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§1 An Overview of Leibniz’s Philosophy

§1.1 Ontology

“It follows from the supreme perfection of God, that in creating the universe

He has chosen the best possible plan, in which there is

• the greatest variety together with the greatest order;

• the best arranged time and space;

• the maximum effect produced by the simplest means;

• the highest levels of power, knowledge, happiness and goodness in the creatures

that the universe could allow.

For since all the possibles in the understanding of God laid claim to existence in

proportion to their perfections, the actual world, as the resultant of all these claims,

must be the most perfect possible. And without this it would not be possible to give

a reason why things have turned out so rather than otherwise.”

— Leibniz

Leibniz based his philosophy upon two logical premises, the law of contradiction and

the law of sufficient reason. The former is sufficient to demonstrate all mathematical principles.

But in order to proceed from mathematics to natural philosophy, the latter is required. The

law of contradiction states that all analytic propositions are true. The law of sufficient reason

states that all true propositions are analytic. He also inferred from the Principle of Sufficient

Reason that there are not in nature two real, absolute beings, indiscernible from each other.

Because of the principle of sufficient reason, everything happens mechanically in

nature, that is, according to certain mathematical laws prescribed by God. “As God calculates,

so the world is made.”, “Unless physical things can be explained by mechanical laws, God

cannot, even if he chooses, reveal and explain nature to us.”

God will have perfect power, knowledge, and will; that is to say, God will have om-

nipotence, omniscience, and sovereign goodness.

God can bring a real world into existence merely by decreeing it. When creating the

worlds, the simplicity of means should be balanced against the richness of ends.
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God can do everything that is possible, but he will do only what is best. So God has created the

best possible, the most perfect world, in that the greatest possible diversity of phenomena are

governed by the smallest possible set of ideas. God simultaneously maximizes the richness and

diversity of the world and minimizes the complexity of the decrees/hypotheses/mathematical

laws, that determine this world.

All simple substances or Monads are incorporeal automata.

Corporeal mass, which is thought to have something over and above simple substances,

is not a substance but a phenomenon resulting from simple substances (Monads) which alone

have unity and absolute reality. Things which are uniform and contain no variety are never

anything but abstractions. Extension and motion, are not substances, but true phenomena.

“Time and space are not things, but orders of things.”

There is perfect was pre-established harmony from the outset between the system of

final causes and that of efficient causes, e.g., between the perceptions of the monad and the

movements of bodies.

The Monads with perceptions that are more distinct and accompanied by memory are to

be called ‘souls’. Our knowledge of necessary truths, and our grasp of the abstractions they

involve, raise us to the level of acts of awareness/consciousness/reflection, which make each

of us aware of the thing that is called I, and let us have thoughts about this or that thing in

us.

Each monad is a living substance. Every living substance is made up of smaller living

substances which in their turn are made up of still smaller ones, and so on down to infinity.

There are infinite levels of life among monads, some of which are more or less dominant over

others. God is the greatest Monad.

There is interconnection of monads between each other. Each monad has relational

properties that express all the others, so that each monad is a perpetual living mirror of the

universe.

“The Universe is only the collection of a certain kind of compossibles; and the actual Uni-

verse is the collection of all existent possibles, i.e. of those which form the richest compound.

And as there are different combinations of possibles, some better than others, there are many

possible Universes, each collection of compossibles making one of them.”

§1.2 Epistemology

Any finite set of points on a piece of graph paper always seems to follow a law, because

there are infinite lines passing through those very points. But there is a law only if the line is

simple.
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The same effect can have several causes. Hence no firm demonstration can be made from

the success of hypotheses. Yet the number of phenomena which are happily explained by a

given hypothesis may be so great that it must be taken as morally certain. These hypotheses

are to be presented, in the interim, in place of the true causes. It is also useful to apply

less perfect hypotheses as substitutes for truth until a better one occurs, that is, one which

explains the same phenomena more happily or more phenomena with equal felicity. There is

no danger in this if we carefully distinguish the certain from the probable.

Leibniz invented binary arithmetic, and since the world is mechanical, he conceived the

world mathematically as a peculiar “progression” of 0s and 1s. He believed that “One suffices

to derive all out of nothing.”

Leibniz believed that we can invent a universal calculus, to collect and reduce all human

knowledge to numbers, then formalize it so everything one could ever want to know could be

derived by essentially mathematical means. By forming all possible combinations of state-

ments, one could systematically generate all possible knowledge. When it comes to finding an

ultimate model expressed in the right language for the universe, we get to find a precise, exact,

representation of the universe, with no approximations. So that, in a sense, we successfully

reduce all of physics to mathematics. So that we would have, in a sense, achieved the great

goal—of turning every question about the world into a question about calculus.

“Our characteristic will reduce the whole to numbers, so that reasons can also be

weighed, as if by a kind of statics. For probabilities, too, will be treated in this

calculation and demonstration, since one can always estimate which of the given

circumstances will more probably occur.”

— Leibniz

§2 Digital Philosophy—Lovely and Trustworthy :-)

§2.1 Feng Ye’s Naturalism

Methodological naturalism is the inductive method of science. There is no higher

tribunal for truth than natural science itself. There is no better method than the scientific

method for judging the claims of science, and there is neither any need nor any place for a

“first philosophy”, such as (abstract) metaphysics or epistemology, that could stand behind

and justify science or the scientific method. Science is the best way to explore the processes

of the universe and that those processes are what modern science is striving to understand.
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In Popper’s view, the advance of scientific knowledge is an evolutionary process charac-

terised by

𝑃𝑆1 Ð→ 𝑇𝑇1 Ð→ 𝐸𝐸1 Ð→ 𝑃𝑆2 Ð→ ⋯

In response to a given problem situation (𝑃𝑆1), a number of competing conjectures, or tenta-

tive theories (𝑇𝑇 ), are systematically subjected to the most rigorous attempts at falsification

possible. This process, error elimination (𝐸𝐸), performs a similar function for science that

natural selection performs for biological evolution. Theories that better survive the process

of refutation are not more true, but rather, more “fit”—in other words, more applicable to

the problem situation at hand (𝑃𝑆1). Consequently, just as a species’ biological fitness does

not ensure continued survival, neither does rigorous testing protect a scientific theory from

refutation in the future. For Popper, it is in the interplay between the tentative theories (con-

jectures) and error elimination (refutation) that scientific knowledge advances toward greater

and greater problems; in a process very much akin to the interplay between genetic variation

and natural selection. Although single observational events may prove hypotheses wrong, no

finite sequence of events can verify them correct. Thus induction is theoretically unjustifiable

and becomes in practice the choice of the simplest generalization that resists falsification, on

the ground that the simpler a hypothesis is the easier it is to falsify it. But falsifiability is as

subjective as simplicity. And sometimes a complex theory with fixed parameters is as easy

to falsify as a simple theory. Maybe we should add that the tentative theories 𝑇𝑇𝑖 should

be well-ordered according to some aesthetic criterion, e.g., the simplicity criterion (Leibniz

would like) or generality/universality criterion, or to some utilitarian criterion if under some

utility request. In the absence of compelling experimental or observational results, deciding

which tentative theory/hypothesis/mathematics should be taken seriously is as much art as it

is science.

Ontological naturalism is a philosophical worldview and belief system that holds that

there is nothing but natural elements, principles, and relations of the kind studied by the

natural sciences, i.e., those required to understand our physical environment by mathematical

modeling. All are physical objects—there is nothing over and above the physical world—

including we humans ourselves, and there is no non-physical ‘subject’, and therefore there are

no abstract objects seen from the point of view of a ‘subject’ facing an ‘external world’. It is

‘objects with no subject’.

In the first chapter of [27], Feng Ye claimed that ‘naturalism’ is a modest, cautious and

down-to-earth attitude. We are not sure if there are immaterial minds that can somehow

‘grasp’ mathematical concepts by some sort of intuition, and we do not know how to start

studying such minds if we hypothesize them. However, we are quite sure that there are brains

and that the neural net-works in human brains can do pattern recognition, language parsing,
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memory association, concept formation, logical inference, and so on and so forth. Therefore,

why don’t we start from our mainstream scientific description of human cognitive activities and

investigate, from the logical and philosophical point of view, whether or not this is sufficient

to give an account of human mathematical practices?

Then Feng Ye tried to naturalized the applicability of mathematics—to answer the fol-

lowing question:

Puzzle 1 (Applicability Puzzle). Why is the applicability of classical mathematics

possible?

Feng Ye[27] convincingly justified ‘The Conjecture of Finitism’: Strict finitism is in prin-

ciple sufficient for formulating current scientific theories about natural phenomena above the

Planck scale and for conducting proofs and calculations in those theories. In other word,

mathematical theorems about infinite mathematical entities are not really among the logically

minimum premises implying our scientific conclusions about finite physical things, and our sci-

entific conclusions are literally true of finite physical things because they logically follow from

literally true premises about finite physical things. Applying mathematics in strict finitism is

essentially using a computational device (including a brain) to simulate other physical entities

and their properties.

The conventional approach holds that a theory of mathematical physics can be broken

down into (𝑖) a mathematical structure [𝑚], (𝑖𝑖) an empirical domain [𝑟] and (𝑖𝑖𝑖) a set of

correspondence rules [𝑏] which bridge parts of the mathematical structure with parts of the

empirical domain.

Let Γ𝑟 be the collection of realistic premises in a specific application instance; let Γ𝑚 be

the collection of mathematical premises, including the premises expressing scientific laws and

the mathematical axioms of classical mathematics; and let Γ𝑏 be the collection of bridging

postulations in that application. The application is then a purely logical inference

Γ𝑟 ∪ Γ𝑚 ∪ Γ𝑏 ⊢ 𝜑

from these premises to a realistic sentence 𝜑 as the realistic conclusion.

The Logical Problem of Applicability: In a scientifically valid application, assuming

that A𝑟 ⊧ Γ𝑟, why does Γ𝑟 ∪ Γ𝑚 ∪ Γ𝑏 ⊢ 𝜑 imply A𝑟 ⊧ 𝜑, for 𝜑 is scientifically meaningful?

Feng Ye solved this problem by demonstrating that we only need Γ′𝑟 ⊂ Γ𝑚 ∪ Γ𝑏 to get

Γ𝑟 ∪ Γ′𝑟 ⊢ 𝜑 rather than Γ𝑟 ∪ Γ𝑚 ∪ Γ𝑏 ⊢ 𝜑. So the logical explanation of applicability goes like

this:

A𝑟 ⊧ 𝜑 because A𝑟 ⊧ Γ𝑟 ∪ Γ′𝑟 and Γ𝑟 ∪ Γ′𝑟 ⊢ 𝜑
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§2.2 Digital Philosophy

If a formal system describes a mathematical structure whose existence is guaranteed by

some high-level theory, the latter is said to be a model of the former. But what is the real

physical model A𝑟?

Actually, models are not god-given perfect structures, but are our constructions within

our theory itself. No substantial part of the universe is so simple that it can be grasped and

controlled without abstraction. We know our world is very complex and hard to understand, in

order to make things easier to grasp, reality is generally broken down into bitesize chunks. We

abstract our models from these chunks under consideration with similar but simpler structures

with the help of our theories.

Normally we have to be content with making models that are approximations. Then we

have to argue about whether we’ve managed to capture all the features that are essential for

some particular purpose or not. Let the model approach asymptotically the complexity of the

original chunk. It will tend to become identical with that chunk. As a limit it will become

that chunk itself. The deepest description of the universe should not require concepts whose

meaning relies on human experience or interpretation. Reality transcends our existence and

so shouldn’t, in any fundamental way, depend on ideas of our making. Let’s imagine what the

ultimate model looks like. The ultimate model of the world must be the world itself. In other

word, should the ultimate model thoroughly realized its purpose, the world could be grasped

in its entirety and the model would be unnecessary (or the world would be unnecessary).

But we do not have a right semantic language at hand. There is usually a tradeoff between

tractability and comprehension on one hand, and accuracy on another. Any useful semantic

description of a phenomenon will lie on a Pareto front trading tractability with accuracy.

Leibniz wanted to invent a universal calculus, to collect and reduce all human knowledge

to numbers, then formalize it so everything one could ever want to know could be derived by

essentially mathematical means. When it comes to finding an ultimate model expressed in the

right language for the universe, we get to find a precise, exact, representation of the universe,

with no approximations. So that, in a sense, we could reduce all of physics to mathematics.

Wittgenstein was concerned with the conditions for a logically perfect language. In order

that a certain sentence should assert a certain fact there must, however the language may be

constructed, be something isomorphic between the structure of the sentence and the structure

of the fact. That which has to be in common between the sentence and the fact cannot be

itself in turn said in language. It can only be shown, not said, for whatever we may say will

still need to have the same structure. That is to say, there is a perfect 1-1 correspondence

between the world and the language. No redundancy should appear in the language.
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What if it is possible to give a thorough description of the physical reality involving no

presupposed parameters? If so, our description of the reality would have to be completely

abstract, forcing any words or other symbols used to denote them to be mere labels with

no preconceived meanings whatsoever, which leads us to Tegmark’s ‘Mathematical Universe

Hypothesis’(MUH): Our physical reality is a mathematical structure. Mathematics itself al-

ready is real; it doesn’t require instantiation. Some collections of mathematical equations

are different universes. But note that not all of the recursively axiomatizable formal systems

characterize universes. In mathematics we end up with recursively axiomatizable formal sys-

tems, and they are trying to sculpt things, to ensure that they’re really talking about the

thing that we originally imagined we were talking about, like integers. But what we know

from Compactness theorem and Lowenheim-Skolem theorem and so on, is that that kind of

sculpting can never really work. We can never really use this method to uniquely characterize

a structure up to isomorphism.

