Lambek Calculus and Type
Grammars:

Back and Forth

Zhe Lin
ILC Sun Yat-sen University

Joachim Lambek was born in Leipzig on December 5, 1922. His parents moved to
Leipzig from a small town near Krakow (Poland). In the late 1930-ties the family left
Germany for England. After the outbreak of the SWW, he spend two years in an
internment camp in Canada, then entered McGill University in Montreal. He earned
Ms.C. in mathematics in 1946. This university has remained his affiliation throughout
his academic career; in the years 1963-1993 he was a professor at the Department of
Mathematics and Statistics and occupied the Peter Redpath Chair, then a professor
emeritus at McGill. He has visited many universities and research centers in Europe

and America.

J. Lambek's scientific interests focused on algebra, category theory, mathematical
logic, mathematical linguistics and number theory. In category theory he developed
categorical logic, e.g. he has shown close connections between cartesian closed
categories and typed lambda calculi. In mathematical linguistics, Lambek's
Syntactic Calculus, introduced in 1958 (nowadays called Lambek Calculus), is a
basic logic for modern type grammars. This calculus and its different variants are
extensively studied also in algebraic logic as the basic substrutural logics. In the
last decades J. Lambek developed an algebraic approach to grammar, involving
pregroups. He also studied some algebras of physics (quaternions) and published
books on the history of mathematics.

THE MATHEMATICS OF SENTENCE STRUCTURE*
JOACHIM LAMBEEK, McGill University

The definitions [of the parts of speech] are very far from having attained the
degree of exactilude found in Euclidean geomelry.
—(rto Jespersen, 1924.

1. Introduction. The aim of this paper is to obtain an effective rule (or
algorithm) for distinguishing sentences from nonsentences, which works not
only for the formal languages of interest to the mathematical logician, but also
for natural languages such as English, or at least for fragments of such lan-
guages. An attempt to formulate such an algorithm is implicit in the work of
Ajdukiewicz.t His method, later elaborated by Bar-Hillel [2], depends on a
kind of arithmetization of the so-called paris of speech, here called symiactic

Iypes. i
from: Lambek 1958

Poznan Group (W.Buszkowski)

The mathematical research on Lambek systems revived in the early 1980-ties
(W.Buszkowski, W. Zielonka, M. Kandulski, and others) investigated logical and
computational properties of Lambek systems and categorial grammars, based on
them (Lambek grammars); some properties of classical categorial grammars and
other type grammars were also studied.

Completeness Results for Lambek Syntactic Calculus (1986)
Generative power of categorial grammars (1986)

Dutch school (J. van Benthem, F. Zwarts, M. Moortgat)

Dutch school Investigated Lambek systems in relation to the lambda calculus and
natural language semantics; there were developments toward general logics of
information processing (van Benthem, 1986, 1991, 2005). Moortgat (1996)
introduce the modal extension of Lambek calculus and recently the Lambek-
Grishin calculus with interesting applications in language description.

van Benthem, Johan. 1986. Essays in Logical Semantics
Multimodal linguistic inference 1996 and Symmetric categorial grammar 2009
M.Moortgat

Barcelona group (Glyn Morrill)

IR

Categorial Grammar

Logical Syntax, Semantics, and Processing

Morrill (1994) elaborated different modal versions of Lambek systems and introduce
the discontinuous Lambek calculus basis on applications in language description.
He also develop some parsing software for Lambek calculus.

Categorial Grammar: Logical Syntax, Semantics, and Processing

Moscow Group (M.Pentus)

Moscow school Investigated the computational aspects of Lambek Calculus and its
variants. M.Pentus solved the long-time open question in this filed (the complexity of
the decision problem of Lambek calculus)

Lambek grammars are contextfree (1993)
Lambek calculus is NP-complete (2006)

Other people and results

Some parallel research was done by scholars adhering to the tradition of
Montague Grammar (B. Hall-Partee, E. Bach, R. T. Oehrle) and the Curry-
Shaumyan combinatory grammars (M. Steedman, A. Szabolcsi). These
works are well documented in collection volumes (Buszkowski et al., 1988;
Oehrle et al., 1988).

