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A Wildly Known Popularization

Consider a recursively axiomatic theory T which describes a
given domain of objects M in language L in a manner we hope is
complete. Moreover, suppose that T is capable of talking in its lan-
guage L about its own syntax and proofs from its axioms. Now
consider the sentence ϕ: “I am unprovable in T = Th(M)” where
“I” refers to ϕ.
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Consider a recursively axiomatic theory T which describes a
given domain of objects M in language L in a manner we hope is
complete. Moreover, suppose that T is capable of talking in its lan-
guage L about its own syntax and proofs from its axioms. Now
consider the sentence ϕ: “I am unprovable in T = Th(M)” where
“I” refers to ϕ.

M |= ϕ ⇒ ϕ ∈ T T = Th(M)
⇒ ϕ is provable in T a contradiction to ϕ;

M 2 ϕ ⇒ ϕ /∈ T T = Th(M)
⇒ ϕ is unprovable in T
⇒ ϕ is true inM a contradiction.

Conclusion: Clearly it’s T = Th(M) that leads to the contradic-
tion and then T 6= Th(M). Hence our goal of exhaustively capturing
all theorems valid inM by means of the axioms of T has not been
achieved and is in fact not possible, as we will show.



The General Proof Idea

Before arriving at the destination, we should climb over three
mountains.
Arithmetize provability as a (partially) recursive predicate P;
Show that every predicate can be represented by some formula
which follows that the predicate P can be represented by beb(y);

Prove the fixed point lemma (here also needs the second conclu-
sion);
At last through the fixed point lemma and the second conclusion
we would conclude Gödel’s first incompleteness theorem.
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Robinson Arithmetic

Definition 1.1
Our language isLA which is consist of non-logical symbols and logi-
cal symbols as follows:

non-logical symbols: 0 , S , + , × ;
logical symbols: x0, x1, x2, · · · , = , ¬,→,∀.

Definition 1.2
For convenience, we define

σ 6=τ iff ¬(σ =τ);
∨

i<n ϕi iff ϕ0 ∨ · · · ∨ ϕn−1;
∧

i<n ϕi iff ϕ0 ∧ · · · ∧ ϕn−1.



Robinson Arithmetic

Definition 1.3
Φ is a set of the following logical axioms.

(P1) ϕ → (ψ→ ϕ);

(P2) (ϕ → ψ→ ϑ)→ (ϕ → ψ)→ (ϕ → ϑ);

(P3) (¬ϕ → ψ)→ (¬ϕ → ¬ψ)→ ϕ;

(S) ∀xϕ → ϕ(x; τ) where ϕ(x; τ) is a free substitution;

(D) ∀x(ϕ → ψ)→ ∀xϕ → ∀xψ;

(E1) τ=τ;

(E3) τ0=σ0 → · · · → τn−1=σn−1 → F(τ0, · · · , τn−1)=F(σ0, · · · ,σn−1);

(C1) ϕ → ∀xϕ where x /∈ Fr(ϕ);

(C2) ∀x0 · · · ∀xn−1ϕ where ϕ is an axiom with one of the above forms.

(MP) {ϕ,ϕ → ψ} ` ψ.



Robinson Arithmetic

Definition 1.4

Robinson arithmetic is the theory Q = Φ + {Q1, · · · , Q7}.

Q1 : ∀x S x 6= 0 ;
Q2 : ∀x∀y( S x= S y→ x= y);
Q3 : ∀x(x 6= 0 → ∃y(x= S y));
Q4 : ∀x(x+ 0 = x);
Q5 : ∀x∀y(x+ S y= S (x+ y));
Q6 : ∀x(x× 0 = x);
Q7 : ∀x∀y(x× S y= x× y+ x).

Attention: Q ` and `Q.



Robinson Arithmetic

Remark 1.5

1 N0 = (N, 0, S,+,×) is a standard model of Q;
2 Also Q has many other models, for example, nonstandard mod-

els. M = (N ∪ {∞}, 0, S,+,×) where S,+,× are extensions to
∞ from S,+,× inN0 in the ways:

S(∞) =∞;
n+∞ =∞+ n =∞+∞ =∞;
0×∞ =∞× 0 = 0 and n×∞ =∞× n =∞×∞ =∞.

It’s easy to check thatM |= Q.



Robinson Arithmetic

Notation 1.6

The term number n = S n 0 = S · · · S
︸ ︷︷ ︸

n many

0 for all n ∈ N.

Definition 1.7

x≤ y if ∃z(z+ x= y). Furthermore x< y iff x≤ y ∧ x 6= y.



Robinson Arithmetic

Lemma 1.8

1 Q` ∀x( S x+ n = x+ S n );

2 Q` m + n = m+ n ;
3 Q` m × n = m× n ;
4 Q` m = n iff m = n;

5 Q` m ≤ n iff m ≤ n;

6 Q` ∀x(x≤ n ↔
∨

q≤n x= q );

7 Q` ∀x(x≤ n ∨ n ≤ x).



Computability

Definition 1.9

Suppose f : Nk → N is a function, we say f is computable if, there
is some algorithm set in some fixing machine such that, given any
x0, · · · , xn−1, when inputting x0, · · · , xn−1 into the machine,

the machine would output f (x0, · · · , xn−1) if f (x0, · · · , xn−1) is
defined;
the machine would never stop if f (x0, · · · , xn−1) isn’t defined.



Computability

Lemma 1.10
The following basic functions are computable.

1 the zero function 0(x) = 0 for all x;
2 the successor function S(x) = x+ 1;
3 the projection function Un

i (x0, · · · , xn−1) = xi for all i < n.

Theorem 1.11 (Composition)

Suppose that f (y0, · · · , yn−1) and g0(−→x ), · · · , gn−1(−→x ) are computable
functions, then h(−→x ) = f (g0(−→x ), · · · , gn−1(−→x )) is also computable.



Computability

Theorem 1.12 (Recursion)

Suppose that f (−→x ) and g(−→x , y, z) are functions, define h(−→x , y) by recur-
sion equations: h(−→x , 0) = f (−→x ) and h(−→x , y+ 1) = g(−→x , y, h(−→x , y)). If
f (−→x ) and g(−→x , y, z) are computable, then so is h(−→x , y). And we say h is
obtained by recursion from f and g.

Theorem 1.13 (Bounded Minimalisation)

Suppose f (−→x , y) is computable, then so is the following:

µz < y(f (−→x , z) = 0) =

(

the least z < y if ∃zf (−→x , z) = 0;
y otherwise.

And we call µz < y as bounded minimalisation operator.



