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Basic Definition

GL is a normal modal logic axiomatized by the schema

�(�φ→ φ)→ �φ

.
widn :

∧
i≤n
♦pi →

∨
0≤i 6=j≤n

♦(pi ∧ (pj ∨ ♦pj)) [n ≥ 1]
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Background

GL has some interesting explanationµ
Solovay’s theoremµGL ` A if and only if for all realizations f ,
PA ` f (A).
Lőb’s theoremµRead �φ as φ is provable.

The finite model property(f.m.p.) has some good
consequencesµdecidability.

Researches before on f.m.p. of GL always need to restrict the
width.

Proofs on GL are related to the axiom of choice.
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Goals

The relation between frame condition for GL and the Axiom
of Choice.

For each n, GL⊕Widn has the f.m.p.

In F ,P−tense logic, all normal extensions of
L ⊇ G+ ⊕ G− ⊕ .3− ⊕ wid+

n have the f.m.p if the weak
canonical models for L has no infinite chains.
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Related results

Kit Fine’s completeness theorem in [2]µ
[AC]Each finite width logic L is complete.
Let L be a logic that is complete for a condition that is closed
under subframes. Then L has f.m.p.

Frank wolter’s results in [5]µ
[AC]All subframe logics above G+ ⊕ G− ⊕ wid+

n ⊕ wid−n have
the finite model property.
[AC]All subframe logics above G+ ⊕ G .3− have the f.m.p.
and are finitely axiomatizable.
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Part one
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Definition

A frame F = 〈W ,R〉 is an upward well-founded order if R is
transitive and satisfied

∀X ⊆W (X 6= ∅→ ∃x ∈ X (∀y ∈ X (¬xRy))) (1)

For a frame F = 〈W ,R〉, if R is transitive, then an increasing
infinite chain in F is a sequence 〈zn | n ∈ ω〉 ∈W ω such that
znRzn+1 for all n ∈ ω.
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Here we denote by K1 the class of upwards well-founded orders,
and K2 the class of orders without any increasing infinite chain.
Hence we have:

Lemma (ZF )

K1 ⊆ K2
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Dependent choice

Notice that 1 implies R is irreflexive and if F = 〈W ,R〉 has no
increasing infinite chain, R is also irreflexive.

Recall that the Principle of Dependent Choices (DC ) is the
following weak version of the Axiom of Choice:

let R be a binary relation on a nonempty set A such that
∀x ∈ A∃y ∈ A(xRy), then there is an infinite sequence
〈zn | n ∈ ω〉 ∈ Aω such that znRzn+1 for all n ∈ ω.

From this definition the following is obvious.
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Lemma

Lemma

[ZF ]DC implies that K1 = K2.

The followings are equivalent in ZF :
(i) DC (ii)K1 = K2

Proof.

We only need to show (ii) implies (i). Assume K1 = K2 and R be a
binary relation on a nonempty set A such that
∀x ∈ A∃y ∈ A(xRy). Then 〈A,R〉 is not upward well-founded, so
by (ii), there is an increasing infinite chain 〈zn | n ∈ ω〉 ∈ Aω such
that znRzn+1 for all n ∈ ω. Thus, DC holds.
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Go back to GL

Theorem[ZF ] F

F = 〈W , <〉 is a frame of GL iff F ∈ K1.
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Some definitions about tree

definition

a tree T = 〈W , <〉 is a strict partial order s.t. for each x ∈W ,
{y | y < x} is well-ordered by <.

Let T = 〈W , <〉 be a tree

Properties of tree

(a) If x ∈W , the height of x in T , or ht(T , x), is
ot({y ∈W | y < x}); (ot means order type)
(b) For each ordinal α, the α-th level of T , or Levα(T ), is
{x ∈W | ht(T , x) = α}
(c) The height of T , or ht(T ), is the least α such that
Levα(T ) = 0.
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First theorem

Theorem

If ZF is consistent, then there is a model M of ZF s.t.
M |= K1 6= K2.

proof

The following property holds in The Second Fraenkel Model VF2 :
there exists an infinite binary tree T = 〈W , <〉 with ht(T ) = ω
which does not have an infinite branch. (The Second Fraenkel
Model is a model of ZFA, the set theory with atoms, but we can
transfer this result into ZF , using the Jech-Sochor Embedding
Theorem.) If T has any increasing infinite chain 〈zn | n ∈ ω〉, let
B = {x ∈ T | x < zn for some n}. We will show that B is an
infinite branch of T , which will be a contradiction.
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First theorem

Proof.

