Introduction	Stability and cohesiveness	RT ₂ ² and ordering principles	References

The World below RT₂² in Reverse Mathematics

Ke Gao

Department of Philosophy, Peking University

May 9, 2017

Introduction	Stability and cohesiveness	RT ₂ and ordering principles	References

Outline

1 Introduction

- Introduction
- Standard systems
- Ramsey's theorem

2 Stability and cohesiveness

- Splitting
- Further results

3 RT_2^2 and ordering principles

- Ascending and descending sequence
- Partial orders and CAC

4 Summary

5 References

Introduction ••••••	Stability and cohesiveness	RT ² and ordering principles	References
Introduction			

Global Looking

The theorems of interest in our investigations are typically of the form $\forall A(\Theta(A) \rightarrow \exists B\Phi(A, B))$ where Θ and Φ are arithmetic and $A, B \in 2^{\omega}$. Thus,

- from the computability theoretic point of view,we want to bound or characterize the computational complexity of *B* given an *A* satisfying ⊖;
- from the reverse mathematics point of view, we want to determine the axiom systems in which the theorem is provable.

Introduction OCOCOCOC	Stability and cohesiveness	RT ₂ and ordering principles	References
Introduction			

Global Looking

The theorems of interest in our investigations are typically of the form $\forall A(\Theta(A) \rightarrow \exists B\Phi(A, B))$ where Θ and Φ are arithmetic and $A, B \in 2^{\omega}$. Thus,

- from the computability theoretic point of view,we want to bound or characterize the computational complexity of *B* given an *A* satisfying ⊖;
- from the reverse mathematics point of view, we want to determine the axiom systems in which the theorem is provable.

Unlike the case of WKL₀, there do not seem to be many principles equivalent to RT_2^2 over RCA₀. There is, however, a whole world of principles, particularly combinatorial ones, below RT_2^2 (i.e., provable in $RCA_0 + RT_2^2$) in the reverse mathematical universe.

Introduction	Stability and cohesiveness	RT ² and ordering principles	References
0000000		000000	
Introduction			
Introduction			

Language

The language L_2 of second-order arithmetic is a two-sorted language with number variables x, y, z, ... intended to range over natural numbers and set variables X, Y, Z, ... intended to range over sets of natural numbers. In addition, the language include $+, \cdot$ as operation symbols, 0, 1 as constants and < as a relation symbol, with adding a binary relation \in to relate the two sorts.

Introduction	Stability and cohesiveness	RT ₂ ² and ordering principles	Summary	References
0000000		000000		
Introduction				
Introduction				

Language

The language L_2 of second-order arithmetic is a two-sorted language with number variables x, y, z, ... intended to range over natural numbers and set variables X, Y, Z, ... intended to range over sets of natural numbers. In addition, the language include $+, \cdot$ as operation symbols, 0, 1 as constants and < as a relation symbol, with adding a binary relation \in to relate the two sorts.

Axioms

- Basic axioms;
- Induction axiom :

$$(0 \in X \land \forall n(n \in X) \to n+1 \in X)) \to \forall n(n \in X);$$

Comprehension scheme :

$$\exists X \forall n (n \in X \leftrightarrow \varphi(n)),$$

where $\varphi(n)$ is any formula in which X does not occur freely.

Introduction				
Introduction				
Introduction	Stability and cohesiveness	RT ₂ and ordering principles	Summary	References

Models

A model for L_2 or an L_2 -structure is an ordered 7-tuple

$$\mathfrak{M} = (M, \mathcal{S}, +, \cdot, 0, 1, <)$$

where *M* is a set; *S* is a collection of subsets of *M*; + and \cdot are function from *M* × *M* into *M*; < is a subset of *M* × *M*; and 0 and 1 are distinguished elements of *M*.

Introduction	Stability and cohesiveness	RT ₂ ² and ordering principles	References
Introduction	000000	000000	
Introduction			

The class of partial recursion functions, C, is the least class of functions closed under the following schemata.