Abstract Categorial Grammars(an explicit application of the typed lambda-
calculusasa grammar formalism, due to de Groote (2001)), proof nets (a
graph-theoretic representation of proofs in multiplicative linear logics),
modal categorial grammars, combinatory grammars, and learning theory.
For some information on these topics see survey articles (Moortgat, 1997,
Buszkowski, 1997, 2003b); also see the books cited above, the collection

(Casadio et al., 2005), and two special issues of Studia Logica: 71.3 (2002)
and 87.2-3 (2007)

Contents

An Introduction to the Basic Apspects
Logics related to Lambek calculus
Linguistic analysis

Generative power and complexity
Other topics

An open question

Lambek Calculus

An Introduction to the Basic Apspects

Associative Lambek Calculus L*

(Id)A = A
(L) I"TA,BA=C (R)FZ:»A;A:}B
[A-B,A=C’ A= A-B
I[.BA=>C; D= A A l'=B
(—L) ,(=R)
I O,A—->BA=C I'=A—>B
[.BA=>C;, D= A [A= B
(<L) , («<R)
[.B—A O A=>C [=B« A
(CUT)F’A’A:B;(D:A
[O, A= B

LAMBEK (1958) : L, I' # € in (—=R), («R)
(CUT) 1s admissible in L, L*.

LAMBEK (1961): Nonassociative Lambek Calculus NL

Formula structures (trees): formulas, (X, Y); sequents: X = A

X[A,Bl = C X=A,Y=8B

¥ . (R)
[A-Bl=C (X,Y)=>A-B

X[B]=>C; Y= A (A,X) = B

, (=R)
X[Y,A—> B]=C X=A->B

XAl = B; Y= A
X[Y]= B
NL* (W.B., BULINSKA): the empty structure A
X,A)=(AX)=X
(CUT) 1s admissible in NL (LAMBEK 1961) and NL*.

(-L)

(=L)

(CUT)

A residuated semigroup: M = (M, <, -, —, <) s.t. (M, <) is a poset,
(M, -) 1s a semigroup, and —, « are binary operations on M,
satistying the residuation law:

(RES)ab <ciff b<a — ciffa<c « b.

A residuated monoid: with identity 1,a-1=a=1-a.

A residuated groupoid: - need not be associative.

An assignment f of formulas in M (a homomorphism from the
formula algebra into M). Extended to sequences of formulas:

fle)=1, f(I',A) = f(I') - f(A), and similarly for structures.
M, HET = AIf fI) < f(A).

L (resp. L*) 1s strongly complete w.r.t. residuated semigroups (resp.
monoids). NL (resp. NL*) 1s strongly complete w.r.t. residuated
groupoids (resp. with identity).

The rule EXCHANGE
I'A,BA=C

EXC
()F,B,A,A:>C

L with (EXC) is strongly complete w.r.t. commutative residuated
semigroups. Analogous facts hold for L*, NL, NL*. In these
systems A — B & B « A is provable.

The (—, «)—fragment of L* with (EXC) amounts to BCI. The
analogous fragment of L 1s the Lambek—van Benthem calculus (of
semantic types) (VAN BENTHEM 1986).

The identity constant 1

C A=A

(IL) === (IR) = |
X[A] = A

(L) A=A R A = A

X[1]=A

Lattice operations A, V and constants T, L; Full Lambek Calculus FL; (ONO
1993, JIPSEN 2004). FL 1s strongly complete w.r.t. residuated lattices, 1.e.
residuated monoids which are lattices.

Modalities (in linguistics MOORTGAT 1995)

I'<A>A=2HB [= A
L) — ’ , (OR
(OL) I OA,A =B ©){F}:}OA
[ZLALA= B <I'>=2 A
L) <A > A= B’ (LR) = A

Generalized Lambek Calculus (W.B., M. KOLOWSKA-GAWIEJINOWICZ, M.
KANDULSKI): f; n—ary connective, n > 1,0 <i < n, f; 1s the i—th residual of fj.
fo = f (a multi-modal framework, also related to DUNN 1993).

