Gödel's Incompleteness

X. Zhao

Outline

(1) Gödel's First Incompleteness Theorem

- Robinson Arithmetic
- Computability
- Arithmetization
- Representability
- Incompleteness
- By-products
(2) Gödel's Second Incompleteness Theorem
- Peano Arithmetic
- Derivability Conditions
- T Satisfies D_{1}
- T Satisfies D_{2}
- T Satisfies D_{3}
- Incompleteness
- By-products
(3) References

Outline

(1) Gödel's First Incompleteness Theorem
(2) Gödel's Second Incompleteness Theorem
(3) References

A Wildly Known Popularization

Consider a recursively axiomatic theory T which describes a given domain of objects \mathcal{M} in language \mathscr{L} in a manner we hope is complete. Moreover, suppose that T is capable of talking in its language \mathscr{L} about its own syntax and proofs from its axioms. Now consider the sentence φ : "I am unprovable in $T=\operatorname{Th}(\mathcal{M})$ " where "I" refers to φ.

A Wildly Known Popularization

Consider a recursively axiomatic theory T which describes a given domain of objects \mathcal{M} in language \mathscr{L} in a manner we hope is complete. Moreover, suppose that T is capable of talking in its language \mathscr{L} about its own syntax and proofs from its axioms. Now consider the sentence φ : "I am unprovable in $T=\operatorname{Th}(\mathcal{M})$ " where "I" refers to φ.

$$
\begin{aligned}
\mathcal{M} \vDash \varphi & \Rightarrow \varphi \in T & & T=\operatorname{Th}(\mathcal{M}) \\
& \Rightarrow \varphi \text { is provable in } T & & \text { a contradiction to } \varphi ; \\
\mathcal{M} \not \models \varphi & \Rightarrow \varphi \notin T & & T=\operatorname{Th}(\mathcal{M}) \\
& \Rightarrow \varphi \text { is unprovable in } T & & \\
& \Rightarrow \varphi \text { is true in } \mathcal{M} & & \text { a contradiction. }
\end{aligned}
$$

A Wildly Known Popularization

Consider a recursively axiomatic theory T which describes a given domain of objects \mathcal{M} in language \mathscr{L} in a manner we hope is complete. Moreover, suppose that T is capable of talking in its language \mathscr{L} about its own syntax and proofs from its axioms. Now consider the sentence φ : "I am unprovable in $T=\operatorname{Th}(\mathcal{M})$ " where "I" refers to φ.

$$
\begin{array}{rlrl}
\mathcal{M} \models \varphi & \Rightarrow \varphi \in T & & T=\operatorname{Th}(\mathcal{M}) \\
& \Rightarrow \varphi \text { is provable in } T & & \text { a contradiction to } \varphi ; \\
\mathcal{M} \not \models \varphi & \Rightarrow \varphi \notin T & & T=\operatorname{Th}(\mathcal{M}) \\
& \Rightarrow \varphi \text { is unprovable in } T & \\
& \Rightarrow \varphi \text { is true in } \mathcal{M} & & \text { a contradiction. }
\end{array}
$$

Conclusion: Clearly it's $T=\operatorname{Th}(\mathcal{M})$ that leads to the contradiction and then $T \neq \operatorname{Th}(\mathcal{M})$. Hence our goal of exhaustively capturing all theorems valid in \mathcal{M} by means of the axioms of T has not been achieved and is in fact not possible, as we will show.

The General Proof Idea

- Before arriving at the destination, we should climb over three mountains.
- Arithmetize provability as a (partially) recursive predicate P;
- Show that every predicate can be represented by some formula which follows that the predicate P can be represented by beb (y);
- Prove the fixed point lemma (here also needs the second conclusion);
- At last through the fixed point lemma and the second conclusion we would conclude Gödel's first incompleteness theorem.

The General Proof Idea

- Before arriving at the destination, we should climb over three mountains.
- Arithmetize provability as a (partially) recursive predicate P;
- Show that every predicate can be represented by some formula which follows that the predicate P can be represented by beb (y);
- Prove the fixed point lemma (here also needs the second conclusion);
- At last through the fixed point lemma and the second conclusion we would conclude Gödel's first incompleteness theorem.

The General Proof Idea

- Before arriving at the destination, we should climb over three mountains.
- Arithmetize provability as a (partially) recursive predicate P;
- Show that every predicate can be represented by some formula which follows that the predicate P can be represented by beb (y);
- Prove the fixed point lemma (here also needs the second conclusion);
- At last through the fixed point lemma and the second conclusion we would conclude Gödel's first incompleteness theorem.

The General Proof Idea

- Before arriving at the destination, we should climb over three mountains.
- Arithmetize provability as a (partially) recursive predicate P;
- Show that every predicate can be represented by some formula which follows that the predicate P can be represented by beb (y);
- Prove the fixed point lemma (here also needs the second conclusion);
- At last through the fixed point lemma and the second conclusion we would conclude Gödel's first incompleteness theorem.

The General Proof Idea

- Before arriving at the destination, we should climb over three mountains.
- Arithmetize provability as a (partially) recursive predicate P;
- Show that every predicate can be represented by some formula which follows that the predicate P can be represented by $\operatorname{beb}(y)$;
- Prove the fixed point lemma (here also needs the second conclusion);
- At last through the fixed point lemma and the second conclusion we would conclude Gödel's first incompleteness theorem.

Robinson Arithmetic

Definition 1.1

Our language is \mathscr{L}_{A} which is consist of non-logical symbols and logical symbols as follows:

- non-logical symbols: $\overline{0}, \bar{S}, \overline{+}, \overline{\times}$;
- logical symbols: $x_{0}, x_{1}, x_{2}, \cdots, \equiv, \neg, \rightarrow, \forall$.

Definition 1.2

For convenience, we define

$$
\begin{array}{rll}
\sigma \neq \tau & \text { iff } & \neg(\sigma \equiv \tau) ; \\
\bigvee_{i<n} \varphi_{i} & \text { iff } & \varphi_{0} \vee \cdots \vee \varphi_{n-1} \\
\bigwedge_{i<n} \varphi_{i} & \text { iff } & \varphi_{0} \wedge \cdots \wedge \varphi_{n-1}
\end{array}
$$

Robinson Arithmetic

Definition 1.3

Φ is a set of the following logical axioms.

- $\left(P_{1}\right) \varphi \rightarrow(\psi \rightarrow \varphi)$;
- $\left(P_{2}\right)(\varphi \rightarrow \psi \rightarrow \vartheta) \rightarrow(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \vartheta)$;
- $\left(P_{3}\right)(\neg \varphi \rightarrow \psi) \rightarrow(\neg \varphi \rightarrow \neg \psi) \rightarrow \varphi$;
- (S) $\forall x \varphi \rightarrow \varphi(x ; \tau)$ where $\varphi(x ; \tau)$ is a free substitution;
- (D) $\forall x(\varphi \rightarrow \psi) \rightarrow \forall x \varphi \rightarrow \forall x \psi$;
- (E) $\tau \equiv \tau$;
- $\left(E_{3}\right) \tau_{0} \equiv \sigma_{0} \rightarrow \cdots \rightarrow \tau_{n-1} \equiv \sigma_{n-1} \rightarrow F\left(\tau_{0}, \cdots, \tau_{n-1}\right) \equiv F\left(\sigma_{0}, \cdots, \sigma_{n-1}\right)$;
- $\left(C_{1}\right) \varphi \rightarrow \forall x \varphi$ where $x \notin \operatorname{Fr}(\varphi)$;
- (C2) $\forall x_{0} \cdots \forall x_{n-1} \varphi$ where φ is an axiom with one of the above forms.
- (MP) $\{\varphi, \varphi \rightarrow \psi\} \vdash \psi$.

Robinson Arithmetic

Definition 1.4

Robinson arithmetic is the theory $Q=\Phi+\left\{Q_{1}, \cdots, Q_{7}\right\}$.

$$
\begin{aligned}
& Q_{1}: \forall x \bar{S} x \not \overline{\neq} ; \\
& Q_{2}: \forall x \forall y(\bar{S} x \equiv \bar{S} y \rightarrow x \equiv y) ; \\
& Q_{3}: \forall x(x \neq \overline{0} \rightarrow \exists y(x \equiv \bar{S} y)) ; \\
& Q_{4}: \forall x(x \bar{\mp} \overline{0} \equiv x) ; \\
& Q_{5}: \forall x \forall y(x \bar{\mp} \bar{S} y \equiv \bar{S}(x \overline{+} y)) ; \\
& Q_{6}: \forall x(x \overline{\times} \overline{0} \equiv x) ; \\
& Q_{7}: \forall x \forall y(x \overline{\times} \bar{S} y \equiv x \overline{\times} y \bar{\mp} x) .
\end{aligned}
$$

Attention: $\mathrm{Q} \vdash$ and \vdash_{Q}.

Robinson Arithmetic

Remark 1.5

(1) $\mathcal{N}_{0}=(\mathbb{N}, 0, S,+, \times)$ is a standard model of Q ;
(2) Also Q has many other models, for example, nonstandard models. $\mathcal{M}=(\mathbb{N} \cup\{\infty\}, 0, S,+, \times)$ where $S,+, \times$ are extensions to ∞ from $S,+, \times$ in \mathcal{N}_{0} in the ways:

- $S(\infty)=\infty$;
- $n+\infty=\infty+n=\infty+\infty=\infty$;
- $0 \times \infty=\infty \times 0=0$ and $n \times \infty=\infty \times n=\infty \times \infty=\infty$.

It's easy to check that $\mathcal{M} \vDash \mathrm{Q}$.

Robinson Arithmetic

Notation 1.6
The term number $\bar{n}=\bar{S}^{n} \overline{0}=\underbrace{\bar{S} \cdots \bar{S}}_{n \text { many }} \overline{0}$ for all $n \in \mathbb{N}$.

Definition 1.7
$x \leq y$ if $\exists z(z \overline{+} x \equiv y)$. Furthermore $x<y$ iff $x \leq y \wedge x \neq y$.

Robinson Arithmetic

Lemma 1.8
(1) $\mathrm{Q} \vdash \forall x(\bar{S} x \bar{\mp} \bar{n} \equiv x \bar{\mp} \bar{S} \bar{n})$;
(2) $\mathrm{Q} \vdash \bar{m} \overline{+} \equiv \overline{m+n}$;
(3) $\mathrm{Q} \vdash \bar{m} \overline{\times} \bar{n} \equiv \overline{m \times n}$;
(9) $\mathrm{Q} \vdash \bar{m} \equiv \bar{n}$ iff $m=n$;
(- $\mathrm{Q} \vdash \bar{m} \leq \bar{n}$ iff $m \leq n$;
(1) $\mathrm{Q} \vdash \forall x\left(x \leq \bar{n} \leftrightarrow \bigvee_{q \leq n} x \equiv \bar{q}\right)$;
(9) $\mathrm{Q} \vdash \forall x(x \leq \bar{n} \vee \bar{n} \leq x)$.