- (a) The successor function; the constant functions; the identity functions (also called projections);
- (b) (Composition) If $g_1,...,g_m,h \in C$, then

$$f(x_1,...,x_n) = h(g_1(x_1,...,x_n),...g_m(x_n))$$

is in C where $g_1, ..., g_m$ are functions of n variables and h is a function of m variables;

(c) (Primitive Recursion) If $g, h \in C$ and $n \ge 1$ then $f \in C$ where

$$f(0, x_2, ..., x_n) = g(x_2, ..., x_n),$$

$$f(x_1 + 1, x_2, ..., x_n) = h(x_1, f(x_1, x_2, ..., x_n), x_2, ..., x_n),$$

assuming g and h are functions of n - 1 and n + 1 variables respectively;

(d) (Minimalization) If $\theta(x_1, ..., x_n, y)$ is a function of n + 1 variables in C and

 $\psi(x_1,...,x_n) = \mu y[\theta(x_1,...,x_n,y) \downarrow = 0 \text{ and } \forall z \leq y[\theta(x_1,...,x_n,z) \downarrow]].$

Introduction	Stability and cohesiveness	RT ₂ ² and ordering principles	Summary	References
00000000		000000		
Introduction				
listra du sti sr				
Introduction				

A partial function ψ is Turing computable in A, written $\psi \leq_T A$, if there a program P_e such that if the machine has χ_A written on the oracle tape, then for all x and y, $\psi(x) = y$ iff P_e on input x halts and yields output y. In the case we write $\psi = \{e\}^A$ or Φ_e^A .

Introduction	Stability and cohesiveness	RT ² and ordering principles	References
Introduction			
Introduction			

- A partial function ψ is Turing computable in A, written $\psi \leq_T A$, if there a program P_e such that if the machine has χ_A written on the oracle tape, then for all x and y, $\psi(x) = y$ iff P_e on input x halts and yields output y. In the case we write $\psi = \{e\}^A$ or Φ_e^A .
- B is recursive in (Turing reducible to) A, written $B \leq_T A$ if $B = \{e\}^A$ for some e. (We identify sets with their characteristic functions.)

Introduction	Stability and cohesiveness	RT ² and ordering principles	References
Introduction			
Introduction			

- A partial function ψ is Turing computable in A, written $\psi \leq_T A$, if there a program P_e such that if the machine has χ_A written on the oracle tape, then for all x and y, $\psi(x) = y$ iff P_e on input x halts and yields output y. In the case we write $\psi = \{e\}^A$ or Φ_e^A .
- B is recursive in (Turing reducible to) A, written $B \leq_T A$ if $B = \{e\}^A$ for some e. (We identify sets with their characteristic functions.)
- $A \equiv_T B$ if $B \leq_T A$ and $A \leq_T B$.

Introduction	Stability and cohesiveness	RT ² and ordering principles	References
Introduction			
Introduction			

- A partial function ψ is Turing computable in A, written $\psi \leq_T A$, if there a program P_e such that if the machine has χ_A written on the oracle tape, then for all x and y, $\psi(x) = y$ iff P_e on input x halts and yields output y. In the case we write $\psi = \{e\}^A$ or Φ_e^A .
- B is recursive in (Turing reducible to) A, written $B \leq_T A$ if $B = \{e\}^A$ for some e. (We identify sets with their characteristic functions.)
- $A \equiv_T B$ if $B \leq_T A$ and $A \leq_T B$.
- The Turing degree of A is $deg(A) = \{B : B \equiv_T A\}$.

Introduction	Stability and cohesiveness	RT ₂ ² and ordering principles	References
Introduction	000000	0000000	
Introduction			

- A partial function ψ is Turing computable in A, written $\psi \leq_T A$, if there a program P_e such that if the machine has χ_A written on the oracle tape, then for all x and y, $\psi(x) = y$ iff P_e on input x halts and yields output y. In the case we write $\psi = \{e\}^A$ or Φ_e^A .
- B is recursive in (Turing reducible to) A, written $B \leq_T A$ if $B = \{e\}^A$ for some e. (We identify sets with their characteristic functions.)
- $A \equiv_T B$ if $B \leq_T A$ and $A \leq_T B$.
- The Turing degree of A is $deg(A) = \{B : B \equiv_T A\}$.
- Let $K^A = \{x : \Phi_x^A(x) \downarrow\}$. K^A is called the jump of A and is denote by A'.