First, for any x , y ∈W , x < zi and y < zj for some i , j ∈ ω. Let
k = max{x , y}. If x and y are incomparable, zk will have two
incomparable predecessors, a contradiction. Second, since
〈zn | n ∈ ω〉 is infinite and ht(T ) = ω, there is no ordinal α s.t.
Levα(T ) ∩ B = ∅. Finally, {zn | n ∈ ω} ⊆ B, so B is infinite.As a
result, T ∈ K2.

Let A = {x ∈W | x has infinitely many successors.}. First we
know A is not empty because T is a infinite binary tree. For any
x ∈ A, one of the two immediate successors of x must belong to A.
Then we have for any x ∈ A, xRy for some y ∈ A, which follows
that T /∈ K1.[4]and[3]
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End of Part one

Corollary

It is relatively consistent with ZF that there is a transitive frame
without any increasing infinite chain which is not a GL-frame.

The above show that in ZF , K2 is the frame correspondent of GL
iff DC holds.
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Part two
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GL in modal logic

we call a transitive frame F has width n if each point in F has at
most n incomparable successors, i.e.
F |= ∀x∀y0y1 . . . yn(xRy0 ∧ xRy1 ∧ · · · ∧ xRyn)→∨
0≤i 6=j≤n

(yiRyj ∨ yjRyi ∨ yi = yj)).

lemma

K4⊕ widn is characterized by Fn, where Fn is the class of all
transitive frames which have width n.
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GL in modal logic

proposition

K4⊕ widn is canonical.

We call a logic L has the subframe property if F (L) is closed under
taking subframe.

lemma

GL⊕ widn has the subframe property.
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GL in modal logic

theorem

Each logic Ln = GL⊕ widn has the finite model property.

proof

Using selective filtration as in [1].
Let MLn = 〈WLn ,RLn ,VLn〉 be the canonical model of Ln and
φ /∈ GL⊕ widn. To use filtration we need to choose a formula set,
so let Σ = sub(φ) = {ψ | ψ is a subformula of φ}. We know that
there is x0 ∈WLn s.t. MLn , x0 |= ¬φ. If x0RLnx0, ♦¬φ ∈ x by the
definition of RLn and hence ¬�(�φ→ φ) ∈ x0, which means that
x0Ry for some y |= �φ ∧ ¬φ. So y is an irreflexive point refutes φ.
So we can treat x0 as an irreflexive point. We define G ⊆WLn by
induction as follows:
G0 = {x0} and Φx0 = {�ψ ∈ Σ | x0 6|= �ψ};
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GL in modal logic

proof

Suppose that Gn has been defined. If Φa = ∅ for all a ∈ Gn, stop

the construction and let G =
0⋃
n
Gn. If not, for each a ∈ Gn, if

Φa 6= ∅, there must be an irreflexive yψ,a |= ¬ψ ∧�ψ and
aRLnyψ,a for each �ψ ∈ Φa. (Just like the above.) So we select for
each �ψ a point yψ,a and let Gn+1 be the set of all these points,
i.e. G a

n+1 = {yψ,a | �ψ ∈ Φa} and Gn+1 =
⋃

a∈Gn∧Φa 6=∅
G a
n+1. Here

we don’t need the axiom of choice since Σ is finite. Notice that in
every step we add only finitely many points to Gn, so Gi is finite
for i ≤ n. Moreover, Φyψ,a ⊂ Φa ⊆ Σ :1. For any χ, if yψ,a 6|= �χ,
a 6|= �χ by transitivity; 2. yψ,a |= �ψ ∧ a 6|= �ψ. It follows that
there must be k s.t. Φa = ∅ for all a ∈ Gk because Σ is finite.

