say f minorizes g , if there is a constant c such that, for all n,

Cf (n) ≤ Cg (n) + c.

And we say f is universal, if it minorizes every partial recursive function.
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Invariance Theorem

And in fact, such a universal function does exist.

Theorem (Invariance Theorem)

There exists a universal function.

Note that, this theorem can be expressed by a Σ6-formula in PA.

Proof.

Let f0 be the function which the universal Turing machine computes, namely,

f0(〈n, x〉) = Φn(x).

Then, given a partial recursive function f , let Φn be a Turing machine that
computes f . The following holds for all m:

Cf0(m) ≤ Cf (m) + cn,

where cn depends only on n.
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Kolmogorov Complexity

With the help of Invariance Theorem, we can now define the complexity of a
string which is coding-invariant (up to an additive constant).

Definition (Kolmogorov Complexity)

Fix f0 as the function computed by the universal Turing machine. The
Kolmogorov Complexity of a string is defined by

K(n) = Cf0(n).

The code we use for defining the Kolmogorov complexity of a string is
essentially the following: first, describe a Turing machine; then, give that
machine an input.
For instance, to code the string “101010101010101010101010”, we first select
a Turing machine that duplicates the string “10” n times for n given, and then
assign “n = 12”.

Note that, the definition of K depends on the particular enumeration of Turing
machines. But one can prove that, if two enumerations are recursively
isomorphic, their corresponding Kolmogorov complexity differ only by an
additive constant.
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Conditional Kolmogorov Complexity

We can also define the conditional complexity of a string. Given information m
for free, what is the shortest string that expresses n?

Definition (Conditional complexity w.r.t. f )

Cf (n|m) = min{l(s) : f (〈m, s〉) = n}

And we can prove the parallel result:

Theorem (Invariance Theorem)

Let f0 be the function computed by the universal Turing machine, such that
f0(〈m, 〈n, x〉〉) = Φn(〈m, x〉). Then for every partial recursive function f , there
exists a constant c such that Cf0(n|m) ≤ Cf (n|m) + c for all m, n.

Therefore we also can define the conditional Kolmogorov complexity.

Definition (Conditional Kolmogorov Complexity)

Let f0 be as above. The conditional Kolmogorov complexity is defined by

K(n|m) = Cf0(n|m)
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Kolmogorov Complexity

We have the following observations that estimate the upper and lower bounds
of Kolmogoroc complexity.

Observation

There exists a constant c such that K(n) ≤ l(n) + c for all n.

There exists a constant c such that K(n|m) ≤ K(n) + c for all m, n.

For each k, there exists n such that K(n) ≥ l(n) = k.

Proof.

Use the Turing machine that copies its input as output.

Use the Turing machine that erases the first input, followed by the
universal Turing machine.

There are 2k binary strings with length k, but only 2k − 1 shorter codes.
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Incompressibility and Randomness

Recall that our initial intention was to study the randomness of strings.

Definition

We say a string is incompressible if K(n) ≥ l(n).
We say a string is c-incompressible if K(n) ≥ l(n)− c.

Intuitively, incompressible strings are random. Now we’re going to formalize
what it means by saying a finite string is “random”, and prove incompressible
strings are indeed random in this sense.



Martin-Löf Test

The initial idea of Martin-Löf test starts by setting hierarchies for randomness.
A string with no zero is absolutely nonrandom; but it is unnatural to fix a
frequency p and say all strings with less than p of its total digits being zero are
nonrandom. We have to agree that there are different levels of randomness.

For instance, a string with too many initial zeros is not random. Take

Vm = {s : s starts with m zeros}

and we have a hierarchy of randomness with V0 ⊃ V1 ⊃ V2 ⊃ ...
The larger m is, the more nonrandom strings in Vm are.

We generalize the above case to obtain the notion of Martin-Löf test.
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Martin-Löf Test

Definition (Martin-Löf Test)

Given a total function δ : N→ N, we call the sets Vm = {x : δ(x) ≥ m} critical
regions. We say that δ is a Martin-Löf test if

1 The set V = {〈m, x〉 : x ∈ Vm} is recursively enumerable;

2 |{x ∈ Vm | l(x) = n}| ≤ 2n−m for all m, n.