Introduction	Stability and cohesiveness	RT ₂ ² and ordering principles	References
Introduction			

- A partial function ψ is Turing computable in A, written $\psi \leq_T A$, if there a program P_e such that if the machine has χ_A written on the oracle tape, then for all x and y, $\psi(x) = y$ iff P_e on input x halts and yields output y. In the case we write $\psi = \{e\}^A$ or Φ_e^A .
- B is recursive in (Turing reducible to) A, written $B \leq_T A$ if $B = \{e\}^A$ for some e. (We identify sets with their characteristic functions.)
- $A \equiv_T B$ if $B \leq_T A$ and $A \leq_T B$.
- The Turing degree of A is $deg(A) = \{B : B \equiv_T A\}$.
- Let $K^A = \{x : \Phi_x^A(x) \downarrow\}$. K^A is called the jump of A and is denote by A'.
- A degree $\mathbf{a} \leq \mathbf{0}'$ is low $\mathbf{a}' = \mathbf{0}'$, and high if $\mathbf{a}' = \mathbf{0}''$.

Introduction	Stability and cohesiveness	RT ² and ordering principles	References
Introduction			

Introduction

- A partial function ψ is Turing computable in A, written $\psi \leq_T A$, if there a program P_e such that if the machine has χ_A written on the oracle tape, then for all x and y, $\psi(x) = y$ iff P_e on input x halts and yields output y. In the case we write $\psi = \{e\}^A$ or Φ_e^A .
- B is recursive in (Turing reducible to) A, written $B \leq_T A$ if $B = \{e\}^A$ for some e. (We identify sets with their characteristic functions.)
- $A \equiv_T B$ if $B \leq_T A$ and $A \leq_T B$.
- The Turing degree of A is $deg(A) = \{B : B \equiv_T A\}$.
- Let $K^A = \{x : \Phi_x^A(x) \downarrow\}$. K^A is called the jump of A and is denote by A'.
- A degree $\mathbf{a} \leq \mathbf{0}'$ is low $\mathbf{a}' = \mathbf{0}'$, and high if $\mathbf{a}' = \mathbf{0}''$.
- A set $A \leq_T 0'$ is low (high) if deg(A) is low (high).

Introduction	Stability and cohesiveness	RT ² and ordering principles	Summary	References
00000000		000000		
Standard systems				
Standard sv	stems			

Recursive Comprehension Axioms (RCA₀)

In addition to basic axioms, its axioms include the schemes of Δ_1^0 comprehension and Σ_1^0 induction. This is a system just strong enough to prove the existence of the computable sets but not of 0' nor indeed of any noncomputable set.

Standard systems

Recursive Comprehension Axioms (RCA₀)

In addition to basic axioms, its axioms include the schemes of Δ_1^0 comprehension and Σ_1^0 induction. This is a system just strong enough to prove the existence of the computable sets but not of 0' nor indeed of any noncomputable set.

Weak König's Lemma (WKL₀)

This system consists of RCA_0 plus the statement that every infinite subtree of $2^{<\omega}$ has an infinite path.

It is connected to the Low Basis Theorem (Jockush and Sore[1972]) of computability theory, which says that every such tree has an infinite path whose jump is computable in that of the tree itself.

Standard systems

Recursive Comprehension Axioms (RCA₀)

In addition to basic axioms, its axioms include the schemes of Δ_1^0 comprehension and Σ_1^0 induction. This is a system just strong enough to prove the existence of the computable sets but not of 0' nor indeed of any noncomputable set.

Weak König's Lemma (WKL₀)

This system consists of RCA₀ plus the statement that every infinite subtree of $2^{<\omega}$ has an infinite path.

It is connected to the Low Basis Theorem (Jockush and Sore[1972]) of computability theory, which says that every such tree has an infinite path whose jump is computable in that of the tree itself.

Arithmetic Comprehension Axioms (ACA₀)

This system consists of RCA₀ plus the axioms $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$ for every arithmetic formula φ in which X is not free.

In computability theoretic terms, ACA₀ proves the existence of 0' and by relativization it proves, and in fact is equivalent to, the existence of X' for every set X.

Introduction	Stability and cohesiveness	RT5 and ordering principles	Summary	References
00000000		000000		
Ramsey's theorem				
Ramsey's th	eorem			

For a map f and a subset X of its domain, we denote the image of X under f by f^*X . An n-coloring of $[\omega]^k$ is a map $f : [\omega]^k \to n$. A subset H of ω is homogeneous for the coloring f if H is infinite and $|f^*[H]^k|=1$.

Ramsey's Theorem for pairs (RT_2^2)

Every 2-coloring of $[\omega]^2$ has a homogeneous set.