Structures: formulas, (Xy,...,X,)

X[(A],...,A”)f]:»"A Xl:'Al;---;Xn:}An

, (fR
X[f(A],...,AH)] = A (f) (X]a“-:Xn)f = f(A]:---aAH)

X[Ai]] = B; (Y; = Aj)jx (FR) (A1, ..., X, ..., Ay = A
X[(Y1,..., A, .., A, ... Y = B X = f(A,...,A,)

(D)

(fiL)

L a system of logic

G = (X, 15,5) s.t. X a finite alphabet, /; a finite relations between
symbols from X and formulas (types), S a designated type (the
principal type).

1(;(61) = {A . (ﬂ,A) € 1(,}

G assigns type A to the string a, .. .a,, a; € X, if there exist types
A; € Ig(a;), s.t. Ay, ..., A, = A1is provable; the set of all such strings
x 18 denoted by L(G,A). L(G) = L(G,S) 1s the language of G.

If antecedents of sequents are trees, then G assigns types to trees.
L,(G,A) consists of all trees T which arise from structures X s.t.

X = A 1s provable by replacing each leave A € I;(a) by a.

L,(G) = L(G,S) is the tree language of G. L(G) is the yield of L,(G).

One also considers trees determined by proof trees of sequents.

(1) Context-free grammars (CFG’s)

(2) Context-sensitive grammars (CSG’s)

(3) Classical categorial grammars (CCG’s)
Logic: (—, «<)—sequents of L. (Id), (—=L), («L).
Equivalently: (Id),and A, A - B= Band B — A,A = B, (CUT).

The latter is, essentially, the reduction system AB of
AJDUKIEWICZ (1935) and BAR-HILLEL, GAIFMAN, SHAMIR
(1960).

I;: John: ny, passes: (n; — §) < ny, €Very: n; < n, €xam: n

John passes every exam.
n,(mn —s) —n,n «<nn=n,n —s) «—n,n =
= n.,.n —5s==s

Tree: (John (passes (every exam))).
Functor-argument (FA) structure: (John (passes (every exam););),.

CCG’s (like most categorial grammars) are lexical: logic 1s common
for all languages, the language specification 1s given by the lexical
type assignment /; only.

(4) Lambek categorial grammars (L-grammars)

Logic: L (often its (—, <)—fragment)

Generating trees: I provides a; : A;

A; = B, provable, By, ..., B, = A by AB. This determines an
FA-structure with yield a; .. . a,.

One can generate all possible FA-structures, whence all possible
trees, on the generated strings (W.B. 1988).

CURRY-HOWARD CORRESPONDENCE

Natural Deduction

[=2A—-> B, A=A ["TA,A= B
(—E) , (=D
I'A=>B [=A—>B
The proof of Ay,...,A, = Arepresented as x; : Ay,...,x, : A, v M : A, where M
a (linear) lambda-term with free variables xi,..., x,.

ND-proofs determine denotations in a type-theoretic semantics of Montague style.

e=>(e—f)—>f x:erF(dy:e—1).(yx):(e—>1t) >t
The lambda-term denotes the (characteristic function of) family of all properties of
the individual assigned to x.

VAN BENTHEM 1986: every sequent provable in the (—, «)—fragment of L. with
(EXC) admits only finitely many different readings (different normal ND-proofs).

STANDARD FRAMES
M = (M,-) a semigroup. P(M) = {X : X C M}.

X-Y={xy:xeX,yeY,. X>Y={zeM:X {z} CY]).
Y—X={zeM:{z}- XY}

PM) = (P(M),C, -, —, «) aresiduated semigroup. If M a monoid,
then P(M) a residuated monoid with identity {1}. P(X") the algebra
of e—free languages on . P(X*) the algebra of languages on .

L (also with A) 1s strongly complete w.r.t. powerset frames over
semigroups, and similarly for L* and powerset frames over monoids
(W.B. 1986). The (—, <, A)—fragments are strongly complete with
respect to powerset frames over free semigroups and monoids,
respectively.

L 1s weakly complete w.r.t. algebras of e—free languages, and
similarly for L* and algebras of languages (PENTUS 1993, 1996).

Proofs are involved; they employ the completeness w.r.t. special
relation frames (see below) and some complexity measures of
formulas.