MUH explains the utility of mathematics for describing the physical world as a natural

consequence of the fact that the latter is a mathematical structure, and we are simply uncov-

ering this bit by bit. The various approximations that constitute our current physics theories

are successful because simple mathematical structures can provide good approximations of

certain aspects of more complex mathematical structures. In other words, our successful

theories are not mathematics approximating physics, but mathematics approximating math-

ematics. What we have to explain is not the applicability of mathematics, but the emergence

of physical phenomena.

If the MUH is correct, then (𝑖𝑖) and (𝑖𝑖𝑖) are redundant in the sense that they can, at

least in principle, be derived from (𝑖).
Assume A𝑟 is the ultimate model of our world, then the task of natural science is to obtain

a thorough understanding and control of A𝑟, i.e. to grasp Theory of Everything 𝑇ℎ(A𝑟). But,
is it possible? Is our world knowable? First of all, what is the meaning of ‘knowable’?

For mathematical structures, formal systems, and computations alike, there is a subset

with an attractive property (being defined, decidable and computable, respectively).

We assume that anything that can be called knowable/understandable/comprehensible

can be simulated by some mechanical device to arbitrary precision.

Knowability = Decidability/Computability

Maybe Hilbert would like the assumption.

“There is no ignorabimus in mathematics.”

“We must know; We will know.”

8 / 40 8 / 40
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— Hilbert

Gödel proved that 𝑇ℎ(N) is unknowable: 𝑇ℎ(N) is undecidable, i.e. 𝑇ℎ(N) is complete

but not r.e.; 𝑇ℎ(𝑃𝐴) is r.e. but not complete.

For a finite structure A in a finite language, 𝑇ℎ(A) is decidable.
If our universe is finite and discrete, then we can say it is comprehensible.

But why is our universe finite and discrete? Or we can ask ourselves ‘why our universe is

knowable?’, or:

Puzzle 2 (Knowability Puzzle). Why is natural science possible?

According to Leibniz, God has created the best possible world balancing the simplicity

of means against the richness of ends. That is why natural science is possible!

“God does not play dice.”

“God always takes the simplest way.”

“Subtle is the Lord, however he is not malicious.”

“The most incomprehensible thing about the world is that it is comprehensible.”

— Einstein

Since for any A, 𝑇ℎ(A) is complete, to make sure it is knowable, it only needs to be r.e.

Hypothesis 1 (Knowability Hypothesis).

For any universe A, 𝑇ℎ(A) is r.e.

According to the Knowability Hypothesis, the mathematical structure that is our universe

is computable and hence well-defined in the sense that all its properties and relations can be

computed/decided. There are thus no physical aspects of our universe that are incomputable

or undecidable.

Hence,ℳ𝑇 ∶= {A ∶ 𝑇ℎ(A) is r.e.} is the class of universes knowable to us.

For a complete axiomatizable theory (in a reasonable language) is decidable, 𝑇ℎ(A) can

be encoded to a computable real number 0.𝑥. Then why not generalizeℳ𝑇 a little bit?

ℳ𝐷 ∶= {𝑝 ∶ ∃𝑥 (𝑈(𝑝) = 𝑥)}

where 𝑈 is the universal monotone Turing machine.

ℳ𝐷 corresponds to Schmidhuber’s multiverse.

Loosely(very loosely),

ℳ𝑇 ⊂ℳ𝐷 ∈ℳ𝐷 ∖ℳ𝑇

9 / 40 9 / 40
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It’s easy to design a dovetailer program to generate all possible computable universes.

Within the universal dovetailer’s output is a description of a computer running another

dovetailer, and so on ad infinitum. It is entirely possible that we do exist as a description

within the output of a dovetailer, which itself may well be described in the output of another

dovetailer.

The entirety of a simulation, run from start to finish, is itself a collection of mathematical

relations. Thus, if one believes that all mathematics is real, so is this collection. In turn,

from this perspective there’s no need to actually run any computer simulations since the

mathematical relations each world produce are already real. The computability of a universe

should be evaluated by examining the computability of the mathematical relations that define

its entire history, whether or not these relations describe the unfolding of the simulation

through time.

The theory of universal Turing machines is a mathematical theory, and a universal dove-

tailer is a formal specification. But we can’t find ℳ𝐷 within ℳ𝑇 because of Gödel incom-

pleteness theorem: for any recursively axiomatized, consistent formal system that is strong

enough to represent primitive recursive functions, it is incomplete!

Now we can take our universe as a giant computer program, just like the virtual reality in

Matrix. Our minds can be perfectly simulated on some type of Turing machine, the appearance

of a physical material reality experienced by the mind follows, without the need of any concrete

computer.

The diagonal method shows that the logically consistent ‘universes’ are conceivable, but

cannot be realized in virtual reality.

Maybe physical models, mathematical structures, formal systems, and computations are

simply different aspects of one underlying transcendent structure (Multiverse) whose nature

we still do not fully understand.

Moreover, many people think that we were shaped by evolution to find patterns in the

environment; the better we could do that, the better we could predict how to find the next

meal. Mathematics, the language of pattern, emerged from our biological fitness. And with

that language, we’ve been able to systematize the search for new patterns, going well beyond

those relevant for mere survival. But mathematics, like any of the tools we developed and

utilized through the ages, is a human invention.

Then, why should we reduce the (concrete) physical reality to (abstract) computation, to

programs, to a sequence of 0s and 1s? Why is the incorporeal computation is more fundamental

than our tangible sense data? Why do we think ‘hardware’ is made of ‘software’? Because in

this way, we can solve Applicability Puzzle1 and Knowability Puzzle2 at a draught, and it is

a good hypothesis, for we have strong faith in Church-Turing Thesis.
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Thesis 1 (Church-Turing Thesis).

effective calculable = recursive = finite definable = Herbrand-Gödel computable =

representable in any consistent formal system extending ℛ1 = 𝜆-definable = Turing

Computable = flowchart (or ‘while’) computable = neural network with a tape computable =

Conway’s ‘game of life’ = Post/Markov/McCarthy/Kolmogorov and Uspensky . . .

The notion of recursiveness is very stable. The class of recursive functions is not sensitive

to changes in the formal systems considered to represent its functions: that is, the same

functions are representable in any consistent formal system having a least minimal power,

independently of the system strength. Even in vast classes of recursive transfinite progressions

of formal systems, only recursive functions are representable. Thus the notion is absolute in

a certainly astonishing way.

It is plausible that any possible behavior of a discrete physical system (including the

brain) (according to present day physical theory) is recursive.

David Deutsch: “Every finitely realizable physical system can be perfectly simulated by

a universal model computing machine operating by finite means.”

On one hand, we can take our universe as a giant program, and natural science as a theory

of computation. On the other hand, our computers are physical objects, and computations

are physical processes. What computers can or cannot compute is determined by the laws

of physics. However, many of the discrete physical systems, for example, our PCs and our

brains, can be taken as universal Turing machines if supplemented with infinite memory. So

there is some comprehensive self-similarity in our world: it is possible to build a virtual-

reality generator whose repertoire includes every physically possible environment. It’s much

easier to program a computer to generate all possible computable universes than it is to

program individual computers to generate them one by one. So a single, buildable object

1Lℛ = {0, 𝑆,+, ⋅,<}

A1. ¬(𝑥 = 𝑦) for 𝑥 ≠ 𝑦

A2. 𝑥 < 𝑛 ∨ 𝑥 = 𝑛 ∨ 𝑛 < 𝑥

A3. ¬(𝑥 < 0)

A4. 𝑥 < 𝑛 + 1↔ 𝑥 = 0 ∨ . . . ∨ 𝑥 = 𝑛

A5. 𝑥 + 𝑦 = 𝑥 + 𝑦

A6. 𝑥 ⋅ 𝑦 = 𝑥 ⋅ 𝑦

ℛ is not finitely axiomatizable, and any closed theorem ofℛ is true in some finite model. Robinson arithmetic

𝒬 is an extention of ℛ, and thus provides an example of a (minimal) finitely axiomatized theory in which

every computable function is representable.
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can mimic all the behaviors and responses of any other possible object or process. This is

what makes reality comprehensible. And this is also consistent with Plato’s idea—‘learning =

recollection’. Computations can generate the class of all theorems of recursively axiomatizable

formal systems. We can use mathematics to help us to understand our own universe.

§2.3 Leibniz’s Universe and How to Live in Leibniz’s Universe

“The Universe is only the collection of a certain kind of compossibles; and the ac-

tual Universe is the collection of all existent possibles, i.e. of those which form the

richest compound. And as there are different combinations of possibles, some bet-

ter than others, there are many possible Universes, each collection of compossibles

making one of them.”

— Leibniz

Every program from ℳ𝐷 determines an universe. But which one is the best possible

world? The one with the richest phenomena governed by the simplest hypotheses. To quantify

the simplicity, we can resort to Kolmogorov Complexity. But we do not know how to quantify

the richness. Since a monotone Turing machine may fail to halt, many of {𝑈(𝑝) ∶ 𝑝 ∈ℳ𝐷}
are infinite in length.

Leibniz’s universe consists of Monads. Each monad is a program. So the universe is a

pool of programs interacting with each other. One can compute the output of the others,

simulate the others, or itself.

Some combination of programs makes itself a well-defined program. Leibniz’s universe

must be a giant program consisting of lots of programs which can be integrated together, and

some of them can generate all of the programs, i.e. theℳ𝐷 itself. An ‘agent’ living in such a

universe can distinguished itself with the others. How can such an ‘agent’ discover the truth

of the universe?

Theory of Everything

How to obtain deep understanding of our universe? The agent has to grasp the Theory

of Everything (ToE) that includes the knowledge of herself.

One may define the best Theory of Everything (ToE) of an observer with experience ℎ as

∐︀𝑝∗, 𝑞∗̃︀(︀ℎ⌋︀ ∶= argmin
𝑝,𝑞

{⋃︀∐︀𝑝, 𝑞̃︀⋃︀ ∶ 𝑈(𝑝,𝑈(∐︀𝑝, 𝑞̃︀, 𝜖)) = ℎ∗}

Leibniz’s universe is deterministic. What if the universe can be stochastic?

ℳ𝑈 ∶= {𝜌∶𝒳 ∗ ∪𝒳∞ → (︀0,1⌋︀ ∶ 𝜌 is an enumerable semimeasure}
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A theory that predicts universe 𝜔 with probability 𝜇(𝜔) and experience ℎ in universe

𝜔 with probability 𝜋(ℎ⋃︀𝜔), induces a probability distribution 𝑃 (ℎ) ∶= ∑
𝜔
𝜋(ℎ⋃︀𝜔)𝜇(𝜔). The

observed noise can then be coded in − log2𝑃 (ℎ) bits.
A best computable probabilistic ToE with experience ℎ is the one (𝜋,𝜇) which minimizes

⋃︀𝑝𝜋 ⋃︀ + ⋃︀𝑝𝜇⋃︀ − log2𝑃 (ℎ)

where 𝑝𝜋 and 𝑝𝜇 are the programs that computes 𝜋 and 𝜇 respectively.

Anthropic Principle requires 𝜋(ℎ⋃︀𝜔) = 1, which leads to MDL if we ignore ⋃︀𝑝𝜋 ⋃︀.

⋃︀𝑝𝜇⋃︀ − log2 𝜇(ℎ)

Note that we are the inseparable part of the universe, and our experience ℎ is the result

of the interaction between the ‘ego’ and ‘environment’, so 𝜋 must be implicitly involved in 𝜇

in some way, just like the deterministic ToE ∐︀𝑝, 𝑞̃︀. Hence the best computable probabilistic

ToE with experience ℎ is

argmin
𝜋
𝜇

{⋃︀𝑝𝜋
𝜇
⋃︀ − log2

𝜋
𝜇(ℎ)} = argmax

𝜋
𝜇

{2−⋃︀𝑝𝜋𝜇 ⋃︀ ⋅ 𝜋𝜇(ℎ)} = argmax
𝜋
𝜇

{𝑃 )︀𝜋𝜇⋃︀ℎ⌈︀}

So far, we have defined a good guess of ToE according to the inductive method of science,

is there any better way to predict the future?

Probability in Leibniz’s Universe

“Our characteristic will reduce the whole to numbers, so that reasons can also be

weighed, as if by a kind of statics. For probabilities, too, will be treated in this

calculation and demonstration, since one can always estimate which of the given

circumstances will more probably occur.”

— Leibniz

Our beliefs and hence probabilities are a result of our personal history. To be able to

update beliefs consistently we must first decide on the set of all explanations that may be

possible. In order to find the true governing process behind our entire reality we consider

Leibniz’s all possible universes (ℳ𝐷) in a certain sense. The actual universe is just one of a

large number of possible universes. Each universe is in one of possible states; the probability

assigned to each state is then the proportion of the possible universes in which that state is

attained. Each new measurement eliminates some fraction of the universes in a given state,

depending on how likely or unlikely that state was to actually produce that measurement; the

surviving universes then have a new posterior probability distribution, which is related to the

prior distribution by Bayes’ formula.
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Definition 1 (Universal Probability).

𝑀(𝑥) ∶= ∑
𝑝∶𝑈(𝑝)=𝑥∗

2−⋃︀𝑝⋃︀

where 𝑈 is a universal monotone Turing machine.