Computability

Definition 1.9

Suppose $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is a function, we say f is computable if, there is some algorithm set in some fixing machine such that, given any x_{0}, \cdots, x_{n-1}, when inputting x_{0}, \cdots, x_{n-1} into the machine,

- the machine would output $f\left(x_{0}, \cdots, x_{n-1}\right)$ if $f\left(x_{0}, \cdots, x_{n-1}\right)$ is defined;
- the machine would never stop if $f\left(x_{0}, \cdots, x_{n-1}\right)$ isn't defined.

Computability

Lemma 1.10

The following basic functions are computable.
(1) the zero function $\mathrm{O}(x)=0$ for all x;
(2) the successor function $S(x)=x+1$;
(3) the projection function $U_{i}^{n}\left(x_{0}, \cdots, x_{n-1}\right)=x_{i}$ for all $i<n$.

Theorem 1.11 (Composition)

Suppose that $f\left(y_{0}, \cdots, y_{n-1}\right)$ and $g_{0}(\vec{x}), \cdots, g_{n-1}(\vec{x})$ are computable functions, then $h(\vec{x})=f\left(g_{0}(\vec{x}), \cdots, g_{n-1}(\vec{x})\right)$ is also computable.

Computability

Theorem 1.12 (Recursion)

Suppose that $f(\vec{x})$ and $g(\vec{x}, y, z)$ are functions, define $b(\vec{x}, y)$ by recursion equations: $h(\vec{x}, 0)=f(\vec{x})$ and $h(\vec{x}, y+1)=g(\vec{x}, y, h(\vec{x}, y))$. If $f(\vec{x})$ and $g(\vec{x}, y, z)$ are computable, then so is $h(\vec{x}, y)$. And we say h is obtained by recursion from f and g.

Theorem 1.13 (Bounded Minimalisation)

Suppose $f(\vec{x}, y)$ is computable, then so is the following:

$$
\mu z<y(f(\vec{x}, z)=0)= \begin{cases}\text { the least } z<y & \text { if } \exists z f(\vec{x}, z)=0 \\ y & \text { otherwise }\end{cases}
$$

And we call $\mu z<y$ as bounded minimalisation operator.

Computability

Theorem 1.14 (Minimalisation)

Suppose that $f(\vec{x}, y)$ is computable, then so is
$\mu y(f(\vec{x}, y)=0)= \begin{cases}\text { the least } y \text { such that } f(\vec{x}, z) \text { is defined } & \\ \text { for all } z<y \text { and } f(\vec{x}, y)=0 & \text { if there is such } y ; \\ \text { undefined } & \text { otherwise } .\end{cases}$
And we call μy as μ-operator.

Definition 1.15

Primitive recursive functions is the least class which includes identity maps $(n(x)=n)$, projection functions and is closed under composition and recursion; Recursive functions is the least class which includes the basic functions and is closed under composition, recursion and μ-operator.

Computability

Definition 1.16

Suppose $P(\vec{x})$ is an n-ary predicate with $P \subseteq \mathbb{N}^{n}$. Define c_{P} as:

$$
c_{P}(\vec{x})=\left\{\begin{array}{cc}
1 & P(\vec{x}) \text { holds } \\
0 & \text { otherwise }
\end{array}\right.
$$

$P(\vec{x})$ is recursive if c_{P} is computable; otherwise it's not recursive.

Computability

Lemma 1.17

Suppose that $P(\vec{x})$ and $Q(\vec{x})$ are recursive predicates, then so are:
(1) $\operatorname{not} P(\vec{x})$;
(2) $P(\vec{x})$ and $Q(\vec{x})$;
(3) $P(\vec{x})$ or $Q(\vec{x})$.

Lemma 1.18

Suppose that $P(\vec{x}, y)$ is a recursive predicate, then so are:
(1) $Q_{1}(\vec{x}, y)=\forall z<y P(\vec{x}, z)$;
(2) $Q_{2}(\vec{x}, y)=\exists z<y P(\vec{x}, z)$.

Computability

Definition 1.19

Suppose $A \subseteq \mathbb{N}$, if the characteristic function c_{A} of A given by

$$
c_{A}(x)= \begin{cases}1 & x \in A ; \\ 0 & x \notin A .\end{cases}
$$

is computable, we say A is recursive. And if the function f given by

$$
f(x)= \begin{cases}1 & x \in A \\ \text { undefined } & x \notin A\end{cases}
$$

is computable, we say A is recursively enumerable.

Arithmetization

In \mathscr{L}_{A} we can also talk about the syntax of \mathscr{L}_{A}, proofs, provability and even some semantics by means of encoding of strings from alphabet of \mathscr{L}_{A}, which is called Gödel encoding.

Definition 1.20

Assign to every symbol of \mathscr{L}_{A} a natural number.

ζ	\forall	$\overline{0}$	\bar{S}	$\bar{\mp}$	$\overline{\times}$	$($	$)$	\neg	\rightarrow	\equiv	x_{0}	x_{1}	x_{2}	\ldots
$\sharp \zeta$	1	3	5	7	9	11	13	15	17	19	21	23	25	\ldots

Then the Gödel code of a string $\xi=\zeta_{0} \cdots \zeta_{n}$ is

$$
\sharp \xi=\left\langle\sharp \zeta_{0}, \cdots, \sharp \zeta_{n}\right\rangle=p_{0}{ }^{\sharp \zeta_{0}} \cdots p_{n}{ }^{\sharp \zeta_{n}} .
$$

In particular we set $\sharp\rangle=1$.

Arithmetization

The sentence

$$
\forall x(\overline{1} \not \equiv(\overline{2} \overline{\times} x \bar{\mp} \overline{21}))
$$

not only states some assertion about 1 and 21, but also states some syntax of \mathscr{L}_{A}, i.e., " \forall is not a variable".

Arithmetization

The sentence

$$
\forall x(\overline{1} \neq(\overline{2} \overline{\times} x \bar{\mp} \overline{21}))
$$

not only states some assertion about 1 and 21, but also states some syntax of \mathscr{L}_{A}, i.e., " \forall is not a variable".

All the syntactic concepts in which we are interested are "translated" as recursive subsets of \mathbb{N}, or at least recursively enumerable subsets of \mathbb{N}, to represent them in the theory $T \supseteq \mathrm{Q}$. Notably that we use $\sharp \cdots$ to denote the code of some \cdots.

Arithmetization

The sentence

$$
\forall x(\overline{1} \neq(\overline{2} \overline{\times} x \overline{+} \overline{21}))
$$

not only states some assertion about 1 and 21 , but also states some syntax of \mathscr{L}_{A}, i.e., " \forall is not a variable".

All the syntactic concepts in which we are interested are "translated" as recursive subsets of \mathbb{N}, or at least recursively enumerable subsets of \mathbb{N}, to represent them in the theory $T \supseteq \mathrm{Q}$. Notably that we use $\sharp \cdots$ to denote the code of some \cdots.

Lemma 1.21

$\{v \in \mathbb{N} \mid v$ is a \sharp variable $\}$ is recursive.

Proof.

Set $P=\{v \in \mathbb{N} \mid v=2 k+21$ for some $k \in \mathbb{N}\}$. Since the predicate $R(v, k): v=2 k+21$ is recursive, then the predicate $P(v): \exists k<$ $v R(v, k)$ is recursive.

Arithmetization

Lemma 1.22

$\{t \in \mathbb{N} \mid t$ is a $\sharp t e r m\}$ is recursive.

Proof.

We just need to give a recursive definition of t :

- $\exists s<t(t=\langle s\rangle)$ where s is some \sharp varaible or s is $\sharp \overline{0}$;
- $\exists r, s<t(t=\langle r\rangle \hat{s})$ where r is $\sharp \bar{S}$ and s is some \sharp term
- $\exists q, r, s<t(t=\langle q\rangle \hat{s} t)$ where q is $\sharp \overline{+}$ or $\sharp \bar{x}$ and s, t are \sharp terms.

In Lemma 1.22, given some term $\bar{S} \bar{S} \overline{0}$ the Gödel code of it is

$$
\langle\sharp \bar{S}, \sharp \bar{S}, \sharp \overline{0}\rangle=2^{5} 3^{5} 5^{3}
$$

but

$$
\left.\langle\sharp \bar{S},\langle\sharp \bar{S}, \sharp \bar{O}\rangle\rangle=2^{6} 3^{\langle\sharp} \bar{S}, \sharp \bar{O}\right\rangle=2^{5} 3^{2^{5} 3^{3}} .
$$

Arithmetization

Lemma 1.23
$\{\varphi \in \mathbb{N} \mid \varphi$ is a \sharp (atomic formula) $\}$ is recursive.

Lemma 1.24

$\{\varphi \in \mathbb{N} \mid \varphi$ is a \sharp formula $\}$ is recursive.

Lemma 1.25

There is a recursive function sub such that, for any term or formula φ and for any variable x and any term t, $\operatorname{sub}(\sharp \varphi, \sharp x, \sharp t)=\sharp \varphi(x ; t)$.

Arithmetization

Proof.

We also just give a recursive definition of sub.

$$
\sharp \varphi(x ; t)= \begin{cases}\sharp t & \varphi=x ; \\ \sharp(\bar{S}(u(x ; t))) & \varphi=\bar{S} u \text { and } u \text { is a term; } \\ \sharp(\bar{\mp}(u(x ; t) s(x ; t))) & \varphi=\bar{\mp} u s \text { and } u, s \text { are terms; } \\ \sharp(\overline{\times}(u(x ; t) s(x ; t))) & \varphi=\overline{\times} u s \text { and } u, s \text { are terms; } \\ \sharp(\equiv(u(x ; t) s(x ; t))) & \varphi=\equiv u s \text { and } u, s \text { are terms; } \\ \sharp(\neg(\psi(x ; t))) & \varphi=\neg \psi \text { and } \psi \text { is a formula; } \\ \sharp(\rightarrow \psi(x ; t) \vartheta(x ; t)) & \varphi=\rightarrow \psi \vartheta \text { and } \psi, \vartheta \text { are formulas; } \\ \sharp(\forall y(\psi(x ; t))) & \varphi=\forall y \psi, y \neq x \text { and } \psi \text { is a formula; } \\ \sharp \varphi & \text { otherwise. }\end{cases}
$$

This completes the proof.

Arithmetization

Lemma 1.26
Define the predicate $P \subseteq \mathbb{N}^{2}$ as

$$
\left\{(x, \varphi) \in \mathbb{N}^{2} \mid x \text { is a } \sharp(\text { free occurrence }) \text { in } \varphi\right\} \text {. }
$$

Then P is recursive.

Proof.