By definition we have V0 ⊃ V1 ⊃ V2 ⊃ ... and each Vm is an r .e. set

Again, we want a universal test instead of a specific one.

Definition (Universal Martin-Löf Test)

We say δ0 is a universal Martin-Löf test, if for every Martin-Löf test δ, there is
a constant c such that δ0(x) ≥ δ(x)− c for all x .

Intuitively, this means that the universal test considers every string to be more
nonrandom than any other test, if an additive deviation is ignored. Therefore,
it is the tightest test we can ever find.
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Incompressibility and Randomness

And there is indeed a universal test. It is generated by applying the
Kolmogorov complexity.

Theorem

There exists a universal Martin-Löf test, namely δ0(x) = l(x)− K(x |l(x))− 1.

Proof.

We omit the proof of {〈m, x〉 : δ0(x) ≥ m} being recursively enumerable, which
is done by building a non-increasing sequence φn(x) of recursive functions
whose limit is K(x |l(x)).

For size of critical regions, Vm = {x : K(x |l(x)) ≤ l(x)−m− 1}, and there are
only 2l(x)−m − 1 many strings with length less than or equal to l(x)−m − 1.

For universality, let {δi}i≥1 be an effective enumeration of all Martin-Löf tests.
Fix a test δi and an x . We sort all strings s of length l(x) in descending order
of 〈δi (s), s〉, and suppose x is the j-th element. Then, there is a Turing
machine that computes x with input 〈l(x), i , j〉. By Invariance Theorem,
K(x |l(x)) ≤ l(i) + l(j) + c. On the other hand, j ≤ |Vδi (x)| and therefore
l(j) ≤ l(x)− δi (x). In conclusion, δi (x) ≤ l(x)− K(x |l(x)) + c ′.

We conclude that randomness defined by Martin-Löf test and incompressibility
defined by Kolmogorov complexity coincide.
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There exists a universal Martin-Löf test, namely δ0(x) = l(x)− K(x |l(x))− 1.

Proof.

We omit the proof of {〈m, x〉 : δ0(x) ≥ m} being recursively enumerable, which
is done by building a non-increasing sequence φn(x) of recursive functions
whose limit is K(x |l(x)).

For size of critical regions, Vm = {x : K(x |l(x)) ≤ l(x)−m− 1}, and there are
only 2l(x)−m − 1 many strings with length less than or equal to l(x)−m − 1.

For universality, let {δi}i≥1 be an effective enumeration of all Martin-Löf tests.
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Undecidability of K

The function K does not look like a recursive function. K(n) is the length of
the shortest input with n as the output; however, whether a calculation of a
Turing machines halts with the given output is not decidable. We’re going to
prove that K is indeed not a recursive function.

Theorem (Noncomputability Theorem)

K is not partial recursive.

Proof.

We prove an even stronger statement: there is no partial recursive function
with infinite domain that coincides with K on its domain.

Suppose not. Let φ be such a function. Its domain is an infinite r.e. set and
thus contains an infinite recursive set, denoted by A. Take

ψ(x) = min{y ∈ A : K(y) ≥ x}.

It is total recursive because K and φ agree on A. By definition of ψ, we have
K(ψ(x)) ≥ x . However, by Invariance Theorem,

K(ψ(x)) ≤ Cψ(ψ(x)) + c ≤ l(x) + c

and thus x ≤ l(x) + c, a contradiction.
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Undecidability of K

With a similar proof, we’ll see another interesting property of the function K .

Theorem

Let m(x) = min{K(y) : y ≥ x}. Then

1 m(x) goes monotonically to infinity;

2 but it does so more slowly than any unbounded partial recursive function;
more precisely, for any monotonic unbounded partial recursive function
φ(x), we have m(x) < φ(x) except for finitely many x .