It can be regarded as the limit of the relative frequency of the consistent possible worlds

over all possible worlds (complying with the frequentist interpretation):

𝑀(𝑥) =∑
𝑝

2−⋃︀𝑝⋃︀J𝑈(𝑝) = 𝑥∗K

= lim
𝑛→∞

∑
𝑝∶⋃︀𝑝⋃︀≤𝑛

2𝑛−⋃︀𝑝⋃︀J𝑈(𝑝) = 𝑥∗K

2𝑛

≈ lim
𝑛→∞

⋃︀{𝑝 ∈ 𝜒𝑛 ∶ 𝑈(𝑝) = 𝑥∗}⋃︀
2𝑛

It means that 𝑀(𝑥) is the frequentist probability that the output of a universal monotone

Turing machine 𝑈 starts with 𝑥 when provided with uniform random noise (fair coin flips) on

the input tape.

The benevolence of God is represented in the way he plays dice. God does not play dice

directly with us, but plays dice indirectly through some Universal Turing machine to offer us

the freedom to realize any possible regular world. And God’s dice is absolutely fair, which

means God never play tricks. God offers us the fullest freedom to chose the most perfect

world, that is to say, the one which is at the same time the simplest in hypothesis and the

richest in phenomena.

Inℳ𝑈 we can define the universal bayes mixture.

Definition 2 (Universal Bayes Mixture).

𝜉𝑈(𝑥) ∶= ∑
𝜈∈ℳ𝑈

𝑤𝑈
𝜈 𝜈(𝑥)

where 𝑤𝑈
𝜈 ∶= 2−𝐾(𝜈) is the universal prior.

It can be shown that 𝜉𝑈 ∈ℳ𝑈 .

If we let ℳ𝑈 be the class of all computable distributions, then 𝜉𝑈 would be not lower

semi-computable, since the class of all computable distributions is not recursively enumerable,

that is why we “slightly” extend the class to include also enumerable semimeasures.

Obviously, 𝑀(𝑥) can also be regarded as a 𝑤𝜈𝑝 ∶= 2−⋃︀𝑝⋃︀-weighted mixture over all com-

putable deterministic environments 𝜈𝑝 (𝜈𝑝(𝑥) = 1 if 𝑈(𝑝) = 𝑥∗ and 0 otherwise). We call 2−⋃︀𝑝⋃︀

the Solomonoff prior.
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Lemma 1. For every 𝜈 ∈ℳ𝑈 there exists some monotone Turing machine 𝑇 such that

𝜈(𝑥) = ∑
𝑝∶𝑇 (𝑝)=𝑥∗

2−⋃︀𝑝⋃︀ and 𝐾(𝜈) += ⋃︀∐︀𝑇 ̃︀⋃︀

where 𝑇 (𝑝) = 𝑈(∐︀𝑇 ̃︀𝑝).

Theorem 1 (Deterministic Representation of Bayesian Mixture).

𝑀(𝑥) ×= 𝜉𝑈(𝑥)

In the following we’ll show that: Intelligence of an ‘agent’ is an Perfect Bayesian Equi-

librium of the Incomplete Information game with observable actions played against imaginary

possible worlds (ℳ𝑈) only if our subjective belief system is the universal prior; or equivalently,

Intelligence can be seen as an Ex Post Equilibrium of the Incomplete Information game with

observable actions played against imaginary possible worlds (ℳ𝑈) only if we pretend that

the true environment is the universal mixture environment; or equivalently, Intelligence can

also be regarded as an Perfect Bayesian Equilibrium of the Incomplete Information game with

observable actions played against Leibniz’s possible worlds (ℳ𝐷) only if our subjective belief

system is the Solomonoff prior.

§3 From Leibniz to AIXI via Two Types of Games

§3.1 Agents in Known (Probabilistic) Environment

“The environment is everything that isn’t me.”

— Einstein
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Universe

Sensors

��

What the world
is like now

��

What it will be like
if I do action 𝑎

��

Agent Environment

𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛

dl

6>

𝑎𝑐𝑡𝑖𝑜𝑛

How happy I will be
in such a state

��

What action I
should do now

��

Effectors

Consider an agent that exists within some unknown environment. The agent interacts

with the environment in cycles. In each cycle, the agent executes an action and in turn receives

a perception. The only information available to the agent is its history of previous interactions.

The environment reacts to the agent’s action and leads to a new perception (input) to the

agent determined by a deterministic procedure or some probability distribution which depends

on the history. The problem is to construct an agent that, over time, collects as much utility

as possible from the (unknown) environment.

If input and output are represented by strings, a deterministic procedure can be modeled

by a Turing machine 𝑝. 𝑝 is called the policy of the agent, which determines the (re)action to

a perception. If the environment is also computable it might be modeled by a Turing machine

𝑞 as well. The interaction of the agent with the environment can be illustrated as follows:
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 . . .

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 . . .

work
𝐴𝑔𝑒𝑛𝑡

p
tape. . . work

𝐸𝑛𝑣𝑖𝑟𝑜𝑛-

𝑚𝑒𝑛𝑡 q
tape. . .

���
����� HH

H
HH

HHY

��
��

��
��

��1PPPPPPPPPPq

𝑝 as well as 𝑞 have unidirectional input and output tapes and bidirectional work tapes.

What entangles the agent with the environment, is the fact that the upper tape serves as

input tape for 𝑝, as well as output tape for 𝑞, and that the lower tape serves as output tape

for 𝑝 as well as input tape for 𝑞. Further, the reading head must always be left of the writing

head, i.e. the symbols must first be written, before they are read. The heads move in the

following way. In the 𝑘𝑡ℎ cycle 𝑝 writes 𝑎𝑘, 𝑞 reads 𝑎𝑘, 𝑞 writes 𝑥𝑘, 𝑝 reads 𝑥𝑘, followed by the

(𝑘 + 1)𝑡ℎ cycle and so on. This continues ad infinitum or for a finite number of cycles. The

whole process starts with the first cycle, all heads on tape start and work tapes being empty.

We want to call Turing machines behaving in this way chronological Turing machines.

Let us define for the chronological Turing machine 𝑝 a partial function also named 𝑝∶𝒳 ∗ →
𝒜∗ with 𝑎1∶𝑘 = 𝑝(𝑥<𝑘), where 𝑎1∶𝑘 is the output of Turing Machine 𝑝 on input 𝑥<𝑘 in cycle 𝑘,

i.e. where 𝑝 has read up to 𝑥𝑘−1 but no further. In an analogous way, we define 𝑞∶𝒜∗ → 𝒳 ∗

with 𝑥1∶𝑘 = 𝑞(𝑎1∶𝑘). Conversely, for every partial recursive chronological function we can define

a corresponding chronological Turing machine.

§3.1.1 From Bayesian Game Γ1 to AI𝜇

Life is the sum of all our choices. To live is to choose—to exercise the gift of free will; but

to choose well, we need to foresee the future; to foresee the future, we need to estimate all of

the possible futures; and to estimate the possible futures, we need to analyze the history.

An agent’s policy 𝑝 should be entirely described by:

• the finite set of possible actions 𝒜 and perceptions 𝒳 ;

• its utility function 𝑢∶N×ℋ → R, where ℋ ∶= (𝒜×𝒳 )∗ ∪ (𝒜×𝒳 )∗ ×𝒜, and ⋃︀ℎ⋃︀ denotes the
length of the history ℎ ∈ ℋ, and we denote ℋ𝑡 ∶= {ℎ ∈ ℋ ∶ ⋃︀ℎ⋃︀ = 𝑡} and ℋ∞ ∶= (𝒜 ×𝒳 )∞.

• its temporal discount function 𝑑∶N2 → R s.t. ∀𝑡∀𝑘 ≥ 𝑡 ∶ Γ𝑡𝑘 ∶=
∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖) <∞;
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• its prior knowledge 𝜇∶𝒬→ (︀0,1⌋︀ of the environments 𝒬.

If ℎ = 𝑎𝑥1∶𝑡, we write 𝑥(ℎ) = 𝑞(𝑎(ℎ)), where 𝑥(ℎ) = (𝑥1, . . . , 𝑥𝑡) and 𝑎(ℎ) = (𝑎1, . . . , 𝑎𝑡),
to denote the output of 𝑞 ∈ 𝒬 producing 𝑥𝑖 in response to the actions 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑡, which

means 𝑞 ↝ ℎ.

𝒬ℎ ∶= {𝑞 ∈ 𝒬 ∶ 𝑥(ℎ) = 𝑞(𝑎(ℎ))}

Similarly, if ℎ = 𝑎𝑥<𝑡𝑎𝑡, we write 𝑎(ℎ) = 𝑝(𝑥(ℎ)) to denote the output of 𝑝 ∈ 𝒫 producing

𝑎(ℎ) in response to the perceptions 𝑥(ℎ) for 1 ≤ 𝑖 ≤ 𝑡, which means 𝑝↝ ℎ.

𝒫ℎ ∶= {𝑝 ∈ 𝒫 ∶ 𝑎(ℎ) = 𝑝(𝑥(ℎ))}

Each (agent,environment) pair (𝑝, 𝑞) produces a unique I/O sequence 𝜔𝑝𝑞 = 𝑎𝑝𝑞1 𝑥𝑝𝑞
1 𝑎𝑝𝑞2 𝑥𝑝𝑞

2 . . .

in chronological order.

Assume the environment model is the other rational player with constant utility

𝑉 𝑞𝑝
𝑡 (ℎ) ∶=

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

1 if 𝑞 ∈ 𝒬ℎ

0 otherwise

Let

𝑉 𝑝𝑞
𝑡 (𝑎𝑥<𝑘) ∶=

∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥𝑝𝑞
1∶𝑖)

be the future total utility that the agent 𝑝 receives from the environment 𝑞 from the cycle 𝑘

at time 𝑡.

We see that the agent-environment configuration satisfies all criteria of a strategic form

game ∐︀{𝑎, 𝑒}, (𝒫,𝒬), 𝑣̃︀(or an extensive form game with perfect information ∐︀{𝑎, 𝑒}, 𝑃,ℋ, 𝑣̃︀).

Nash Equilibrium

Definition 3 (Nash Equilibrium). A (pure strategy) Nash equilibrium of a strategic form game

is a strategy profile (𝑝∗, 𝑞∗) such that

𝑝∗ ∈ 𝑅𝐵
𝑎 (𝑞∗)

𝑞∗ ∈ 𝑅𝐵
𝑒 (𝑝∗)

where

𝑅𝐵
𝑎 (𝑞) ∶= {𝑝 ∈ 𝒫ℎ ∶ ∀𝑝′ ∈ 𝒫ℎ [︀𝑉 𝑝𝑞

𝑡 (ℎ) ≥ 𝑉 𝑝′𝑞
𝑡 (ℎ)⌉︀}

𝑅𝐵
𝑒 (𝑝) ∶= {𝑞 ∈ 𝒬ℎ ∶ ∀𝑞′ ∈ 𝒬ℎ [︀𝑉 𝑞𝑝

𝑡 (ℎ) ≥ 𝑉 𝑞′𝑝
𝑡 (ℎ)⌉︀}
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Hence, a Nash equilibrium is a strategy profile (𝑝∗, 𝑞∗) such that no player 𝑎/𝑒 can profit

by unilaterally deviating from his strategy 𝑝∗/𝑞∗, assuming every other player 𝑒/𝑎 follows his

strategy 𝑞∗/𝑝∗.

Given a specific deterministic environment 𝑞, the best strategy of the agent at time 𝑡 with

possible future history ℎ is the one which maximizes 𝑉 𝑝𝑞
𝑡 (ℎ),

𝑝∗ ∈ argmax
𝑝∈𝒫ℎ

𝑉 𝑝𝑞
𝑡 (ℎ)

Since the environment’s utility is invariant, the Nash equilibriums are

{(𝑝, 𝑞) ∶ 𝑝 ∈ argmax
𝑝∈𝒫ℎ

𝑉 𝑝𝑞
𝑡 (ℎ)}

However, there are too many Nash equilibriums and the environment is unknown. And

there exists no dominant equilibrium (𝑝∗, 𝑞∗) such that

∀𝑝 ∈ 𝒫ℎ∀𝑞 ∈ 𝒬ℎ [︀𝑉 𝑝∗𝑞
𝑡 (ℎ) ≥ 𝑉 𝑝𝑞

𝑡 (ℎ)⌉︀

∀𝑝 ∈ 𝒫ℎ∀𝑞 ∈ 𝒬ℎ [︀𝑉 𝑞∗𝑝
𝑡 (ℎ) ≥ 𝑉 𝑞𝑝

𝑡 (ℎ)⌉︀

Harsanyi Transformation The problem is: how to live with uncertainty? how to live on

almost nothing but beliefs?

We should turn to Harsanyi transformation for help. Harsanyi introduces to the game

the notion of nature’s choice or God’s choice, according to which we can convert a game with

incomplete information into a game with complete yet imperfect information. He proposed

treating a player who has different payoffs under different circumstances as a player of different

types. The game is then modeled as though ’nature’ moves first and chooses that player’s type.

In this kind of game a player must form beliefs about the strategy that an opponent will play

and the player must also form some belief about the type of game she is playing.

Strategy for Known Prior Probability Let us now weaken our assumptions by replacing the

environment 𝑞 with a probability distribution 𝜇(𝑞) ∶ 𝒬→ (︀0,1⌋︀.
Assume here that the probability 𝜇(𝑞) is the agent’s subjective prior belief that 𝑞 is a

true model of the environment.

The two functions, 𝑢 and 𝑤, allow the agent at time 𝑡 to put a value 𝑉 𝑝𝑞
𝑡 (ℎ) =

∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, ℎ𝑝𝑞
1∶𝑖)

on each possible history ℎ based on what futures are possible given a particular action set.

From Bayesian Game Γ1 to AI𝜇
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“It will have perfect power, knowledge, and will; that is to say, it will have

omnipotence, omniscience, and sovereign goodness.”

