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Abstract

In his seminal work [Pla89], Plaza proposed the public announcement logic
(PAL), which is considered as the pilot logic in the field of dynamic epistemic
logic. In the same paper, Plaza also introduced an interesting “know-value” op-
erator Kv and listed a few valid formulas of PAL+Kv. However, it is unknown
that whether these formulas, on top of the axioms for PAL, completely axioma-
tize PAL+Kv. In this paper, we first gave a negative answer to this open question.
Moreover, we generalize the Kv operator and show that in the setting of PAL, re-
placing the Kv operator with its generalized version does not increase the expres-
sive power of the resulting logic. This suggests that we can simply use the more
flexible generalization instead of the original PAL+Kv. As the main result, we give
a complete proof system for PAL plus the generalized operator based on a com-
plete axiomatization of epistemic loic with the same operator in the single-agent
setting.

Key words: public announcement logic, know-value operator, modal logic, multi-
agent system

1 Introduction
As originally proposed in [VW51, Hin62], classic epistemic logic (EL) focuses on
propositional knowledge of agents, expressed as knowing that p. Such formalism of
knowledge turns out to be very successful in the research of AI and theoretical com-
puter science, demonstrated by the widely use of various EL-based multi-agent sys-
tems, such as the epistemic temporal approach proposed in [FHMV95, PR85] and the
dynamic epistemic approach proposed in [Pla89, GG97, BMS98].

On the other hand, there are other types of knowledge which are relevant to AI, such
as procedural knowledge (knowing how to do a), and descriptive knowledge (knowing
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what is d). Compared to the heated discussions between propositional knowledge and
procedural knowledge in epistemology (cf. e.g., [Ryl49, Car79, SW01]), the distinc-
tions between “knowing that” and “knowing what” received relatively little attention,
although some early work in AI, such as [McC79], claimed that “knowing what” is the
most useful notion among the three.

At the first glance, knowing what may seem to be reducible to knowing that, for
example, instead of saying (1): “He knows [what] Peter’s phone number [is]”, we can
also say (2): “He knows that Peter’s phone number is 1234” if we know Peter’s phone
number. However, if we replace the “phone number” in (1) by “password” which is
usually not known to us, then to express the exact meaning of the revised (1) in terms
of knowing that, we may need to say the following:

(3): “He knows that Peter’s password is 1111 or he knows that Peter’s password is
1112 or . . . or he knows that Peter’s password is 9999”

Clearly, in every day communication, we prefer the succinctness of sentence (1)
compared to (3). Actually the scenario behind (3) is crucial in the setting of informa-
tion security, where it is very common to assume that each agent has its private key
while others have no idea what it is. We would like to express “I know that he knows
his password, but I do not know it.” However, the literal translation in terms of propo-
sitional knowledge (K1K2φ ∧ ¬K1φ) is clearly inconsistent in classic epistemic logic.
Such concerns inspired different formalisms of knowledge in epistemic logic related to
security verification (cf. e.g., [RS05, HP03, DW10]).

Independently from all the above mentioned works, Plaza proposed a very natural
knowing what operator Kv in the seminal work [Pla89], which is well-known for its
contribution to public announcement logic (PAL) and the reduction-style axiomatiza-
tion.1 Intuitively, Kvid expresses exactly that “Agent i knows what d is (or i knows the
value of d, in Plaza’s original term).” The Kv operator was used in [Pla89] to handle
the following puzzle:2

Example 1. (Sum and Product) Mr. A chooses two natural numbers x and y and tell
their sum to S only, and their product to P only. Now the following conversation takes
place:

P: I don’t know the numbers.
S: I knew you didn’t know.
P: But now I know the numbers!
S: So do I!
Question: What are x and y if they are not greater than 100?

Note that in this puzzle it is crucial to distinguish the two kinds of knowledge: S
knows that P does not know what are the numbers (formally, KS¬KvP d). With the

1PAL was also independently proposed in [GG97, Ger99].
2This example is also discussed using PAL in [vDRV08], where the knowing-what formulas are encoded

by disjunctions of knowing-that formulas with special basic propositions representing values of numbers
within a fixed finite upper bound. For discussions on the origin of the sum-and-product riddle, please also
refer to [vDRV08].
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corresponding semantics, formulas like KSKvP d ∧ ¬KvSd are perfectly consistent, in
contrast to the inconsistency of KSKP q ∧ ¬KSq in the standard epistemic logic.

Plaza gave an axiomatization of ELKv (the epistemic logic with the new Kv oper-
ator) and proposed a few axioms for PALKv (PAL with Kv). However, it is unknown
whether these axioms are enough to axiomatize PALKv(cf. [Pla89] and [vD07]).

In this paper, we will answer this open question and continue Plaza’s work on Kv
in the context of public announcement logic. Our main technical contributions of this
paper are summarized as below:

• The axioms proposed in [Pla89] do not axiomatize PALKv completely;

• We introduce the relativized Kv operator which is a generalization of the orig-
inal Kv operator. We give a highly non-trivial complete axiomatization of the
single-agent epistemic logic with this new operator (ELKvr), based on which
a complete axiomatization of single-agent PAL with this operator (PALKvr) is
provided;

• PALKv, PALKvr and ELKvr are equally expressive but ELKv is strictly less
expressive than them. Therefore it is impossible to reduce PALKv to ELKv,
and we can simply use the more felxible PALKvr instead of PALKv without
increasing the expressive power.

The rest of the paper is organized as follows: In Section 2 we review the basic
results of PAL, and introduce the Kv operator and the proof system PALKVp that Plaza
proposed. Section 3 proves the incompleteness of PALKVp. In Section 4 we introduce
the relativized Kv operator and show that PALKvr is equally expressive as ELKvr.
We then axiomatize PALKvr based on a complete axiomatization of ELKvr, which is
given in Section 5 for the single-agent case. Section 6 discusses the expressivity of the
various logics we introduced and we conclude with future work in Section 7.