NL 1s not weakly complete w.r.t. powerset frames over free
groupoids (tree models) (DOSEN 1994). Soundness and
completeness holds for some extensions of NL w.r.t. special classes
of tree models (VENEMA 1994, 1996).

The (—, «)—fragment of NL is (strongly) complete with respect
powerset frames over free groupoids (KANDULSKI 1988).

RELATION FRAMES
P(U?) (a square relation algebra) is a residuated monoid with:

RoS ={(x,y) € U?*: Jz((x,z) € Rand (z,y) € S)}.
R—S ={(x,y)€eU?:Ro{(x,y)) CS}).
S —R={(x,y)€eU?: {(x,y))oRCS}. Iy ={(x,x) : x € U.

Relativized frames P(7), where T a transitive relation. In definitions
of R — §,S « Rwrite (x,y) € T. They are residuated semigroups.

L (also with A) 1s strongly complete w.r.t. frames P(T), where T 1s
an irreflexive, transitive relation, and similarly for L* and frames

P(U?). (ANDREKA and MIKULAS 1994).

Related results, e.g. for NL, total orderings 7', and others
(KURTONINA 1995, W.B. and KOLOWSKA-GAWIEINOWICZ
1997, SZCZERBA 1998, W.B. 2003).

Logics related to Lambek calculus

Linear Logic (Multiplicative intuitionistic linear logic)

Introduced by Jean-Yves Girard in 1987 [Gir87].
Linear logic is:
@ Sequent calculus without weakening and contraction.

@ As (or more) constructive than intuitionistic logic, while
maintaining desirable features of classical logic.

@ Finding more and more applications in theoretical computer
science.

o

Language of Linear Logic

Propositional variables: A, B, C,--- ,P,Q,R,---

Constants:

o Multiplicative: 1, L (units, resp. of ®,%)
o Additive: T,0 (units, resp. of &, ®)

Connectives:

o Multiplicative: ®, 7, —o
o Additive: &, @

Exponential modalities: 1,7

Linear negation: (-)*

We now consider the (®, —o,1)-fragment, multiplicative
intuitionistic linear logic.

o TFP PAFQ
FAFQ
TR 0 iF p
(@MFFZPP%EQ “MJ{ﬁ;%i%
LPEQ 'FP QAFR

[FP—-Q 7 T,P—-Q,AFR

Compact Blinear Logic (pregroup grammars)

Under the influence of Girard (1987), Abrusci (1991) and Lambek (1993)

developed a non-commutative version of his linear logic, called
non-commutative linear logic (Abrusci)
or classical bilinear logic (Lambek).

It can be obtained from the Syntactic Calculus by adjoining a constant
symbol 0 satistying:

0/(A\O) «< A < (0/A)\O
where we can also write

A\O = A, 0/A=A.

One can show that

[:BrArJf P (BEAE)T !

for which it is convenient to write A @ B, or simply A+B. We may think of & as the
De Morgan dual of @ : it corresponds to what Girard calls “par” '. Here are some
theorems of classical bilinear logic, which had been anticipated by Grishin (1983):

1" e 0« 1
A+0 — A < 0+A
(A4+B)4+C « A+(B+C)
A'A S0 , AA" =0
1 — A+AY | 1 — A™4A
A/B < A+B" , B\A < B"+A
(A+B)C - A+BC |, C(B+A) —-CB+A

The last two are the mizred associative laws of Grishin

Lambek observed that there was a simplification if one assumed that

A+B—< AB |, 0« 1.

The word “compact” had been used e.g. by Barr (1979) to describe this situation in
a categorical context, though then still restricted to the commutative case. Finally,
it was realized that compact bilinear logic allowed a simpler description as follows:

(AB)C «~ A(BC) , Al A« 1A
AN 51 5 ANA | AMA ST 5 AN

Barr, M. (1979). - Autonomous Calegories. Springer LNM 752, Berlin.

Models in which — stands for a partial order are called “pregroups”:

they reduce to groups if the order is discrete, that is, is the equality relation, and
to partially ordered groups in the so-called cyclic case when A" « A",

If however the arrows are allowed to stand for morphisms in a category, one would
also demand that the above occurrences of < represent isomorphisms and that the
composite arrows

A—ANA A | A AANA A

are identity arrows, making A’ the left adjoint and A" the right adjoint of A in a
2-category.