— Leibniz

For the Bayesian extensive game with observable actions Γ1 = ∐︀𝑁,𝑃,ℋ, (Θ𝑖)𝑖∈𝑁 , (𝑝𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁̃︀,
where 𝑁 = {𝑎, 𝑒}, Θ𝑎 = 𝒫, Θ𝑒 = 𝒬, 𝑝𝑒(𝑞) = 𝜇(𝑞), the behavioural strategy 𝜌𝑖(𝜃𝑖)(ℎ)(𝑎) of Γ1

becomes

𝜌𝑎(𝑝)(ℎ)(𝑎) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

1 if 𝑝 ∈ 𝒫ℎ𝑎
0 otherwise

𝜌𝑒(𝑞)(ℎ)(𝑎) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

1 if 𝑞 ∈ 𝒬ℎ𝑎

0 otherwise

and the belief system 𝜇𝑖(ℎ)(𝜃𝑖) can be proved to be

𝜇𝑒(ℎ)(𝑞) =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝜇(𝑞)
∑

𝑞′∈𝒬ℎ

𝜇(𝑞′) if 𝑞 ∈ 𝒬ℎ

0 otherwise

At time 𝑡, the players’ payoff function

𝑢𝑎⋃︀ℎ(ℎ′, (𝑝, 𝑞)) ∶=
∞
∑
𝑖=⋃︀ℎ⋃︀

𝑑(𝑡, 𝑖)𝑢(𝑡, ℎℎ′1∶𝑖)

𝑢𝑒⋃︀ℎ(ℎ′, (𝑝, 𝑞)) ∶=
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

1 if 𝑞 ∈ 𝒬ℎℎ′

0 otherwise

At time 𝑡, with type 𝑝, the player 𝑎’s ex post expected utility with possible future history

ℎ is

𝑉 𝑝𝑞
𝑡 (ℎ) =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

∞
∑
𝑖=⋃︀ℎ⋃︀

𝑑(𝑡, 𝑖)𝑢(𝑡, ℎ𝑝𝑞
1∶𝑖) if 𝑝 ∈ 𝒫ℎ & 𝑞 ∈ 𝒬ℎ

0 otherwise

where ℎ𝑝𝑞 is the history uniquely determined by (𝑝, 𝑞).
At time 𝑡, with type 𝑝, the player 𝑎’s ex interim expected utility with possible future

history ℎ is

𝑉 𝑝𝜇
𝑡 (ℎ) = ∑

𝑞∈𝒬
𝑉 𝑝𝑞
𝑡 (ℎ)𝜇𝑒(ℎ)(𝑞)

= ∑
𝑞∈𝒬ℎ

⎨⎝⎝⎝⎝⎝⎪

𝜇(𝑞)
∑

𝑞′∈𝒬ℎ

𝜇(𝑞′)

⎬⎠⎠⎠⎠⎠⎮
𝑉 𝑝𝑞
𝑡 (ℎ) + ∑

𝑞∈𝒬∖𝒬ℎ

𝑉 𝑝𝑞
𝑡 (ℎ)𝜇𝑒(ℎ)(𝑞)
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= ∑
𝑞∈𝒬ℎ

⎨⎝⎝⎝⎝⎝⎪

𝜇(𝑞)
∑

𝑞′∈𝒬ℎ

𝜇(𝑞′)

⎬⎠⎠⎠⎠⎠⎮
𝑉 𝑝𝑞
𝑡 (ℎ)

Equilibrium are predictions of behaviour, to achieve the perfect bayesian equilibrium

(𝜌,𝜇), let

𝜌𝑎(𝑝)(ℎ)(𝑎′) =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

1 if 𝑝 ∈ argmax
𝑝∈𝒫ℎ

𝑉 𝑝𝜇
𝑡 (ℎ) & 𝑝(𝑥(ℎ)) = 𝑎(ℎ)𝑎′

0 otherwise

To make it clear, we define agent AI𝜇 in functional form as follows.

Definition 4 (Agent AI𝜇 in Functional Form).

Agent in functional form is defined as follows:

𝑉 𝑝𝑞
𝑡 (𝑎𝑥<𝑘) ∶=

∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥𝑝𝑞
1∶𝑖) (Ex Post)

𝑉 𝑝𝜇
𝑡 (𝑎𝑥<𝑘) ∶=

∑
𝑞∈𝒬𝑎𝑥<𝑘

𝜇(𝑞) ⋅ 𝑉 𝑝𝑞
𝑡 (𝑎𝑥<𝑘)

∑
𝑞∈𝒬𝑎𝑥<𝑘

𝜇(𝑞) (Ex Interim)

𝑝𝜇𝑡 ∶= arg max
𝑝∈𝒫𝑎𝑥<𝑡

𝑉 𝑝𝜇
𝑡 (𝑎𝑥<𝑡)

At time 𝑡, the maximal achievable expected utility with possible future history 𝑎𝑥<𝑘 in

environment 𝜇 is

𝑉 ∗𝜇
𝑡 (𝑎𝑥<𝑘) ∶= 𝑉

𝑝𝜇𝑡 𝜇
𝑡 (𝑎𝑥<𝑘)

𝑝𝜇𝑡 depends on 𝑡 and is used only in step 𝑡 to determine 𝑎𝑡 by 𝑝𝜇𝑡 (𝑥<𝑡⋃︀𝑎<𝑡) = 𝑎<𝑡𝑎𝑡.

We can define agent

𝑝𝜇(𝑥<𝑡) ∶= 𝑝𝜇𝑡 (𝑥<𝑡⋃︀𝑝𝜇𝑡−1(𝑥<𝑡−1⋃︀ . . . 𝑝
𝜇
1(𝜖) . . .)) (Perfect Bayesian)

or in one line

𝑎∗𝜇𝑘 ∶= argmax
𝑎𝑘

max
𝑝∶𝑝(𝑥<𝑘)=𝑎<𝑘𝑎𝑘

∑
𝑞∶𝑞(𝑎<𝑘)=𝑥<𝑘

]︀𝜇(𝑞) ⋅
∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥𝑝𝑞
1∶𝑖){︀

∑
𝑞∶𝑞(𝑎<𝑘)=𝑥<𝑘

𝜇(𝑞)
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§3.1.2 From Bayesian Game Γ2 to AI𝜇

𝜇 might be interpreted in two ways. Either the environment itself behaves stochastically

defined by 𝜇 or the true environment is deterministic, but we only have subjective (probabilis-

tic) information, of which environment being the true environment.

Now we assume that 𝜇 is known and describes the true (objective) stochastic behaviour

of the environment.

Definition 5 (Environment Model).

An environment model 𝜌 is a sequence of conditional probability functions {𝜌0, 𝜌1, 𝜌2, . . .},
where 𝜌𝑛∶𝒜𝑛 → Density (𝒳 n), that satisfies

∀𝑎1∶𝑛∀𝑥<𝑛 ∶ 𝜌𝑛−1(𝑥<𝑛⋃︀𝑎<𝑛) = ∑
𝑥𝑛∈𝒳

𝜌𝑛(𝑥1∶𝑛⋃︀𝑎1∶𝑛) (3.1)

In the base case, we have 𝜌0(𝜖⋃︀𝜖) = 1.

Equation(3.1), called the chronological condition, captures the natural constraint that

action 𝑎𝑛 has no effect on earlier perceptions 𝑥<𝑛. For convenience, we drop the index 𝑛 in 𝜌𝑛

from here onwards.

Similarly, we will in general call functions satisfying equation(3.2) chronological semimea-

sures, and chronological measures if “=” holds.

∀𝑎1∶𝑛∀𝑥<𝑛 ∶ ∑
𝑥𝑛∈𝒳

𝜌(𝑥1∶𝑛⋃︀𝑎1∶𝑛) ≤ 𝜌(𝑥<𝑛⋃︀𝑎<𝑛) and 𝜌(𝜖⋃︀𝜖) ≤ 1 (3.2)

Given an environment 𝜌, we define the predictive probability for ∀𝑎1∶𝑚∀𝑥1∶𝑚 ∶ 𝜌(𝑥<𝑛⋃︀𝑎<𝑛) >
0

𝜌(𝑥𝑛∶𝑚⋃︀𝑎𝑥<𝑛𝑎𝑛∶𝑚) ∶=
𝜌(𝑥1∶𝑚⋃︀𝑎1∶𝑚)
𝜌(𝑥<𝑛⋃︀𝑎<𝑛)

(3.3)

It follows that:

𝜌(𝑥1∶𝑛⋃︀𝑎1∶𝑛) = 𝜌(𝑥1⋃︀𝑎1)𝜌(𝑥2⋃︀𝑎𝑥1𝑎2)⋯𝜌(𝑥𝑛⋃︀𝑎𝑥<𝑛𝑎𝑛) (3.4)

The environment 𝜌 can equivalently be written as a function 𝜌∶ (𝒜 × 𝒳 )∗ → (︀0,1⌋︀ such

that ∀ℎ ∈ (𝒜 × 𝒳 )∗∀𝑎 ∈ 𝒜( ∑
𝑥∈𝒳

𝜌(𝑥⋃︀ℎ𝑎) = 1) where we write 𝜌(𝑥⋃︀ℎ𝑎) for the function value of

(ℎ, 𝑎, 𝑥).

Utility, Policy and Value Functions The agent’s goal is to accumulate as much utility as it

can during its lifetime. More precisely, the agent seeks a policy that will allow it to maximise

its expected future utility. The instantaneous utility values are assumed to be bounded.

The policy 𝜋∶ (𝒜 × 𝒳 )∗ × 𝒜 → (︀0,1⌋︀ and the environment 𝜇∶ (𝒜 × 𝒳 )∗ → (︀0,1⌋︀ define

the conditional probability of certain symbols given an interaction history: 𝜋 defines the
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conditional probability over the actions, and 𝜇 of the perceptions. However, taken together

they do define a measure over the interaction sequences that we will denote 𝜋
𝜇.

𝜋
𝜇(𝑎𝑥1∶𝑡) ∶= 𝜋(𝑎1)𝜇(𝑥1⋃︀𝑎1)𝜋(𝑎2⋃︀𝑎𝑥1)𝜇(𝑥2⋃︀𝑎𝑥1𝑎2)⋯𝜋(𝑎𝑡⋃︀𝑎𝑥<𝑡)𝜇(𝑥𝑡⋃︀𝑎𝑥<𝑡𝑎𝑡)

From Bayesian Game Γ2 to AI𝜇

For the Bayesian extensive game with observable actions Γ2 = ∐︀𝑁,𝑃,ℋ, (Θ𝑖)𝑖∈𝑁 , (𝑝𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁̃︀,
where 𝑁 = {𝑎, 𝑒}, Θ𝑎 = Θ𝑒 = ℳ = “the set of all chronological measures”, 𝑝𝑒(𝜇) = 𝑤𝜇

𝜖 . We

write 𝜇𝑒(ℎ)(𝜈) ∶= 𝑤𝜈
ℎ as shorthand.

The behavioural strategy 𝜌𝑖(𝜃𝑖) of Γ2 is 𝜋 and 𝜇.

The belief system can be proved to be

𝜇𝑒(ℎ𝑥′)(𝜇) = 𝑤𝜇
ℎ𝑥′

= 𝜇(𝑥′⋃︀ℎ)𝑤𝜇
ℎ

∑
𝜈∈ℳ

𝜈(𝑥′⋃︀ℎ)𝑤𝜈
ℎ

(𝑎)= 𝜇(𝑥(ℎ)𝑥′⋃︀𝑎(ℎ))𝑤𝜇
𝜖

∑
𝜈∈ℳ

𝜈(𝑥(ℎ)𝑥′⋃︀𝑎(ℎ))𝑤𝜈
𝜖

where
(𝑎)= follows from mathematical induction.

So, the belief system 𝜇𝑖(ℎ)(𝜃𝑖) is

𝜇𝑒(ℎ)(𝜇) =
𝜇(𝑥(ℎ)⋃︀𝑎(ℎ))𝑤𝜇

𝜖

∑
𝜈∈ℳ

𝜈(𝑥(ℎ)⋃︀𝑎(ℎ))𝑤𝜈
𝜖

At time 𝑡, the players’ payoff function

𝑢𝑎⋃︀ℎ(ℎ′, (𝜋,𝜇)) ∶=
∞
∑
𝑖=⋃︀ℎ⋃︀

𝑑(𝑡, 𝑖)𝑢(𝑡, ℎℎ′1∶𝑖)

𝑢𝑒⋃︀ℎ(ℎ′, (𝜋,𝜇)) ∶=
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

1 if 𝜋
𝜇(ℎℎ′) > 0

0 otherwise

At time 𝑡, with type 𝜋, the player 𝑎’s ex post expected utility with possible future history

ℎ is

𝑉 𝜋𝜇
𝑡 (ℎ) ∶= E𝜋

𝜇
⌊︀𝑢𝑎⋃︀ℎ(⋅, (𝜋,𝜇)) ⋁︀ ℎ}︀

In other words:

Definition 6 (Ex Post Expected Future Utility).

After history of interaction 𝑎𝑥<𝑡, the expected future utility of a future time step 𝑘 after some
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predicted interaction 𝑎𝑥𝑡∶𝑘−1 under policy 𝜋 with respect to an environment 𝜇 is:

𝑉 𝜋𝜇
𝑡 (𝑎𝑥<𝑘) ∶= E𝜋

𝜇
⌊︀
∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖) ⋁︀ 𝑎𝑥<𝑘}︀ (3.5)

Specially, for the deterministic policy 𝜋∶ (𝒜 ×𝒳 )∗ ×𝒜→ {0,1} or 𝜋∶ (𝒜 ×𝒳 )∗ → 𝒜

𝑉 𝜋𝜇
𝑡 (𝑎𝑥<𝑘) ∶= E𝜇 ⌊︀

∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖) ⋁︀ 𝑎𝑥<𝑘}︀ (3.6)

where 𝑎𝑖 ∶= 𝜋(𝑎𝑥<𝑖) for 𝑖 ≥ 𝑘.