$(x, \varphi) \in P$ iff x is a \#variable $\wedge \varphi$ is a \#term or \sharp formula $\wedge \operatorname{sub}(\varphi, x, \sharp \overline{0}) \neq \varphi$.

Arithmetization

Lemma 1.27

$\{\sigma \in \mathbb{N} \mid \sigma$ is a \sharp sentence $\}$ is recursive.

Lemma 1.28

$\left\{\varphi \in \mathbb{N} \mid \varphi\right.$ is a $\langle\sharp \neg\rangle^{\wedge}\langle\psi\rangle \wedge \psi$ is a \sharp formula $\}$ is recursive.

Lemma 1.29
$\left\{\varphi \in \mathbb{N} \mid \varphi\right.$ is a $\langle\sharp \rightarrow\rangle^{\wedge}\langle\psi\rangle^{\wedge}\langle\vartheta\rangle \wedge \psi, \vartheta$ are \sharp formulas $\}$ is recursive.
Lemma 1.30
$\left\{\varphi \in \mathbb{N} \mid \varphi\right.$ is a $\langle\sharp \forall\rangle^{\wedge}\langle y\rangle^{\wedge}\langle\psi\rangle \wedge y$ is a \sharp variable $\wedge \psi$ is a \sharp formula $\}$ is recursive.

Arithmetization

Lemma 1.31

Define the predicate $P \subseteq \mathbb{N}^{3}$ as
$\left\{(\varphi, x, t) \in \mathbb{N}^{3} \mid \varphi\right.$ is a \sharp formula $\wedge t$ is a \sharp term $\wedge x$ is a \sharp variable $\wedge t$ is a \sharp free for x in $\left.\varphi\right\}$.
Then P is recursive.

Proof.

We give a recursive definition of " t is a \sharp free for x in φ ":

- t is a \sharp free for x in φ, where φ is a \sharp (atomic formula);
- t is a \sharp free for x in ψ, where $\varphi=\langle\sharp \neg\rangle^{\wedge}\langle\psi\rangle \wedge \psi$ is a \sharp formula;
- t is a \sharp free for x in ψ and t is a \sharp free for x in ϑ, where $\varphi=\langle\sharp \rightarrow$ $\nu^{\wedge}\langle\psi\rangle^{\wedge}\langle\vartheta\rangle \wedge \psi, \vartheta$ are \sharp formulas;
- either x is not a \sharp (free ocurrence) in φ, or y is not a \sharp (free ocurrence) in t and t is a \sharp free for x in ψ, where $\varphi=$ $\langle\sharp \forall\rangle^{\wedge}\langle\sharp y\rangle^{\wedge}\langle\psi\rangle \wedge y$ is a \sharp variable $\wedge \psi$ is a \sharp formula.

Arithmetization

Lemma 1.32

Define the predicate $P \subseteq \mathbb{N}^{2}$ as
$\left\{(\varphi, \psi) \in \mathbb{N}^{2} \mid \varphi\right.$ is a $\sharp(\forall$-comprehension) of ψ and φ, ψ are \sharp formulas $\}$.
Then P is recursive.

Proof.

$(\varphi, \psi) \in P$ iff $\exists x_{0}<\varphi \cdots \exists x_{n-1}<\varphi\left(\varphi=\left\langle 1, x_{0}, \cdots, 1, x_{n}\right)^{\wedge} \psi \wedge\right.$ x_{0}, \cdots, x_{n-1} are \sharp variables $\wedge \psi$ is a \sharp formula).

Lemma 1.33

$\{\alpha \in \mathbb{N} \mid \alpha$ is a \sharp axiom $\}$ is recursive.

Arithmetization

Definition 1.34

Suppose Γ is a set of formulas and T is a theory.

- Γ is recursive if $\sharp \Gamma=\{\sharp \varphi \mid \varphi \in \Gamma\}$ is recursive; otherwise we say Γ is not recursive;
- T is decidable if T is recursive; and T is undecidable otherwise.
- T is recursively axiomatizable if there is a recursive set Σ such that $T=T_{\Sigma}$, and we may say T is recursively axiomatized by Σ.

Arithmetization

Lemma 1.35

Let T be a theory and be recursively axiomatized by $X \subseteq T$, and define the predicates $\mathrm{Be}_{T} \subseteq \mathbb{N}^{2}$ and $\mathrm{Beb}_{T} \subseteq \mathbb{N}$ as

$$
\left\{(p, \varphi) \in \mathbb{N}^{2} \mid p \text { is a } \sharp \text { proof of } \varphi \text { in } T\right\} \text { and }\left\{\varphi \in \mathbb{N} \mid \exists x \operatorname{Be}_{T}(x, \varphi)\right\}
$$ respectively, then Be_{T} is recursive and Beb_{T} is recursively enumerable.

Proof.

(1) Since $(p, \varphi) \in$ Be iff

$$
\begin{gathered}
p \neq 1 \wedge(p)_{\text {Length }(p)-1}=\varphi \wedge \forall k<\text { Length }(p) \\
{\left[(p)_{k} \in \sharp X \vee(p)_{k} \text { is a \#axiom } \vee \exists i, j<k\left((p)_{i}=\langle\sharp \rightarrow)^{\wedge}(p)_{j}(p)_{k}\right)\right],}
\end{gathered}
$$

then Be_{T} is recursive;
(2) It's trivial that Beb_{T} is recursively enumerable.

Representability Formulas classification and Σ_{1}-completeness

Definition 1.36

Fix our arithmetic language \mathscr{L}_{A}. The formulas $\varphi \in \Delta$ are defined recursively as follows:

- all the atomic formulas such as $\tau \equiv \sigma$, where τ, σ are terms, belong to Δ;
- if $\varphi, \psi \in \Delta$, then so $\neg \varphi, \varphi \rightarrow \psi \in \Delta$;
- if τ is a term with $x \notin \operatorname{Vr}(\tau)$, and $\varphi \in \Delta$, then so $\forall x \leq \tau \varphi \in \Delta$.

For any formula $\varphi, \varphi \in \Delta_{0}$ iff there is some $\psi \in \Delta \psi$ such φ and ψ are logically equivalent.

For any $\varphi \in \Delta_{0}, \exists \vec{x} \varphi \in \Sigma_{1}$ and $\forall \vec{x} \varphi \in \Pi_{1}$;
We say $\varphi \in \Delta_{1}$ if there is some $\psi \in \Sigma_{1}$ and $\vartheta \in \Pi_{1}$ such that φ, ψ, ϑ are logically equivalent.

Representability Formulas classification and Σ_{1}-completeness

Theorem $1.37\left(\Sigma_{1}\right.$-completeness of Q)
For any Σ_{1}-sentence φ for \mathscr{L}_{A}, we have $\mathcal{N} \models \varphi$ iff $\mathrm{Q} \vdash \varphi$.

Representability Representable Predicates and Functions

Definition 1.38

We say a k-ary predicate $P \subseteq \mathbb{N}^{k}$ is numeralwise representable or representable in T if, there is a formula $\varphi(\vec{x})$ for \mathscr{L}_{A} such that for any $n_{0}, \cdots, n_{k-1} \in \mathbb{N}$,

$$
\begin{aligned}
& \left(n_{0}, \cdots, n_{k-1}\right) \in P \Rightarrow T \vdash \varphi\left(\overline{n_{0}}, \cdots, \overline{n_{k-1}}\right), \\
& \left(n_{0}, \cdots, n_{k-1}\right) \notin P \Rightarrow T \vdash \neg \varphi\left(\overline{n_{0}}, \cdots, \overline{n_{k-1}}\right) .
\end{aligned}
$$

We say a predicate $P \subseteq \mathbb{N}^{k}$ is Δ_{0}, or Σ_{1}, or Π_{1} if it's represented by a Δ_{0} formula, or Σ_{1} formula, or Π_{1} formula respectively. And if P can be represented by a Σ_{1} formula and also be represented by a Π_{1} formula, we say it's Δ_{1}.

Representability Representable Predicates and Functions

Definition 1.39

Given any \mathscr{L}_{A} formula $\varphi(\vec{x})$ and predicate $P \subseteq \mathbb{N}^{k}$, we say P is defined by $\varphi(\vec{x})$ in \mathcal{M} iff for any $n_{0}, \cdots, n_{k-1} \in \mathbb{N}$ we have

$$
\left(n_{0}, \cdots, n_{k-1}\right) \in P \Leftrightarrow \mathcal{M} \vDash \varphi\left(\bar{n}, \cdots, \overline{n_{k-1}}\right) .
$$

And if there is such φ we say P is definable in \mathcal{M}.
Some simple facts:

- Suppose T is a recursively axiomatizable theory. If P is representable, then P is recursive;
- It's easy to check that the class of representable predicates is closed under Boolean operators;
- P is representable in $\operatorname{Th}(\mathcal{N})$ iff P is definable in \mathcal{N}.

Representability Representable Predicates and Functions

Definition 1.40

We say the function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is representable in $T \supseteq \mathrm{Q}$ if, there is a formula $\varphi\left(x_{0}, \cdots, x_{k-1}, y\right)$ such that, for all $n_{0}, \cdots, n_{k-1} \in \mathbb{N}^{k}$, we have

$$
T \vdash \forall y\left[\varphi\left(\overline{n_{0}}, \cdots, \overline{n_{k-1}}, y\right) \leftrightarrow y \equiv \overline{f\left(n_{0}, \cdots, n_{k-1}\right)}\right] .
$$

Similarly we say a function f is Δ_{0}, or Σ_{1}, or Π_{1} if it's represented by a Δ_{0}, or Σ_{1}, or Π_{1} formula respectively. And if f can be represented by a Σ_{1} formula and also be represented by a Π_{1} formula, we say it's Δ_{1}.

Representability Representable Predicates and Functions

Suppose f is a function and $G_{f}=\{(x, y) \mid y=f(x)\}$.

- If φ represents f, then φ represents G_{f};

Representability Representable Predicates and Functions

Suppose f is a function and $G_{f}=\{(x, y) \mid y=f(x)\}$.

- If φ represents f, then φ represents G_{f};
- φ represents G_{f} but φ may don't represent f. Set $Z(x)=O(x)=$ 0 and $G_{Z}=\{(x, 0) \mid x \in \mathbb{N}\}$. It's easy to check that the formula $y \bar{\mp} y=y$ represents the predicate G_{Z}. But since $\mathrm{Q} \nvdash \forall y(y \neq 0 \rightarrow$ $y \bar{\mp} y \neq y$) (see Remark 1.5 (2)), then $y \bar{\mp} y \equiv y$ doesn't represent the function $Z(x)$.

Representability Representable Predicates and Functions

Suppose f is a function and $G_{f}=\{(x, y) \mid y=f(x)\}$.