Liu Jixin Peking University

GL in normal modal logic and tense logic



GL in modal logic

proof

Thus, our construction will finally stopped and G will be a finite
subset of WLn . Let F =〈G ,R〉, where R = RLn |G .
Claim: F is a finite GL⊕ widn-frame.
proof of the claim: By Lemma?? and Proposition??, R is transitive
with width n. By our construction of G , R is irreflexive and G is
finite. So R is upward well-founded. Therefore F |= GL⊕ widn.
Let V

′
be the restriction of VLn on G .

Claim: MLn , x |= φ iff F,V
′
, x |= φ for any x ∈ G and any φ ∈ Σ.

If the above claim holds, F will also refute φ and we will reach our
goal.
proof of the claim: We use induction on φ.
φ = p or ⊥: obvious because the two model have the same
valuation.
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GL in modal logic

proof

φ = ψ → χ or φ = ¬ψ is also trivial.
φ = �ψ: (⇒)Suppose that MLn , x |= �ψ. If F,V

′
, x 6|= �ψ, there

is some y ∈ G s.t. xRy ∧ F,V
′
, y 6|= ψ. By induction hypothesis

MLn , y 6|= ψ and xRLny since R = RLn |G , a contradiction.
(⇐)Suppose that F,V

′
, x |= �ψ. If MLn , x 6|= �ψ, Φx 6= ∅ and

hence there is some yψ,x ∈ G s.t. xRLnyψ,x ∧MLn , yψ,x 6|= ψ, by
our construction of G . Since R = RLn |G , xRy and by I.H. we have
F,V

′
, yψ,x 6|= ψ. Therefore F,V

′
, x 6|= �ψ, a contradiction.

This theorem is a consequence of Fine’s two theorems, but our
proof is within ZF .
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GL in modal logic

Unfortunately, some extension of GL⊕ widn lacks the f.m.p. and
the finite axiomatizability.The instance can be found in [1]. From
the counter-example we find that there exist some R−desending
chains in some frame of GL⊕widn, which make some logic lack the
f.m.p. So a natural idea is to avoid these chains. We know that in
some sense GL says there are no ascending chain, so if we use the
bimodal language of GL, we can get a logic whose frame has no
infinite chains. Hence we will consider GL in tense logic later.
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Part three
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GL in tense logic

Recall that φ+ and φ− are the correspondent G ,H−formulas. In
tense logic, we call L a finite width logic if L ⊇ K4t ⊕wid+

n ⊕wid−n .

Lemma

K4t ⊕ wid+
n ⊕ wid−n is characterized by F ∗n , where F ∗n is the class

of all transitive frames which have width n for R and R− .

Lemma

K4t ⊕ wid+
n and K4t⊕ wid−n are canonical.
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Finite cover property

definition

A tense logic L has the finite ascending chain property(f.a.p.) iff for
any weak canonical model M of L, the frame of M has no infinite
ascending chain for R and no infinite ascending chain for R−.

We call a model M = 〈W ,R,R−,V 〉 differentiated if
∀x , y ∈W (x 6= y → ∃φ(M, x |= φ ∧M, y |= ¬φ).
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Finite cover property

The original proof of Kit Fine on the completeness cannot work
here, since Fine need the following:

proposition

Suppose M =〈W ,R,V 〉 is a weak, transitive and differentiated
model of finite width. Then it contains no infinite R-ascending
chain, i.e., no distinct points 〈vi | i < ω〉 such that viRvi+1 for
i < ω.