The quantity 𝑉 𝜋𝜇
𝑡 (𝑎𝑥<𝑘𝑎𝑘) is defined similarly, except that 𝑎𝑘 is now no longer defined by 𝜋.

This is essentially a discrete time form of the Bellman equation commonly used in control

theory, finance, reinforcement learning and other fields concerned with optimising dynamic

systems.

𝑉 𝜋𝜇
𝑡 (𝑎𝑥<𝑘)

= E𝜋
𝜇
⌊︀
∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖) ⋁︀ 𝑎𝑥<𝑘}︀

= lim
𝑚→∞ ∑

𝑎𝑥𝑘∶𝑚
(

𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)) 𝜋
𝜇(𝑎𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘)

=∑
𝑎𝑥𝑘

{ lim
𝑚→∞ ∑

𝑎𝑥𝑘+1∶𝑚
(

𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)) 𝜋
𝜇(𝑎𝑥𝑘+1∶𝑚⋃︀𝑎𝑥1∶𝑘)(︀ 𝜋

𝜇(𝑎𝑥𝑘⋃︀𝑎𝑥<𝑘)

=∑
𝑎𝑥𝑘

{𝑑(𝑡, 𝑘)𝑢(𝑡, 𝑎𝑥1∶𝑘) + lim
𝑚→∞ ∑

𝑎𝑥𝑘+1∶𝑚
(

𝑚

∑
𝑖=𝑘+1

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)) 𝜋
𝜇(𝑎𝑥𝑘+1∶𝑚⋃︀𝑎𝑥1∶𝑘)(︀𝜋

𝜇(𝑎𝑥𝑘⋃︀𝑎𝑥<𝑘)

=∑
𝑎𝑥𝑘

(𝑑(𝑡, 𝑘)𝑢(𝑡, 𝑎𝑥1∶𝑘) + 𝑉 𝜋𝜇
𝑡 (𝑎𝑥1∶𝑘))𝜋𝜇(𝑎𝑥𝑘⋃︀𝑎𝑥<𝑘)

= ∑
𝑎𝑥𝑘∶𝑚

(
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖) + 𝑉 𝜋𝜇
𝑡 (𝑎𝑥1∶𝑚))𝜋𝜇(𝑎𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘)

After possible future history 𝑎𝑥<𝑘, the ex post optimal policy 𝜋𝜇
𝑡 at time 𝑡 for environment

𝜇 is the policy that maximises the ex post expected future utility.

𝜋𝜇
𝑡 ∶= argmax

𝜋
𝑉 𝜋𝜇
𝑡 (𝑎𝑥<𝑡)

It is easy to see, 𝜋𝜇
𝑡 (𝑎𝑘⋃︀𝑎𝑥<𝑘) = 1 for the ex post expected future utility maximising action,

and zero otherwise, if it exists.

At time 𝑡, the maximal achievable expected future utility with possible future history

𝑎𝑥<𝑘 in environment 𝜇 is

𝑉
𝜋𝜇
𝑡 𝜇

𝑡 (𝑎𝑥<𝑘)
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=∑
𝑎𝑘

∑
𝑥𝑘

(𝑑(𝑡, 𝑘)𝑢(𝑡, 𝑎𝑥1∶𝑘) + 𝑉
𝜋𝜇
𝑡 𝜇

𝑡 (𝑎𝑥1∶𝑘))𝜋𝜇
𝑡 (𝑎𝑘⋃︀𝑎𝑥<𝑘)𝜇(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘)

=max
𝑎𝑘
∑
𝑥𝑘

(𝑑(𝑡, 𝑘)𝑢(𝑡, 𝑎𝑥1∶𝑘) + 𝑉
𝜋𝜇
𝑡 𝜇

𝑡 (𝑎𝑥1∶𝑘))𝜇(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘) (recursive)

=max
𝑎𝑘
∑
𝑥𝑘

𝜇(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘){𝑑(𝑡, 𝑘)𝑢(𝑡, 𝑎𝑥1∶𝑘)

+max
𝑎𝑘+1
∑
𝑥𝑘+1

𝜇(𝑥𝑘+1⋃︀𝑎𝑥1∶𝑘𝑎𝑘+1)(𝑑(𝑡, 𝑘 + 1)𝑢(𝑡, 𝑎𝑥1∶𝑘+1) + 𝑉
𝜋𝜇
𝑡 𝜇

𝑡 (𝑎𝑥1∶𝑘+1))(︀

=max
𝑎𝑘
∑
𝑥𝑘

𝜇(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘){(max
𝑎𝑘+1
∑
𝑥𝑘+1

𝜇(𝑥𝑘+1⋃︀𝑎𝑥1∶𝑘𝑎𝑘+1)) ⋅ 𝑑(𝑡, 𝑘)𝑢(𝑡, 𝑎𝑥1∶𝑘)

+max
𝑎𝑘+1
∑
𝑥𝑘+1

𝜇(𝑥𝑘+1⋃︀𝑎𝑥1∶𝑘𝑎𝑘+1)(𝑑(𝑡, 𝑘 + 1)𝑢(𝑡, 𝑎𝑥1∶𝑘+1) + 𝑉
𝜋𝜇
𝑡 𝜇

𝑡 (𝑎𝑥1∶𝑘+1))(︀

=max
𝑎𝑘
∑
𝑥𝑘

𝜇(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘){max
𝑎𝑘+1
∑
𝑥𝑘+1

𝜇(𝑥𝑘+1⋃︀𝑎𝑥1∶𝑘𝑎𝑘+1)𝑑(𝑡, 𝑘)𝑢(𝑡, 𝑎𝑥1∶𝑘)

+max
𝑎𝑘+1
∑
𝑥𝑘+1

𝜇(𝑥𝑘+1⋃︀𝑎𝑥1∶𝑘𝑎𝑘+1)(𝑑(𝑡, 𝑘 + 1)𝑢(𝑡, 𝑎𝑥1∶𝑘+1) + 𝑉
𝜋𝜇
𝑡 𝜇

𝑡 (𝑎𝑥1∶𝑘+1))(︀

=max
𝑎𝑘
∑
𝑥𝑘

𝜇(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘)⋯max
𝑎𝑚
∑
𝑥𝑚

𝜇(𝑥𝑚⋃︀𝑎𝑥<𝑚𝑎𝑚)(
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖) + 𝑉
𝜋𝜇
𝑡 𝜇

𝑡 (𝑎𝑥1∶𝑚))

=max
𝑎𝑘
∑
𝑥𝑘

⋯max
𝑎𝑚
∑
𝑥𝑚

(
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖) + 𝑉
𝜋𝜇
𝑡 𝜇

𝑡 (𝑎𝑥1∶𝑚))𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚)

=max
𝑎𝑘
∑
𝑥𝑘

⋯max
𝑎𝑚
∑
𝑥𝑚

(
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖))𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚)

+max
𝑎𝑘
∑
𝑥𝑘

⋯max
𝑎𝑚
∑
𝑥𝑚

𝑉
𝜋𝜇
𝑡 𝜇

𝑡 (𝑎𝑥1∶𝑚)𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚)

= lim
𝑚→∞

max
𝑎𝑘
∑
𝑥𝑘

⋯max
𝑎𝑚
∑
𝑥𝑚

(
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖))𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚) (iterative)

The last “=” follows from

Γ𝑡𝑚 <∞Ô⇒ 𝑉
𝜋𝜇
𝑡 𝜇

𝑡 (𝑎𝑥1∶𝑚)
𝑚→∞ÐÐÐ→ 0

Ô⇒ lim
𝑚→∞

max
𝑎𝑘
∑
𝑥𝑘

⋯max
𝑎𝑚
∑
𝑥𝑚

𝑉
𝜋𝜇
𝑡 𝜇

𝑡 (𝑎𝑥1∶𝑚)𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚) = 0

𝑉
𝜋𝜇
𝑡 𝜇

𝑡 (𝑎𝑥<𝑘) is obtained by averaging over possible perceptions 𝑥𝑖 and by maximizing over

the possible actions 𝑎𝑖. This has to be done in chronological order 𝑎1𝑥1𝑎2𝑥2 . . . to correctly

incorporate the dependencies of 𝑥𝑖 and 𝑎𝑖 on the history. For convenience, we will often refer

to the Equation (iterative) as the ExpectiMax operation, which is similar to the well-known

minimax strategy in game theory.

It can be seen that, the only use of Γ𝑡𝑘 <∞ is to guarantee

lim
𝑚→∞

max
𝑎𝑘
∑
𝑥𝑘

⋯max
𝑎𝑚
∑
𝑥𝑚

𝑉
𝜋𝜇
𝑡 𝜇

𝑡 (𝑎𝑥1∶𝑚)𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚) = 0
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26 3 FROM LEIBNIZ TO AIXI VIA TWO TYPES OF GAMES 26

So we can drop the summable assumption of 𝑑(𝑡, 𝑘), and make another assumption instead.

Assumption 1 (Convergence Condition).

∀𝜋∀𝑡 ∶ lim
𝑚→∞∑

ℎ<𝑚
𝑉 𝜋𝜇
𝑡 (ℎ<𝑚)𝜋𝜇(ℎ<𝑚) = 0

In general, we have

𝑉 𝜋𝜇
𝑡 (𝑎𝑥<𝑘) ∶= lim

𝑚→∞ ∑
𝑎𝑥𝑘∶𝑚

⌊︀
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)}︀ 𝜋
𝜇(𝑎𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘)

= lim
𝑚→∞

𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖) ∑
𝑎𝑥𝑘∶𝑖

𝑢(𝑡, 𝑎𝑥1∶𝑖)𝜋𝜇(𝑎𝑥𝑘∶𝑖⋃︀𝑎𝑥<𝑘)

= lim
𝑚→∞

𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑅𝜋(𝑎𝑥<𝑘)𝑖

= [︀𝑑(𝑡, 𝑘) 𝑑(𝑡, 𝑘 + 1) . . . 𝑑(𝑡,∞)⌉︀ ⋅

⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪

𝑅𝜋(𝑎𝑥<𝑘)𝑘
𝑅𝜋(𝑎𝑥<𝑘)𝑘+1

⋮
𝑅𝜋(𝑎𝑥<𝑘)∞

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮

where

𝑅𝜋(𝑎𝑥<𝑘)𝑖 ∶= ∑
𝑎𝑥𝑘∶𝑖

𝑢(𝑡, 𝑎𝑥1∶𝑖)𝜋𝜇(𝑎𝑥𝑘∶𝑖⋃︀𝑎𝑥<𝑘)

Since

𝑉 𝜋𝜇
𝑡 (𝑎𝑥<𝑘𝑎𝑘) =∑

𝑥𝑘

(𝑑(𝑡, 𝑘)𝑢(𝑡, 𝑎𝑥1∶𝑘) + 𝑉 𝜋𝜇
𝑡 (𝑎𝑥1∶𝑘))𝜇(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘)

Obviously,

max
𝑎𝑘∈𝒜

𝜋∶𝜋(𝑎𝑘 ⋃︀𝑎𝑥<𝑘)=1

𝑉 𝜋𝜇
𝑡 (𝑎𝑥<𝑘𝑎𝑘) =max

𝜋
𝑉 𝜋𝜇
𝑡 (𝑎𝑥<𝑘)

At time 𝑡, the optimal action 𝑎∗𝜇𝑘 in the 𝑘𝑡ℎ (𝑘 ≥ 𝑡) cycle is related to the ExpectiMax operation

by

𝑎∗𝜇𝑘 ∶= argmax
𝑎𝑘

𝑉 𝜋𝜇
𝑡 (𝑎𝑥<𝑘𝑎𝑘)

= 𝑎
𝜋𝜇
𝑡

𝑘

= argmax
𝑎𝑘

lim
𝑚→∞∑

𝑥𝑘

max
𝑎𝑘+1
∑
𝑥𝑘+1

⋯max
𝑎𝑚
∑
𝑥𝑚

⌊︀
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)}︀𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚)

Remark: If 𝜇 is allowed to be a semimeasure, the term (recursive) may not be equivalent

to the term (iterative), since we only have ∑
𝑥𝑖

𝜇(𝑥𝑖⋃︀𝑎𝑥<𝑖𝑎𝑖) ≤ 1. To rescue the “=”, the semimea-

sure should be normalized to a measure. There are several ways to do this, for example

𝜇′(𝜖) ∶= 1
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27 3 FROM LEIBNIZ TO AIXI VIA TWO TYPES OF GAMES 27

𝜇′(𝑥⋃︀ℎ) ∶= 𝜇(𝑥⋃︀ℎ)
∑
𝑥∈𝒳

𝜇(𝑥⋃︀ℎ)

or

𝜇′(𝑥⋃︀ℎ) ∶=
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝜇(𝑥⋃︀ℎ) if 𝑥 ≠ 0

1 − ∑
𝑥≠0

𝜇(𝑥⋃︀ℎ) otherwise

The problem is: does 𝜋𝜇
𝑡 exist?

Existence of The Ex Post Equilibrium of Γ2

Theorem 2 (Existence of Ex Post Equilibrium of Γ2).

Under the assumption1, 𝜋𝜇
𝑡 exists.

To sum up, we have the definition of agent AI𝜇 in recursive/iterative form.