- If φ represents f, then φ represents G_{f};
- φ represents G_{f} but φ may don't represent f. Set $Z(x)=0(x)=$ 0 and $G_{Z}=\{(x, 0) \mid x \in \mathbb{N}\}$. It's easy to check that the formula $y \mp y \equiv y$ represents the predicate G_{Z}. But since $\mathrm{Q} \nvdash \forall y(y \neq 0 \rightarrow$ $y \mp y \nexists y$) (see Remark 1.5 (2)), then $y \mp y \equiv y$ doesn't represent the function $Z(x)$.
- f is representable iff G_{f} is representable.

Representability Recursion and Representability

Lemma 1.41

Let $\tau\left(x_{0}, \cdots, x_{k-1}\right)$ be a term for \mathscr{L}_{A}, and define a function $f_{\tau}\left(n_{0}, \cdots n_{k-1}\right)=\tau\left(\overline{n_{0}}, \cdots, \overline{n_{k-1}}\right)^{\mathcal{N}}$, and suppose $\mathrm{Q} \subseteq T$. Then f_{τ} is represented by $y \equiv \tau\left(x_{0}, \cdots, x_{k-1}\right)$ in T. In particular, the zero function, the successor function, the projection functions, the constant functions, the plus function and the multiplication function are all representable.

Proof.

Since by induction on τ we can prove that for all $n_{0}, \cdots n_{k-1} \in \mathbb{N}$ $T \vdash \tau\left(\overline{n_{0}}, \cdots, \overline{n_{k-1}}\right) \equiv \overline{f_{\tau}\left(n_{0}, \cdots, n_{k-1}\right)}$, then we have

$$
T \vdash \forall y\left[y \equiv \tau\left(\overline{n_{0}}, \cdots, \overline{n_{k-1}}\right) \leftrightarrow y \equiv \overline{f_{\tau}\left(n_{0}, \cdots, n_{k-1}\right)}\right]
$$

for all $n_{0}, \cdots n_{k-1} \in \mathbb{N}$. So $y \equiv \tau\left(x_{0}, \cdots, x_{k-1}\right)$ represents f_{τ} in T.

Representability Recursion and Representability

Lemma 1.42
Suppose $\mathrm{Q} \subseteq T$, if $h_{0}(\vec{x}), \cdots, h_{r}(\vec{x})$ and $g\left(y_{0}, \cdots, y_{r-1}\right)$ are all representable in T, then so is $f=g\left(h_{0}, \cdots, h_{r-1}\right)$.

Representability Recursion and Representability

Corollary 1.43

Suppose $g(\vec{x}, y)$ is representable in $T \supseteq \mathrm{Q}$ and $\forall \vec{x} \exists y(g(\vec{x}, y)=0)$, then the function $f(\vec{x})=\mu y(g(\vec{x}, y)=0)$ is also representable.

Representability Recursion and Representability

Suppose $f(\vec{x}, y)$ is defined by recursion with $g(\vec{x})$ and $h(x, y, z)$, that is: $f(\vec{x}, 0)=g(\vec{x})$ and $f(\vec{x}, n+1)=h(\vec{x}, n, f(\vec{x}, n))$.

Representability Recursion and Representability

Suppose $f(\vec{x}, y)$ is defined by recursion with $g(\vec{x})$ and $b(x, y, z)$, that is: $f(\vec{x}, 0)=g(\vec{x})$ and $f(\vec{x}, n+1)=b(\vec{x}, n, f(\vec{x}, n))$.

Recall that how we state the justice of recursions in set theory. We may give the explicit definition of $f(\vec{x}, n)=m$ by: there is an encoding number t of a finite sequence with length $n+1$ such that, $(t)_{0}=g(\vec{x})$ and for all $i<n$, we have $(t)_{i+1}=h\left(\vec{x}, i,(t)_{i}\right)$ and $(t)_{n}=m$.

Representability Recursion and Representability

Suppose $f(\vec{x}, y)$ is defined by primitive recursion with $g(\vec{x})$ and $h(x, y, z)$, that is: $f(\vec{x}, 0)=g(\vec{x})$ and $f(\vec{x}, n+1)=h(\vec{x}, n, f(\vec{x}, n))$.

Recall that how we state the justice of recursions in set theory. We may give the explicit definition of $f(\vec{x}, n)=m$ by: there is an encoding number t of a finite sequence with length $n+1$ such that, $(t)_{0}=g(\vec{x})$ and for all $i<n$, we have $\left(t_{i+1}=h\left(\vec{x}, i,(t)_{i}\right)\right.$ and $(t)_{n}=m$.

In this process, we usually encode with the functions x^{y} and p_{n}. But the difficulty in showing the representability of them is the same as recursions. "Phoned with God", Gödel solved such difficulty with the help of Chinese reminder theorem, and as we seen in his method of encoding the finite sequences he used + and \times only instead of x^{y} and p_{n}.

Representability Recursion and Representability

Lemma 1.44

Suppose $g(\vec{x})$ and $b(\vec{x}, y, z)$ are representable in $T \supseteq \mathrm{Q}$ and f is defined by recursion with g and h, then f is representable in T.

Representability Recursion and Representability

Theorem 1.45 (Representability)
For any recursive function f, f is representable in $T \supseteq \mathrm{Q}$ and Δ_{1}. Consequently every recursive predicate is representable in $T \supseteq Q$ and Δ_{1}.

Representability Recursion and Representability

Corollary 1.46

For any predicate $P \subseteq \mathbb{N}^{k}$ and any recursively axiomatizable and consistent theory $T \supseteq$ Q, the following are equivalent.
(1) P is recursive;
(2) P is representable;
(3) P is representable and Δ_{1}.

Incompleteness

Notation 1.47

For any formula φ we use $\ulcorner\varphi\urcorner$ to denote the term $\bar{S} \sharp \varphi \overline{0}$, i.e.,

$$
\ulcorner\varphi\urcorner=\overline{\# \varphi}=\bar{S} \sharp \varphi \overline{0} .
$$

Lemma 1.48 (Fixed Point)
Given any \mathscr{L}_{A} formula $\varphi(x)$ with only x free and a theory $T \supseteq$ Q, we can effectively find a sentence σ such that $T \vdash \sigma \leftrightarrow \varphi(\ulcorner\sigma\urcorner)$.

Incompleteness

Definition 1.49

Let T be a theory for \mathscr{L}_{A}.

- We say T is ω-inconsistent if, there is an \mathscr{L}_{A} formula $\varphi(x)$ such that $T \vdash \exists x \varphi(x)$ and $T \vdash \neg \varphi(\bar{n})$ for all $n \in \mathbb{N}$;
- We say T is ω-consistent if T is not ω-inconsistent, i.e., for any \mathscr{L}_{A} formula $\varphi(x)$, if $T \vdash \exists x \varphi(x)$, then $T \nvdash \neg \varphi(\bar{n})$ for some $n \in \mathbb{N}$, i.e., for any \mathscr{L}_{A} formula $\varphi(x)$, if $T \vdash \neg \varphi(\bar{n})$ for all $n \in \mathbb{N}$, then $T \nvdash \exists x \varphi(x)$.

Incompleteness

Theorem 1.50 (Gödel's First Incompleteness, the Original Version, Gödel)

Let $T \supseteq \mathrm{Q}$ be a recursively axiomatizable theory. If T is ω-consistent, then there is a sentence σ independent of σ such that $T \nvdash \sigma$ and $T \nvdash \neg \sigma$.

Proof.

Suppose that the predicate Be is represented by be (x, y) in $T \supseteq \mathrm{Q}$, and let $\operatorname{beb}(y)=\exists x \mathrm{be}(x, y)$, then it's easy to check that Beb is represented $\operatorname{by} \operatorname{beb}(y)$. Furthermore let σ be the fixed point of $\neg \operatorname{beb}(y)$. Then

$$
T \vdash \sigma \leftrightarrow \neg \operatorname{beb}(\ulcorner\sigma\urcorner) .
$$

It's suffices to show that σ is independent of T.

Incompleteness

Theorem 1.51 (Gödel's First Incompleteness, the Strengthened Version, Rosser)

Let $T \supseteq$ Q be a recursively axiomatizable theory. If T is consistent, then there is a sentence σ independent of σ such that $T \nvdash \sigma$ and $T \nvdash \neg \sigma$.

Proof.

$$
\operatorname{pro}(x)=\exists y[\operatorname{be}(y, x) \wedge \forall z<y \neg \operatorname{be}(z, \neg(x))],
$$

where the recursive function $\sharp \alpha \rightarrow \sharp(\neg \alpha)$ is represented by the formula $\neg(x)$, and if $x \equiv\ulcorner\alpha\urcorner$, then $\neg(x) \equiv\ulcorner\neg \alpha\urcorner$. We can prove

$$
T \vdash \alpha \Rightarrow T \vdash \operatorname{pro}(\ulcorner\alpha\urcorner) \& T \vdash \neg \alpha \Rightarrow T \vdash \neg \operatorname{pro}(\ulcorner\alpha\urcorner) .
$$

Let σ be the fixed point of $\neg \operatorname{pro}(x)$. Then

$$
\begin{equation*}
T \vdash \sigma \leftrightarrow \neg \operatorname{pro}(\ulcorner\sigma\urcorner) . \tag{5.1}
\end{equation*}
$$

It suffices to show that σ is independent of T.

By-products

Lemma 1.52 (Non-representability)

Let $T \supseteq \mathrm{Q}$ be a recursively axiomatizable theory. If T is consistent, then $\# T$ is not representable in T.

Proof.

Suppose $\sharp T$ is represented by $\varphi(x)$. Then for any formula $\vartheta, T \vdash$ $\vartheta \Rightarrow T \vdash \varphi(\ulcorner\vartheta\urcorner)$ and $T \nvdash \vartheta \Rightarrow T \vdash \neg \varphi(\ulcorner\vartheta\urcorner)$. i.e.,

$$
\begin{equation*}
T \nvdash \vartheta \Leftrightarrow T \vdash \neg \varphi(\ulcorner\vartheta\urcorner) . \tag{6.1}
\end{equation*}
$$

Now let σ be the fixed point of $\neg \varphi(x)$, then

$$
\begin{equation*}
T \vdash \sigma \leftrightarrow \neg \varphi(\ulcorner\sigma\urcorner) . \tag{6.2}
\end{equation*}
$$

By (6.1) and (6.2) $T \vdash \sigma \Leftrightarrow T \nvdash \sigma$, a contradiction.

By-products

Theorem 1.53 (Tarski's Non-definability)
$\sharp \operatorname{Th}(\mathcal{N})=\{\sharp \vartheta \mid \mathcal{N} \models \vartheta\}$ is not definable in the standard arithmetic model \mathcal{N}.

By-products

Corollary 1.54

$\operatorname{Th}(\mathcal{N})$ is undecidable, i.e., $\sharp \operatorname{Th}(\mathcal{N})$ is not recursive.

Theorem 1.55 (Strong Undecidability of Q)

Let T be a theory such that $T \cup \mathcal{Q}$ is consistent. Then T is undecidable.