2 Preliminaries

2.1 Public Announcement Logic
Definition 2 (Logical Languages EL(I,P) and PAL(I,P)). Given a set P of proposition
letters and a set I of agent names, the language of public announcement logic PAL(I,P)
is defined as follows:

φ ::= > | p | ¬φ | φ ∧ φ | Kiφ | 〈φ〉φ

where p ∈ P, i ∈ I. The language of epistemic logic (EL(I,P)) is the announcement-
free fragment of PAL(I,P).

Kiφ is read “agent i knows that φ”. 〈ψ〉φ says that “ ψ can be truthfully announced
publicly, and after its announcement φ holds.” As usual, we define ⊥, φ ∨ ψ, φ → ψ,
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K̂iφ and [ψ]φ as the abbreviations of ¬>, ¬(¬φ ∧ ¬ψ), ¬φ ∨ ψ, ¬Ki¬φ and ¬〈ψ〉¬φ
respectively.

In the sequel, we fix I and P thus simply writing PAL and EL for PAL(I,P) and
EL(I,P) respectively.

The semantics of PAL is defined on (S5) Kripke structures. An epistemic model
for PAL is a tripleM = 〈S, {∼i| i ∈ I}, V 〉 where S is a non-empty set of possible
worlds, ∼i is an equivalence relation over S, and V is a valuation function assigning a
set of worlds V (p) ⊆ S to each p ∈ P. Given an epistemic modelM, the semantics is
defined as follows:

M, s � > ⇔ always
M, s � p ⇔ s ∈ V (p)
M, s � ¬φ ⇔ M, s 2 φ

M, s � φ ∧ ψ ⇔ M, s � φ andM, s � ψ
M, s � Kiψ ⇔ for all t such that s ∼i t :M, t � ψ
M, s � 〈ψ〉φ ⇔ M, s � ψ andM|ψ, s � φ

whereM|ψ = (S′, {∼′i| i ∈ I}, V ′) such that:

S′ = {s | M, s � ψ},∼′i=∼i |S′×S′, and V ′(p) = V (p) ∩ S′.

An announcement 〈ψ〉 is interpreted as a model transformer which deletes the worlds
that do not satisfy ψ.

It is shown in [Pla89] via a reduction to EL that the following axiomatization is
sound and complete (cf. also [vDvdHK07] for details):

System PAL
Axiom Schemas Rules

TAUT all the instances of tautologies MP
φ, φ→ ψ

ψ

DISTK Ki(φ→ ψ) → (Kiφ→ Kiψ) NECK
φ

Kiφ

!ATOM 〈ψ〉p↔ (ψ ∧ p) RE
ψ ↔ χ

φ(ψ) ↔ φ(χ)

!NEG 〈ψ〉¬φ↔ (ψ ∧ ¬〈ψ〉φ)

!CON 〈ψ〉(φ ∧ χ) ↔ (〈ψ〉φ ∧ 〈ψ〉χ)

!K 〈ψ〉Kiφ↔ (ψ ∧ Ki(ψ → 〈ψ〉φ))

T Kiφ→ φ

4 Kiφ→ KiKiφ

5 ¬Kiφ→ Ki¬Kiφ

where p ∈ P ∪ {>}.
Note that in [Pla89] Plaza did not make it clear whether the RE rule (replacement

of equivalences) allows the replacements for the formulas inside the announcements.
Here we suppose so.3

3This will make our incompleteness result stronger.
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It can be shown that the following schemata are derivable/admissible in PAL:4

Axiom Schema Rule

DIST! [χ](φ→ ψ) → ([χ]φ→ [χ]ψ) NEC!
φ

[χ]φ

We will be using DIST! and NEC! in the later discussions. In the sequel, we
use EL to denote PAL without the so-called “reduction axioms” (i.e., !ATOM, !NEG,
!CON, and !K). It is well-known that EL completely axiomatizes EL.

2.2 Adding the Kv operator
Given I, P and a set D of names, the language PALKv(I,P,D) (PALKv for short) is
defined as:

φ ::= > | p | Kvid | ¬φ | φ ∧ φ | Kiφ | 〈φ〉φ

where p ∈ P, i ∈ I, and d ∈ D. As before, we obtain an epistemic language
ELKv(I,P,D)(ELKv for short) when we ignore the announcements in PALKv.

To interpret the new Kvid formulas, we need the assignment function VD : D×S →
O in the epistemic models, where O is a non-empty set of objects. The semantics of
Kvid is as follows:

M, s � Kvid ⇐⇒ for any t1, t2 : if s ∼i t1, s ∼i t2,
then VD(d, t1) = VD(d, t2).

Kv acts as a mixture of a modality and a predicate. It is not hard to see that Kvi
also obeys the positive and negative introspections, namely the following two axioms
are valid:

Kv4 Kvid→ KiKvid
Kv5 ¬Kvid→ Ki¬Kvid

It is claimed (without a proof) in [Pla89] that adding Kv4 and Kv5 to EL completely
axiomatizes ELKv.

Now a natural question is: how can we axiomatize PALKv? [Pla89] proposed the
following extra axioms on top of PAL with Kv4,Kv5:

KKv 〈Kiφ〉Kvid ↔ Kiφ ∧ Kvid
KvKv 〈Kvic〉Kvid ↔ Kvic ∧ Kvid
!Kv 〈φ〉Kvid → Ki(φ→ 〈φ〉Kvid)
!nKv 〈φ〉¬Kvid → Ki(φ→ 〈φ〉¬Kvid)

It is unknown whether the above axiom schemata are enough to completely axiom-
atize PALKv.5

In fact, the last three axioms above are superfluous. In the sequel, let us denote
PAL + Kv4 + Kv5 + KKv as PALKVp. It is not hard to see that KvKv,!Kv,!nKv
can all be derived in PALKVp:

4For a thorough discussion on axiomatizations of PAL, see [WC13].
5Note that there is no obvious reduction axiom for Kvid and we will show it is impossible to reduce

PALKv to ELKv in Section 6.
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Proposition 3. (1) `PALKVp 〈Kvic〉Kvid↔ (Kvic ∧ Kvid);
(2) `PALKVp 〈φ〉Kvid→ Ki(φ→ 〈φ〉Kvid);
(3) `PALKVp

〈φ〉¬Kvid→ Ki(φ→ 〈φ〉¬Kvid).