Definition 7 (Agent AI𝜇 in Recursive/Iterative Form).

𝑉 ∗𝜇
𝑡 (𝑎𝑥<𝑘) ∶=max

𝑎𝑘∈𝒜
𝑉 ∗𝜇
𝑡 (𝑎𝑥<𝑘𝑎𝑘)

𝑉 ∗𝜇
𝑡 (𝑎𝑥<𝑘𝑎𝑘) ∶= ∑

𝑥𝑘∈𝒳
𝜇(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘)(𝑑(𝑡, 𝑘)𝑢(𝑡, 𝑎𝑥1∶𝑘) + 𝑉 ∗𝜇

𝑡 (𝑎𝑥1∶𝑘))

𝑎∗𝜇𝑘 ∶= argmax
𝑎𝑘∈𝒜

𝑉 ∗𝜇
𝑡 (𝑎𝑥<𝑘𝑎𝑘)

s
�

�
�
�

�
�

𝑎𝑘 = 0

@
@
@
@
@
@

𝑎𝑘 = 1

𝑚𝑎𝑥
⧹︀

𝑉 ∗𝜇
𝑡 (𝑎𝑥<𝑘)=max

𝑎𝑘
𝑉 ∗𝜇
𝑡 (𝑎𝑥<𝑘𝑎𝑘)

r
�
�
�
�
�
�

𝑥𝑘=?
𝑢(𝑡,𝑎𝑥1∶𝑘)=?

A
A
A
A
A
A

E⟩︀

r
�
�
�
�
�
�

A
A
A
A
A
A

𝑥𝑘=?
𝑢(𝑡,𝑎𝑥1∶𝑘)=?

E⟩︀

𝑉 ∗𝜇
𝑡 (𝑎𝑥<𝑘𝑎𝑘)=∑

𝑥𝑘

𝜇(𝑥𝑘 ⋃︀𝑎𝑥<𝑘𝑎𝑘))︀𝑑(𝑡,𝑘)𝑢(𝑡,𝑎𝑥1∶𝑘)+𝑉 ∗𝜇
𝑡 (𝑎𝑥1∶𝑘)⌈︀

q
�
�
�

A
A
A

𝑚𝑎𝑥

⌣
𝑎𝑘+1

q
�
�
�

A
A
A

𝑚𝑎𝑥

⌣
𝑎𝑘+1

q
�
�
�

A
A
A

𝑚𝑎𝑥

⌣
𝑎𝑘+1

q
�
�
�

A
A
A

𝑚𝑎𝑥

⌣

𝑉 ∗𝜇
𝑡 (𝑎𝑥1∶𝑘) =max

𝑎𝑘+1

𝑉 ∗𝜇
𝑡 (𝑎𝑥1∶𝑘𝑎𝑘+1)

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

Figure 1: ExpectiMax

or1 in one line

1If we define

𝑉 𝜋𝜇
𝑡 (𝑎𝑥1∶𝑘) ∶= E𝜋

𝜇
⌊︀
∞

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖) ⋁︀ 𝑎𝑥1∶𝑘}︀
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𝑎∗𝜇𝑘 ∶= argmax
𝑎𝑘

lim
𝑚→∞∑

𝑥𝑘

max
𝑎𝑘+1
∑
𝑥𝑘+1

⋯max
𝑎𝑚
∑
𝑥𝑚

⌊︀
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)}︀𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚)

§3.1.3 Equivalence of the Functional and Recursive/Iterative AI𝜇

Theorem 3 (Equivalence Theorem).

The actions of the functional Agent(Definition4) coincide with the actions of the recursive/iterative

Agent(Definition7) with environments identified by

𝜇(𝑥(ℎ)⋃︀𝑎(ℎ)) = ∑
𝑞∈𝒬

𝜇(𝑞)J𝑥(ℎ) = 𝑞(𝑎(ℎ))K (subjective-objective)

Proof.

𝑎∗𝜇𝑘

= argmax
𝑎𝑘

max
𝑝∶𝑝(𝑥<𝑘)=𝑎<𝑘𝑎𝑘

∑
𝑞∶𝑞(𝑎<𝑘)=𝑥<𝑘

]︀𝜇(𝑞) ⋅
∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥𝑝𝑞
1∶𝑖){︀

∑
𝑞∶𝑞(𝑎<𝑘)=𝑥<𝑘

𝜇(𝑞)

= argmax
𝑎𝑘

lim
𝑚→∞

max
𝑝∶𝑝(𝑥<𝑘)=𝑎<𝑘𝑎𝑘

∑
𝑞∶𝑞(𝑎<𝑘)=𝑥<𝑘

]︀𝜇(𝑞) ⋅
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥𝑝𝑞
1∶𝑖){︀

∑
𝑞∶𝑞(𝑎<𝑘)=𝑥<𝑘

𝜇(𝑞)

= argmax
𝑎𝑘

lim
𝑚→∞

max
𝑝∶𝑝(𝑥<𝑘)=𝑎<𝑘𝑎𝑘

∑
𝑥𝑘∶𝑚

∑
𝑞∶𝑞(𝑎1∶𝑘𝑎𝑘+1(𝑥1∶𝑘)⋯𝑎𝑚(𝑥<𝑚))=𝑥1∶𝑚

]︀𝜇(𝑞) ⋅
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥𝑝𝑞
1∶𝑖){︀

∑
𝑞∶𝑞(𝑎<𝑘)=𝑥<𝑘

𝜇(𝑞)

= argmax
𝑎𝑘

lim
𝑚→∞

max
𝑝∶𝑝(𝑥<𝑘)=𝑎<𝑘𝑎𝑘

∑
𝑥𝑘∶𝑚

]︀
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥𝑝
1∶𝑖){︀ ∑

𝑞∶𝑞(𝑎1∶𝑘𝑎𝑘+1(𝑥1∶𝑘)⋯𝑎𝑚(𝑥<𝑚))=𝑥1∶𝑚
𝜇(𝑞)

∑
𝑞∶𝑞(𝑎<𝑘)=𝑥<𝑘

𝜇(𝑞)

= argmax
𝑎𝑘

lim
𝑚→∞

max
𝑝∶𝑝(𝑥<𝑘)=𝑎<𝑘𝑎𝑘

∑
𝑥𝑘∶𝑚

]︀
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥𝑝
1∶𝑖){︀𝜇(𝑥1∶𝑚⋃︀𝑎1∶𝑘𝑎𝑘+1(𝑥1∶𝑘)⋯𝑎𝑚(𝑥<𝑚))

𝜇(𝑥<𝑘⋃︀𝑎<𝑘)

then we can define AI𝜇 in this way:

𝑉 ∗𝜇
𝑡 (𝑎𝑥1∶𝑘) ∶= 𝑑(𝑡, 𝑘)𝑢(𝑡, 𝑎𝑥1∶𝑘) + max

𝑎𝑘+1∈𝒜

𝑉 ∗𝜇
𝑡 (𝑎𝑥1∶𝑘𝑎𝑘+1)

𝑉 ∗𝜇
𝑡 (𝑎𝑥1∶𝑘𝑎𝑘+1) ∶= ∑

𝑥𝑘+1∈𝒳

𝜇(𝑥𝑘+1⋃︀𝑎𝑥1∶𝑘𝑎𝑘+1)𝑉 ∗𝜇
𝑡 (𝑎𝑥1∶𝑘+1)

𝑎∗𝜇𝑘+1 ∶= arg max
𝑎𝑘+1∈𝒜

𝑉 ∗𝜇
𝑡 (𝑎𝑥1∶𝑘𝑎𝑘+1)
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= argmax
𝑎𝑘

lim
𝑚→∞

max
𝑝∶𝑝(𝑥<𝑘)=𝑎<𝑘𝑎𝑘

∑
𝑥𝑘∶𝑚

⌊︀
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥𝑝
1∶𝑖)}︀𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥1∶𝑘𝑎𝑘+1(𝑥1∶𝑘)⋯𝑎𝑚(𝑥<𝑚))

= argmax
𝑎𝑘

lim
𝑚→∞

max
𝑎𝑘+1(𝑥1∶𝑘)

∑
𝑥𝑘

max
𝑝∶𝑝(𝑥1∶𝑘)=𝑎1∶𝑘𝑎𝑘+1

∑
𝑥𝑘+1∶𝑚

⌊︀
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥𝑝
1∶𝑖)}︀𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥1∶𝑘𝑎𝑘+1(𝑥1∶𝑘)⋯𝑎𝑚(𝑥<𝑚))

= argmax
𝑎𝑘

lim
𝑚→∞∑

𝑥𝑘

max
𝑎𝑘+1

max
𝑝∶𝑝(𝑥1∶𝑘)=𝑎1∶𝑘𝑎𝑘+1

∑
𝑥𝑘+1∶𝑚

⌊︀
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥𝑝
1∶𝑖)}︀𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥1∶𝑘+1𝑎𝑘+2(𝑥1∶𝑘+1)⋯𝑎𝑚(𝑥<𝑚))

= argmax
𝑎𝑘

lim
𝑚→∞∑

𝑥𝑘

max
𝑎𝑘+1
∑
𝑥𝑘+1

⋯max
𝑎𝑚
∑
𝑥𝑚

⌊︀
𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)}︀𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚)

We write 𝑎𝑖(𝑥<𝑖) to denote that 𝑎𝑖(𝑥<𝑖) is a function of 𝑥<𝑖, since 𝑎𝑖 is uniquely determined by

𝑝(𝑥<𝑖) = 𝑎<𝑖𝑎𝑖.

Remark: Given the (subjective) belief system 𝜇 in Γ1 or the true (objective) type of the

environment 𝜇 in Γ2, and if equation subjective-objective holds, the behavioural strategy 𝜌𝑎

in the perfect bayesian equilibrium (𝜌,𝜇) of Γ1 and the behavioural strategy 𝜋 in the ex post

equilibrium of Γ2 coincide.

Harsanyi Transformation Again If the agent has the true subjective prior belief 𝜇 of the

deterministic environment 𝑞, the problem of maximizing expected utility is hence being for-

mally solved. However, the problem is: what if the true prior belief 𝜇 of the deterministic

environment 𝑞 in Game Γ1 or the true type of the environment 𝜇 in Game Γ2 is unknown?

Harsanyi transformation again! This time we resort to the prior belief 𝑤 of the stochastic

environment 𝜇 (or the second order prior belief—the prior belief of the prior belied of 𝑞). In

this way, Game Γ2 works well. But how to achieve the perfect bayesian equilibrium of Γ2?

Higher order prior belief is unnecessary, because they can be reduced to sort of second

order prior belief (with different initial prior belief 𝑤′
𝜖).

∑
𝜌𝑛

𝜌𝑛+1(𝜌𝑛) ∑
𝜌𝑛−1

𝜌𝑛(𝜌𝑛−1)⋯∑
𝜌0

𝜌1(𝜌0)𝜌0(⋅)

= ∑
𝜌𝑛−1
∑
𝜌𝑛

𝜌𝑛+1(𝜌𝑛)𝜌𝑛(𝜌𝑛−1)⋯∑
𝜌0

𝜌1(𝜌0)𝜌0(⋅)

= ∑
𝜌𝑛−1

𝜉𝑛(𝜌𝑛−1)⋯∑
𝜌0

𝜌1(𝜌0)𝜌0(⋅)

=∑
𝜌0

𝜉1(𝜌0)𝜌0(⋅)

= 𝜉0(⋅)
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§3.2 Agents in Unknown Environment

§3.2.1 From Bayesian Game Γ2 to AI𝜉

Inspired by the subjective-objective equation 𝜇(𝑥(ℎ)⋃︀𝑎(ℎ)) = ∑
𝑞∈𝒬

𝜇(𝑞)J𝑥(ℎ) = 𝑞(𝑎(ℎ))K,
we can define a counterpart of it in Game Γ2, which induces the subjective prior belief of the

stochastic behavior of environment—the mixture environment.

Definition 8 (Subjective Prior Belief/Mixture Environment).

Given a countable environment model class ℳ and a prior belief 𝑤𝜌
𝜖 > 0 for each 𝜌 ∈ℳ such

that ∑
𝜌∈ℳ

𝑤𝜌
𝜖 = 1, the subjective prior belief/mixture environment is

𝜉(𝑥1∶𝑛⋃︀𝑎1∶𝑛) ∶= ∑
𝜌∈ℳ

𝑤𝜌
𝜖𝜌(𝑥1∶𝑛⋃︀𝑎1∶𝑛)

Proposition 1. A subjective prior belief/mixture environment is an environment model.

From Subjective Belief to Mixture Environment Since we are assuming that the agent does

not initially exactly know the true environment, we desire subjective models whose predictive

performance improves as the agent gains experience.

The belief system 𝜇𝑒(ℎ)(𝜃) of Γ2 should be used to update belief:

𝑤𝜌
𝑎𝑥<𝑛 ∶=

𝑤𝜌
𝜖𝜌(𝑥<𝑛⋃︀𝑎<𝑛)

∑
𝜈∈ℳ

𝑤𝜈
𝜖 𝜈(𝑥<𝑛⋃︀𝑎<𝑛)

(3.7)

It be taken as the posterior belief 𝑤𝜌
𝑎𝑥<𝑛 for environment model 𝜌.