T

A pregroup {G, . , 1,% ", —} is a partially ordered monoid in which

each element a has a
left adjoint a* and a right adjoint "

such that

4

da—1— ad

ad —1— ada

the dot “.” stands for multiplication with unit 1, and the arrow denotes the partial
order.

In linguistic applications the symbol 1 stands for the empty string of types and
multiplication is interpreted as concatenation.

Adjoints are unique and we prove

1f=1=1

(a-b0)f = b"-a® , (a-b)" = b"-a",

£

a—b a—b bt — a

bt —a' , b —a a't — bt

7

The following also hold

adtadf -1 — o at

a a”" —1—d" a

?

A pregroup is freely generated by a partially ordered set of basic types. From each
basic type a we form simple types by taking single or repeated adjoints:

£l

oat d

Laa, d’t. ..

C'ompound types or just types are strings of simple types. We assign to each word
or word form in the dictionary of the language under investigation one (or more)
types. The only computations required are contractions (C) and expansions (E):

Q) da—1, ad —1,
(E) 1—ad,1—da,
where a is a simple type. For the purpose of sentence verification expansions are

not needed, but only contractions, combined with some rewriting induced by the
partial order,

Example
basic types S.i, 7,0, W, A
compound types (7] s; o), (i AY), i w'o'

Developing a pregroup grammar for a natural language consists in two main steps:
(i) assign one or more (basic or compound) types to each word in the dictionary;

(i1) check the grammaticality and sentencehood of a string of words by a
calculation on the corresponding types

where the only rules involved are :
contractions,
ordering postulates taking the form o — 3 («, [basic types)

and appropriate conditions introduced in the lexicon, called metarules.

Linguistic analysis

We show some examples of linguistic analysis using AB-grammars. Assume
for example primitive types pp (prepositional phrase), s (sentence), n (common

noun} and np (noun phrase). Consider the following lexicon.

Word Typels)
Tom np
likes (np\s)/np
pimself | ((np\s)/np)\(np\s)
for pp/np
works (np\s)/pp
man n

Then * Tom likes homself " and * Tom works for the man’ are derived as sentences

as follows,
ltkes himself

Tom f :
(np\s)/np ((np\s)/np)\(np\s)

; (AP - 1)
np np' s

(AP =-1)

the

for TELELTL
works :
np/n .
Tom 3 pp/np . E:P -4
: (np\s)/pp PP b
np : nphs T

Since the sequent n, (np\s)/pp, pp/np. ((np\s)/np)\(np\s) = s is not provable
in AB, the AB-grammar (with types as above) does not accept ‘Tom works for
himself” as a sentence. In L (Lambek Calculus), using the composition laws,
this sequent reduces to np. (np\s)/np, ((np\s)/np)\(np\s). and latter to s. So
L-grammars with the same types accept this sentence.

However there are some shortcomings of L as a type logic. L accepts all
possible phrase structures on the accepted strings. Further some desirable type
are not provable in L. For example ‘and’ of type (s\s)/s can not be lift up to
((np\s)\(np\s))/(np\s) as in ‘Tom sings and dances’. The required law is not
provable in L.

A linguistic example : PG

Example : Let P = {m, w2, 73, s, 51, S2, p1, P2, 0, ...} With
m; . subject (I : 71, you, we, they : w3, he, she, it : m3)
o . direct object

n . name or noun phrase (n < w3 and n < o)

s; . present (i=1) or past (i=2) sentence

s . correct sentence (s; < s and sy < s)

pi . present (i=1) or past (i=2) participle

o o o @ @ ©

he Ioves her a link between a and b

?TaSlO 0 means . ab <1
|_| I_I
John Ioves Mary because : n < m3 = nm3 < 71'3?1'3 <1
ﬁdslo and: n<o=o0o"1n<olto<1
|_| I_I

you have been seing her

—1 —1 —
Ty MyS1Py PPy Plot 0

I

—1 Ll

ss lmsn n T3810 08 sn” n with s;s' < 1
every man loves a woman
ss imwan =1 n w3s10° " ostsnTt n with s—1s; <1

L | |

i

GENERATIVE POWER AND COMPLEXITY

(1) CCGs are weakly equivalent to e—free CFGs (BGS 1960).