Proof. For (1):

(i) Kvic↔ KiKvic Kv4,T
(ii) 〈Kvic〉Kvid↔ 〈KiKvic〉Kvid RE
(iii) 〈KiKvic〉Kvid↔ KiKvic ∧ Kvid KKv
(iv) 〈Kvic〉Kvid↔ (Kvic ∧ Kvid) MP(ii) (iii)

For (2):

(i) Kvid→ KiKvid Kv4
(ii) 〈φ〉Kvid→ 〈φ〉KiKvid DIST!,NEC!
(iii) 〈φ〉KiKvid↔ (φ ∧ Ki(φ→ 〈φ〉Kvid)) !K
(iv) 〈φ〉Kvid→ Ki(φ→ 〈φ〉Kvid) MP(ii)(iii)

The proof of (3) is similar as (2).

In the later discussion we will focus on PALKVp.

3 Incompleteness of PALKVp

To prove the incompleteness of PALKVp, we will show that the following valid for-
mula is not derivable in PALKVp:

θ : 〈p〉Kvid ∧ 〈q〉Kvid→ 〈p ∨ q〉Kvid

In order to show this, we design a semantics 
 on a class C of special models such
that all the axiom schemata and rules of PALKVp are valid w.r.t. 
 on C but not θ.
Namely we have for all PALKv formulas φ : `PALKVp

φ =⇒ C 
 φ and C 1 θ, thus
we have 0PALKVp

θ.
Inspired by the semantics developed in [WC13], we treat the announcement opera-

tor 〈φ〉 as a standard modality interpreted on models with φ transitions.

Definition 4. (Extended model) An extended (epistemic) model for PALKv is a tuple

〈S, {∼i| i ∈ I}, { φ→| φ ∈ PALKv}, V, VD〉 where

• 〈S, {∼i| i ∈ I}, V, VD〉 is a standard epistemic model for PALKv.

• For each PALKv formula φ,
φ→ is a binary relation over S.
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We now define the truth conditions of PALKv formulas on extended models (w.r.t.

) as follows:

M, s 
 > ⇐⇒ always
M, s 
 p ⇐⇒ s ∈ V (p)
M, s 
 ¬φ ⇐⇒ M, s 1 φ
M, s 
 φ ∧ ψ ⇐⇒ M, s 
 φ andM, s 
 ψ
M, s 
 Kiφ ⇐⇒ for all t ∈W such that s ∼i t,M, t 
 φ
M, s � Kvid ⇐⇒ for any t1, t2 : if s ∼i t1, s ∼i t2,

then VD(d, t1) = VD(d, t2).

M, s 
 〈φ〉ψ ⇐⇒ for some t such that s
φ→ t and t 
 ψ.

Compared with the standard semantics w.r.t. �, the only change is the interpretation of
〈φ〉ψ. It is clear that

Proposition 5. 
 coincides with � on ELKv formulas.

Now we try to define a class of extended models where these two semantics get
even closer on PALKv formulas.

Definition 6. (Normal extended epistemic model) An extended modelM = 〈S, {∼i|
i ∈ I}, { φ→| φ ∈ PALKv}, V, VD〉 is called normal if the following properties hold for
any s, t ∈ S, any d ∈ D and φ ∈ PALKv:

P-Invariance (P-INV) if s
φ→ t, then for all p ∈ P : s ∈ V (p)⇐⇒ t ∈ V (p).

Partial Functionality (PFUNC) If M, s 
 φ then s has a unique φ-successor. If
M, s 1 φ then s has no φ-successor.

No Miracle (NM) if s ∼i s′, s
φ→ t and s′

φ→ t′, then t ∼i t′.

Perfect Recall (PR) if t ∼i t′ and s
φ→ t, then there exists an s′ such that s ∼i s′ and

s′
φ→ t′.

D-Invariance (D-INV) if s
Kiφ→ t, then VD(d, s) = VD(d, t).

U-Replacement (U-RE) IfM 
 φ↔ ψ then s
φ→ t ⇐⇒ s

ψ→ t.

Note that PFUNC and U-RE refer to 
. Let C be the class of all the normal ex-
tended models. Below we will show that PALKVp is sound on C w.r.t. 
. Based on
Proposition 5, we have:

Lemma 7. TAUT, MP, DISTK, NECK, T, 4, 5, Kv4, and Kv5 are all valid in C w.r.t.

.

We also need the validity of RE:

Lemma 8. RE is valid in C w.r.t. 
.
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Proof. To prove RE is valid, it suffices to show that the C-validity of φ ↔ ψ will be
preserved by using connectives and operators in PALKv.

First note that due to the similarity between 
 and �, it is not hard to show that if
C 
 φ↔ ψ then the following are also valid on C w.r.t. 
:

¬φ↔ ¬ψ, (φ ∧ χ)↔ (ψ ∧ χ),Kiφ↔ Kiψ

Now we check the cases w.r.t. the announcements. Suppose C 
 φ ↔ ψ and
M, s 
 〈χ〉φ for some M ∈ C, then there exists a t in M such that s

χ→ t and
M, t 
 φ. Thus there exists a t in M such that s

χ→ t and M, t 
 ψ. Therefore
M, s 
 〈χ〉ψ.

Finally, suppose C 
 φ ↔ ψ and M, s 
 〈φ〉χ for some M ∈ C then there is

some t inM such that s
φ→ t andM, t 
 χ. Since C 
 φ↔ ψ, we haveM 
 φ↔ ψ,

thus by U-RE s
ψ→ t. ThereforeM, s 
 〈ψ〉χ.

Lemma 9. !ATOM, !NEG, !CON, and !K are valid in C w.r.t. 
.

Proof. In the following we fix anM, s in C, thus write s 
 φ forM, s 
 φ.

For !ATOM: s 
 〈φ〉p⇐⇒ (there exists a t such that s
φ→ t and t 
 p)⇐⇒ (s 
 φ

and s 
 p) (by P-INV and PFUNC)⇐⇒ s 
 φ ∧ p.