Introduction	Stability and cohesiveness	RT5 and ordering principles	Summary	References
00000000		000000		
Ramsey's theorem				
Ramsey's th	neorem			

For a map f and a subset X of its domain, we denote the image of X under f by f^*X . An n-coloring of $[\omega]^k$ is a map $f : [\omega]^k \to n$. A subset H of ω is homogeneous for the coloring f if H is infinite and $|f^*[H]^k|=1$.

Ramsey's Theorem for pairs (RT_2^2)

Every 2-coloring of $[\omega]^2$ has a homogeneous set.

It is easy to show that the number of color does not matter, in the sense that for each n > 2, Ramsey's theorem for 2-colorings of pairs is equivalent to Ramsey's Theorem for n-coloring of pairs.

Introduc	tion ⊃○○●	Stability and cohesiveness	RT ₂ and ordering principles		References
Ramsey	's theorem				
Son	ne result	about RT ₂			
	Specke	er[1971] constructed a co	mputable coloring of $[\omega]^2$ wit	h no computable	
	homog	eneous set. Thus RCA ₀	$ \neq \operatorname{RT}_2^2. $		

Ramsey's theorem

Some result about RT₂²

- Specker[1971] constructed a computable coloring of [ω]² with no computable homogeneous set. Thus RCA₀ ⊬ RT₂².
- Jockusch[1972] constructed a computable coloring of $[\omega]^3$ such that every homogeneous set computes 0'. This construction can be carried out in RCA₀, and thus shows that Ramsey's Theorem for triples implies ACA₀. In fact, one of the standard proofs of Ramsey's Theorem for k-tuples is equivalent to ACA₀.

Ramsey's theorem

Some result about RT₂²

- Specker[1971] constructed a computable coloring of [ω]² with no computable homogeneous set. Thus RCA₀ ⊬ RT₂².
- Jockusch[1972] constructed a computable coloring of $[\omega]^3$ such that every homogeneous set computes 0'. This construction can be carried out in RCA₀, and thus shows that Ramsey's Theorem for triples implies ACA₀. In fact, one of the standard proofs of Ramsey's Theorem for k-tuples is equivalent to ACA₀.
- Seetapum and Slaman[1993] proved a degree theoretic cone avoiding theorem that implies that RT²₂ does not imply ACA₀ (even over WKL₀).

Ramsey's theorem

Some result about RT₂²

- Specker[1971] constructed a computable coloring of [ω]² with no computable homogeneous set. Thus RCA₀ ⊬ RT₂².
- Jockusch[1972] constructed a computable coloring of $[\omega]^3$ such that every homogeneous set computes 0'. This construction can be carried out in RCA₀, and thus shows that Ramsey's Theorem for triples implies ACA₀. In fact, one of the standard proofs of Ramsey's Theorem for k-tuples is equivalent to ACA₀.
- Seetapum and Slaman[1993] proved a degree theoretic cone avoiding theorem that implies that RT²₂ does not imply ACA₀ (even over WKL₀).
- Liu[2012] prove WKL₀ is independent of RT₂².

ordering principles Summary References
nd OC

In their landmark paper on Ramsey's Theorem for Pairs, Cholak, Jockusch and Slaman [2001] introduced the important idea of splitting RT_2^2 into a stable part and a cohesive part.

Introduction	Stability and cohesiveness	RT ₂ and ordering principles	Summary	References
	00000	000000		
Splitting				
Stability a	nd cohesiveness			

In their landmark paper on Ramsey's Theorem for Pairs, Cholak, Jockusch and Slaman [2001] introduced the important idea of splitting RT_2^2 into a stable part and a cohesive part.

Definition 2.1

A coloring of $[\omega]^2$ is stable if $\forall x \exists y \forall z > y(f(x, y) = f(x, z))$.

Stable Ramsey's Theorem for pairs (SRT₂²)

Every stable coloring of $[\omega]^2$ has a homogeneous set.

Introduction	Stability and cohesiveness	RT ₂ and ordering principles	Summary	References
0000000	00000	0000000		
Splitting				
Stability an	d cohesiveness			

If $\vec{R} = \langle R_i | i \in \omega \rangle$ is a sequence of sets, an infinite set S is \vec{R} -cohesive if

 $\forall i \exists s (\forall j > s(j \in S \rightarrow j \in R_i) \lor \forall j > s(j \in S \rightarrow j \notin R_i)).$

Cohesive Principle (COH)

For every sequence $\overrightarrow{R} = \langle R_i | i \in \omega \rangle$ there is an \overrightarrow{R} -cohesive set.