Computability

Theorem 1.14 (Minimalisation)

Suppose that f (−→x , y) is computable, then so is

µy(f (−→x , y) = 0) =







the least y such that f (−→x , z) is defined
for all z < y and f (−→x , y) = 0 if there is such y;
undefined otherwise .

And we call µy as µ-operator.

Definition 1.15
Primitive recursive functions is the least class which includes identity
maps (n(x) = n), projection functions and is closed under compo-
sition and recursion; Recursive functions is the least class which in-
cludes the basic functions and is closed under composition, recursion
and µ-operator.



Computability

Definition 1.16

Suppose P(−→x ) is an n-ary predicate with P ⊆ Nn. Define cP as:

cP(−→x ) =
(

1 P(−→x ) holds;
0 otherwise.

P(−→x ) is recursive if cP is computable; otherwise it’s not recursive.



Computability

Lemma 1.17

Suppose that P(−→x ) and Q(−→x ) are recursive predicates, then so are:
1 not P(−→x );
2 P(−→x ) and Q(−→x );
3 P(−→x ) or Q(−→x ).

Lemma 1.18

Suppose that P(−→x , y) is a recursive predicate, then so are:
1 Q1(−→x , y) = ∀z < yP(−→x , z);
2 Q2(−→x , y) = ∃z < yP(−→x , z).



Computability

Definition 1.19
Suppose A ⊆ N, if the characteristic function cA of A given by

cA(x) =

(

1 x ∈ A;
0 x /∈ A.

is computable, we say A is recursive. And if the function f given by

f (x) =

(

1 x ∈ A;
undefined x /∈ A.

is computable, we say A is recursively enumerable.



Arithmetization

InLA we can also talk about the syntax ofLA, proofs, provabil-
ity and even some semantics by means of encoding of strings from
alphabet ofLA, which is called Gödel encoding.

Definition 1.20
Assign to every symbol ofLA a natural number.

ζ ∀ 0 S + × ( ) ¬ → = x0 x1 x2 · · ·

]ζ 1 3 5 7 9 11 13 15 17 19 21 23 25 · · ·

Then the Gödel code of a string ξ = ζ0 · · · ζn is

]ξ = 〈]ζ0, · · · , ]ζn〉 = p0
]ζ0 · · · pn

]ζn .

In particular we set ]〈 〉 = 1.



Arithmetization

The sentence
∀x(1 6=(2 × x+ 21 ))

not only states some assertion about 1 and 21, but also states some
syntax ofLA, i.e., “∀ is not a variable”.
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syntax ofLA, i.e., “∀ is not a variable”.

All the syntactic concepts in which we are interested are “trans-
lated” as recursive subsets of N, or at least recursively enumerable
subsets of N, to represent them in the theory T ⊇ Q. Notably that
we use ] · · · to denote the code of some · · · .

Lemma 1.21
{v ∈ N|v is a ]variable} is recursive.

Proof.
Set P = {v ∈ N|v = 2k + 21 for some k ∈ N}. Since the predicate
R(v, k) : v = 2k + 21 is recursive, then the predicate P(v) : ∃k <
vR(v, k) is recursive. �



Arithmetization

Lemma 1.22

{t ∈ N|t is a ]term} is recursive.

Proof.
We just need to give a recursive definition of t:

∃s < t(t = 〈s〉) where s is some ]varaible or s is ]0 ;
∃r, s < t(t = 〈r〉̂ s) where r is ] S and s is some ]term
∃q, r, s < t(t = 〈q〉̂ ŝ t) where q is ]+ or ]× and s, t are ]terms.

�

In Lemma 1.22, given some term S S 0 the Gödel code of it is

〈] S , ] S , ]0 〉 = 253553

but
〈] S , 〈] S , ]0 〉〉 = 263〈] S ,]0 〉 = 2532533

.



Arithmetization

Lemma 1.23

{ϕ ∈ N|ϕ is a ](atomic formula)} is recursive.

Lemma 1.24

{ϕ ∈ N|ϕ is a ]formula} is recursive.

Lemma 1.25

There is a recursive function sub such that, for any term or formula ϕ
and for any variable x and any term t, sub(]ϕ, ]x, ]t) = ]ϕ(x; t).



Arithmetization

Proof.
We also just give a recursive definition of sub.

]ϕ(x; t) =







































































]t ϕ = x;
]( S (u(x; t))) ϕ = S u and u is a term;
](+ (u(x; t)s(x; t))) ϕ = +us and u, s are terms;
](× (u(x; t)s(x; t))) ϕ = ×us and u, s are terms;
](= (u(x; t)s(x; t))) ϕ = =us and u, s are terms;
](¬(ψ(x; t))) ϕ = ¬ψ and ψ is a formula;
](→ ψ(x; t)ϑ(x; t)) ϕ =→ ψϑ and ψ,ϑ are formulas;
](∀y(ψ(x; t))) ϕ = ∀yψ, y 6= x and ψ is a formula;
]ϕ otherwise.

This completes the proof. �



Arithmetization

Lemma 1.26

Define the predicate P ⊆ N2 as

{(x,ϕ) ∈ N2|x is a ](free occurrence) in ϕ}.

Then P is recursive.

Proof.
(x,ϕ) ∈ P iff x is a ]variable ∧ ϕ is a ]term or
]formula∧ sub(ϕ, x, ]0 ) 6= ϕ. �



Arithmetization

Lemma 1.27
{σ ∈ N|σ is a ]sentence} is recursive.

Lemma 1.28
{ϕ ∈ N|ϕ is a 〈]¬〉̂ 〈ψ〉 ∧ ψ is a ]formula} is recursive.

Lemma 1.29
{ϕ ∈ N|ϕ is a 〈]→〉̂ 〈ψ〉̂ 〈ϑ〉 ∧ ψ,ϑ are ]formulas} is recursive.

Lemma 1.30
{ϕ ∈ N|ϕ is a 〈]∀〉̂ 〈y〉̂ 〈ψ〉 ∧ y is a ]variable∧ψ is a ]formula} is
recursive.



Arithmetization

Lemma 1.31

Define the predicate P ⊆ N3 as

{(ϕ, x, t) ∈ N3|ϕ is a ]formula ∧t is a ]term∧x is a ]variable ∧ t is a ]free for x in ϕ}.

Then P is recursive.