Every CCG 1s equivalent to a CFG. Straightforward: since AB
always reduces types, then rules A, A - B= B, B« A,A = Bcan
be restricted to subtypes of types appearing in /.

Every e—free CFG is equivalent to a CCG; furthermore, the latter
employs types of the form p, p « g, (p < g) < r only.

This is nontrivial. Actually, it is equivalent to the Greibach Normal
Form theorem for CFGs: every e—free CFG 1s equivalent to a CFG
with production rules of the form: a — p, ag — p, arg — p, where
a € X, p,q,r are variables (proved directly by S. Greibach 1967).

The proof in (BGS 1960) is combinatorial. A logical analysis is
given in (W.B. 1988, 1996). L derives the types assigned by the

CCG G’ from the rules of the CFG G. L(G") C L(G) follows from
the strong soundness of L w.r.t. frames P(X™").

(2) NL-grammars are weakly equivalent to e—free CFGs. (without product W.B.
1986, with product KANDULSKI 1988).

Every e—tree CFG 1s equivalent to some NL-grammar. Now it 1s an easy
consequence of (1) and the fact that, for types restricted as above, a sequent ' = p
is provable in AB iff it is provable in NL (also L, L*, FL and so on); use cut
elimination.

Every NL-grammar i1s equivalent to a CFG. Now it is nontrivial, since NL can
expand types,e.g. A = (B« A) »> B,A= B — (B-A).

NL restricted to simple sequents A = B can be axiomatized as a term rewriting
system, based on rewriting rules, e.g. rewrite A on a positive position in C into
(B <« A) — B, and conversely for negative positions.

KEY LEMMA: A,,...,A, = B s provable in NL iff there exist Cy,...,C,,C s.L.
A; = C; by reducing rules only, Cy,...,C, = C by AB, and C = B by expanding
rules only.

This shows that every NL-grammar 1s equivalent to a CCG (which generates the
same trees).

(3) L-grammars are weakly equivalent to e—free CFGs (PENTUS
1993).

Every L-grammar is equivalent to a CFG.

P a finite set of variables. |A| the total number of variables in A.
T'(P,m) the set of all types A on P s.t. |A] < m.

Binary Reduction Lemma: Let A;,...,A, = A, be provable in L,
n>2 A, € T(Pm),foralli=1,...,n+ 1. Then, there exist k < n
and B € T(P,m) s.t.:

(1) Ay, Ars1 = B is provable in L,

(1) Ay,..., A1, B, Ayn, ..., A, = A4 1s provable in L.

The proof of Binary Reduction Lemma 1s based on certain
proof-theoretic properties of L.

I, the number of occurrences of p in I’

(I) Interpolation Lemma (ROORDA 1991): LetI',®,A = A be
provable in L. Then, there exists a type B s.t.:

(1) @ = B s provable in L,

(m) I', B,A = A 1s provable in L,

(i11) for any variable p, |B|, <min(|®|,, |, A, A[,).

A type is thin, if each variable occurs at most once in it. A sequent is

thin, if it 1s provable in L, each type in this sequent is thin, and each
variable occurring in the sequent occurs twice in it.

A type 1s thin, if each variable occurs at most once in it. A sequent 1s
thin, if 1t 1s provable in L, each type in this sequent is thin, and each
variable occurring in the sequent occurs twice in it.

(II) Every L-provable sequent 1s a substitution instance of an
L-provable sequent in which each variable occurs twice.

PENTUS proves Binary Reduction Lemma for thin sequents, using
free group models. By(I) and (II), it holds for arbitrary sequents.

Consequently, if G 1s an L-grammar on P and m 1s the maximal A,
for A appearing in I, then G is equivalent to a CFG whose
production rules are all L-provable sequents A = Band A, B = C,

forA,B,C € T(P,m).

The cardinality of T(P,m) 1s exponential in the size of P and m. Accordingly,
PENTUS’s transtformation of an L-grammar G into an equivalent CFG 1s exptime
in the size of G.