Introduction	Stability and cohesiveness	RI2 and ordering principles	Summary	References
Solitting	000000	000000		
Spinning				
Stability an	nd cohesiveness			

If $\vec{R} = \langle R_i | i \in \omega \rangle$ is a sequence of sets, an infinite set S is \vec{R} -cohesive if

 $\forall i \exists s (\forall j > s (j \in S \rightarrow j \in R_i) \lor \forall j > s (j \in S \rightarrow j \notin R_i)).$

Cohesive Principle (COH)

For every sequence $\overrightarrow{R} = \langle R_i | i \in \omega \rangle$ there is an \overrightarrow{R} -cohesive set.

Note that COH easily implies the principle, which asserts that for every coloring of $[\omega]^2$ there is a set such that the coloring restricted to that set is stable.

Introduction	Stability and cohesiveness	RT ₅ and ordering principles	Summary	References
	000000	000000		
Splitting				
Stability ar	nd cohesiveness			

Cohesive Ramsey's theorem for pairs (CRT_2^2)

For every coloring f of $[\omega]^2$ there is an infinite set S such that

$$\forall x \in S \exists y \forall z \in S(z > y \rightarrow f(x, y) = f(x, z)).$$

Proposition 2.3

 $RCA_0 \vdash COH \rightarrow CRT_2^2$.

Introduction	Stability and cohesiveness	RT5 and ordering principles	Summary	References
0000000	000000	000000		
Splitting				
Stability and	cohesiveness			

Cohesive Ramsey's theorem for pairs (CRT_2^2)

For every coloring f of $[\omega]^2$ there is an infinite set S such that

$$\forall x \in S \exists y \forall z \in S(z > y \rightarrow f(x, y) = f(x, z)).$$

Proposition 2.3

 $RCA_0 \vdash COH \rightarrow CRT_2^2$.

By the theorem and system RT_2^2 splitting into SRT_2^2 and COH we mean the fact that $RCA_0 \vdash RT_2^2 \leftrightarrow COH \land SRT_2^2$.

Introduction	Stability and cohesiveness	RI2 and ordering principles	Summary	References
00000000	000000	0000000		
Further results				
Stability a	nd cohacivanace			
Stability a				

It is immediate from the above proposition that COH \(\lambda\) SRT²₂ implies RT²₂, and RT²₂ obviously implies SRT²₂.

Introduction	Stability and cohesiveness	RT ₂ and ordering principles	Summary	References
	000000	000000		
Further results				
Stability and	cohesiveness			

- It is immediate from the above proposition that COH ∧ SRT²₂ implies RT²₂, and RT²₂ obviously implies SRT²₂.
- The fact that RT_2^2 implies COH is harder to show. Cholak, Jockusch and Slaman provide an easy proof that requires $I\Sigma_2$. The proof in RCA₀ given by Mileti [2004].

Introduction 00000000	Stability and cohesiveness	RT ₂ and ordering principles	Summary	References
Further results				
Stability a	nd cohesiveness			

- It is immediate from the above proposition that COH \wedge SRT2 implies RT2, and RT2 obviously implies SRT2.
- The fact that RT²₂ implies COH is harder to show. Cholak, Jockusch and Slaman provide an easy proof that requires *I*Σ₂. The proof in RCA₀ given by Mileti [2004].

The primary combinatorial/reverse mathematical question left here is whether SRT_2^2 implies COH (and so RT_2^2).

Introduction 00000000	Stability and cohesiveness	RT ₂ and ordering principles	Summary	References
Further results				
Stability and	cohesiveness			

- It is immediate from the above proposition that $COH \land SRT_2^2$ implies RT_2^2 , and RT_2^2 obviously implies SRT_2^2 .
- The fact that RT²₂ implies COH is harder to show. Cholak, Jockusch and Slaman provide an easy proof that requires *I*Σ₂. The proof in RCA₀ given by Mileti [2004].

The primary combinatorial/reverse mathematical question left here is whether SRT_2^2 implies COH (and so RT_2^2).