For !NEG: Due to PFUNC it is easy to verify C 
 〈φ〉χ → φ ∧ [φ]χ and C 

[φ]χ ∧ φ→ 〈φ〉χ. Now let χ = ¬ψ it is easy to see !NEG is valid.

For !CON: PFUNC ensures the uniqueness of the φ-successor of any state thus the
validity of !CON is straightforward.

For !K: It is not hard to see that PR and NM guarantee the validity of the following
two formulas respectively:

〈φ〉K̂iψ → K̂i〈φ〉ψ K̂i〈φ〉ψ → [φ]K̂iψ.

Taking the contrapositives and replacing ¬ψ by ψ we have the validity of:

Ki[φ]ψ → [φ]Kiψ 〈φ〉Kiψ → Ki[φ]ψ.

Then due to PFUNC, the following are valid:

φ ∧ Ki[φ]ψ → 〈φ〉Kiψ 〈φ〉Kiψ → φ ∧ Ki[φ]ψ.

Namely, C 
 〈φ〉Kiψ ↔ φ ∧ Ki[φ]ψ. Now from the case of !NEG, we know that
C 
 [φ]ψ ↔ (φ→ 〈φ〉ψ), therefore by the validity of RE we have C 
 !K.

Lemma 10. KKv (i.e.〈Kiφ〉Kvid↔ (Kiφ ∧ Kvid)) is valid on C w.r.t. 
.
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Proof. Suppose M, s 
 〈Kiφ〉Kvid for some M ∈ C and some PALKv formula

φ. Then there exists a t such that s
Kiφ→ t and M, t 
 Kvid. By PFUNC, we have

M, s 
 Kiφ. Now take two arbitrary points s1 and s2 such that s ∼i s1 and s ∼i s2,
we need to show VD(d, s1) = VD(d, s2). Since M, s 
 Kiφ, it is easy to see that
M, s1 
 Kiφ and M, s2 
 Kiφ. Again by PFUNC, there are t1 and t2 such that

s1
Kiφ→ t1 and s2

Kiφ→ t2. Now by NM, we have t1 ∼i t ∼i t2. SinceM, t 
 Kvid,
we know that VD(d, t1) = VD(d, t2). Now by D-INV, VD(d, t1) = VD(d, s1) and
VD(d, t2) = VD(d, s2). ThereforeM, s 
 Kvid.

For the converse, suppose that M, s 
 Kiφ ∧ Kvid. By PFUNC, s has a unique
Kiφ-successor, say t. We need to showM, t 
 Kvid. Now take two arbitrary points
t1, t2 such that t1 ∼i t ∼i t2. Due to PR, there exist s1, s2 such that s1 ∼i s ∼i s2,
s1

Kiφ→ t1, and s2
Kiφ→ t2. Due to D-INV and the assumption thatM, s 
 Kvid, it is

clear that VD(d, t1) = VD(d, t2) thusM, t 
 Kvid.

Lemmata 7,8,9, and 10, implies the soundness:

Lemma 11. PALKVp is sound w.r.t 
 on C.

However, the �-valid formula θ is not 
-valid on C.

Lemma 12. C 1 〈p〉Kvid ∧ 〈q〉Kvid→ 〈p ∨ q〉Kvid.

Proof. For simplisity we assume I = {1},P = {p, q} and D = {d}. Consider the
following modelM (we omit the reflexive epistemic links and only show the necessary
parts for evaluating the desired formula, with • and ◦ denoting the objects assigned to
d):

p, q : ◦

t : ¬p,¬q 1 s : p, q

p∨q

xx

1

p

��

q

OO

s′ : p,¬q

p

&&

p∨q

��
p, q : ◦ 1 p,¬q : • p, q : • 1 p,¬q : •

Note that for any φ: M 1 (p ∨ q) ↔ K1φ, since K1φ will have a uniform truth
value on t, s, s′ while p ∨ q is false only on the leftmost world t. Similarly, for any φ:
M 1 p↔ K1φ andM 1 q ↔ K1φ. Thus although U-RE and D-INV hold inM, the
assignments of d at s and s′ can be different from the assignments at the bottom four
worlds and the top world. It is not hard to see that (a proper completion of) M is a
normal extended model and

M, s 
 〈p〉Kvid ∧ 〈q〉Kvid ∧ ¬〈p ∨ q〉Kvid.

Therefore θ is not valid in C.

From Lemmata 11 and 12 we have:

Theorem 13. 〈p〉Kvid ∧ 〈q〉Kvid → 〈p ∨ q〉Kvid is not derivable in PALKVp, thus
PALKVp is not complete w.r.t. � on epistemic models.
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4 PAL with the relativized Kv operator
To prevent the counter example in the previous section, we need an axiom to guarantee
that the assignments of the names in D will essentially stay the same after any an-
nouncements. A similar issue applies to the basic propositions but we can use !ATOM
to guarantee the propositional invariance. In contrast, we cannot directly talk about the
assignments in PALKv.

In this section, instead of trying to give an axiomatization of PALKv we will dis-
cuss the language PALKvr where Kv is replaced by a more general operator, which can
be viewed as a relativized version of Kv. The idea of relativizing a modal operator also
appeared in [vBvEK06] where the authors gave an axiomatization of PALCr which is
PAL extended with a relativized version of the common knowledge operator.

Formally the language of PALKvr is defined as follows:

φ ::= > | p | ¬φ | φ ∧ φ | Kiφ | Kvi(φ, d) | 〈φ〉φ

where p ∈ P, i ∈ I, d ∈ D.
Kvi(φ, d) says that the agent i would know what d is if he were informed that

φ is true. It is different from φ → Kvid, Kiφ → Kvi(φ, d), and Ki(φ → Kvid).
The distinction will become clear after understanding the following semantics w.r.t.
M = 〈S, {∼i| i ∈ I}, V, VD〉:

M, s � Kvi(φ, d) ⇐⇒ for every t1, t2 ∈ S such that
s ∼i t1 and s ∼i t2 :
ifM, t1 � φ,M, t2 � φ,
then VD(d, t1) = VD(d, t2)

Now the original Kvi operator can be viewed as Kvi(>, ·). Therefore PALKvr is
indeed an extension of PALKv. As before, we denote the announcement-free part of
PALKvr as ELKvr.