Note that, a function that goes to infinity faster than any recursive function is
easy to build. Let {fi}i∈N be an enumeration of all partial recursive functions,
and F (n) = maxi≤n fi (n) meets the requirement.

Proof.

Monotonicity is obvious.
For unboundedness, it suffices to see that there are only finitely many codes
with length ≤ n for any given n.
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For unboundedness, it suffices to see that there are only finitely many codes
with length ≤ n for any given n.
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Undecidability of K

Proof. (Cont’d).

Now assume for contradiction that there is a monotonic unbounded partial
recursive function φ such that φ(x) ≤ m(x) for infinitely many x . The domain
of φ is an infinite r.e. set. It contains an infinite recursive subset A.

Take

ψ(x) =

{
φ(max{y ∈ A : y ≤ x}) x ≥ minA

0 otherwise

Then ψ is total recursive, monotonic, unbounded, and ψ(x) ≤ m(x) for
infinitely many x .

Define M(x) = max{y : K(y) ≤ x} and F (x) = max{y : ψ(y) ≤ x + 1}. Then,

M(x) + 1 = min{y : m(y) > x} ≤ min{y : ψ(y) > x} ≤ F (x)

for infinitely many x . In other words, F (x) > M(x) for infinitely many x . Now
that F is total recursive, this implies that K(F (x)) > x for infinitely many x .
However, by Invariance Theorem,

K(F (x)) ≤ CF (F (x)) + c ≤ l(x) + c

and thus x < l(x) + c for infinitely many x , a contradiction.



Undecidability of K

Proof. (Cont’d).

Now assume for contradiction that there is a monotonic unbounded partial
recursive function φ such that φ(x) ≤ m(x) for infinitely many x . The domain
of φ is an infinite r.e. set. It contains an infinite recursive subset A.

Take

ψ(x) =

{
φ(max{y ∈ A : y ≤ x}) x ≥ minA

0 otherwise

Then ψ is total recursive, monotonic, unbounded, and ψ(x) ≤ m(x) for
infinitely many x .

Define M(x) = max{y : K(y) ≤ x} and F (x) = max{y : ψ(y) ≤ x + 1}. Then,

M(x) + 1 = min{y : m(y) > x} ≤ min{y : ψ(y) > x} ≤ F (x)

for infinitely many x . In other words, F (x) > M(x) for infinitely many x . Now
that F is total recursive, this implies that K(F (x)) > x for infinitely many x .
However, by Invariance Theorem,

K(F (x)) ≤ CF (F (x)) + c ≤ l(x) + c

and thus x < l(x) + c for infinitely many x , a contradiction.



Undecidability of K

Proof. (Cont’d).

Now assume for contradiction that there is a monotonic unbounded partial
recursive function φ such that φ(x) ≤ m(x) for infinitely many x . The domain
of φ is an infinite r.e. set. It contains an infinite recursive subset A.

Take

ψ(x) =

{
φ(max{y ∈ A : y ≤ x}) x ≥ minA

0 otherwise

Then ψ is total recursive, monotonic, unbounded, and ψ(x) ≤ m(x) for
infinitely many x .

Define M(x) = max{y : K(y) ≤ x} and F (x) = max{y : ψ(y) ≤ x + 1}. Then,

M(x) + 1 = min{y : m(y) > x} ≤ min{y : ψ(y) > x} ≤ F (x)

for infinitely many x . In other words, F (x) > M(x) for infinitely many x . Now
that F is total recursive, this implies that K(F (x)) > x for infinitely many x .

However, by Invariance Theorem,

K(F (x)) ≤ CF (F (x)) + c ≤ l(x) + c

and thus x < l(x) + c for infinitely many x , a contradiction.



Undecidability of K

Proof. (Cont’d).

Now assume for contradiction that there is a monotonic unbounded partial
recursive function φ such that φ(x) ≤ m(x) for infinitely many x . The domain
of φ is an infinite r.e. set. It contains an infinite recursive subset A.