Cooper [1972] showed that every uniformly computable sequence \vec{R} has a Δ_2^0 cohesive set, but for some such \vec{R} the only Δ_2^0 cohesive set are high, i.e. $S' \equiv_T 0''$. Consequently, WKL₀ can not imply COH.

◎版北京大学四字示

Introduction 00000000	Stability and cohesiveness	RI2 and ordering principles	Summary	References
Further results				
Stability a	nd cohesiveness			

Principle D_2^2 (D_2^2)

Given any Δ_2^0 -set A, either A or its complement contains an infinite subset.

Σ_2 -bounding collection (B Σ_2^0)

 $\forall x < n \exists y \varphi(x, y) \rightarrow \exists m \forall x < n \exists y < m \varphi(x, y)$, where φ is Σ_2^0 .

Introduction	Stability and cohesiveness	RI2 and ordering principles	Summary	References
Further results				
Stability a	nd cohesiveness			

Principle D_2^2 (D_2^2)

Given any Δ_2^0 -set A, either A or its complement contains an infinite subset.

 Σ_2 -bounding collection (B Σ_2^0)

 $\forall x < n \exists y \varphi(x, y) \rightarrow \exists m \forall x < n \exists y < m \varphi(x, y), \text{ where } \varphi \text{ is } \Sigma_2^0.$

Proposition 2.4 (Cholak, Jockusch and Slaman 2001)

 $\textit{RCA}_0 + \textit{B}\Sigma_2 \vdash \textit{SRT}_2^2 \leftrightarrow \textit{D}_2^2.$

Introduction 00000000	Stability and cohesiveness	RIZ and ordering principles	Summary	References
Further results				
Stability a	nd cohesiveness			

Principle D_2^2 (D_2^2)

Given any Δ_2^0 -set A, either A or its complement contains an infinite subset.

 Σ_2 -bounding collection (B Σ_2^0)

 $\forall x < n \exists y \varphi(x, y) \rightarrow \exists m \forall x < n \exists y < m \varphi(x, y), \text{ where } \varphi \text{ is } \Sigma_2^0.$

Proposition 2.4 (Cholak, Jockusch and Slaman 2001)

 $RCA_0 + B\Sigma_2 \vdash SRT_2^2 \leftrightarrow D_2^2.$

Theorem 2.5 (Chong, Lempp and Yang 2010)

 $RCA_0 \vdash D_2^2 \rightarrow B\Sigma_2^0.$

Recently, Chong, Slaman and Yang [2014] use nonstandard model of arithmetic to construct a model separating RT_2^2 and SRT_2^2 . The main technical theorem they establish is following.

Theorem 2.6

There is a model $\mathfrak{M} = \langle M, \mathcal{S}, +, \cdot, 0, 1, < \rangle$ of $RCA_0 + B\Sigma_2^0$ but not $I\Sigma_2^0$ such that every $G \in \mathcal{S}$ is low and $\mathfrak{M} \models D_2^2$.

Introduction	Stability and cohesiveness	RT5 and ordering principles	Summary	References
	000000	000000		
Further results				
Stability a	nd cohesiveness			

Recently, Chong, Slaman and Yang [2014] use nonstandard model of arithmetic to construct a model separating RT_2^2 and SRT_2^2 . The main technical theorem they establish is following.

Theorem 2.6

There is a model $\mathfrak{M} = \langle M, \mathcal{S}, +, \cdot, 0, 1, < \rangle$ of $RCA_0 + B\Sigma_2^0$ but not $I\Sigma_2^0$ such that every $G \in \mathcal{S}$ is low and $\mathfrak{M} \models D_2^2$.

Open problems

- Does CRT²₂ implie COH?
- Does SRT_2^2 implies RT_2^2 in every ω -model of arithmetic? More generally, does $RCA_0 + I\Sigma_2$ separate these two principles?

References

RT₂² and ordering principles

There are many natural principles that can be seen as special cases of the idea, embodied in Ramsey's Theorem, that large structures must contain large ordered substructures.

References

RT₂² and ordering principles

There are many natural principles that can be seen as special cases of the idea, embodied in Ramsey's Theorem, that large structures must contain large ordered substructures.

The Ascending/Descending Sequence Principle (ADS)

Every infinite linear order has an infinite ascending or descending sequence.

The Chain/Antichain Principle (CAC)

Every infinite partial order has an infinite chain or antichain.