We can see there is a similarity between an announcement and a condition in the
relativized version of Kv operator, demonstrated by the following validity:

!Kvr : 〈φ〉Kvi(ψ, d)↔ (φ ∧ Kvi(〈φ〉ψ, d))

Note that !Kvr is also in the shape of the reduction axioms which push the an-
nouncement to the “inner” part of the formulas. Based on this observation, we can
show, as what Plaza showed for PAL and EL, that PALKvr and ELKvr are equally
expressive.

Theorem 14. PALKvris equally expressive as ELKvr.

Proof. Since PALKvr is an extension of ELKvr thus PALKvr is no less expressive
than ELKvr. We show that PALKvr is no more expressive than ELKvrby giving the
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following truth preserving translation t : PALKvr → ELKvr:

t(>) = >
t(p) = p
t(¬φ) = ¬t(φ)
t(φ ∧ ψ) = t(φ) ∧ t(ψ)
t(Kiφ) = Kit(φ)
t(Kvi(φ, d)) = Kvi(t(φ), d)
t(〈φ〉>) = t(φ)
t(〈φ〉p) = t(φ ∧ p)
t(〈φ〉¬ψ) = t(φ ∧ ¬〈φ〉ψ)
t(〈φ〉(ψ ∧ χ)) = t(〈φ〉ψ ∧ 〈φ〉χ)
t(〈φ〉Kiψ) = t(φ ∧ Ki(φ→ 〈φ〉ψ))
t(〈φ〉Kvi(ψ, d)) = t(φ ∧ Kvi(〈φ〉ψ, d))

By defining a suitable complexity measure of PALKvr formulas as in the case for
PAL(cf. [vDvdHK07]), we can show that the translation can eventually eliminate the
announcement operator. We can also prove φ ≡ t(φ) for every φ ∈ PALKvr by
induction on the structure of φ.

Now, as in the case for PAL, if we have a complete axiomatization of ELKvr, then
we can also axiomatize PALKvr by using the reduction axioms:

Theorem 15. If ELKvr is completely axiomatized by S then S plus RE, !ATOM, !CON,
!NEG, !K, and !Kvr completely axiomatizes PALKvr.

Note that we need to include the rule RE to facilitate the completeness proof via
reductions (cf.[WC13] for detailed discussions in the context of PAL). In the next
section we will axiomatize ELKvr in the single agent case.

5 Axiomatization of ELKvr1
As the reader may expect, axiomatizing ELKvr is much harder than the case of ELKv
due to the condition in the relativized operator. In the rest of this section, we will
provide a complete axiomatization of ELKvr for the single agent case (call it ELKvr1).
Although all the new axioms that we will propose also hold in the multi-agent case,
there are still some difficulties in the completeness proof related to multiple agents, to
which we will come back at the end of the paper.

5.1 System ELKVr
1

Based on single-agent EL, we propose the following extra axiom schemata and name
the resulting system ELKVr1:

DISTKvr K(φ→ ψ)→ (Kv(ψ, d)→ Kv(φ, d))
Kvr4 Kv(φ, d)→ KKv(φ, d)
Kvr⊥ Kv(⊥, d)
Kvr∨ K̂(φ ∧ ψ) ∧ Kv(φ, d) ∧ Kv(ψ, d)→ Kv(φ ∨ ψ, d)

11



DISTKvr is the distribution axiom for the relativised Kv operator (pay attention
to the positions of ψ and φ in the consequent). Kvr4 is a variation of the positive
introspection axiom. Kvr⊥ stipulates the precondition of the Kv operator. Maybe
the most interesting axiom is Kvr∨ which will play a very important role in the later
completeness proof. Intuitively, it handles the composition of the conditions in the
relativized operator: suppose all the possible φ worlds agree on what d is and all the
possible ψ worlds also agree on d, then the overlap between φ possibilities and ψ
possibilities implies all the φ ∨ ψ possibilities also agree on what d is.

It is not hard to see that the extra axiom schemata are all valid:

Theorem 16. ELKVr1 is sound with respect to the class of epistemic models with
assignments.

In the sequel, for readability, we will sometimes write ` for `ELKVr
1
.

Seeing Kvr4, the reader may miss a version of negative introspection ¬Kv(φ, d)→
K¬Kv(φ, d). Actually it can be derived in ELKVr1:

Proposition 17. `ELKVr
1
¬Kv(φ, d)→ K¬Kv(φ, d)

Proof.

KKv(φ, d)↔ Kv(φ, d) T,Kvr4

¬KKv(φ, d)→ K¬KKv(φ, d) 5

¬Kv(φ, d)→ K¬Kv(φ, d) RE

Kvr∨ can be generalized to arbitrary finite disjunctions due to an easy induction
proof based on Kvr∨.

Proposition 18. For any finite set of ELKvr1 formulas U :

`ELKVr
1

K̂(
∧
U) ∧

∧
φ∈U

Kv(φ, d)→ Kv(
∨
U, d).

To ease the later proof we have the following results:

Proposition 19. In the system ELKVr1, the following theorem and inference rule can
be derived:

1. `ELKVr
1

K¬φ→ Kv(φ, d)

2. If `ELKVr
1
φ↔ ψ, then `ELKVr

1
Kv(φ, d)↔ Kv(ψ, d).

Proof. For (1):

(i) ¬φ↔ (φ→ ⊥) TAUT
(ii) K¬φ↔ K(φ→ ⊥) NECK,DISTK
(iii) K(φ→ ⊥)→ Kv(⊥, d)→ Kv(φ, d) DISTKvr

(iv) Kv(⊥, d) Kvr⊥
(v) K(φ→ ⊥)→ Kv(φ, d) TAUT(iii)(iv)
(vi) K¬φ→ Kv(φ, d) MP(ii)(v)

12



For (2), If ` φ ↔ ψ, then ` φ → ψ and ` ψ → φ. From the former and rule NECK,
it follows that ` K(φ → ψ). Using the axiom DISTKvr, we have ` Kv(ψ, d) →
Kv(φ, d). Similarly, we can get ` Kv(φ, d) → Kv(ψ, d) from ` ψ → φ, and thus
obtain ` Kv(φ, d)↔ Kv(ψ, d).