Given experience 𝑎𝑥<𝑛, the subjective belief of possible future history 𝑎𝑥1∶𝑚 is

∑
𝜌∈ℳ

𝑤𝜌
𝑎𝑥<𝑛𝜌(𝑥𝑛∶𝑚⋃︀𝑎𝑥<𝑛𝑎𝑛∶𝑚) =

∑
𝜌∈ℳ

𝑤𝜌
𝜖𝜌(𝑥1∶𝑚⋃︀𝑎1∶𝑚)

∑
𝜈∈ℳ

𝑤𝜈
𝜖 𝜈(𝑥<𝑛⋃︀𝑎<𝑛)

= 𝜉(𝑥1∶𝑚⋃︀𝑎1∶𝑚)
𝜉(𝑥<𝑛⋃︀𝑎<𝑛)

= 𝜉(𝑥𝑛∶𝑚⋃︀𝑎𝑥<𝑛𝑎𝑛∶𝑚) (3.8)

So, to predict with the convex combination of environment models—with each model

weighted by its posterior belief—is equivalent to predict with the mixture environment model

𝜉.

Ex Interim Expected Utility At time 𝑡, with type 𝜋, the player 𝑎’s ex interim expected

utility with possible future history ℎ is

ϒℎ(𝜋) = ∑
𝜇∈ℳ

E𝜋
𝜇
⌊︀𝑢𝑎⋃︀ℎ(⋅, (𝜋,𝜇)) ⋁︀ ℎ}︀𝜇𝑒(ℎ)(𝜇)

= ∑
𝜇∈ℳ

𝑤𝜇
ℎ𝑉

𝜋𝜇
𝑡 (ℎ)
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= ∑
𝜇∈ℳ

𝜇(𝑥(ℎ)⋃︀𝑎(ℎ))𝑤𝜇
𝜖

∑
𝜈∈ℳ

𝜈(𝑥(ℎ)⋃︀𝑎(ℎ))𝑤𝜈
𝜖

E𝜋
𝜇
⌊︀
∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, ℎℎ′1∶𝑖) ⋁︀ ℎ}︀

Theorem 4 (Ex Interim Expected Utility as Intelligence Measure).

ϒ𝑎𝑥<𝑘(𝜋) = 𝑉 𝜋𝜉
𝑡 (𝑎𝑥<𝑘)

Proof.

ϒ𝑎𝑥<𝑘(𝜋)

= ∑
𝜇∈ℳ

𝑤𝜇
𝑎𝑥<𝑘𝑉

𝜋𝜇
𝑡 (𝑎𝑥<𝑘)

= ∑
𝜇∈ℳ

𝑤𝜇
𝜖 𝜇(𝑥<𝑘⋃︀𝑎<𝑘)

∑
𝜈∈ℳ

𝑤𝜇
𝜖 𝜈(𝑥<𝑘⋃︀𝑎<𝑘)

E𝜋
𝜇
⌊︀
∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖) ⋁︀ 𝑎𝑥<𝑘}︀

= ∑
𝜇∈ℳ

𝑤𝜇
𝜖 𝜇(𝑥<𝑘⋃︀𝑎<𝑘)

∑
𝜈∈ℳ

𝑤𝜇
𝜖 𝜈(𝑥<𝑘⋃︀𝑎<𝑘)

lim
𝑚→∞ ∑

𝑎𝑥𝑘∶𝑚
(

𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)) 𝜋
𝜇(𝑎𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘)

= lim
𝑚→∞ ∑

𝑎𝑥𝑘∶𝑚
(

𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)) ⋅ ∑
𝜇∈ℳ

𝑤𝜇
𝜖 𝜇(𝑥<𝑘⋃︀𝑎<𝑘)

∑
𝜈∈ℳ

𝑤𝜇
𝜖 𝜈(𝑥<𝑘⋃︀𝑎<𝑘)

𝜋
𝜇(𝑎𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘)

= lim
𝑚→∞ ∑

𝑎𝑥𝑘∶𝑚
(

𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)) ⋅

∑
𝜇∈ℳ

𝑤𝜇
𝜖 𝜇(𝑥<𝑘⋃︀𝑎<𝑘)

∑
𝜈∈ℳ

𝑤𝜇
𝜖 𝜈(𝑥<𝑘⋃︀𝑎<𝑘)

𝜋(𝑎𝑘⋃︀𝑎𝑥<𝑘)𝜇(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘)⋯𝜋(𝑎𝑚⋃︀𝑎𝑥<𝑚)𝜇(𝑥𝑚⋃︀𝑎𝑥<𝑚𝑎𝑚)

= lim
𝑚→∞ ∑

𝑎𝑥𝑘∶𝑚
(

𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)) ⋅ ∑
𝜇∈ℳ

𝑤𝜇
𝜖 𝜇(𝑥<𝑘⋃︀𝑎<𝑘)

∑
𝜈∈ℳ

𝑤𝜇
𝜖 𝜈(𝑥<𝑘⋃︀𝑎<𝑘)

𝑚

∏
𝑖=𝑘

𝜋(𝑎𝑖⋃︀𝑎𝑥<𝑖)𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚)

= lim
𝑚→∞ ∑

𝑎𝑥𝑘∶𝑚
(

𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)) ⋅
𝑚

∏
𝑖=𝑘

𝜋(𝑎𝑖⋃︀𝑎𝑥<𝑖) ∑
𝜇∈ℳ

𝑤𝜇
𝜖 𝜇(𝑥1∶𝑚⋃︀𝑎1∶𝑚)
∑

𝜈∈ℳ
𝑤𝜇

𝜖 𝜈(𝑥<𝑘⋃︀𝑎<𝑘)

= lim
𝑚→∞ ∑

𝑎𝑥𝑘∶𝑚
(

𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)) ⋅
𝑚

∏
𝑖=𝑘

𝜋(𝑎𝑖⋃︀𝑎𝑥<𝑖)𝜉(𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚)

= lim
𝑚→∞ ∑

𝑎𝑥𝑘∶𝑚
(

𝑚

∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖)) ⋅ 𝜋𝜉 (𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚)

= E𝜋
𝜉
⌊︀
∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖) ⋁︀ 𝑎𝑥<𝑘}︀

= 𝑉 𝜋𝜉
𝑡 (𝑎𝑥<𝑘)

To achieve the perfect bayesian equilibrium ((𝜋,𝜇),𝑤), we have to chose

𝜋𝜉
𝑡 ∶= argmax

𝜋
ϒ𝑎𝑥<𝑡(𝜋) = argmax

𝜋
𝑉 𝜋𝜉
𝑡 (𝑎𝑥<𝑡)
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It is easy to see, 𝜋𝜉
𝑡 (𝑎𝑡⋃︀𝑎𝑥<𝑡) = 1 for the ex interim expected future utility maximising

action, and zero otherwise.

𝜋𝜉
𝑡 depends on 𝑡 and is used only in step 𝑡 to determine 𝑎𝑡 by 𝜋𝜉

𝑡 (𝑥<𝑡⋃︀𝑎<𝑡) = 𝑎<𝑡𝑎𝑡.

Similar to Definition4, we can define agent AI𝜉 in functional form as follows.

Definition 9 (Agent AI𝜉 in Functional Form).

𝑉 𝜋𝜇
𝑡 (𝑎𝑥<𝑘) ∶= E𝜋

𝜇
⌊︀
∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖) ⋁︀ 𝑎𝑥<𝑘}︀ (Ex Post)

𝑉 𝜋𝜉
𝑡 (𝑎𝑥<𝑘) ∶=

∑
𝜇∈ℳ

𝑤𝜇
𝜖 𝜇(𝑥<𝑘⋃︀𝑎<𝑘) ⋅ 𝑉 𝜋𝜇

𝑡 (𝑎𝑥<𝑘)

∑
𝜈∈ℳ

𝑤𝜈
𝜖 𝜈(𝑥<𝑘⋃︀𝑎<𝑘)

(Ex Interim)

𝜋𝜉
𝑡 ∶= argmax

𝜋
𝑉 𝜋𝜉
𝑡 (𝑎𝑥<𝑡)

𝜋𝜉(𝑥<𝑡) ∶= 𝜋𝜉
𝑡 (𝑥<𝑡⋃︀𝜋𝜉

𝑡−1(𝑥<𝑡−1⋃︀ . . . 𝜋
𝜉
1(𝜖) . . .)) (Perfect Bayesian)

or in one line

𝑎∗𝜉𝑘 ∶= arg max
𝑎𝑘∈𝑠𝑢𝑝𝑝(𝜋(⋅⋃︀𝑎𝑥<𝑘))

max
𝜋

∑
𝜇∈ℳ

𝑤𝜇
𝜖 𝜇(𝑥<𝑘⋃︀𝑎<𝑘)E𝜋

𝜇
⌊︀
∞
∑
𝑖=𝑘

𝑑(𝑡, 𝑖)𝑢(𝑡, 𝑎𝑥1∶𝑖) ⋁︀ 𝑎𝑥<𝑘}︀

∑
𝜈∈ℳ

𝑤𝜈
𝜖 𝜈(𝑥<𝑘⋃︀𝑎<𝑘)

Or in another way, just replace 𝜇 with 𝜉 in Definition7, we get agent AI𝜉 in recur-

sive/iterative form.

Game Γ1 Game Γ2

Ex Post Equilibrium Deterministic AI𝜇(recursive/iterative)

Ex Ante Equilibrium AI𝜇(functional) AI𝜉 (functional)

Table 1: Intelligence is an equilibrium, we just have to identify the game.

§3.2.2 Theoretical Properties

Theorem 5.

max
𝜋

ϒℎ(𝜋) = ϒℎ(𝜋𝜉
𝑡 )
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We now show that if there is a good model of the (unknown) environment inℳ, an agent

using the mixture environment model 𝜉(𝑥1∶𝑛⋃︀𝑎1∶𝑛) will predict well.

Definition 10 (Pareto-Optimality).

For any 𝑡 and ℎ, a policy �̃� is called Pareto-optimal if

∄𝜋 ∶ ∀ℎ∀𝜌 ∈ℳ )︀(𝑉 𝜋𝜌
𝑡 (ℎ) ≥ 𝑉 �̃�𝜌

𝑡 (ℎ)) & ∃𝜇 ∈ℳ (𝑉 𝜋𝜇
𝑡 (ℎ) > 𝑉 �̃�𝜇

𝑡 (ℎ))⌈︀

Theorem 6 (Pareto-Optimality).

𝜋𝜉
𝑡 is Pareto-optimal.

Theorem 7 (Convergence Theorem).

Let 𝜇 be the true environment. The 𝜇-expected squared difference of 𝜇 and 𝜉 is bounded as

follows. For all 𝑛 ∈ N, for all 𝑎1∶𝑛,

𝑛

∑
𝑘=1
∑
𝑥1∶𝑘

𝜇(𝑥<𝑘⋃︀𝑎<𝑘)(𝜇(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘) − 𝜉(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘))
2

≤min
𝜌∈ℳ

{− ln𝑤𝜌
𝜖 +𝐷1∶𝑛(𝜇∏︁𝜌)(︀

where

𝐷1∶𝑛(𝜇∏︁𝜌) ∶= ∑
𝑥1∶𝑛

𝜇(𝑥1∶𝑛⋃︀𝑎1∶𝑛) ln
𝜇(𝑥1∶𝑛⋃︀𝑎1∶𝑛)
𝜌(𝑥1∶𝑛⋃︀𝑎1∶𝑛)

In Theorem7, take the supremum over 𝑛 in the r.h.s and then the limit 𝑛 → ∞ on the

l.h.s. If sup𝑛𝐷1∶𝑛(𝜇∏︁𝜌) < ∞ for the minimising 𝜌, the infinite sum on the l.h.s can only be

finite if 𝜉(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘) converges sufficiently fast to 𝜇(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘) for 𝑘 →∞ with probability 1,

hence 𝜉 predicts 𝜇 with rapid convergence.

Theorem 8 (Convergence of Universal to True Value).

If the history 𝑎𝑥<𝑘 is generated by policy 𝜋 (and environment 𝜇), then

E𝜋
𝜇
⌊︀(𝑉 𝜋𝜉

𝑡 (𝑎𝑥<𝑘) − 𝑉 𝜋𝜇
𝑡 (𝑎𝑥<𝑘))

2 ⋁︀ 𝑎𝑥<𝑘}︀ ≤ 2(max
ℎ

𝑢(𝑡, ℎ))
2

(Γ𝑡𝑘)2 (𝐷1∶∞ −𝐷<𝑘)

Definition 11 (Time-Consistency).

∀𝜇∀ℎ∀𝑗, 𝑘 ≤ ⋃︀ℎ⋃︀ ∶ 𝜋∗𝜇𝑗 (ℎ) = 𝜋∗𝜇𝑘 (ℎ)

For example, if

∀𝑡, 𝑘 ∶ 𝑑(𝑡, 𝑘)𝑢(𝑡, ℎ1∶𝑘) = 𝑑(𝑘, 𝑘)𝑢(𝑘, ℎ1∶𝑘)

let

𝑢(ℎ1∶𝑘) ∶= 𝑑(𝑘, 𝑘)𝑢(𝑘, ℎ1∶𝑘)

then

𝑉 ∗𝜇(𝑎𝑥<𝑘) = lim
𝑚→∞

max
𝑎𝑘
∑
𝑥𝑘

⋯max
𝑎𝑚
∑
𝑥𝑚

⌊︀
𝑚

∑
𝑖=𝑘

𝑢(𝑎𝑥1∶𝑖)}︀𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚)
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and

𝑎∗𝜇𝑘 = argmax
𝑎𝑘

lim
𝑚→∞∑

𝑥𝑘

⋯max
𝑎𝑚
∑
𝑥𝑚

⌊︀
𝑚

∑
𝑖=𝑘

𝑢(𝑎𝑥1∶𝑖)}︀𝜇(𝑥𝑘∶𝑚⋃︀𝑎𝑥<𝑘𝑎𝑘∶𝑚)

This is a special case of Time-Consistency11.