Take

ψ(x) =

{
φ(max{y ∈ A : y ≤ x}) x ≥ minA

0 otherwise

Then ψ is total recursive, monotonic, unbounded, and ψ(x) ≤ m(x) for
infinitely many x .

Define M(x) = max{y : K(y) ≤ x} and F (x) = max{y : ψ(y) ≤ x + 1}. Then,

M(x) + 1 = min{y : m(y) > x} ≤ min{y : ψ(y) > x} ≤ F (x)

for infinitely many x . In other words, F (x) > M(x) for infinitely many x . Now
that F is total recursive, this implies that K(F (x)) > x for infinitely many x .
However, by Invariance Theorem,

K(F (x)) ≤ CF (F (x)) + c ≤ l(x) + c

and thus x < l(x) + c for infinitely many x , a contradiction.



Berry Paradox

Consider the following description:

The smallest positive integer not definable in under sixty letters.

The Berry paradox says, since there are only finitely many descriptions in under
sixty letters, such integer exists. But then, this integer is defined by this
sentence, which is under sixty letters.

In Kolmogorov’s theory of coding, this paradox does not appear. Recall that we
demand every coding function to be recursive. And if you try to find “the
smallest positive integer not definable in under sixty letters” in an effective way,
the program ends up in a loop.

However, the idea of Berry paradox does give us an important insight, which
leads to the proof of Chaitin’s incompleteness theorem.
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Chaitin’s Incompleteness Theorem

Theorem (Chaitin’s Incompleteness Theorem)

If T is a consistent recursively enumerable theory that extends PA, then there
this a constant c such that K(_n^) ≥ _c^ is not provable in T for all n.

Proof.

Suppose not. We abuse notation; for each c, there exists n such that K(n) ≥ c
is provable in T .
Let Φm be the Turing machine that enumerates theorems of T . Now we can
modify Φm into a Turing machine such that, given c as an input, by
enumerating all theorems of T with Φm, the machine finds the first proof of
K(n) ≥ c for some n, and send n as the output. Therefore, we have a coding
of this n with length l(c). By Invariance Theorem, K(n) ≤ l(c) + c ′, where c ′

depends only upon m. However, now that we have c ≤ K(n) ≤ l(c) + c ′, for c
sufficiently large this results in a contradiction.

Note that, although this is a proof by contradiction, we do obtain a concrete
constant c witnessing the theorem. In fact, it suffices to choose c such that
c > l(c) + c ′.
Question: Where in the proof do we require the consistency of T?
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Chaitin’s Incompleteness Theorem

And as a corollary, we have:

Corollary (Gödel’s First Incompleteness Theorem)

If T is a consistent recursively enumerable theory that extends PA, then there
is a formula φ such that both φ and ¬φ are not provable in T .

Proof.

We’ve proven that there are incompressible strings of each length, and thus
there are infinitely many n such that ¬K(_n^) ≥ _c^ is not provable.

Note that, Gödel’s second incompleteness theorem does NOT follow from the
above proof.
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Reflections on Chaitin’s Incompleteness Theorem

Gödel’s Incompleteness Theorem – Russell’s Paradox
Chaition’s Incompleteness Theorem – Berry Paradox
But somehow, they’re closely related.

The following algorithm seems to generate a proof of K(n) ≥ c in T : list all
strings s with length less than c as input, and check whether we can prove the
universal Turing machine halts with output n.
However, the algorithm does not work because we cannot effectively decide
whether a Turing machine halts. Moreover, since now we’re given only finitely
many strings, there has to be one particular string s0, such that we cannot
decide the halting problem with s0 as input.
Question: What is that particular input s0?

The answer lies in the proof of Chaitin’s Incompleteness Theorem.
We constructed a Turing machine that enumerates all theorems of T to see
whether K(n) ≥ c is provable. With little modification, we can also construct a
Turing machine that checks whether 0 6= 0 is a theorem of T . We’ve supposed
T is consistent, and thus such a Turing machine does not halt. On the other
hand, by Gödel’s incompleteness theorem, T cannot prove that this Turing
machine does not halt. This is the input we’re looking for.
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