5.2 Completeness of ELKVr
1

In this subsection we prove that ELKVr1 is complete w.r.t. the class of epistemic mod-
els. As in normal modal logics, we will show that every consistent set of ELKvr1
formulas is satisfiable at some state in a canonical model. In defining the canonical
model we need to borrow some ideas from the Henkin construction in first-order logic.
The difficulties lie in the definition of the canonical model and the proof of the truth
lemma for the new Kv operators, as we will explain later.

5.2.1 Canonical model

The canonical modelMc of ELKVr1 is a tuple 〈Sc,∼c, V c, V cD 〉 where:

• Sc = MCS × {0, 1}, where MCS is the set of ELKVr-maximal consistent
sets. That is, every maximal consistent set has two copies in Sc. We write φ ∈ s
if φ is in the maximal consistent set of s. We write φ ∈ s ∩ t if φ ∈ s and φ ∈ t.

• s ∼c t iff {φ | Kφ ∈ s} ⊆ t.

• V c(p) = {s ∈ Sc | p ∈ s}.

• V cD (d, s) = |(d, s)|R. That is, V cD (d, s) is the equivalence class under the equiv-
alence relation R defined below over {(d, s) | d ∈ D, s ∈ Sc}:

R = {((d, s), (e, t)) | d = e, s ∼c t and Kv(φ, d) ∈ s
for some φ ∈ s ∩ t} ∪ {((d, s), (d, s)) | d ∈ D, s ∈ Sc}

To show the above definition is well-defined, we need the following propositions:

Proposition 20. s ∼c t iff {φ | Kφ ∈ s} = {φ | Kφ ∈ t}, thus ∼c is an equivalence
relation.

Proof. A standard exercise as in the case for the canonical model of EL.

Based on the above proposition and Kvr4, the following is immediate:

Proposition 21. For any s, t ∈ Sc, if s ∼c t, then Kv(φ, d) ∈ s iff Kv(φ, d) ∈ t.

Now we can show the following:

Proposition 22. R is an equivalence relation on {(d, s) | s ∈ Sc, d ∈ D}.

13



Proof. Reflexivity is obvious by the definition of R. Symmetry is also straightforward
based on Propositions 20 and 21.

For transitivity, assume that (d, s)R(e, t) and (e, t)R(f, u), we need to show (d, s)R(f, u).
First note that if s = t, d = e or t = u, e = f , then obviously (d, s)R(f, u). Now let
us consider the other case, i.e., d = e, s ∼c t and Kv(φ, d) ∈ s for some φ ∈ s ∩ t,
e = f, t ∼c u and Kv(ψ, e) ∈ t for some ψ ∈ t ∩ u. By d = e and e = f , we
have d = f . By s ∼c t, t ∼c u and Proposition 20, s ∼c u. Since φ ∈ s ∩ t
and ψ ∈ t ∩ u, φ ∨ ψ ∈ s ∩ u and φ ∧ ψ ∈ t, and thus K̂(φ ∧ ψ) ∈ t. Now from
Proposition 21 and the fact that d = e and Kv(φ, d) ∈ s we have Kv(φ, e) ∈ t, thus
K̂(φ ∧ ψ) ∧ Kv(φ, e) ∧ Kv(ψ, e) ∈ t. From Kvr∨, it follows that Kv(φ ∨ ψ, d) ∈ t. By
Proposition 21 Kv(φ ∨ ψ, d) ∈ s, thus (d, s)R(f, u).

Remark 23. The readers may wonder why we used two copies of each maximal con-
sistent set. Consider the following model:

p, d 7→ ◦ p, d 7→ •

It is not hard to see that both worlds satisfy exactly the same PALKvr formulas. How-
ever, we do need these two worlds to differentiate the assignments of the name d. These
two copies of each maximal consistent set will play an important role in our proof of
the completeness.

5.2.2 Completeness

In order to establish the truth lemma, we need to show that if Kv(φ, d) 6∈ s thenMc, s �
¬Kv(φ, d). This is the most difficult part in the completeness proof which requires a
few results below.

Given a state s ∈ Sc such that Kv(φ, d) 6∈ s, let Z = {ψ | Kψ ∈ s} ∪ {φ} and
X = {¬χ | Kv(χ, d) ∈ s}. We have the following observations.

Observation 24. 1. For any ¬χ ∈ X , {¬χ} ∪ Z is consistent.

2. Z is consistent, and every element in X is also consistent.

Proof. In the sequel, we will write ` as the shorthand for `ELKVr .
For (1): Suppose not, then there existψ1, . . . , ψm such that ` ψ1∧· · ·∧ψm∧φ→ χ,

equivalently, ` ψ1∧· · ·∧ψm → (φ→ χ), and thus ` Kψ1∧· · ·∧Kψm → K(φ→ χ)
by DISTK and NECK. Since Kψ1, . . . ,Kψm ∈ s, K(φ → χ) ∈ s. Now by DISTKvr

and the fact that Kv(χ, d) ∈ s, it follows that Kv(φ, d) ∈ s, contradiction.
For (2): followed immediately from (1) based on the non-emptiness of X due to

Kvr⊥.

Recall that we want to show that Kv(φ, d) 6∈ s implies Mc, s � ¬Kv(φ, d). To
show that Kv(φ, d) does not hold on s, we need to construct two φ worlds which are
linked with s but with different assignments for d. In order to do this, according to the
definition of R, we have to make sure that these two worlds do not share any ψ such
that Kv(ψ, d) ∈ s.

14



Now since ELKvr1 is denumerable, we can enumerate all formulas inX as¬χ0,¬χ1, . . . .
Then we start to add these ¬χi one by one to two copies of Z. The procedure is de-
scribed as follows:

1. Let B0 = Z ∪ {¬χ0} and let C0 = Z.

2. If Bk and Ck are defined then we take ¬χk+1 ∈ X , and try to add it into B or
C as follows: if it is consistent with Bk then let Bk+1 = Bk ∪ {¬χk+1} and let
Ck+1 = Ck; otherwise let Bk+1 = Bk and let Ck+1 = Ck ∪ {¬χk+1}.