Corollary 1.56 (Church's Undecidability)

Fix the language \mathscr{L}_{A}. Then the set of validities is undecidable, i.e., $\{\vartheta \in$ $\left.\mathscr{L}_{A} \mid \models \vartheta\right\}$ is undecidable.

Theorem 1.57

Hilbert's Tenth Problem Is there an algorithm such that for any polynomial $p(\vec{x})$ with integer coefficients decides whether the equation $p(\vec{x})=$ 0 has a solution in \mathbb{Z} ? The answer is NO.

Outline

(1) Gödel's First Incompleteness Theorem

(2) Gödel's Second Incompleteness Theorem

3 References

The General Proof Idea

- We first introduce three derivability conditions. Then clime over three mountains as well as in last section.
- If $\vdash_{T} \varphi$, then $\vdash_{T} \square_{T} \varphi$, i.e., T satisfies D_{1};
- $\vdash_{T} \square_{T}(\varphi \rightarrow \psi) \rightarrow \square_{T} \varphi \rightarrow \square_{T} \psi$, T satisfies $D_{2} ;$
- $\vdash_{T} \square_{T} \varphi \rightarrow \square_{T} \square_{T} \varphi$, i.e., T satisfies D_{3};
- At last we will show $\vdash_{T} \operatorname{con}(T) \rightarrow \square_{T} \operatorname{con}(T)$ which follows $\vdash_{T} \operatorname{con}(T)$.

The General Proof Idea

- We first introduce three derivability conditions. Then clime over three mountains as well as in last section.
- If $\vdash_{T} \varphi$, then $\vdash_{T} \square_{T} \varphi$, i.e., T satisfies D_{1};
- $\vdash_{T} \square_{T}(\varphi \rightarrow \psi) \rightarrow \square_{T} \varphi \rightarrow \square_{T} \psi, T$ satisfies $D_{2} ;$
- $\vdash_{T} \square_{T} \varphi \rightarrow \square_{T} \square_{T} \varphi$, i.e., T satisfies D_{3};
- At last we will show \vdash_{T} con $(T) \rightarrow \neg \square_{T}$ con (T) which follows $\vdash_{T} \operatorname{con}(T)$.

The General Proof Idea

- We first introduce three derivability conditions. Then clime over three mountains as well as in last section.
- If $\vdash_{T} \varphi$, then $\vdash_{T} \square_{T} \varphi$, i.e., T satisfies D_{1};
- $\vdash_{T} \square_{T}(\varphi \rightarrow \psi) \rightarrow \square_{T} \varphi \rightarrow \square_{T} \psi, T$ satisfies D_{2};
- $\vdash_{T} \square_{T} \varphi \rightarrow \square_{T} \square_{T} \varphi$, i.e., T satisfies D_{3};
- At last we will show \vdash_{T} con $(T) \rightarrow \neg \square_{T}$ con (T) which follows $\vdash_{T} \operatorname{con}(T)$.

The General Proof Idea

- We first introduce three derivability conditions. Then clime over three mountains as well as in last section.
- If $\vdash_{T} \varphi$, then $\vdash_{T} \square_{T} \varphi$, i.e., T satisfies D_{1};
- $\vdash_{T} \square_{T}(\varphi \rightarrow \psi) \rightarrow \square_{T} \varphi \rightarrow \square_{T} \psi, T$ satisfies D_{2};
- $\vdash_{T} \square_{T} \varphi \rightarrow \square_{T} \square_{T} \varphi$, i.e., T satisfies D_{3};
- At last we will show \vdash_{T} con $(T) \rightarrow \neg \square_{T}$ con (T) which follows $\Vdash_{T} \operatorname{con}(T)$.

The General Proof Idea

- We first introduce three derivability conditions. Then clime over three mountains as well as in last section.
- If $\vdash_{T} \varphi$, then $\vdash_{T} \square_{T} \varphi$, i.e., T satisfies D_{1};
- $\vdash_{T} \square_{T}(\varphi \rightarrow \psi) \rightarrow \square_{T} \varphi \rightarrow \square_{T} \psi, T$ satisfies D_{2};
- $\vdash_{T} \square_{T} \varphi \rightarrow \square_{T} \square_{T} \varphi$, i.e., T satisfies D_{3};
- At last we will show $\vdash_{T} \operatorname{con}(T) \rightarrow \neg \square_{T} \operatorname{con}(T)$ which follows $\vdash_{T} \operatorname{con}(T)$.

Peano Arithmetic

Definition 2.1

Peano arithmetic is the theory PA $=\Phi+P$, where $P=I \cup\left\{Q_{1}, Q_{2}, Q_{4}, Q_{5}, Q_{6}, Q_{7}\right\}$ and

$$
\begin{aligned}
Q_{1} & : \forall x \bar{S} x \overline{\overline{0}} ; \\
Q_{2} & : \forall x \forall y(\bar{S} x \equiv \bar{S} y \rightarrow x \equiv y) ; \\
Q_{4} & : \forall x(x \bar{\mp} \overline{0} \bar{\equiv} x) ; \\
Q_{5}: & \forall x \forall y(x \overline{\bar{S}} y \equiv \bar{S}(x \bar{\mp} y)) ; \\
Q_{6}: & \forall x(x \overline{\times} \overline{\overline{0}} \bar{\equiv}) ; \\
Q_{7}: & \forall x \forall y(x \overline{\times} \bar{S} y \equiv x \overline{\times} y \overline{+} x) \\
I: & {[\varphi(\overline{0}) \wedge \forall y(\varphi(y) \rightarrow \varphi(\bar{S} y))] \rightarrow \forall x \varphi(x), } \\
& \varphi(x) \text { is an } \mathscr{L}_{A} \text { formula with } \operatorname{Fr}(\varphi)=\{x\} \text { and } y \notin \operatorname{Vr}(\varphi) .
\end{aligned}
$$

We call I the set of induction axioms; given any set Θ of formulas with x free only of \mathscr{L}_{A}, then

$$
I \Theta=\{[\varphi(\overline{0}) \wedge \forall y(\varphi(y) \rightarrow \varphi(\bar{S} y))] \rightarrow \forall x \varphi(x) \mid \varphi(x) \in \Theta, \operatorname{Fr}(\varphi)=\{x\} \text { and } y \notin \operatorname{Vr}(\varphi)\}
$$

Peano Arithmetic

Lemma 2.2
$\mathrm{PA}=\mathrm{Q}+I$, and so PA is the extension of Q generated by induction axioms.

Proof.

Since $Q_{3}: \forall x(x \neq \overline{0} \rightarrow \exists y(x \equiv \bar{S} y))$, then consider the induction axiom $[\varphi(\overline{0}) \wedge \forall y(\varphi(y) \rightarrow \varphi(\bar{S} y))] \rightarrow \forall x \varphi(x)$, where

$$
\varphi(x)=x \neq \overline{0} \rightarrow \exists y(x \equiv \bar{S} y) .
$$

Theorem 2.3 (Σ_{1}-completeness of PA)
For any Σ_{1}-sentence φ for \mathscr{L}_{A}, we have $\mathcal{N} \vDash \varphi$ iff $\mathrm{PA} \vdash \varphi$.

Peano Arithmetic

PA can prove basic properties about $\bar{S}, \bar{\mp}, \overline{\times}, \overline{\leq},<$; and further prove:

Lemma 2.4 (Strong Induction Principle)
PA $\vdash \forall z[(\forall y<z \varphi(y)) \rightarrow \varphi(z)] \rightarrow \forall x \varphi(x)$, where $\varphi(x)$ is an \mathscr{L}_{A} formula with $\operatorname{Fr}(\varphi)=\{x\}$ and $y, z \notin \operatorname{Vr}(\varphi)$.

Lemma 2.5 (The Least Number Principle)
PA $\vdash \exists x \varphi(x) \rightarrow \exists x[\varphi(x) \wedge \forall y<x \neg \varphi(x)]$, where $\varphi(x)$ is an \mathscr{L}_{A} formula with $\operatorname{Fr}(\varphi)=\{x\}$ and $y \notin \operatorname{Vr}(\varphi)$.

Derivability Conditions

Notation 2.6

Let T be any recursively axiomatizable theory and φ be any formula for \mathscr{L}_{A}. Convent

$$
\begin{aligned}
& \square_{T}(y)=\operatorname{beb}_{T}(y) \\
& \square_{T} \varphi=\square_{T}\left(y ;\left\ulcorner\varphi \operatorname{be}_{T}(x, y),\right.\right. \\
&=\square_{T}(\ulcorner\varphi\urcorner) .
\end{aligned}
$$

Note that, $\square_{T}(y)$ is a formula with a free variable y, while $\square_{T} \varphi$ is a sentence no matter whether φ has free variables.

Derivability Conditions

Definition 2.7

Let T be any recursively axiomatizable theory and φ, ψ be any $\mathscr{L}_{A^{-}}$ sentences. The three derivability conditions are

$$
\begin{aligned}
D_{1} & : \text { if } \vdash_{T} \varphi, \text { then } \vdash_{T} \square_{T} \varphi ; \\
D_{2} & : \vdash_{T} \square_{T}(\varphi \rightarrow \psi) \rightarrow \square_{T} \varphi \rightarrow \square_{T} \psi ; \\
D_{3} & : \vdash_{T} \square_{T} \varphi \rightarrow \square_{T} \square_{T} \varphi .
\end{aligned}
$$

Derivability Conditions

Lemma 2.8
Suppose T satisfy D_{1} and D_{2}, then it also satisfies

$$
D_{0}: \text { if } \varphi \vdash_{T} \psi \text {, then } \square_{T} \varphi \vdash_{T} \square_{T} \psi \text {. }
$$

Corollary 2.9
$I f \vdash_{T} \varphi \leftrightarrow \psi$, then $\vdash_{T} \square_{T} \varphi \leftrightarrow \square_{T} \psi$.

Definition 2.10

$\operatorname{con}(T)=\neg \square_{T} \overline{0} \neq \overline{0}=\neg \operatorname{beb}_{T}(\ulcorner\overline{0} \neq \overline{0}\urcorner)$.
Corollary 2.9 tells us that in Definition $2.10 \overline{0} \neq \overline{0}$ could be replaced by any sentence equivalent to \perp, and so we may also set $\operatorname{con}(T)=\neg \square_{T} \perp$.

T Satisfies D_{1}

Lemma 2.11

Suppose T is a recursively axiomatizable theory with $T \supseteq \mathrm{Q}$. Then T satisfies D_{1}, i.e., $i f \vdash_{T} \varphi$, then $\vdash_{T} \square_{T} \varphi$.

Proof.