Proof.
We give a recursive definition of “t is a ]free for x in ϕ”:

t is a ]free for x in ϕ, where ϕ is a ](atomic formula);
t is a ]free for x in ψ, where ϕ = 〈]¬〉̂ 〈ψ〉 ∧ ψ is a ]formula;
t is a ]free for x in ψ and t is a ]free for x in ϑ, where ϕ = 〈] →
〉̂ 〈ψ〉̂ 〈ϑ〉 ∧ ψ,ϑ are ]formulas;
either x is not a ](free ocurrence) in ϕ, or y is not a ](free
ocurrence) in t and t is a ]free for x in ψ, where ϕ =
〈]∀〉̂ 〈]y〉̂ 〈ψ〉 ∧ y is a ]variable ∧ψ is a ]formula. �



Arithmetization

Lemma 1.32

Define the predicate P ⊆ N2 as

{(ϕ,ψ) ∈ N2|ϕ is a ](∀−comprehension) of ψ and ϕ,ψ are ] formulas}.

Then P is recursive.

Proof.
(ϕ,ψ) ∈ P iff ∃x0 < ϕ · · · ∃xn−1 < ϕ(ϕ = 〈1, x0, · · · , 1, xn〉̂ ψ ∧
x0, · · · , xn−1 are ]variables ∧ψ is a ]formula). �

Lemma 1.33
{α ∈ N|α is a ]axiom} is recursive.



Arithmetization

Definition 1.34
Suppose Γ is a set of formulas and T is a theory.

Γ is recursive if ]Γ = {]ϕ|ϕ ∈ Γ} is recursive; otherwise we say
Γ is not recursive;
T is decidable if T is recursive; and T is undecidable otherwise.
T is recursively axiomatizable if there is a recursive set Σ such
that T = TΣ, and we may say T is recursively axiomatized by Σ.



Arithmetization

Lemma 1.35

Let T be a theory and be recursively axiomatized by X ⊆ T , and define
the predicates BeT ⊆ N2 and BebT ⊆ N as

{(p,ϕ) ∈ N2|p is a ]proof of ϕ in T} and {ϕ ∈ N|∃x BeT (x,ϕ)}

respectively, then BeT is recursive and BebT is recursively enumerable.

Proof.
(1) Since (p,ϕ) ∈ Be iff

p 6= 1 ∧ (p)Length(p)−1 = ϕ ∧ ∀k < Length(p)
[(p)k ∈ ]X ∨ (p)k is a ]axiom ∨ ∃i, j < k((p)i = 〈]→〉̂ (p)ĵ (p)k)],

then BeT is recursive;
(2) It’s trivial that BebT is recursively enumerable. �



Representability Formulas classification and Σ1-completeness

Definition 1.36
Fix our arithmetic language LA. The formulas ϕ ∈ ∆ are defined
recursively as follows:

all the atomic formulas such as τ = σ , where τ,σ are terms,
belong to∆;
if ϕ,ψ ∈ ∆, then so ¬ϕ,ϕ → ψ ∈ ∆;
if τ is a term with x /∈ Vr(τ), and ϕ ∈ ∆ , then so ∀x≤τϕ ∈ ∆.
For any formula ϕ, ϕ ∈ ∆0 iff there is some ψ ∈ ∆ ψ such ϕ

and ψ are logically equivalent.
For any ϕ ∈ ∆0, ∃−→x ϕ ∈ Σ1 and ∀−→x ϕ ∈ Π1;
We say ϕ ∈ ∆1 if there is some ψ ∈ Σ1 and ϑ ∈ Π1 such that

ϕ,ψ,ϑ are logically equivalent.



Representability Formulas classification and Σ1-completeness

Theorem 1.37 (Σ1-completeness of Q)

For any Σ1-sentence ϕ forLA, we haveN |= ϕ iff Q ` ϕ.



Representability Representable Predicates and Functions

Definition 1.38

We say a k-ary predicate P ⊆ Nk is numeralwise representable or
representable in T if, there is a formula ϕ(−→x ) for LA such that for
any n0, · · · , nk−1 ∈ N,

(n0, · · · , nk−1) ∈ P ⇒ T ` ϕ(n0 , · · · , nk−1 ),
(n0, · · · , nk−1) /∈ P ⇒ T ` ¬ϕ(n0 , · · · , nk−1 ).

We say a predicate P ⊆ Nk is ∆0, or Σ1, or Π1 if it’s represented
by a ∆0 formula, or Σ1 formula, or Π1 formula respectively. And if
P can be represented by a Σ1 formula and also be represented by a Π1
formula, we say it’s∆1.



Representability Representable Predicates and Functions

Definition 1.39

Given any LA formula ϕ(−→x ) and predicate P ⊆ Nk, we say P is
defined by ϕ(−→x ) inM iff for any n0, · · · , nk−1 ∈ N we have

(n0, · · · , nk−1) ∈ P ⇔M |= ϕ(n , · · · , nk−1 ).

And if there is such ϕ we say P is definable inM.

Some simple facts:
Suppose T is a recursively axiomatizable theory. If P is repre-
sentable, then P is recursive;
It’s easy to check that the class of representable predicates is
closed under Boolean operators;
P is representable in Th(N ) iff P is definable inN .



Representability Representable Predicates and Functions

Definition 1.40

We say the function f : Nk → N is representable in T ⊇ Q if, there is
a formula ϕ(x0, · · · , xk−1, y) such that, for all n0, · · · , nk−1 ∈ Nk, we
have

T ` ∀y[ϕ(n0 , · · · , nk−1 , y)↔ y= f (n0, · · · , nk−1) ].

Similarly we say a function f is ∆0, or Σ1, or Π1 if it’s repre-
sented by a ∆0, or Σ1, or Π1 formula respectively. And if f can be
represented by a Σ1 formula and also be represented by aΠ1 formula,
we say it’s∆1.



Representability Representable Predicates and Functions

Suppose f is a function and Gf = {(x, y)|y = f (x)}.
If ϕ represents f , then ϕ represents Gf ;
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ϕ represents Gf but ϕ may don’t represent f . Set Z(x) = 0(x) =
0 and GZ = {(x, 0)|x ∈ N}. It’s easy to check that the formula
y+ y= y represents the predicate GZ. But since Q 0 ∀y(y 6= 0→
y+ y 6= y) (see Remark 1.5 (2)), then y+ y= y doesn’t represent
the function Z(x).



Representability Representable Predicates and Functions

Suppose f is a function and Gf = {(x, y)|y = f (x)}.
If ϕ represents f , then ϕ represents Gf ;
ϕ represents Gf but ϕ may don’t represent f . Set Z(x) = 0(x) =
0 and GZ = {(x, 0)|x ∈ N}. It’s easy to check that the formula
y+ y= y represents the predicate GZ. But since Q 0 ∀y(y 6= 0→
y+ y 6= y) (see Remark 1.5 (2)), then y+ y= y doesn’t represent
the function Z(x).
f is representable iff Gf is representable.