3. Let B =
⋃
k<ω Bk and C =

⋃
k<ω Ck.

To construct two worlds out of B and C, we need to show B and C are consistent.
From Observation 24, B0 and C0 are consistent. We only need to show that the second
step preserves consistency, which amounts to the following lemma:

Lemma 25. Suppose Kv(φ, d) /∈ s. For any k, if Bk and Ck are consistent, then
Bk ∪ {¬χk+1} is inconsistent implies Ck ∪ {¬χk+1} is consistent.

Proof. Suppose not, then there is a k such that both Bk ∪{¬χk+1} and Ck ∪{¬χk+1}
are inconsistent. Now let U = Bk\Z, V = Ck\Z, U = {χ | ¬χ ∈ U}, and
V = {χ | ¬χ ∈ V }. Note that U, V, U, V are all finite.

We claim: there exist ψ1, . . . , ψl, ψ
′
1, . . . , ψ

′
m, ψ′′1 , . . . , ψ

′′
n ∈ {ψ | Kψ ∈ s} such

that
(i) ` ψ1 ∧ · · · ∧ ψl ∧ φ ∧

∧
U → χk+1,

(ii) ` ψ′1 ∧ · · · ∧ ψ′m ∧ φ ∧
∧
V → χk+1,

(iii) ` ψ′′1 ∧ · · · ∧ ψ′′n ∧ φ ∧
∧
U →

∧
V.

(i) and (ii) are immediate from the inconsistency of Bk ∪ {¬χk+1} and Ck ∪
{¬χk+1}. For (iii), first note that for any χ ∈ V , {¬χ}∪Bk is inconsistent due to the
construction of Bk. Therefore for each χ ∈ V there exist θ1, . . . , θh ∈ {ψ | Kψ ∈ s}
such that:

` (θ1 ∧ · · · ∧ θh ∧ φ ∧
∧
U)→ χ

Now since V is a finite set, we collect all such θ for each χ ∈ V to obtain (iii).
From (i)− (iii), NECK, DISTK and the fact that

Kψ1, . . . ,Kψl,Kψ′1, . . . ,Kψ
′
m,Kψ

′′
1 , . . . ,Kψ

′′
n ∈ s,

we can show the following:

(iv) K((φ ∧
∧
U)→ χk+1) ∈ s,

(v) K((φ ∧
∧
V )→ χk+1) ∈ s,

(vi) K((φ ∧
∧
U)→

∧
V ) ∈ s.

In the following, we will show that K̂(χk+1 ∧
∧
V ) ∈ s. First we claim K̂(φ ∧∧

U) ∈ s. Suppose not, then K¬(φ ∧
∧
U) ∈ s, thus ¬(φ ∧

∧
U) ∈ Bk. Due to the

construction of Bk we know φ and U are in Bk, thus Bk is inconsistent, contradicting
the assumption. Therefore K̂(φ∧

∧
U) ∈ s thus by (iv), (vi) we have K̂(χk+1∧

∧
V ) ∈

s.
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By our assumption, for any χ ∈ V ∪{χk+1} we have Kv(χ, d) ∈ s. Now based on
this fact and K̂(χk+1 ∧

∧
V ) ∈ s, we can use Proposition 18, and obtain the following:

(vii) Kv(χk+1 ∨
∨
V, d) ∈ s.

Now let us change the from of (v) to the following:

(v′) K(φ→ (
∨
V ∨ χk+1) ∈ s,

Based on (v′), (vii) and DISTKvr, we have Kv(φ, d) ∈ s, contradiction.
In sum, one of Bk ∪ {¬χk+1} and Ck ∪ {¬χk+1} is consistent.

Based on Lemma 25, using Lindenbaum-like argument, we have the following:

Lemma 26. There are X0, X1 such that X0 ∩ X1 = ∅, X0 ∪ X1 = X , and both
B = Z ∪ X0 and C = Z ∪ X1 are consistent. Therefore B and C can be extended
into two maximal consistent sets.

Note that the above lemma does not rule out the possibility that the two maximal
consistent sets being the same. We will handle this by using different copies in the
canonical model.

Now we will prove the completeness of ELKVr1, i.e., every valid ELKvr1 formula
is ELKVr1-provable. As usual, we construct the canonical model which can satisfy
each consistent set of ELKvr1 formulas.

Lemma 27 (Truth Lemma). For any ELKvr1 formula φ, φ ∈ s iffMc, s � φ.

Proof. By induction on φ. We will only show the case of Kv(φ, d) in detail since other
cases are standard exercises as in normal modal logic. The direction from Kv(φ, d) ∈ s
to Mc, s � Kv(φ, d) is straightforward based on the induction hypothesis and our
definition of R.

Now for the converse, suppose that Kv(φ, d) /∈ s, we need to show Mc, s 2
Kv(φ, d). Recall that Z = {ψ | Kψ ∈ s} ∪ {φ} and X = {¬χ | Kv(χ, d) ∈ s}.
Lemma 26 guarantees that we can find two (possibly identical) maximal consistent
sets B′ and C ′ such that Z ∪X0 ⊆ B′ and Z ∪X1 ⊆ C ′ for some X0, X1 satisfying
X = X0 ∪X1.

Now we can construct two different worlds t0 = (B′, 0) and t1 = (C ′, 1). It is
clear that t0, t1 ∈ Sc. Since Z ⊆ t0 ∩ t1 we have t0 ∼c s ∼c t1, andMc, t0 � φ and
Mc, t1 � φ due to the induction hypothesis. Now we claim ((d, t0), (d, t1)) 6∈ R. To
see this, consider any Kv(χ, d) ∈ s (equivalently, any ¬χ ∈ X), we have either χ 6∈ B′
or χ 6∈ C ′ since X0 ∪X1 = X and B′, C ′ are consistent.