Assume $\vdash_{T} \varphi$ and let n be the code of φ. Since the predicate Be is recursive, then by the Representability theorem we have \vdash_{T} $\operatorname{be}_{T}(\bar{n},\ulcorner\varphi\urcorner)$, and so $\vdash_{T} \exists x \mathrm{be}_{T}(x,\ulcorner\varphi\urcorner)$, i.e., $\vdash_{T} \square_{T} \varphi$.

T Satisfies D_{2} Provable Recursion

Definition 2.12

We say a recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is provably recursive, or Σ_{1}-definable in $T \supseteq \mathrm{PA}$ if, there is a Σ_{1} formula $\delta_{f}(\vec{x}, y)$ such that

$$
\begin{aligned}
& T \vdash \delta_{f}(\overrightarrow{\vec{n}}, \overrightarrow{f(\vec{n})}) \quad \text { for any } n_{0}, \cdots, n_{k-1} \in \mathbb{N}, \\
& T \vdash \forall \vec{x} \exists!y \delta_{f}(\vec{x}, y) .
\end{aligned}
$$

We say a recursive predicate $P \subseteq \mathbb{N}^{k}$ is provably recursive, or Σ_{1} definable in $T \supseteq$ PA if, there is some Σ_{1} formula $\delta_{P}(\vec{x})$ for \mathscr{L}_{A} such that for any $n_{0}, \cdots, n_{k-1} \in \mathbb{N}$

$$
P(\vec{n}) \Leftrightarrow T \vdash \delta_{P}(\vec{x}) .
$$

Lemma 2.13

In Definition 2.12, $\delta_{f}(\vec{x})$ and $\delta_{P}(\vec{x})$ are T-definitions for f and P respectively.

Lemma 2.14

The following are probably recursive in PA.
(1) the division relation $d \mid x$;
(2) the reminder function $\operatorname{rem}(x, d)=r$;
(3 " p is a prime" prime (p);
(9) the binary maximum function $\max (m, n)$;
(0) the coprime relation coprime (m, n).

Proof.

(1) $\exists q<x(q \times d=x)$ (here we assuming that $0 \mid n$ iff $n=0$);
(2) $[r<d \wedge \exists q<x(x=q \times d+r)] \vee(d=0 \wedge r=0)$;
(3) $p \neq 1 \wedge \forall d<p(d \mid p \rightarrow(d=1 \vee d=p))$;
(4) $(m \leq n \wedge z=m) \vee(n<m \wedge z=n)$;
(5) $\forall d<\max (m, n)(d|m \wedge d| n \rightarrow d=1)$.

- For a function, for example, $\max (m, n)$, we formalized it as a term function $\max (m, n)$. In other words, for any m, n the value $\max (m, n)=\overline{\max (m, n)}$ is a term. And in fact strictly speaking

$$
(m \leq n \wedge z=m) \vee(n<m \wedge z=n)
$$

should be written as

$$
(\bar{m} \leq \bar{n} \wedge z \equiv \bar{m}) \vee(\bar{n}<\bar{m} \wedge z \equiv \bar{n})
$$

- For a function, for example, $\max (m, n)$, we formalized it as a term function $\max (m, n)$. In other words, for any m, n the value $\max (m, n)=\overline{\max (m, n)}$ is a term. And in fact strictly speaking

$$
(m \leq n \wedge z=m) \vee(n<m \wedge z=n)
$$

should be written as

$$
(\bar{m} \leq \bar{n} \wedge z \equiv \bar{m}) \vee(\bar{n}<\bar{m} \wedge z \equiv \bar{n})
$$

- For a predicate, for example, prime (p), we formalized it as a formula function prime (p). In other words, for any p the value prime (p) is a formula.
- For a function, for example, $\max (m, n)$, we formalized it as a term function $\max (m, n)$. In other words, for any m, n the value $\max (m, n)=\overline{\max (m, n)}$ is a term. And in fact strictly speaking

$$
(m \leq n \wedge z=m) \vee(n<m \wedge z=n)
$$

should be written as

$$
(\bar{m} \leq \bar{n} \wedge z \equiv \bar{m}) \vee(\bar{n}<\bar{m} \wedge z \equiv \bar{n}) .
$$

- For a predicate, for example, prime (p), we formalized it as a formula function prime (p). In other words, for any p the value prime (p) is a formula.
- And we note that there is some harmoniousness in the some defined formulas. For example,

$$
\forall d<\max (m, n)(d=9 \vee d=10)
$$

Strictly speaking it's should written as

$$
\forall d<\max (m, n)(d \equiv \overline{9} \vee d \equiv \overline{10})
$$

The reason why we still write in the former form is to emphasize that $\max (m, n)$ has been formalized.

T Satisfies D_{2} PA Theorems Formalizations

We should formulate some theorems such as Euclid lemma, Chinese reminder theorem and Gödel's β-function lemma in PA to formulate finite sequences.

T Satisfies D_{2} Finite Sequences Formalizations

Definition 2.15

Let finseq(s) be the formula
$\exists c, k<s[s=\pi(c, k) \wedge \forall m<s(m<c \rightarrow \exists i<k(\beta(m, i) \neq \beta(c, i)))]$.
And set length $(s)=\pi_{2}(s)$ and value $(s, i)=\beta\left(\pi_{1}(s), i\right)$.

$$
\begin{aligned}
\pi(x, y) & =\frac{1}{2}(x+y)(x+y+1)+x \\
\tau_{1}(z) & =\mu x[\exists y \leq z(\pi(x, y)=z)] \\
\tau_{2}(z) & =\mu y[\exists x \leq z(\pi(x, y)=z)] .
\end{aligned}
$$

T Satisfies D_{2} Finite Sequences Formalizations

Now we can formulate connection operation in PA. Consider the formula $\varphi(u, v, s)$
finseq $(s) \wedge$ length $(s)=$ length $(u)+$ length (v)
$\wedge\left[\forall i<\operatorname{length}(u)-1(s)_{i}=u_{i}\right] \wedge\left[\forall i<\operatorname{length}(v)-1(s)_{\operatorname{length}(u)+i}=v_{i}\right]$.

Lemma 2.16

PA $\vdash \forall u \forall v \exists!s \varphi(u, v, s)$. So $\varphi(u, v, s)$ defines a provably recursive function in PA, and it is represented as $\hat{u} v$ and called formalized connection operation.

T Satisfies D_{2} syntax Formalizations

Definition 2.17

Assign to every symbol of \mathscr{L}_{A} a number term.

ζ	\forall	$\overline{0}$	\bar{S}	$\bar{\mp}$	$\overline{\times}$	$($	$)$	\neg	\rightarrow	$\overline{ }$	x_{0}	x_{1}	x_{2}	\ldots
$\ulcorner\zeta \overline{ }$	$\overline{1}$	$\overline{3}$	$\overline{5}$	$\overline{7}$	$\overline{9}$	$\overline{11}$	$\overline{13}$	$\overline{15}$	$\overline{17}$	$\overline{19}$	$\overline{21}$	$\overline{23}$	$\overline{25}$	\ldots

Lemma 2.18

The predicate variable (x) is provably recursive in PA.

Proof.

Consider the Σ_{1} formula variable $(x): \exists y<x(x=2 \times y+21)$.

T Satisfies D_{2} syntax Formalizations

Lemma 2.19

The predicate term (t) is provably recursive in PA.

Proof.

It's defined by the formula:
$\exists s\left[\right.$ finseq $\left.(s) \wedge 0<\operatorname{length}(s) \wedge s_{\text {length }(s)-1}=t \wedge \forall i<\operatorname{length}(s)-1\left(s_{i}=\ulcorner 0\urcorner \vee \varphi(s, i) \vee \psi(s, i)\right)\right]$, where

$$
\varphi(s, i): \exists x<s_{i}\left(\operatorname{variable}(x) \wedge s_{i}=\langle x\rangle\right)
$$

and
$\psi(s, i): \exists m, n<i\left(s_{i}=\langle\ulcorner S\urcorner\rangle{ }^{\prime} s_{m} \vee s_{i}=\langle\ulcorner+\urcorner\rangle \wedge s_{m} \hat{s}_{n} \vee s_{i}=\langle\ulcorner\times\urcorner\rangle \wedge s_{m} s_{n}\right)$.
And clearly it's Σ_{1}.

T Satisfies D_{2} syntax Formalizations

Also similarly we

- use the formula formula (x) to define the predicate formula (x) which is a formalization of "formulas";
- use the formula $\chi_{\neg}(x, y): x=\left\langle\ulcorner(\urcorner\rangle^{\wedge}\langle\ulcorner\neg\urcorner\rangle{ }^{\wedge} y^{\wedge}\langle\ulcorner)\rceil\right.$ to define the function $\neg(x)$ which is a formalization of \neg;
- use the formula $\chi \rightarrow(x, y, z): x=\left\langle\Gamma(\urcorner^{\top} y^{\wedge}\left\langle^{\wedge} \rightarrow \rightarrow^{\top}\right\rangle^{\wedge} z^{\wedge}\langle\Gamma)^{\top}\right\rangle$ to define the function $\rightrightarrows(x, y)$ which is a formalization of \rightarrow;
- use the formula $\operatorname{axiom}_{T}(x)$ to define the predicate $\operatorname{axiom}_{T}(x)$ which is a formalization of some recursively axiomatizable theory T;
- use the formula modpen $(x, y, z): \quad \chi \rightarrow(x, y, z) \wedge$ formula $(y) \wedge$ formula (z) to define the predicate modpen (x, y, z) which is a formalization of modus ponens rule.

T Satisfies D_{2} Syntax Formalizations

Theorem 2.20 (Formalized Provability)
Both the binary predicate $\operatorname{Be}_{T}(x, y)$ and unary predicate $\operatorname{Beb}_{T}(y)$ are provably recursive in $T \supseteq$ PA.

Proof.

$\mathrm{Be}_{T}(x, y)$ is defined by the Σ_{1} formula $\mathrm{Be}_{T}(x, y)$
finseq $(x) \wedge s_{\text {length }(x)-1}=y$
$\wedge \forall i<\operatorname{length}(x)-1\left[\operatorname{axiom}_{T}\left(x_{i}\right) \vee \exists m, n<i \operatorname{modpen}\left(x_{m}, x_{n}, x_{i}\right)\right]$.
So $\operatorname{Beb}_{T}(y)$ is defined by the Σ_{1} formula $\operatorname{Beb}_{T}(y)=\exists x \operatorname{Be}_{T}(x, y)$. $\quad \circlearrowright$

T Satisfies D_{2}

Lemma 2.21

Suppose T is a recursively axiomatizable theory with $T \supseteq$ PA. Then T satisfies D_{2}, i.e., $\vdash_{T} \square_{T}(\varphi \rightarrow \psi) \rightarrow \square_{T} \varphi \rightarrow \square_{T} \psi$.

Proof.