Representability Recursion and Representability

Lemma 1.41

Let τ(x0, · · · , xk−1) be a term for LA, and define a function
fτ(n0, · · · nk−1) = τ( n0 , · · · , nk−1 )N , and suppose Q⊆ T . Then
fτ is represented by y = τ(x0, · · · , xk−1) in T . In particular, the zero
function, the successor function, the projection functions, the constant
functions, the plus function and the multiplication function are all rep-
resentable.

Proof.
Since by induction on τ we can prove that for all n0, · · · nk−1 ∈ N
T ` τ(n0 , · · · , nk−1 )= fτ(n0, · · · , nk−1) , then we have

T ` ∀y[y=τ(n0 , · · · , nk−1 )↔ y= fτ(n0, · · · , nk−1) ]

for all n0, · · · nk−1 ∈ N. So y=τ(x0, · · · , xk−1) represents fτ in T . �



Representability Recursion and Representability

Lemma 1.42

Suppose Q⊆ T , if h0(−→x ), · · · , hr(−→x ) and g(y0, · · · , yr−1) are all repre-
sentable in T , then so is f = g(h0, · · · , hr−1).



Representability Recursion and Representability

Corollary 1.43

Suppose g(−→x , y) is representable in T ⊇Q and ∀−→x ∃y(g(−→x , y) = 0),
then the function f (−→x ) = µy(g(−→x , y) = 0) is also representable.



Representability Recursion and Representability

Suppose f (−→x , y) is defined by recursion with g(−→x ) and h(x, y, z),
that is: f (−→x , 0) = g(−→x ) and f (−→x , n+ 1) = h(−→x , n, f (−→x , n)).



Representability Recursion and Representability

Suppose f (−→x , y) is defined by recursion with g(−→x ) and h(x, y, z),
that is: f (−→x , 0) = g(−→x ) and f (−→x , n+ 1) = h(−→x , n, f (−→x , n)).

Recall that how we state the justice of recursions in set theory.
We may give the explicit definition of f (−→x , n) = m by: there is an
encoding number t of a finite sequence with length n + 1 such that,
(t)0 = g(−→x ) and for all i < n, we have (t)i+1 = h(−→x , i, (t)i) and
(t)n = m.



Representability Recursion and Representability

Suppose f (−→x , y) is defined by primitive recursion with g(−→x ) and
h(x, y, z), that is: f (−→x , 0) = g(−→x ) and f (−→x , n+1) = h(−→x , n, f (−→x , n)).

Recall that how we state the justice of recursions in set theory.
We may give the explicit definition of f (−→x , n) = m by: there is an
encoding number t of a finite sequence with length n + 1 such that,
(t)0 = g(−→x ) and for all i < n, we have (t)i+1 = h(−→x , i, (t)i) and
(t)n = m.

In this process, we usually encode with the functions xy and pn.
But the difficulty in showing the representability of them is the same
as recursions. “Phoned with God”, Gödel solved such difficulty with
the help of Chinese reminder theorem, and as we seen in his method
of encoding the finite sequences he used + and × only instead of xy

and pn.



Representability Recursion and Representability

Lemma 1.44

Suppose g(−→x ) and h(−→x , y, z) are representable in T ⊇ Q and f is defined
by recursion with g and h, then f is representable in T .



Representability Recursion and Representability

Theorem 1.45 (Representability)

For any recursive function f , f is representable in T ⊇Q and ∆1. Con-
sequently every recursive predicate is representable in T ⊇Q and∆1.



Representability Recursion and Representability

Corollary 1.46

For any predicate P ⊆ Nk and any recursively axiomatizable and con-
sistent theory T ⊇Q, the following are equivalent.

1 P is recursive;
2 P is representable;

3 P is representable and∆1.



Incompleteness

Notation 1.47

For any formula ϕ we use ðϕñ to denote the term S ]ϕ 0 , i.e.,

ðϕñ = ]ϕ = S ]ϕ 0 .

Lemma 1.48 (Fixed Point)

Given any LA formula ϕ(x) with only x free and a theory T ⊇Q, we
can effectively find a sentence σ such that T ` σ ↔ ϕ(ðσñ).



Incompleteness

Definition 1.49
Let T be a theory forLA.

We say T is ω-inconsistent if, there is an LA formula ϕ(x) such
that T ` ∃xϕ(x) and T ` ¬ϕ(n ) for all n ∈ N;
We say T is ω-consistent if T is not ω-inconsistent, i.e., for any
LA formula ϕ(x), if T ` ∃xϕ(x), then T 0 ¬ϕ( n ) for some
n ∈ N, i.e., for any LA formula ϕ(x), if T ` ¬ϕ( n ) for all
n ∈ N, then T 0 ∃xϕ(x).



Incompleteness

Theorem 1.50 (Gödel’s First Incompleteness, the Original Version,
Gödel)

Let T ⊇Q be a recursively axiomatizable theory. If T is ω-consistent,
then there is a sentence σ independent of σ such that T 0 σ and T 0 ¬σ .

Proof.
Suppose that the predicate Be is represented by be(x, y) in T ⊇ Q, and
let beb(y) = ∃xbe(x, y), then it’s easy to check that Beb is represented
by beb(y). Furthermore let σ be the fixed point of ¬beb(y). Then

T ` σ ↔ ¬beb(ðσñ).

It’s suffices to show that σ is independent of T . �



Incompleteness

Theorem 1.51 (Gödel’s First Incompleteness, the Strengthened Ver-
sion, Rosser)

Let T ⊇Q be a recursively axiomatizable theory. If T is consistent, then
there is a sentence σ independent of σ such that T 0 σ and T 0 ¬σ .

Proof.

pro(x) = ∃y[be(y, x) ∧ ∀z< y¬be(z, ¬ (x))],
where the recursive function ]α→ ](¬α) is represented by the formula ¬ (x), and if
x=ðαñ, then ¬ (x)=ð¬αñ. We can prove

T ` α⇒ T ` pro(ðαñ) & T ` ¬α⇒ T ` ¬pro(ðαñ).

Let σ be the fixed point of ¬pro(x). Then

T ` σ ↔ ¬pro(ðσñ). (5.1)

It suffices to show that σ is independent of T . �



By-products

Lemma 1.52 (Non-representability)

Let T ⊇Q be a recursively axiomatizable theory. If T is consistent, then
]T is not representable in T .