RT_2^2 and ordering principles

There are many natural principles that can be seen as special cases of the idea, embodied in Ramsey's Theorem, that large structures must contain large ordered substructures.

The Ascending/Descending Sequence Principle (ADS)

Every infinite linear order has an infinite ascending or descending sequence.

The Chain/Antichain Principle (CAC)

Every infinite partial order has an infinite chain or antichain.

Proposition 3.1

 $RCA_0 \vdash CAC \rightarrow ADS.$

Stability and cohesiveness

RT² and ordering principles

es

immary

References

Ascending and descending sequence

Ascending and descending sequence

Given a partial order, if we give the pair $\{x, y\}$ the color 0 if x and y are comparable and the color 1 otherwise, then any homogeneous set for this coloring is a chain or antichain of our partial order. Thus RT²₂ implies CAC over RCA₀.

Stability and cohesiveness

RT₂² and ordering principles

es

nmary

References

Ascending and descending sequence

Ascending and descending sequence

Given a partial order, if we give the pair $\{x, y\}$ the color 0 if x and y are comparable and the color 1 otherwise, then any homogeneous set for this coloring is a chain or antichain of our partial order. Thus RT_2^2 implies CAC over RCA_0 .

Definition 3.2

- $\blacksquare \omega$ if every element has finitely many predecessors;
- $\blacksquare \omega^*$ if every element has finitely many successors;
- $\omega + \omega^*$ if it is not of type ω or $\omega + \omega^*$ and every element has either finitely many predecessors or finitely many successors.

Proposition 3.3

ADS is equivalent over RCA₀ to the statement that every infinite linear order has a suborder of type ω or ω^* .

Stability and cohesiveness

RT₂² and ordering principles

Sur

References

Ascending and descending sequence

Ascending and descending sequence

Every linear order \mathcal{L} of type $\omega + \omega^*$ is stable in a sense analogous to that for colorings, i.e. $\forall x \exists y \forall z > y(x <_L y \leftrightarrow x <_L z)$. Thus the analog of SRT²₂ is SADS.

Stable ADS (SADS)

Every linear order of type $\omega + \omega^*$ has a subset of order type ω or ω^* .

Stability and cohesiveness

RT² and ordering principles

у

References

Ascending and descending sequence

Ascending and descending sequence

Every linear order \mathcal{L} of type $\omega + \omega^*$ is stable in a sense analogous to that for colorings, i.e. $\forall x \exists y \forall z > y(x <_L y \leftrightarrow x <_L z)$. Thus the analog of SRT²₂ is SADS.

Stable ADS (SADS)

Every linear order of type $\omega + \omega^*$ has a subset of order type ω or ω^* .

Similarly, reducing to an order $\mathcal L$ of type $\omega + \omega^*$ corresponds to producing a cohesive set, as in such an order S, we have

$$\forall i \in S \exists s (\forall j > s(j \in S \rightarrow i <_L j) \lor \forall j > s(j \in S \rightarrow i >_L j)).$$

This gives us CADS as the analog of COH.

Cohesive ADS (CADS)

Every linear order has a subset S of order type ω , ω^* or $\omega + \omega^*$.

Stability and cohesiveness

RT₂² and ordering principles

Summ

References

Ascending and descending sequence

Ascending and descending sequence

Proposition 3.4

 $RCA_0 \vdash ADS \leftrightarrow SADS \land CADS.$

Proposition 3.5

 $RCA_0 \vdash SRT_2^2 \rightarrow SADS.$

Proposition 3.6

 $RCA_0 \vdash CRT_2^2 \rightarrow CADS \text{ and so } RCA_0 \vdash COH \rightarrow CADS.$

Introduction 00000000	Stability and cohesiveness	RT ₂ ² and ordering principles	References
Ascending and descending s	sequence		
Ascending ar	nd descending sequ	ience	

A degree theoretic analysis of these principles will provide proofs that most of the above implications cannot be reversed.

Introduction
00000000

Ascending and descending sequence

A degree theoretic analysis of these principles will provide proofs that most of the above implications cannot be reversed.

Theorem 3.7 (Hirschfeldt and Shore 2007)

Every X-computable linear order of type $\omega + \omega^*$ contains a suborder A of type ω or ω^* that is low over X, i.e. $(A \oplus X)' \leq_T X'$.

Corollary 3.8

There is an ω -model of RCA₀ + SADS consisting entirely of low sets.