Suppose u and v satisfies $\operatorname{Be}_{T}(u,\ulcorner\varphi \rightarrow \psi\urcorner)$ and $\operatorname{Be}_{T}(v,\ulcorner\varphi\urcorner)$ respectively. It suffices to show

$$
T \vdash \operatorname{Be}_{T}(u,\ulcorner\varphi \rightarrow \psi\urcorner) \rightarrow \operatorname{Be}_{T}(v,\ulcorner\varphi\urcorner) \rightarrow \operatorname{Be}_{T}(\hat{\varkappa} \hat{v}\langle\ulcorner\psi\urcorner\rangle,\ulcorner\psi\urcorner) .
$$

Set $s=\hat{u} \hat{v}\langle\ulcorner\psi\urcorner\rangle$. It's easy to show:

- $T \vdash$ finseq (s);
- $T \vdash s_{\text {length }(s)-1}=\ulcorner\psi$;
- $T \vdash \forall i<\operatorname{length}(s)-1\left[\operatorname{axiom}_{T}\left(s_{i}\right) \vee \exists m, n<i \operatorname{modpen}\left(s_{m}, s_{n}, s_{i}\right)\right]$. Then by the definition, we have $\mathrm{Be}_{T}(\hat{u} \hat{v}\langle\ulcorner\psi\urcorner\rangle,\ulcorner\psi\urcorner)$.

T Satisfies D_{3}

$$
D_{3}: \vdash_{T} \square_{T} \varphi \rightarrow \square_{T} \square_{T} \varphi .
$$

If $T \vdash \varphi$ then $T \vdash \operatorname{beb}_{T}(\ulcorner\varphi\urcorner)$.
Σ_{1}-completeness: $\vdash_{T} \varphi(\vec{x}) \rightarrow \square_{T}\lfloor\varphi(\vec{x})\rfloor$ for any Σ_{1} formula $\varphi(\vec{x})$.

T Satisfies D_{3} A New Notation $\square T\lfloor\varphi(\vec{x})\rfloor$

Recall the recursive function $f(n)=\sharp \bar{n}=\sharp \bar{S}^{n} \overline{0}=\operatorname{tnum}(n)$. Consider the formula $\varphi(x, y)$
$\exists s\left[\right.$ finseq $(s) \wedge$ length $\left.(s) \equiv x \overline{+} \overline{1} \wedge s_{0} \equiv\ulcorner 0\urcorner \wedge s_{x+1} \equiv y \wedge\left(\forall i<x s_{i+1} \equiv\langle\ulcorner S\urcorner\rangle s_{i}\right)\right]$.

Lemma 2.22

$\mathrm{PA} \vdash \forall x \exists!y \varphi(x, y)$. So $f(n)$ defined by φ is provably recursive in PA , and the corresponding formalized function is $\operatorname{tnum}(x)=\overline{\operatorname{tnum}(x)}$.

Lemma 2.23

The function fvariable $(x)=y=2 x+21$ is provably recursive in PA. And corresponding formalized function is fvariable $(x)=\overline{\text { fvariable }(x)}$.

T Satisfies D_{3} A New Notation $\square_{T}\lfloor\varphi(\vec{x})\rfloor$

Lemma 2.24

The function $\operatorname{sub}(\operatorname{tnum}(x)$, fvariable $(y), z)$ is provably recursive in PA . And the formalized function is

$$
\operatorname{sub}(\operatorname{tnum}(x), \text { fvariable }(y), z)=\overline{\operatorname{sub}(\operatorname{tnum}(x), \text { fvariable }(y), z) .}
$$

Note that the values of $\operatorname{sub}(\operatorname{tnum}(x)$, fvariable $(y), z)$ are terms.

T Satisfies D_{3} A New Notation $\square_{T}\lfloor\varphi(\vec{x})\rfloor$

We illustrate how $\operatorname{sub}(\operatorname{tnum}(x)$, fvariable $(y), z)$ operates the results by setting $x=3, y=4$ and $z=\left\ulcorner x_{4} \equiv x_{6}\right\urcorner$:

- decode z as a formula $x_{4} \equiv x_{1}$;
- find all the free variables which are signed on 4, i.e., all the free x_{4}; replace all the free x_{4} by x_{3};
- get $x_{3} \equiv x_{6}$; set $\operatorname{sub}(\operatorname{tnum}(x)$, fvariable $(y), z)=\left\ulcorner x_{3} \equiv x_{6}\right\urcorner$.

Since the whole process occurs "in" PA, then

$$
\left.\mathrm{PA} \vdash\left[\operatorname{sub}\left(\operatorname{tnum}(3), \text { fvariable }(4),\left\ulcorner x_{4} \equiv x_{6}\right\urcorner\right)\right] \equiv\left[\bar{S}^{\left\ulcorner x_{3}\right.} \equiv x_{x_{6}}\right\urcorner \overline{0}\right] .
$$

T Satisfies D_{3} A New Notation $\square_{T}\lfloor\varphi(\vec{x})\rfloor$

Compare the two x_{4} with each other in

$$
\operatorname{sub}\left(\operatorname{tnum}\left(x_{4}\right), \text { fvariable }(4),\left\ulcorner x_{4} \equiv x_{6}\right\urcorner\right) .
$$

It's not hard to see that

$$
\begin{aligned}
& \operatorname{sub}\left(\operatorname{tnum}\left(x_{4}\right), \text { fvariable }(4),\left\ulcorner x_{4} \equiv x_{6}\right\urcorner\right) \\
= & \left\ulcorner x_{\left(\operatorname{tnum}\left(x_{4}\right)-21\right) / 2} \equiv x_{6}\right\urcorner=\left\langle 19, \operatorname{tnum}\left(x_{4}\right), 33\right\rangle \\
= & \left\ulcorner\text { fvariable }\left(x_{4}\right) \equiv x_{6}\right\urcorner .
\end{aligned}
$$

Clearly the first x_{4} is free, while the second one is always "dead". Assign any value a (maybe not a standard element) to x_{4}, we would get a corresponding $\left\ulcorner\right.$ fvariable $\left.(a) \equiv x_{6}\right\urcorner$ which shows x_{4} is free.

T Satisfies D_{3} A New Notation $\square_{T}\lfloor\varphi(\vec{x})\rfloor$

For convenience, we set $\operatorname{su}(x, y, z)=\operatorname{sub}(\operatorname{tnum}(x)$, fvariable $(y), z)$.

Definition 2.25

Suppose φ is an \mathscr{L}_{A}-formula such that $\operatorname{Fr}(\varphi)=\left\{x_{k_{0}}, \cdots, x_{k_{n-1}}\right\}$, and we may further assume $k_{0}<\cdots<k_{n-1}$. Then

$$
\square_{T}\lfloor\varphi(\vec{x})\rfloor=\square_{T} \operatorname{su}\left(x_{k_{n-1}}, k_{n-1}, \cdots, \operatorname{su}\left(x_{k_{1}}, k_{1}, \operatorname{su}\left(x_{k_{0}}, k_{0},\ulcorner\varphi\urcorner\right)\right) \cdots\right) .
$$

T Satisfies D_{3} A New Notation $\square_{T}\lfloor\varphi(\vec{x})\rfloor$

$$
\square_{T}\lfloor\varphi(x)\rfloor=\square_{T} \operatorname{su}(x, k,\ulcorner\varphi\urcorner)=\square_{T} \operatorname{sub}(\operatorname{tnum}(x), \text { fvariable }(k),\ulcorner\varphi\urcorner) .
$$

- Clearly $\square_{T}\lfloor\varphi\rfloor=\square_{T}\ulcorner\varphi\urcorner$ if φ is a sentence;
- $\square_{T}\lfloor\varphi(\vec{x})\rfloor$ and $\varphi(\vec{x})$ have the same free variables, while $\square_{T}\ulcorner\varphi(\vec{x})\urcorner$ has no variables;
- Sometimes considering of readability we write some common variables x, y, z instead of $x_{k_{n}}$ since we are very clear that which variable should be refried;
- It's obvious that $\vdash_{T} \square_{T}\lfloor\varphi(\vec{x})\rfloor$ and $\vdash_{T} \square_{T}\ulcorner\varphi(\vec{x})\urcorner$ are different.

T Satisfies D_{3} Formalized D_{1} and D_{2}

Lemma 2.26 (Formalized D_{1})
For any \mathscr{L}_{A}-formula φ, $i f \vdash_{T} \varphi$, then $\vdash \square_{T}\lfloor\varphi\rfloor$.

Lemma 2.27 (Formalized D_{2})
For any \mathscr{L}_{A}-formulas φ and $\psi, \vdash_{T} \square_{T}\lfloor\varphi \rightarrow \psi\rfloor \rightarrow \square_{T}\lfloor\varphi\rfloor \rightarrow \square_{T}\lfloor\psi\rfloor$.

T Satisfies D_{3} Provable Σ_{1}-completeness

Lemma 2.28

Suppose $\varphi\left(x_{0}\right)$ is a formula with only x free (the general case is similar), and x_{k} is free for x_{1} in φ, then
(1) $\vdash_{T} \square_{T}\left\lfloor\varphi\left(x_{0} ; \overline{0}\right)\right\rfloor \leftrightarrow\left(\square_{T}\lfloor\varphi\rfloor\right)\left(x_{0} ; \overline{0}\right)$;
(2) $\vdash_{T} \square_{T}\left\lfloor\varphi\left(x_{0} ; x_{k}\right)\right\rfloor \leftrightarrow\left(\square_{T}\lfloor\varphi\rfloor\right)\left(x_{0} ; x_{k}\right)$;
(3) $\vdash_{T} \square_{T}\left\lfloor\varphi\left(x_{0} ; \bar{S} x_{k}\right)\right\rfloor \leftrightarrow\left(\square_{T}\lfloor\varphi\rfloor\right)\left(x_{0} ; \bar{S} x_{k}\right)$.

Theorem 2.29 (Formalized Σ_{1}-completeness)
Suppose T is a recursively axiomatizable theory with $T \supseteq$ PA. Then $\vdash_{T} \varphi \rightarrow \square_{T}\lfloor\varphi\rfloor$ for any Σ_{1} formula.

T Satisfies D_{3}

Lemma 2.30
Suppose T is a recursively axiomatizable theory with $T \supseteq$ PA. Then T satisfies D_{3}, i.e., $\vdash_{T} \square_{T} \varphi \rightarrow \square_{T} \square_{T} \varphi$.

Proof.

This follows from formalized Σ_{1}-completeness since $\square_{T} \varphi$ is Σ_{1} and $\square_{T}\left\lfloor\square_{T} \varphi\right\rfloor=\square_{T} \square_{T} \varphi$ for which $\square_{T} \varphi$ is a sentence.

Incompleteness

Theorem 2.31 (Formalized Gödel's Second Incompleteness, FGSIT)

Suppose T is a recursively axiomatizable theory with $T \supseteq$ PA. If T is consistent, then $\vdash_{T} \operatorname{con}(T) \rightarrow \neg \square_{T} \operatorname{con}(T)$.