Proof.
Suppose ]T is represented by ϕ(x). Then for any formula ϑ, T `
ϑ ⇒ T ` ϕ(ðϑñ) and T 0 ϑ ⇒ T ` ¬ϕ(ðϑñ). i.e.,

T 0 ϑ ⇔ T ` ¬ϕ(ðϑñ). (6.1)

Now let σ be the fixed point of ¬ϕ(x), then

T ` σ ↔ ¬ϕ(ðσñ). (6.2)

By (6.1) and (6.2) T ` σ ⇔ T 0 σ , a contradiction. �



By-products

Theorem 1.53 (Tarski’s Non-definability)

]Th(N ) = {]ϑ|N |= ϑ} is not definable in the standard arithmetic
modelN .



By-products

Corollary 1.54

Th(N ) is undecidable, i.e., ]Th(N ) is not recursive.

Theorem 1.55 (Strong Undecidability of Q)

Let T be a theory such that T∪Q is consistent. Then T is undecidable.

Corollary 1.56 (Church’s Undecidability)

Fix the languageLA. Then the set of validities is undecidable, i.e., {ϑ ∈
LA| |= ϑ} is undecidable.

Theorem 1.57
Hilbert’s Tenth Problem Is there an algorithm such that for any polyno-
mial p(−→x )with integer coefficients decides whether the equation p(−→x ) =
0 has a solution in Z? The answer is NO.



Outline

1 Gödel’s First Incompleteness Theorem

2 Gödel’s Second Incompleteness Theorem

3 References



The General Proof Idea

We first introduce three derivability conditions. Then clime
over three mountains as well as in last section.
If `T ϕ, then `T �Tϕ, i.e., T satisfies D1;
`T �T (ϕ → ψ)→ �Tϕ → �Tψ, T satisfies D2;
`T �Tϕ → �T�Tϕ, i.e., T satisfies D3;
At last we will show `T con(T ) → ¬�T con(T ) which follows
0T con(T ).
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The General Proof Idea
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Peano Arithmetic

Definition 2.1

Peano arithmetic is the theory PA = Φ+P, where P = I ∪{Q1, Q2, Q4, Q5, Q6, Q7}
and

Q1 : ∀x S x 6= 0 ;
Q2 : ∀x∀y( S x= S y→ x= y);
Q4 : ∀x(x+ 0 = x);
Q5 : ∀x∀y(x+ S y= S (x+ y));
Q6 : ∀x(x× 0 = x);
Q7 : ∀x∀y(x× S y= x× y+ x)

I : [ϕ(0 ) ∧ ∀y(ϕ(y)→ ϕ( S y))]→ ∀xϕ(x),
ϕ(x) is anLA formula with Fr(ϕ) = {x} and y /∈ Vr(ϕ).

We call I the set of induction axioms; given any set Θ of formulas with x free only
ofLA, then

IΘ = {[ϕ(0)∧∀y(ϕ(y)→ ϕ(Sy))]→ ∀xϕ(x)|ϕ(x) ∈ Θ, Fr(ϕ) = {x} and y /∈ Vr(ϕ)}.



Peano Arithmetic

Lemma 2.2
PA = Q + I, and so PA is the extension of Q generated by induction
axioms.

Proof.

Since Q3 : ∀x(x 6= 0 → ∃y(x = S y)), then consider the induction
axiom [ϕ(0 ) ∧ ∀y(ϕ(y)→ ϕ( S y))]→ ∀xϕ(x), where

ϕ(x) = x 6= 0 → ∃y(x= S y).

�

Theorem 2.3 (Σ1-completeness of PA)

For any Σ1-sentence ϕ forLA, we haveN |= ϕ iff PA ` ϕ.



Peano Arithmetic

PA can prove basic properties about S , + , × , ≤ , < ; and further
prove:

Lemma 2.4 (Strong Induction Principle)

PA ` ∀z[(∀y < zϕ(y)) → ϕ(z)] → ∀xϕ(x), where ϕ(x) is an LA
formula with Fr(ϕ) = {x} and y, z /∈ Vr(ϕ).

Lemma 2.5 (The Least Number Principle)

PA ` ∃xϕ(x)→ ∃x[ϕ(x)∧∀y<x¬ϕ(x)], where ϕ(x) is anLA formula
with Fr(ϕ) = {x} and y /∈ Vr(ϕ).



Derivability Conditions

Notation 2.6
Let T be any recursively axiomatizable theory and ϕ be any formula
forLA. Convent

�T (y) = bebT (y) = ∃xbeT (x, y),
�Tϕ = �T (y; ðϕñ) = �T (ðϕñ).

Note that, �T (y) is a formula with a free variable y, while �Tϕ
is a sentence no matter whether ϕ has free variables.



Derivability Conditions

Definition 2.7
Let T be any recursively axiomatizable theory and ϕ,ψ be any LA-
sentences. The three derivability conditions are

D1 : if `T ϕ, then `T �Tϕ;
D2 : `T �T (ϕ → ψ)→ �Tϕ → �Tψ;
D3 : `T �Tϕ → �T�Tϕ.



Derivability Conditions

Lemma 2.8

Suppose T satisfy D1 and D2, then it also satisfies

D0 : if ϕ `T ψ, then �Tϕ `T �Tψ.

Corollary 2.9

If `T ϕ ↔ ψ, then `T �Tϕ ↔ �Tψ.

Definition 2.10

con(T ) = ¬�T 0 6= 0 = ¬bebT (ð0 6= 0ñ).

Corollary 2.9 tells us that in Definition 2.10 0 6= 0 could be
replaced by any sentence equivalent to ⊥, and so we may also set
con(T ) = ¬�T⊥.



T Satisfies D1

Lemma 2.11

Suppose T is a recursively axiomatizable theory with T ⊇ Q. Then T
satisfies D1, i.e., if `T ϕ, then `T �Tϕ.

Proof.
Assume `T ϕ and let n be the code of ϕ. Since the predicate
Be is recursive, then by the Representability theorem we have `T
beT (n , ðϕñ), and so `T ∃xbeT (x, ðϕñ), i.e., `T �Tϕ. �



T Satisfies D2 Provable Recursion

Definition 2.12

We say a recursive function f : Nk → N is provably recursive, or
Σ1-definable in T ⊇ PA if, there is a Σ1 formula δf (

−→x , y) such that

T ` δf (
−→n , f (−→n ) ) for any n0, · · · , nk−1 ∈ N,

T ` ∀−→x ∃!yδf (
−→x , y).

We say a recursive predicate P ⊆ Nk is provably recursive, or Σ1-
definable in T ⊇ PA if, there is some Σ1 formula δP(−→x ) forLA such
that for any n0, · · · , nk−1 ∈ N

P(−→n )⇔ T ` δP(−→x ).