Based on the above lemma it is routine to show:

Theorem 28. ELKVr1 is sound and complete.

Based on this theorem and Theorem 15, ELKVr1+!ATOM+!NEG+!CON+!K+!Kvr

is sound and complete for PALKvr1.
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6 Expressivity
In this section we compare the expressivity of the various logical languages that we
discussed in this paper. The results are summarized in the following (transitive) dia-
gram:

ELKvr ←→ PALKvr

↑ l
ELKv −→ PALKv

Note that, in contrast to the axiomatization result, in this section all the results hold
in multi-agent cases.

Theorem 14 already shows that ELKvr and PALKvr are equally expressive. In
the sequel, to complete the diagram, we first show that ELKv is strictly less expressive
than PALKv then prove that ELKvr is equally expressive as PALKv. To compare
ELKv and PALKv, we give two models that cannot be distinguished by any ELKv
formula but can be distinguished by a PALKv formula. First we need a notion of
bisimulation for ELKv models.

Definition 29. Let M1 = 〈S1, {∼1
i | i ∈ I}, V1, V 1

D 〉 and M2 = 〈S2, {∼2
i | i ∈

I}, V2, V 2
D 〉 be two models. A d-bisimulation between M1 and M2 is a non-empty

relation R ⊆ S1 × S2 such that if s1Rs2 then the following requirements hold for all
i ∈ I:

Inv: V1(s1) = V2(s2);
Zig: if s1 ∼1

i t1, then there exists t2 ∈ S2 such that s2 ∼2
i t2 and t1Rt2

Zag: if s2 ∼2
i t2, then there exists t1 ∈ S1 such that s1 ∼1

i t1 and t1Rt2
Kv-Zig: if t1 ∼1

i s1 ∼1
i t
′
1, and V 1

D (d, t1) 6= V 1
D (d, t′1) for some d then there exist t2, t′2 ∈ S2

such that t2 ∼2
i s2 ∼2

i t
′
2, and V 2

D (d, t2) 6= V 2
D (d, t′2)

Kv-Zag: if t2 ∼2
i s2 ∼2

i t
′
2, and V 2

D (d, t2) 6= V 2
D (d, t′2) for some d then there exist t1, t′1 ∈ S1

such that t1 ∼1
i s1 ∼1

i t
′
1, and V 1

D (d, t1) 6= V 1
D (d, t′1)

We writeM1, s1 ↔dM2, s2 iff there is a d-bisimulation betweenM1 andM2 linking
s1 and s2.

We now show d-bisimulation preserves ELKv formulas:

Theorem 30. IfM1, s1 ↔dM2, s2, thenM1, s1 ≡ELKv M2, s2.

Proof. Suppose thatM1, s1 ↔dM2, s2, we proceed by induction on the structure of
ELKv formula φ. Here we only show the non-trivial case for Kvid.

SupposeM1, s1 2 Kvid, then there exists t1, t′1 with t1 ∼1
i s1 ∼1

i t
′
1 and V 1

D (t1, d) 6=
V 1

D (t′1, d). By Kv-Zig, there exist t2, t′2 ∈ S2 such that t2 ∼2
i s2 ∼2

i t
′
2, and V 2

D (d, t2) 6=
V 2

D (d, t′2). ThereforeM2, s2 2 Kvid.
The other direction can be proved similarly by using Kv-Zag.

Now consider the following two models (using ◦ and • for the objects assigned to
d):

s : p ◦ 1 ¬p ◦ 1 p • s′ : p ◦ 1 ¬p •
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It is not hard to see that these two models are d-bisimiliar linking s and s′. However,
we can distinguish s and s′ easily by a PALKv formula [p]Kv1d.

Based on this example and the fact that PALKv is an extension of ELKv, we have
the following result:

Theorem 31. PALKv is strictly more expressive than ELKv.

Some readers may recall a similar comparison in the context of (relativised) com-
mon knowledge between ELC, ELCr, PALC and PALCr in [vBvEK06] where PALC
is strictly less expressive than PALCr. However, in our case the situation is different.

Theorem 32. ELKvris no more expressive than PALKv.

Proof. Define a translation function t : ELKvr → PALKv as follows:

t(>) = >
t(p) = p
t(¬φ) = ¬t(φ)
t(φ ∧ ψ) = t(φ) ∧ t(ψ)
t(Kiφ) = Kit(φ)
t(Kvi(φ, d)) = Ki¬t(φ) ∨ K̂i〈t(φ)〉Kvid

It is not hard to see that t can eliminate the Kvi(φ, ·) operators.
We can show by induction on φ that for any pointed modelM, s :M, s � φ ⇐⇒

M, s � t(φ) for every φ ∈ ELKvr.

Now based on Theorem 32, the fact that ELKvr and PALKvr are equally expres-
sive, and the fact that PALKvr is clearly no less expressive than PALKv, the following
corollary is immediate:

Corollary 33. PALKvr, PALKv and ELKvr are equally expressive.

7 Conclusion and Future work
In this paper, we proved that the system PALKVp is not complete. On the other
hand, ELKVr1 is complete for single agent ELKvr. Based on this and Theorem 15,
ELKVr1+!ATOM+!NEG+!CON+!K+!Kvr is complete for PALKvr1. We conjecture
that PALKvr1 is decidable, since a version of filtration technique should work to show
a small model property as in normal modal logic. We leave it to a future occasion.

It is not very clear whether multi-agent ELKvr can be completely axiomatized by
the multi-agent version of ELKVr1. Two main difficulties in the completeness proof
are as follows:

1. The definition of R in the canonical model is to be revised: we may need to take
the reflexive transitive closure of R to make it an equivalence relation.

2. The definition of ∼ci also needs to be revised.
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To see the second point, consider the following model:

p, d 7→ ◦

1,2

��
1 p, d 7→ •

1,2

��

It is clear that these two worlds satisfy exactly the same set of PALKvr formulas.
However, it is impossible to embed this model in our previously defined canonical
model, since these two worlds must be connected by∼2 if they have the same maximal
consistent set. We leave the multi-agent axiomatization and the applications of this
new relativized Kv operator for future work.
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