But the tense version of this proposition is wrong: consider the
frame of the natural number, i.e. 〈ω,≤, >〉.
From the above observation, we need to add the f.a.p. condition
to our proof.
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Finite cover property

Given a relation R, we say wR̄v iff wRv & ¬vRw . Given a frame
F = 〈W ,R,R−〉, we say U is an R-cover for V ⊆W if
∀v ∈ V∃u ∈ U(v = u ∨ vR̄u). F itself has the R-finite cover
property (R-fcp) if
for each V ⊆W there is a finite cover U for V s.t. U ⊆ V . v ∈ V
is R-maximal in V if ¬∃u ∈ V (vR̄u).

Theorem

[AC]Suppose L is a logic of finite width for both directions with

f.a.p. and that F = 〈W ,R,R−〉 is generated from a WCM of L.
Then F has R-fcp and R−-fcp.

Proof.

Just like the modal version as in Fine 1974.
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Eliminable points

Definition

w is R (R−)-eliminable in a model M = 〈W ,R,R−,V 〉 if w ∈W
and ∀φ∃v( M,w |= φ→ wR̄v(vR̄w) ∧M, v |= φ).

Lemma

Suppose L ⊇ K4t , w is RL (R−L )-eliminable in
ML=〈WL,RL,R

−
L ,VL〉, a weak canonical model defined on Γ of L

and φ ∈ w . Then ∃v ∈WL(wRLv(vRLw) ∧ φ ∈ v ∧ v is
noneliminable in ML).
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Eliminable points

Now let ML = 〈FL,VL〉 be a WCM for L defined on Γ.
Let UL = {w ∈WL | w is RL-noneliminable in
ML} ∪ {w ∈WL | w is R−L -noneliminable in ML}. Let GL be the
restriction of FL to UL, and NL be the restriction of ML to UL.

Lemma

Suppose that L ⊇ K4t and that NL ⊆ A ⊆ML. Then for all w in
A and formulas φ ∈ FmlΓ, A,w |= φ iff φ ∈ w .

A model A is reduced if it contains no eliminable points. By the
theorem above, NL is reduced. So we call NL the reduced weak
canonical model.
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Definability

Let M = 〈W ,R,R−,V 〉 be any model, let φ be any formula, and
let X ⊆W . φ defines X in M if
X = {w ∈W |M,w |= φ} = ||φ||M. X is definable in M if some
formula defines X .

Definable variant

Let M = 〈W ,R,R−,V 〉 and
M

′
= 〈W ,R,R−,V

′〉 be two models based on the same frame.
M

′
is a definable variant of M if for each variable p, V

′
(p) is

definable in M.

proposition

Suppose Γ is closed under substitution and is true in M. Then Γ is
true in each definable variant of M.
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Eliminable points

Following Fine, we call a model M = 〈W ,R,R−,V 〉 natural iff M
is differentiated and satisfies:
∀x , y ∈W (∀φ(M, x |= Gφ→M, y |= φ)→ wRv) ∧ ∀x , y ∈
W (∀φ(M, x |= Hφ→M, y |= φ)→ wR−v)

Theorem

Suppose that M is natural and transitive with fcp for both
direction. Then each w ∈ {x | x is R-noneliminable or
R−-noneliminable} is definable in M.
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Eliminable points

Theorem

Suppose that M is natural and transitive with fcp for both
direction, that V is a finite subset of {x | x is R-noneliminable or
R−noneliminable in M.} and that U, U

′ ⊆ V . Then
T = {w ∈W −V | {v ∈ V | wRv} = U ∧ {v ∈ V | wR−v} = U

′}
is definable in M.

Theorem

[AC]The above two theorems hold for any M which is generated
from the reduced weak canonical model NL for a finite width logic
L which has f.a.p.
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Completeness

definition

M = 〈W ,R,R−,V 〉 is n-simple if there is a finite V ⊆W s.t.
(i) V R,R−-covers |w |n = {v ∈W | w !n v} for each w ∈W ;
(ii) ∀x , y ∈W − V ({v ∈ V | xRv} = {v ∈ V | yRv} ∧ {v ∈ V |
xR−v} = {v ∈ V | yR−v})→ x!0 y .

M is simple if M is n-simple for some n ∈ ω.