By reducing SAT to the provability problems for L, L.*, Cyclic and
Noncommutative MLL, PENTUS (2006) proves the NP-completeness of these
problems.

The universal membership problem for CFGs 1s polytime. So, if one provided a
polytime transformation of any L-grammar into an equivalent CFG, then she
would prove P=NP.

W.B. (1982) shows that even the (—)—fragment of L. with assumptions of the form
p.g=rand p = g = ris Z{l]—complete, and the corresponding grammars
generate all e—free r.e. languages. This also holds for L*.

(4) Again NL.

Interpolation Lemma (JAGER 2004): Let X[Y] = A be provable in
NL. Then, there exists a type B s.t.:

(1) Y = B s provable in NL,

(1) X[B] = A is provable in NL,

(111) B 1s a subtype of a type occurring in X[Y] = A.

This yields a new proof of the context-freeness of NL-grammars.

The provability problem for NL 1s polytime (AARTS 1995 without
product, DE GROOTE 2002 with product). So, we get a polytime
transformation of any NL-grammar into an equivalent CFG (but not
into a strongly equivalent CCQG).

(W.B. 2005) uses this kind of interpolation to prove that: (1) the
consequence relation for NL 1s polytime, (i1) grammars based on
finite theories on NL are context-free. This holds for NL with
(EXC), with modalities, and Generalized Lambek Calculus.

L CFL NP-complete
L (/,)) CFL NP-complete
NL CFL P-time
NL (/. \) CFL P-time
finite PSPACE-
FL(MALC) Intersections of complete
CFL
Intersections
LG and NP-complete
permutation
closure of CFL

PG CFL P-time
DFL,BFL ? PSPACE-
hardness

LL REL undecidable
finite

MAL L Intersections of PSPACE-
CFL complete

MELL ? ?

DFNL,BFNL CFL PSPACE-Com

Other topics

(1) Proof nets

A graph-theoretic representation of proofs in multiplicative fragments of
substructural logics, introduced by GIRARD (1987) for MLL. For
noncommutative logics, they are planar graphs. Linguists use them to represent
semantic structures of expressions (C. RETORE, P. DE GROOTE, G. PENN, G.
MORRILL, R. MOQOT). BECHET (2007) gives a new proof of the PENTUS
theorem for L* (context-freeness), applying proof nets. PENTUS (2006) uses
proof nets in his proof of NP-completeness of L and related systems.

(2) Bilinear Logic and pregroups

L* is a conservative fragment of Bilinear Logic BL; the latter is the multiplicative
fragment of both Noncommutative and Cyclic MLL. Some authors use BL rather
than L* or LL as a logic for grammars (V.M. ABRUSCI, C. CASADIO). LAMBEK
(1999) introduces a simplified formalism, called Compact Bilinear Logic CBL,
which arises from BL by identifying ® and its dual ‘par’. Models of CBL are
called pregroups. This system is essentially stronger than BL. and incompatible
with intuitionistic and classical logics. (W.B., D. BECHET, C. CASADIO, A.
PRELLER, N. FRANCEZ, M. KAMINSKI, A. KISLAK-MALINOWSKA)

(3) Unification-based learning

W.B. and PENN (1990) apply the method of unification to design some learning
algorithms for categorial grammars (earlier W.B. 1987, VAN BENTHEM 1987).
KANAZAWA (1996, 1998) develops and studies these algorithms in direction of
Gold’s paradigm: learning from positive data. Several authors have obtained
interesting results, e.g. D. BECHET, A. FORET, J. MARCINIEC, C. RETORE, C.

COSTA FLORENCIO, B. DZIEMIDOWICZ.

(4) Type-theoretic approaches

Many authors prefer to use richer formalisms, e.g. different versions of typed
lambda-calculus or higher-order intensional logic. STEEDMAN (1988), following
H.B. CURRY, applies certain systems of combinators. RANTA (1994) develops
the ‘formulas-as-types’ paradigm as a type-theoretic grammar. DE GROOTE
(2001) introduces Abstract Categorial Grammars, in which both syntactic and
semantic structures are represented by lambda-terms, and the two levels are linked

by a homomorphism.

An open guestion

The consequence relations for BCI Is
decidable?