Lemma 2.13

In Definition 2.12, δf (
−→x ) and δP(−→x ) are T -definitions for f and P

respectively.



T Satisfies D2 PA Theorems Formalizations

Lemma 2.14

The following are probably recursive in PA.
1 the division relation d|x;
2 the reminder function rem(x, d) = r;
3 “p is a prime” prime(p);
4 the binary maximum function max(m, n);
5 the coprime relation coprime(m, n).

Proof.
(1) ∃q < x(q× d = x) (here we assuming that 0 | n iff n = 0);
(2) [r < d ∧ ∃q < x(x = q× d + r)] ∨ (d = 0 ∧ r = 0);
(3) p 6= 1 ∧ ∀d < p(d | p→ (d = 1 ∨ d = p));
(4) (m ≤ n ∧ z = m) ∨ (n < m ∧ z = n);
(5) ∀d < max(m, n)(d | m ∧ d | n→ d = 1). �



For a function, for example, max(m, n), we formalized it as a
term function max(m, n). In other words, for any m, n the value
max(m, n) = max(m, n) is a term. And in fact strictly speaking

(m ≤ n ∧ z = m) ∨ (n < m ∧ z = n)

should be written as

(m ≤ n ∧ z= m ) ∨ (n < m ∧ z= n ).
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For a predicate, for example, prime(p), we formalized it as a
formula function prime(p). In other words, for any p the value
prime(p) is a formula.



For a function, for example, max(m, n), we formalized it as a
term function max(m, n). In other words, for any m, n the value
max(m, n) = max(m, n) is a term. And in fact strictly speaking

(m ≤ n ∧ z = m) ∨ (n < m ∧ z = n)

should be written as

(m ≤ n ∧ z= m ) ∨ (n < m ∧ z= n ).

For a predicate, for example, prime(p), we formalized it as a
formula function prime(p). In other words, for any p the value
prime(p) is a formula.
And we note that there is some harmoniousness in the some
defined formulas. For example,

∀d < max(m, n)(d = 9 ∨ d = 10).

Strictly speaking it’s should written as

∀d<max(m, n)(d= 9 ∨ d= 10 ).

The reason why we still write in the former form is to emphasize
that max(m, n) has been formalized.



T Satisfies D2 PA Theorems Formalizations

We should formulate some theorems such as Euclid lemma, Chi-
nese reminder theorem and Gödel’s β-function lemma in PA to for-
mulate finite sequences.



T Satisfies D2 Finite Sequences Formalizations

Definition 2.15
Let finseq(s) be the formula

∃c, k < s[s = π(c, k) ∧ ∀m < s(m < c→ ∃i < k(β(m, i) 6= β(c, i)))].

And set length(s) = π2(s) and value(s, i) = β(π1(s), i).

π(x, y) =
1
2
(x+ y)(x+ y+ 1) + x;

π1(z) = µx[∃y ≤ z(π(x, y) = z)];
π2(z) = µy[∃x ≤ z(π(x, y) = z)].



T Satisfies D2 Finite Sequences Formalizations

Now we can formulate connection operation in PA. Consider
the formula ϕ(u, v, s)

finseq(s) ∧ length(s) = length(u) + length(v)
∧[∀i < length(u)− 1 (s)i = ui] ∧ [∀i < length(v)− 1 (s)length(u)+i = vi].

Lemma 2.16
PA ` ∀u∀v∃!sϕ(u, v, s). So ϕ(u, v, s) defines a provably recursive func-
tion in PA, and it is represented as û v and called formalized connection
operation.



T Satisfies D2 Syntax Formalizations

Definition 2.17
Assign to every symbol ofLA a number term.

ζ ∀ 0 S + × ( ) ¬ → = x0 x1 x2 · · ·

ðζñ 1 3 5 7 9 11 13 15 17 19 21 23 25 · · ·

Lemma 2.18
The predicate variable(x) is provably recursive in PA.

Proof.
Consider the Σ1 formula variable(x) : ∃y < x(x = 2× y+ 21). �



T Satisfies D2 Syntax Formalizations

Lemma 2.19
The predicate term(t) is provably recursive in PA.

Proof.
It’s defined by the formula:

∃s[finseq(s)∧0 < length(s)∧slength(s)−1 = t∧∀i < length(s)−1(si = ð0ñ∨ϕ(s, i)∨ψ(s, i))],

where
ϕ(s, i) : ∃x < si(variable(x) ∧ si = 〈x〉)

and

ψ(s, i) : ∃m, n < i(si = 〈ðSñ〉̂ sm∨si = 〈ð+ñ〉̂ sm ŝn∨si = 〈ð×ñ〉̂ sm ŝn).

And clearly it’s Σ1. �



T Satisfies D2 Syntax Formalizations

Also similarly we
use the formula formula(x) to define the predicate formula(x)
which is a formalization of “formulas”;
use the formula χ¬(x, y) : x = 〈ð(ñ〉̂ 〈ð¬ñ〉̂ ŷ 〈ð)ñ〉 to define the
function ¬ (x) which is a formalization of ¬;
use the formula χ→(x, y, z) : x = 〈ð(ñ〉̂ ŷ 〈ð→ñ〉̂ ẑ 〈ð)ñ〉 to define
the function → (x, y) which is a formalization of→;
use the formula axiomT (x) to define the predicate axiomT (x)
which is a formalization of some recursively axiomatizable the-
ory T ;
use the formula modpen(x, y, z) : χ→(x, y, z) ∧ formula(y) ∧
formula(z) to define the predicate modpen(x, y, z) which is a for-
malization of modus ponens rule.



T Satisfies D2 Syntax Formalizations

Theorem 2.20 (Formalized Provability)

Both the binary predicate BeT (x, y) and unary predicate BebT (y) are
provably recursive in T ⊇ PA.

Proof.
BeT (x, y) is defined by the Σ1 formula BeT (x, y)

finseq(x) ∧ slength(x)−1 = y
∧ ∀i < length(x)− 1[axiomT (xi) ∨ ∃m, n < imodpen(xm, xn, xi)].

So BebT (y) is defined by the Σ1 formula BebT (y) = ∃xBeT (x, y). �



T Satisfies D2

Lemma 2.21

Suppose T is a recursively axiomatizable theory with T ⊇ PA. Then T
satisfies D2, i.e., `T �T (ϕ → ψ)→ �Tϕ → �Tψ.

Proof.
Suppose u and v satisfies BeT (u, ðϕ → ψñ) and BeT (v, ðϕñ) respec-
tively. It suffices to show

T ` BeT (u, ðϕ → ψñ)→ BeT (v, ðϕñ)→ BeT (û v̂ 〈ðψñ〉, ðψñ).