Proof.

By fixed point lemma 1.48 , for $\neg \square_{T}(y)$, there is some σ such that

$$
\begin{equation*}
\vdash_{T} \sigma \leftrightarrow \neg \square_{T} \sigma \tag{6.1}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\vdash_{T} \sigma \leftrightarrow \operatorname{con}(T) . \tag{6.2}
\end{equation*}
$$

By (6.2) and D_{0} we have

$$
\begin{equation*}
\vdash_{T} \square_{T} \sigma \leftrightarrow \square_{T} \operatorname{con}(T) . \tag{6.3}
\end{equation*}
$$

And then by (6.1), (6.2) and (6.3) we have

$$
\begin{equation*}
\vdash_{T} \operatorname{con}(T) \leftrightarrow \neg \square_{T} \operatorname{con}(T) \tag{6.4}
\end{equation*}
$$

as desired.

Incompleteness

Corollary 2.32 (Gödel's Second Incompleteness Theorem, GSIT)

Suppose T is a recursively axiomatizable theory with $T \supseteq$ PA. If T is consistent, then $\Vdash_{T} \operatorname{con}(T)$.

Proof.

Suppose for sake of a contradiction that $\vdash_{T} \operatorname{con}(T)$. Then by D_{1} we have $\vdash_{T} \square_{T} \operatorname{con}(T)$, and then by (6.4) we have $\vdash_{T} \neg \operatorname{con}(T)$, a contradiction to the consistency of T.

Incompleteness

There are three kinds of "completeness" for a theory T in this material:

- syntactical completeness: T is (sytactically) complete if for any formula φ either $T \vdash \varphi$ or $T \vdash \neg \varphi$;
- meta-semantical completeness: T is meta-semantically complete if T can prove any property related to T which is out of T;
- semantical completeness: T is complete if, for any φ we have $T \vdash \varphi$ if $T \models \varphi$.
Clearly Gödel's completeness theorem tells us that T has semantical completeness. So, there are two kinds of "incompleteness" corresponding to the first two kinds of "completeness". And Gödel's first and second incompleteness theorems tells us that a theory satisfying some conditions owns neither of the first two "completeness" as above.

Incompleteness

Let's give a definition about the Goodstein sequences which is not so rigid:

- given natural numbers $m \geq 1$ and $n \geq 2$, we can define base n representation of m and pure base n representation of m. We just use one example to illustrate the concept: say $m=13$ and $n=2$, $13=2^{3}+2^{2}+1$ (which is base 2 representation) $=2^{2+1}+2^{2}+1$ (which is pure base 2 representation).
- we define the Goodstein sequence $\left\langle g_{n} \mid n \in \mathbb{N}\right\rangle$ beginning from m by recursion:
- $g_{0}=m$;
- Given g_{n}, we get g_{n+1} as follows: write g_{n} in pure $n+2$ representation, replacing each base $n+2$ by $n+3$, and then subtract 1.

Incompleteness

For example, the Goodstein sequence beginning from $m=13$ runs as follows:

go	13	$=$	$2^{2+1}+2^{2}+1$	$2 \mapsto 3$	$3^{3+1}+3^{3}+1=109$
g_{1}	108	$=$	$3^{3+1}+3^{3}$	$3 ヶ 4$	$4^{4+1}+4^{4}=1280$
g_{2}	1279	$=$	$4^{4+1}+3 \cdot 4^{3}+3 \cdot 4^{2}+3 \cdot 4+3$	$4 \rightarrow 5$	$5^{5+1}+3 \cdot 5^{3}+3 \cdot 5^{2}+3 \cdot 5+3=16093$
83	16092	$=$	$5^{5+1}+3 \cdot 5^{3}+3 \cdot 5^{2}+3 \cdot 5+2$	$5 \mapsto 6$	$6^{6+1}+3 \cdot 6^{3}+3 \cdot 6^{2}+3 \cdot 6+2=280712$
g_{4}	280711	=	$6^{6+1}+3 \cdot 6^{3}+3 \cdot 6^{2}+3 \cdot 6+1$	$6 \mapsto 7$	$7^{7+1}+3 \cdot 7^{3}+3 \cdot 7^{2}+3 \cdot 7+1=5765999$
g_{5}	5765998	=	$7^{7+1}+3 \cdot 7^{3}+3 \cdot 7^{2}+3 \cdot 7$	$7 \mapsto 8$	$8^{8+1}+3 \cdot 8^{3}+3 \cdot 8^{2}+3 \cdot 8=134219480$

Incompleteness

Theorem 2.33 (Goodstien)

Every Goodstein sequence ends in 0 .

(Sketch).

Replacing each base by ω in each term of g_{n}, we will get a descending sequence $\left\langle\alpha_{n} \mid n \in \mathbb{N}\right\rangle$ of ordinals. By Regularity of Axiom, the descending ordinal sequences must be end in 0 , and so does the Goodstein sequence. We still use an example to illustrate the proof idea:

g_{0}	$=$	13	$=2^{2+1}+2^{2}+1$	$2 \mapsto \omega$
g_{1}	$=$	$\omega^{\omega+1}+\omega^{\omega}+1$		
g_{2}	$=$	1279	$=3^{3+1}+3^{3}$	$3 \mapsto \omega$
g_{3}	$=$	$\omega^{\omega+1}+\omega^{\omega}$		
$g_{4}=$	$4^{4+1}+3 \cdot 4^{3}+3 \cdot 4^{2}+3 \cdot 4+3$	$4 \mapsto \omega$	$\omega^{\omega+1}+3 \cdot \omega^{3}+3 \cdot \omega^{2}+3 \cdot \omega+3$	
$g_{5}=$	280711	$=$	$5^{5+1}+3 \cdot 5^{3}+3 \cdot 5^{2}+3 \cdot 5+2$	$5 \mapsto \omega$
$6^{6+1}+3 \cdot 6^{3}+3 \cdot 6^{2}+3 \cdot 6+1$	$6 \mapsto \omega$	$\omega^{\omega+1}+3 \cdot \omega^{3}+3 \cdot \omega^{2}+3 \cdot \omega+2$		
	5765998	$=7^{7+1}+3 \cdot 7^{3}+3 \cdot 7^{2}+3 \cdot 7$	$7 \mapsto \omega$	$\omega^{\omega+1}+3 \cdot \omega^{3}+3 \cdot \omega^{2}+3 \cdot \omega^{2}+3 \cdot \omega+1$

By-products On the Fixed Point of $\neg \square_{T}(y)$

Theorem 2.34 (Löb)

Suppose T is a recursively axiomatizable theory with $T \supseteq$ PA.
(1) $\vdash_{T} \square_{T}\left(\square_{T} \varphi \rightarrow \varphi\right) \rightarrow \square_{T} \varphi$;
(2) If $\vdash \square_{T} \varphi \rightarrow \varphi$, then $\vdash_{T} \varphi$.

Corollary 2.35

Suppose T is a recursively axiomatizable theory with $T \supseteq$ PA. Then T is the only fixed point of $\square_{T}(y)$ up to the logical equivalence in T.

By-products On the Fixed Point of $-\square_{T}(y)$

- We also call $\vdash_{T} \square_{T}\left(\square_{T} \varphi \rightarrow \varphi\right) \rightarrow \square_{T} \varphi$ as D_{4} which could be also regarded as a derivability condition;
- It's easy to see that in Theorem $2.34 D_{4}$ is the formalization of (2) in T, and so we call "If $\vdash \square_{T} \varphi \rightarrow \varphi$, then $\vdash_{T} \varphi$ " as $D_{4}{ }^{\circ}$;
- Since \vdash_{T} con (T), i.e., $\vdash_{T} \square_{T} \perp \rightarrow \perp$, implies $\vdash_{T} \perp$ by $D_{4}{ }^{\diamond}$, then $D_{4} \Rightarrow D_{4}^{\diamond} \Rightarrow$ GSIT;
- Since D_{4} implies FGSIT for $\varphi=\perp$ by contraposition, then $D_{4} \Rightarrow \mathrm{FGSIT} \Rightarrow \mathrm{GSIT}$;
- So Löb theorem is stronger than Gödel's second incompleteness theorem which is not obvious at first glance.

By-products Typical Theories T°

Corollary 2.36

Suppose T is a recursively axiomatizable and consistent theory with $T \supseteq$ PA and $T^{\diamond}=T+\neg \operatorname{con}(T)$. Then T^{\diamond} is consistent and $T^{\diamond} \vdash \neg \operatorname{con}\left(T^{\diamond}\right)$ and T^{\diamond} is ω-inconsistent.

- PA^{\diamond} is inconsistent in PA^{\diamond} itself although PA^{\diamond} is consistent out of PA^{\diamond};
- The consistent PA^{\diamond} can prove its inconsistency but never prove its consistency;
- PA^{\diamond} is a typical ω-inconsistent theory;
- There is some consistent theory T such that $T+\operatorname{con}(T)$ is inconsistent $\left(T=\mathrm{PA}^{\diamond}\right)$.

By-products Meta-heoretic Properties of T

Many meta-theoretic properties of T could be formalized in T using provability operator \square_{T} and sentence schemata as above:

```
\negon(T) : 听\perp provable inconsistency,
    secomp : }\quad\varphi->\square\mp@subsup{\square}{T}{}
    sycomp : }\quad\mp@subsup{\square}{T}{}\varphi\vee\mp@subsup{\square}{T}{}\urcorner
\omega-comp : }\forallx\squareT\\\varphi(x)\rfloor->\mp@subsup{\square}{T}{}\forallx\varphi(x) \omega-completeness
```


Theorem 2.37

Suppose T is a recursively axiomatizable theory with $T \supseteq$ PA. Then the following sentences are logically equivalent in T :
(1) $\neg \operatorname{con}(T)$;
(2) $\varphi \rightarrow \square_{T} \varphi$;
(0) $\square_{T} \varphi \vee \square_{T} \neg \varphi$;
(9) $\forall x \square_{T}\lfloor\varphi(x)\rfloor \rightarrow \square_{T} \forall x \varphi(x)$.

All the properties above hold for theories $T=T^{\diamond}$.

Outline

(1) Gödel's First Incompleteness Theorem
(2) Gödel's Second Incompleteness Theorem
(3) References

References

G. Boolos.The Provability of Logic.
Cambridge University Press, 1st edition, 2003.N. J. Cutland.

Computability: an Introduction to Recursive Function Theory.
Cambridge University Press, 1980.P. G. Hinman.

Fundamentals of Mathematical Logic.
AK Peters Wellesley, 2005.
K. Hrback and T. Jech.

Introduction to Set Theory.
Marcel Dekker Inc., 3rd edition, 1999.
\square K. Kunen.

The Foundations of Mathematics.
Colleage Publications, 2009.
T
W. Rautenberg.

A Concise Introduction to Mathematical Logic.
Springer, 2006.