𝜋𝜉 = 𝜋𝜉
𝑡 under the assumption of Time-Consistency.

§3.3 AIXI

Reinforcement-Learning Agent For a reinforcement-learning agent 𝜋𝑟𝑓 , 𝑥𝑡 = ∐︀𝑜𝑡, 𝑟𝑡̃︀ ∈ 𝒳 =
𝒪 ×ℛ and 𝑢(ℎ) ∶= 𝑢(𝑡, ℎ) = 𝑟⋃︀ℎ⋃︀ for all 𝑡.

𝑑(𝑡, 𝑘) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

1 if 𝑘 − 𝑡 <𝑚𝑡

0 otherwise

where 𝑚𝑡 is some variable horizon.

Goal-Seeking Agent For a goal-seeking agent 𝜋𝑔, 𝑢(ℎ) = 1 if the goal is reached at time ⋃︀ℎ⋃︀
and is 0 otherwise. The goal can be reached at most once

∞
∑
𝑡=0

𝑢(ℎ𝑡) ≤ 1. Exponential/Geometric

Discounting: 𝑑(𝑡, 𝑘) = 𝛾𝑘−𝑡 for 0 < 𝛾 < 1, or Hyperbolic/Harmonic Discounting: 𝑑(𝑡, 𝑘) =
1

(1+𝛼(𝑘−𝑡))𝛽 for 𝛼 > 0, 𝛽 > 1.

Prediction-Seeking Agent For a prediction-seeking agent 𝜋𝑝, 𝑢(ℎ) = 1 if 𝑥⋃︀ℎ⋃︀+1 = argmax
𝑥∈𝒳

𝜇(𝑥⋃︀ℎ𝑎)
and 0 otherwise. 𝑑(𝑡, 𝑘) = 1 if 𝑘 ≤𝑚𝑡 and 0 otherwise.

Knowledge-Seeking Agent For a knowledge-seeking agent 𝜋𝑘, we chose

𝑢(𝑡, 𝑎𝑥1∶𝑘) = −𝜇(𝑥𝑡∶𝑘⋃︀𝑎𝑥<𝑡𝑎𝑡∶𝑘)

or

𝑢(𝑡, 𝑎𝑥1∶𝑘) = − log2 𝜇(𝑥𝑡∶𝑘⋃︀𝑎𝑥<𝑡𝑎𝑡∶𝑘)

or

𝑢(𝑡, 𝑎𝑥1∶𝑘) = − log2 𝜉(𝑥𝑡∶𝑘⋃︀𝑎𝑥<𝑡𝑎𝑡∶𝑘)

or

𝑢(𝑡, 𝑎𝑥1∶𝑘) = ∑
𝜈∈ℳ

𝑤𝜈
𝑎𝑥1∶𝑘 log2

𝑤𝜈
𝑎𝑥1∶𝑘

𝑤𝜈
𝑎𝑥<𝑡
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= ∑
𝜈∈ℳ

𝑤𝜈
𝜖

𝜉(𝑎𝑥1∶𝑘)
⋅ (−𝜈(𝑥1∶𝑘⋃︀𝑎1∶𝑘) log

𝜈(𝑥𝑡∶𝑘⋃︀𝑎𝑥<𝑡𝑎𝑡∶𝑘)
𝜉(𝑥𝑡∶𝑘⋃︀𝑎𝑥<𝑡𝑎𝑡∶𝑘)

)

𝑑(𝑡, 𝑘) = 1 if 𝑘 =𝑚𝑡 and 0 otherwise.

Self-Modifying Agent The self-modifying agent 𝜋𝑠𝑚 has two parts: its formal description (its

code) 𝑐𝑡 ∈ 𝒞 and the code executor ℰ (an Oracle). The set 𝒞 contains all programs whose length

(in the language of ℰ) is less than a small, arbitrary value. The code executor takes a history

ℎ and a program 𝑐𝑡−1, and executes the latter to produce an output 𝑎𝑡 = ∐︀𝑎′𝑡, 𝑐𝑡̃︀ ∶= ℰ(𝑐𝑡−1, ℎ)
(with 𝑎𝑡 ∈ 𝒜 = 𝒜′ × 𝒞) composed of the next action 𝑎′𝑡 and new description 𝑐𝑡. Assume the

environment has read-access to the agent’s code. The initial agent program is:

𝑐0(ℎ) = “ argmax
𝑎∈𝒜

𝑉 ∗𝜇
⋃︀ℎ⋃︀+1(ℎ, 𝑎);

𝑉 ∗𝜇
𝑡 (ℎ, 𝑎 = ∐︀𝑎′, 𝑐̃︀) = ∑

𝑥∈𝒳
𝜇(𝑥⋃︀ℎ𝑎)(𝑑(𝑡, ⋃︀ℎ′⋃︀)𝑢(𝑡, ℎ′) + 𝑉 ∗𝜇

𝑡 (ℎ′, 𝑐(ℎ′))),

ℎ′ = ℎ𝑎𝑥 ”

Self-Modifying Agent with Delusion Box Suppose the self-modifying agent 𝜋𝑠𝑚𝑑𝑏 has a

delusion box 𝑑𝑡 to modify its inputs 𝑥′𝑡 (output by the inner environment according to 𝑎′𝑡) to

𝑥′′𝑡 before they touch its sensors, and the agent’s code is fully modifiable, both by the agent

itself through 𝑐′𝑡 and by the environment, which changes 𝑐′𝑡 and returns the new agent’s code

𝑐𝑡.

𝑐0(ℎ) = “ argmax
𝑎∈𝒜

𝑉 ∗𝜇
⋃︀ℎ⋃︀+1(ℎ, 𝑎);

𝑉 ∗𝜇
𝑡 (ℎ, 𝑎 = ∐︀𝑑, 𝑎′, 𝑐′̃︀) = ∑

𝑥=∐︀𝑥′′,𝑐̃︀∈𝒳
𝜇(𝑥⋃︀ℎ𝑎)(𝑑(𝑡, ⋃︀ℎ′⋃︀)𝑢(𝑡, ℎ′) + 𝑉 ∗𝜇

𝑡 (ℎ′, 𝑐(ℎ′))),

ℎ′ = ℎ𝑎𝑥 ”

AIXI: The Universal Bayesian Agent Theorem7 motivates the construction of Bayesian

agents that use rich model classes. The AIXI agent is the limiting case of this viewpoint, by

using the largest model class expressible on a Turing machine.
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The action picked by AIXI at time 𝑡, having executed actions 𝑎1𝑎2 . . . 𝑎𝑡−1 and having

received the sequence of observation-reward pairs 𝑜𝑟1𝑜𝑟2 . . . 𝑜𝑟𝑡−1 from the environment, is

given by:

𝑎∗𝜉𝑈𝑡 = 𝑎
𝜋
𝜉𝑈
𝑡

𝑡

= argmax
𝑎𝑡

𝑉
𝜋
𝜉𝑈
𝑡 𝜉𝑈

𝑡 (𝑎𝑜𝑟<𝑡𝑎𝑡)

= argmax
𝑎𝑡
∑
𝑜𝑟𝑡

. . .max
𝑎𝑚𝑡

∑
𝑜𝑟𝑚𝑡

⌊︀
𝑚𝑡

∑
𝑖=𝑡

𝑟𝑖}︀ 𝜉𝑈(𝑜𝑟𝑡∶𝑚𝑡 ⋃︀𝑎𝑜𝑟<𝑡𝑎𝑡∶𝑚𝑡)

where

𝜉𝑈(𝑜𝑟1∶𝑛⋃︀𝑎1∶𝑛) ∶= ∑
𝜈∈ℳ𝐶

2−𝐾(𝜈)𝜈(𝑜𝑟1∶𝑛⋃︀𝑎1∶𝑛)

is an enumerable chronological semimeasure, and 𝜈(𝑜𝑟1∶𝑛⋃︀𝑎1∶𝑛) is the probability of observ-

ing 𝑜𝑟1𝑜𝑟2 . . . 𝑜𝑟𝑛 given actions 𝑎1𝑎2 . . . 𝑎𝑛, class ℳ𝐶 consists of all enumerable chronological

semimeasures, which includes all computable 𝜈.

Theorem7 shows for all 𝑛 ∈ N and for all 𝑎1∶𝑛

𝑛

∑
𝑘=1
∑
𝑥1∶𝑘

𝜇(𝑥<𝑘⋃︀𝑎<𝑘)(𝜇(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘) − 𝜉𝑈(𝑥𝑘⋃︀𝑎𝑥<𝑘𝑎𝑘))
2
+≤𝐾(𝜇) ln 2 (3.9)

AIXI: The Reinforcement-Learning Agent AIXI can be seen (Theorem1) as a special case

of reinforcement-learning agent: 𝜇(𝑞) = 2−⋃︀𝑞⋃︀

𝜇(𝑥(ℎ)⋃︀𝑎(ℎ)) = ∑
𝑞∶𝑞(𝑎(ℎ))=𝑥(ℎ)

2−⋃︀𝑞⋃︀ =∶𝑀(𝑥(ℎ)⋃︀𝑎(ℎ)) ×= 𝜉𝑈(𝑥(ℎ)⋃︀𝑎(ℎ))

AIXI in iterative form:

𝑎∗𝑀𝑡 = argmax
𝑎𝑡
∑
𝑜𝑟𝑡

. . .max
𝑎𝑚𝑡

∑
𝑜𝑟𝑚𝑡

⌊︀
𝑚𝑡

∑
𝑖=𝑡

𝑟𝑖}︀𝑀(𝑜𝑟𝑡∶𝑚𝑡 ⋃︀𝑎𝑜𝑟<𝑡𝑎𝑡∶𝑚𝑡) (3.10)

The equivalence(Theorem3) of agent in the functional and iterative form is true for every

chronological semimeasure 𝜇, in particular for 𝑀 .
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AIXI in functional form:

𝑎∗𝑀𝑡 = argmax
𝑎𝑡

max
𝑝∶𝑝(𝑜𝑟<𝑡)=𝑎<𝑡𝑎𝑡

∑
𝑞∶𝑞(𝑎<𝑡)=𝑜𝑟<𝑡

]︀2−⋃︀𝑞⋃︀ ⋅
𝑚𝑡

∑
𝑖=𝑡

𝑟𝑖{︀

∑
𝑞∶𝑞(𝑎<𝑡)=𝑜𝑟<𝑡

2−⋃︀𝑞⋃︀
(3.11)

Essentially AIXI is a generalisation of Solomonoff induction to the reinforcement learning

setting, that is, where the agent’s actions can influence the state of the environment. Con-

versely, Solomonoff induction can be seen as a special case of AIXI, when the actions taken

by the agent have no effect on the environment: 𝒜 = ∅. And when 𝒜 = ∅, the convergence

theorem7 is reducible to Solomonoff’s completeness theorem.

§3.4 Leibniz vs. UAI

• Ontology—God does not play dice directly with us, but plays dice indirectly through

some Universal Turing machine to offer us the freedom to realize any possible regular

world. Our world is a collection of programs (Monads) interacting with each other, by

computing/simulating each other or themselves.

• God’s Perfection(sovereign goodness, omniscience and omnipotence)—God’s dice is ab-

solutely fair and God never play tricks; God sets his ultimate utility is constant as long

as the output world is regular and he knows it, in other word, God allows us to realize

any possible world; God has a universal monotone Turing machine, and he never creates

any totally random world, and the way God throw the dice is effective all the time. In

other words, God offers us the fullest freedom to chose the most perfect world, that is

to say, the one which is at the same time the simplest in hypothesis and the richest in

phenomena.

• Time—Our physical notion of a one-dimensional time needs not necessarily be equated

with the step-by-step one-dimensional flow of the computation. Computations do not

need to evolve the universe, but merely describe it (defining all its relations). The role of

the simulating computer is not to compute the history of our universe, but to specify it.

Similarly, all of the physical phenomena—space-time, energy, all the corporeal mass—

should be explained by the process of computation.

• Free Will—We can choose the best possible world by maximizing the expected future

utility, and God never directly tell us whether we have completely grasped the true

environment or not. We takes the role of the creator. We are the creators of our own

universes.
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• Probability—Probability is the uncertainty of possible world, although every possible

world can be deterministic. Universal Probability is the limit of the relative frequency

of the consistent possible worlds over all possible worlds, and we can use it to predict

the true universe.

• Continuum—Within each universe all observable quantities are discrete, but the mul-

tiverse as a whole is a continuum. When the equations of quantum theory describe a

continuous but not-directly-observable transition between two values of a discrete quan-

tity, what they are telling us is that the transition does not take place entirely within

one universe. So perhaps the price of continuous motion is not an infinity of consecutive

actions, but an infinity of concurrent actions taking place across the multiverse.

• Intelligence—Intelligence of an ‘agent’ is an Perfect Bayesian Equilibrium of the In-

complete Information game with observable actions played against imaginary possible

worlds (ℳ𝑈) only if our subjective belief system is the universal prior; or equivalently,

Intelligence can be seen as an Ex Post Equilibrium of the Incomplete Information game

with observable actions played against imaginary possible worlds (ℳ𝑈) only if we pre-

tend that the true environment is the universal mixture environment; or equivalently,

Intelligence can also be regarded as an Perfect Bayesian Equilibrium of the Incomplete

Information game with observable actions played against Leibniz’s possible worlds (ℳ𝐷)

only if our subjective belief system is the Solomonoff prior.

In conclusion, we live in a computable universe, which agrees with Wheeler’s philosophy

“it from bit” and Wolfram’s “all is computation”. AIXI is the most intelligent creator among

us, according to Leibniz’s philosophy, AIXI is the greatest monad—the real “God”.
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