Set s = û v̂ 〈ðψñ〉. It’s easy to show:
T ` finseq(s);
T ` slength(s)−1 = ðψñ;
T ` ∀i < length(s)−1[axiomT (si)∨∃m, n < imodpen(sm, sn, si)].

Then by the definition, we have BeT (û v̂ 〈ðψñ〉, ðψñ). �



T Satisfies D3

D3 : `T �Tϕ → �T�Tϕ.

If T ` ϕ then T ` bebT (ðϕñ).

Σ1-completeness: `T ϕ(−→x )→ �T bϕ(−→x )c for any Σ1 formula ϕ(−→x ).



T Satisfies D3 A New Notation �T bϕ(−→x )c

Recall the recursive function f (n) = ] n = ] S n 0 = tnum(n). Con-
sider the formula ϕ(x, y)

∃s[finseq(s)∧length(s)=x+ 1∧s0=ð0ñ∧sx+1=y∧(∀i < xsi+1=〈ðSñ〉̂ si)].

Lemma 2.22
PA ` ∀x∃!yϕ(x, y). So f (n) defined by ϕ is provably recursive in PA,
and the corresponding formalized function is tnum(x) = tnum(x) .

For any n, tnum(n) is the term ðnñ = S ðn ñ 0 = S ð S
n 0 ñ0 .

Lemma 2.23
The function fvariable(x) = y = 2x + 21 is provably recursive in PA.
And corresponding formalized function is fvariable(x) = fvariable(x) .



T Satisfies D3 A New Notation �T bϕ(−→x )c

Lemma 2.24
The function sub(tnum(x), fvariable(y), z) is provably recursive in PA.
And the formalized function is

sub(tnum(x), fvariable(y), z) = sub(tnum(x), fvariable(y), z) .

Note that the values of sub(tnum(x), fvariable(y), z) are terms.



T Satisfies D3 A New Notation �T bϕ(−→x )c

We illustrate how sub(tnum(x), fvariable(y), z) operates the re-
sults by setting x = 3, y = 4 and z = ðx4= x6ñ:

decode z as a formula x4= x1;
find all the free variables which are signed on 4, i.e., all the free
x4; replace all the free x4 by x3;
get x3= x6; set sub(tnum(x), fvariable(y), z) = ðx3= x6ñ.

Since the whole process occurs “in” PA, then

PA ` [sub(tnum(3), fvariable(4), ðx4= x6ñ)]=[ S ðx3= x6ñ 0 ].



T Satisfies D3 A New Notation �T bϕ(−→x )c

Compare the two x4 with each other in

sub(tnum(x4), fvariable(4), ðx4= x6ñ).

It’s not hard to see that

sub(tnum(x4), fvariable(4), ðx4= x6ñ)
= ðx(tnum(x4)−21)/2= x6ñ = 〈19, tnum(x4), 33〉
= ðfvariable(x4)= x6ñ.

Clearly the first x4 is free, while the second one is always “dead”.
Assign any value a (maybe not a standard element) to x4, we would
get a corresponding ðfvariable(a)= x6ñ which shows x4 is free.



T Satisfies D3 A New Notation �T bϕ(−→x )c

For convenience, we set su(x, y, z) = sub(tnum(x), fvariable(y), z).

Definition 2.25
Suppose ϕ is anLA-formula such that Fr(ϕ) = {xk0 , · · · , xkn−1}, and
we may further assume k0 < · · · < kn−1. Then

�T bϕ(−→x )c = �T su(xkn−1 , kn−1, · · · , su(xk1 , k1, su(xk0 , k0, ðϕñ)) · · · ).



T Satisfies D3 A New Notation �T bϕ(−→x )c

�T bϕ(x)c = �T su(x, k, ðϕñ) = �T sub(tnum(x), fvariable(k), ðϕñ).

Clearly �T bϕc = �Tðϕñ if ϕ is a sentence;
�T bϕ(−→x )c andϕ(−→x ) have the same free variables, while�Tðϕ(−→x )ñ
has no variables;
Sometimes considering of readability we write some common
variables x, y, z instead of xkn since we are very clear that which
variable should be refried;
It’s obvious that `T �T bϕ(−→x )c and `T �Tðϕ(−→x )ñ are different.



T Satisfies D3 Formalized D1 and D2

Lemma 2.26 (Formalized D1)

For anyLA-formula ϕ, if `T ϕ, then ` �T bϕc.

Lemma 2.27 (Formalized D2)

For anyLA-formulas ϕ andψ, `T �T bϕ → ψc → �T bϕc → �T bψc.



T Satisfies D3 Provable Σ1-completeness

Lemma 2.28
Suppose ϕ(x0) is a formula with only x free (the general case is similar),
and xk is free for x1 in ϕ, then

1 `T �T bϕ(x0; 0 )c ↔ (�T bϕc)(x0; 0 );
2 `T �T bϕ(x0; xk)c ↔ (�T bϕc)(x0; xk);
3 `T �T bϕ(x0; S xk)c ↔ (�T bϕc)(x0; S xk).

Theorem 2.29 (Formalized Σ1-completeness)

Suppose T is a recursively axiomatizable theory with T ⊇ PA. Then
`T ϕ → �T bϕc for any Σ1 formula.



T Satisfies D3

Lemma 2.30

Suppose T is a recursively axiomatizable theory with T ⊇ PA. Then T
satisfies D3, i.e., `T �Tϕ → �T�Tϕ.

Proof.
This follows from formalized Σ1-completeness since �Tϕ is Σ1 and
�T b�Tϕc = �T�Tϕ for which �Tϕ is a sentence. �



Incompleteness

Theorem 2.31 (Formalized Gödel’s Second Incompleteness, FGSIT)

Suppose T is a recursively axiomatizable theory with T ⊇ PA. If T is
consistent, then `T con(T )→ ¬�T con(T ).

Proof.

By fixed point lemma 1.48, for ¬�T (y), there is some σ such that

`T σ ↔ ¬�Tσ . (6.1)

We claim that
`T σ ↔ con(T ). (6.2)

By (6.2) and D0 we have
`T �Tσ ↔ �T con(T ). (6.3)

And then by (6.1), (6.2) and (6.3) we have

`T con(T )↔ ¬�T con(T ) (6.4)

as desired. �



Incompleteness

Corollary 2.32 (Gödel’s Second Incompleteness Theorem, GSIT)

Suppose T is a recursively axiomatizable theory with T ⊇ PA. If T is
consistent, then 0T con(T ).