Lemma

Suppose F = 〈W ,R,R−〉 is a transitive frame with fcp for both
directions. Then φ is valid in F if φ is true in all weak simple
models M = 〈W ,R,R−,V 〉.
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Completeness

Lemma

Suppose that M = 〈W ,R,R−,V 〉 is natural, reduced, and
transitive with fcp for both direction. Then any weak simple model
A = 〈W ,R,R−,V

′〉 is a definable variant of M.

Theorem

Let NL be a reduced weak canonical model for a finite width logic
L which has f.a.p. Then the frame FL of NL is an L-frame.
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Completeness

Theorem

Each finite width tense logic L is complete if L has f.a.p.

Corollary

Every tense logic L ⊇ G+ ⊕ G− ⊕ .3− ⊕ wid+
n is complete if L has

f.a.p.
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f.m.p.

Theorem

Every complete tense logic L ⊇ G+ ⊕ G− ⊕ .3− ⊕ wid+
n has f.m.p.

proof

For any φ /∈ L, there is a L-frame F, x in F and a valuation V s.t.
F,V , x |= ¬φ. Let Fx = 〈W ,R,R−〉 be the generated submodel of
F by x . We will show that Fx is finite and hence L has f.m.p. since
Fx is also an L-frame.
Since L ⊇ G−, every nonempty subset A of W has an R-minimal
element, and since L ⊇ .3−, for any y ∈W , {x ∈W | x < y} is
well-ordered by <. L ⊇ G+ ⊕ wid+

n so Fx must be a ≤ n-branch
tree by the definition of tree.
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For any φ /∈ L, there is a L-frame F, x in F and a valuation V s.t.
F,V , x |= ¬φ. Let Fx = 〈W ,R,R−〉 be the generated submodel of
F by x . We will show that Fx is finite and hence L has f.m.p. since
Fx is also an L-frame.
Since L ⊇ G−, every nonempty subset A of W has an R-minimal
element, and since L ⊇ .3−, for any y ∈W , {x ∈W | x < y} is
well-ordered by <. L ⊇ G+ ⊕ wid+

n so Fx must be a ≤ n-branch
tree by the definition of tree.
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f.m.p.

proof

Proof within ZFC: If we admit the axiom of choice, it’s not hard to
see that Fx has no infinite increasing chain by Lemma2 and
Proposition10, and hence Fx must be finite: By König lemma, if
Fx is infinite, there must be an infinite increasing chain since Fx is
a ≤ n-branch tree.
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f.m.p.

Proof.

Proof without AC: We define a relation Rd as follows: xRdy iff
xRy ∧ ∀z(zRy → ¬xRz); xRdy means that y is a immediate
successor of x . Suppose that Fx is infinite. Let A = {x ∈W | x
has infinitely many R−successors.}. First we know A is not empty
because x ∈ A. For any a ∈ A, a has at most n different Rd

successors, say {a0, . . . , am}, so one of its Rd successors must have
infinitely many R-successors. For any R-successor b /∈ {a0, . . . am}
of a is an R-successors of c ∈ {a0, . . . am}. It follows that aj ∈ A
for some j ≤ m. Thus A is a nonempty subset of W without
R−maximal element, which contradicts that Fx |= GL.
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Final theorem

Theorem

Every tense logic L ⊇ G+ ⊕ G− ⊕ .3− ⊕ wid+
n has f.m.p if L has

f.a.p.

Corollary

Every finite axiomatizable f.a.p. tense logic
L ⊇ G+ ⊕ G− ⊕ .3− ⊕ wid+

n is decidable.
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Further work
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Conjectures

Each finite width tense logic L is complete.

All tense logic L ⊇ G+ ⊕ G− ⊕ wid−n ⊕ wid+
n have f.m.p.

If ZF is consistent, then It’s consistent with ZF that there is
an incomplete finite width modal logic.
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All tense logic L ⊇ G+ ⊕ G− ⊕ wid−n ⊕ wid+
n have f.m.p.

If ZF is consistent, then It’s consistent with ZF that there is
an incomplete finite width modal logic.
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Thank you���
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