Proof.
Suppose for sake of a contradiction that `T con(T ). Then by D1
we have `T �T con(T ), and then by (6.4) we have `T ¬con(T ), a
contradiction to the consistency of T . �



Incompleteness

There are three kinds of “completeness” for a theory T in this
material:

syntactical completeness: T is (sytactically) complete if for any
formula ϕ either T ` ϕ or T ` ¬ϕ;
meta-semantical completeness: T is meta-semantically complete
if T can prove any property related to T which is out of T ;
semantical completeness: T is complete if, for any ϕ we have
T ` ϕ if T |= ϕ.
Clearly Gödel’s completeness theorem tells us that T has seman-

tical completeness. So, there are two kinds of “incompleteness” cor-
responding to the first two kinds of “completeness”. And Gödel’s
first and second incompleteness theorems tells us that a theory satis-
fying some conditions owns neither of the first two “completeness”
as above.



Incompleteness

Let’s give a definition about the Goodstein sequences which is
not so rigid:

given natural numbers m ≥ 1 and n ≥ 2, we can define base n
representation of m and pure base n representation of m. We just
use one example to illustrate the concept: say m = 13 and n = 2,
13 = 23+ 22+ 1 (which is base 2 representation)= 22+1+ 22+ 1
(which is pure base 2 representation).
we define the Goodstein sequence 〈gn|n ∈ N〉 beginning from m
by recursion:

g0 = m;
Given gn, we get gn+1 as follows: write gn in pure n + 2 repre-
sentation, replacing each base n + 2 by n + 3, and then subtract
1.



Incompleteness

For example, the Goodstein sequence beginning from m = 13
runs as follows:

g0 = 13 = 22+1 + 22 + 1 2 � 3 33+1 + 33 + 1 = 109
g1 = 108 = 33+1 + 33 3 � 4 44+1 + 44 = 1280
g2 = 1279 = 44+1 + 3 · 43 + 3 · 42 + 3 · 4 + 3 4 � 5 55+1 + 3 · 53 + 3 · 52 + 3 · 5 + 3 = 16093
g3 = 16092 = 55+1 + 3 · 53 + 3 · 52 + 3 · 5 + 2 5 � 6 66+1 + 3 · 63 + 3 · 62 + 3 · 6 + 2 = 280712
g4 = 280711 = 66+1 + 3 · 63 + 3 · 62 + 3 · 6 + 1 6 � 7 77+1 + 3 · 73 + 3 · 72 + 3 · 7 + 1 = 5765999
g5 = 5765998 = 77+1 + 3 · 73 + 3 · 72 + 3 · 7 7 � 8 88+1 + 3 · 83 + 3 · 82 + 3 · 8 = 134219480
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.



Incompleteness

Theorem 2.33 (Goodstien)

Every Goodstein sequence ends in 0.

(Sketch).

Replacing each base by ω in each term of gn, we will get a descend-
ing sequence 〈αn|n ∈ N〉 of ordinals. By Regularity of Axiom, the
descending ordinal sequences must be end in 0, and so does the Good-
stein sequence. We still use an example to illustrate the proof idea:

g0 = 13 = 22+1 + 22 + 1 2 � ω ωω+1 + ωω + 1
g1 = 108 = 33+1 + 33 3 � ω ωω+1 + ωω

g2 = 1279 = 44+1 + 3 · 43 + 3 · 42 + 3 · 4 + 3 4 � ω ωω+1 + 3 · ω3 + 3 · ω2 + 3 · ω + 3
g3 = 16092 = 55+1 + 3 · 53 + 3 · 52 + 3 · 5 + 2 5 � ω ωω+1 + 3 · ω3 + 3 · ω2 + 3 · ω + 2
g4 = 280711 = 66+1 + 3 · 63 + 3 · 62 + 3 · 6 + 1 6 � ω ωω+1 + 3 · ω3 + 3 · ω2 + 3 · ω + 1
g5 = 5765998 = 77+1 + 3 · 73 + 3 · 72 + 3 · 7 7 � ω ωω+1 + 3 · ω3 + 3 · ω2 + 3 · ω
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By-products On the Fixed Point of ¬�T (y)

Theorem 2.34 (Löb)

Suppose T is a recursively axiomatizable theory with T ⊇ PA.
1 `T �T (�Tϕ → ϕ)→ �Tϕ;
2 If ` �Tϕ → ϕ, then `T ϕ.

Corollary 2.35

Suppose T is a recursively axiomatizable theory with T ⊇ PA. Then >
is the only fixed point of �T (y) up to the logical equivalence in T .



By-products On the Fixed Point of ¬�T (y)

We also call `T �T (�Tϕ → ϕ) → �Tϕ as D4 which could be
also regarded as a derivability condition;
It’s easy to see that in Theorem 2.34 D4 is the formalization of
(2) in T , and so we call “If ` �Tϕ → ϕ, then `T ϕ” as D4

�;
Since `T con(T ), i.e., `T �T⊥ → ⊥, implies `T ⊥ by D4

�, then
D4 ⇒ D4

� ⇒GSIT;
Since D4 implies FGSIT for ϕ = ⊥ by contraposition, then
D4 ⇒FGSIT⇒GSIT;
So Löb theorem is stronger than Gödel’s second incompleteness
theorem which is not obvious at first glance.



By-products Typical Theories T �

Corollary 2.36

Suppose T is a recursively axiomatizable and consistent theory with T ⊇
PA and T � = T +¬con(T ). Then T � is consistent and T � ` ¬con(T �)
and T � is ω-inconsistent.

PA� is inconsistent in PA� itself although PA� is consistent out
of PA�;
The consistent PA� can prove its inconsistency but never prove
its consistency;
PA� is a typical ω-inconsistent theory;
There is some consistent theory T such that T + con(T ) is in-
consistent (T = PA�).



By-products Meta-theoretic Properties of T

Many meta-theoretic properties of T could be formalized in T
using provability operator �T and sentence schemata as above:

¬con(T ) : �T⊥ provable inconsistency,
secomp : ϕ → �Tϕ semantical completeness,
sycomp : �Tϕ ∨�T¬ϕ syntactic completeness,
ω-comp : ∀x�T bϕ(x)c → �T∀xϕ(x) ω-completeness.

Theorem 2.37
Suppose T is a recursively axiomatizable theory with T ⊇ PA. Then the
following sentences are logically equivalent in T :

1 ¬con(T );
2 ϕ → �Tϕ;
3 �Tϕ ∨�T¬ϕ;
4 ∀x�T bϕ(x)c → �T∀xϕ(x).

All the properties above hold for theories T = T �.



Outline

1 Gödel’s First Incompleteness Theorem

2 Gödel’s Second Incompleteness Theorem

3 References
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