Ascending and descending sequence

A degree theoretic analysis of these principles will provide proofs that most of the above implications cannot be reversed.

Theorem 3.7 (Hirschfeldt and Shore 2007)

Every X-computable linear order of type $\omega + \omega^*$ contains a suborder A of type ω or ω^* that is low over X, i.e. $(A \oplus X)' \leq_T X'$.

Corollary 3.8

There is an ω -model of RCA₀ + SADS consisting entirely of low sets.

Downey, Hirschfeldt, Lempp and Solomon [2001] have constructed a computable stable coloring of $[\omega]^2$ with no low homogeneous set, and so the model of SADS constructed in corollary above cannot be a model of SRT²₂.

Introduction	Stability and cohesiveness	RT ² and ordering principles	References
Ascending and descend	ing sequence		

Proposition 3.9

There is a computable linear order with no low suborder of type ω , ω^* or $\omega + \omega^*$.

Corollary 3.10

 $SADS \nvDash CADS$, and $SADS \nvDash WKL_0$.

Introduction	Stability and cohesiveness	RT ² and ordering principles		References	
Ascending and descending sequence					

Proposition 3.9

There is a computable linear order with no low suborder of type ω , ω^* or $\omega + \omega^*$.

Corollary 3.10

 $SADS \nvDash CADS$, and $SADS \nvDash WKL_0$.

Theorem 3.11 (Hirschfeldt and Shore 2007)

None of the following principles are implied by COH (nor CADS, which follows from it) : RT_2^2 , SRT_2^2 , WKL_0 , CAC, ADS, SADS.

Partial orders and CAC

Partial orders and CAC

Definition 3.12

A partial order \mathcal{P} is stable if either

- (1) $\forall i \in P \exists s(\forall j > s(j \in P \rightarrow i <_P j) \lor \forall j > s(j \in P \rightarrow i|_P j)), or$
- (2) $\forall i \in P \exists s(\forall j > s(j \in P \rightarrow i >_P j) \lor \forall j > s(j \in P \rightarrow i|_P j)).$

Stable CAC (SCAC)

Every infinite stable partial order has an infinite chain or antichain.

References

Partial orders and CAC

Partial orders and CAC

Definition 3.12

A partial order \mathcal{P} is stable if either

- (1) $\forall i \in P \exists s (\forall j > s(j \in P \rightarrow i <_P j) \lor \forall j > s(j \in P \rightarrow i|_P j)), or$
- (2) $\forall i \in P \exists s(\forall j > s(j \in P \rightarrow i >_P j) \lor \forall j > s(j \in P \rightarrow i|_P j)).$

Stable CAC (SCAC)

Every infinite stable partial order has an infinite chain or antichain.

Proposition 3.13

 $\textit{RCA}_0 \vdash \textit{SRT}_2^2 \rightarrow \textit{SCAC} \rightarrow \textit{SADS}.$

References

Partial orders and CAC

Partial orders and CAC

Theorem 3.14 (Hirschfeldt and Shore 2007)

Every stable partial order \mathcal{P} computable in X has a chain or antichain S that is low over X, i.e. $(A \oplus X)' \leq_{\mathcal{T}} X'$.

Corollary 3.15

 $SCAC \nvDash SRT_2^2$; $SCAC \nvDash CADS$ and so $SCAC \nvDash COH$; $SCAC \nvDash ADS$.

Partial orders and CAC

Partial orders and CAC

Theorem 3.14 (Hirschfeldt and Shore 2007)

Every stable partial order \mathcal{P} computable in X has a chain or antichain S that is low over X, i.e. $(A \oplus X)' \leq_T X'$.

Corollary 3.15

 $SCAC \nvDash SRT_2^2$; $SCAC \nvDash CADS$ and so $SCAC \nvDash COH$; $SCAC \nvDash ADS$.

Cohesive CAC(CCAC)

Every partial order has a stable suborder.

Proposition 3.16

 $RCA_0 \vdash CCAC \leftrightarrow ADS.$

Introduction	Stability and cohesiveness	RT ² and ordering principles	Summary	References
Summary				

Introduction 00000000	Stability and cohesiveness	RT ² and ordering principles		References
Referer	nces			
	D. R. Hirschfeldt, R. A. Shore			
	Combinatorial Principles Weak Journal of Symbolic Logic Vol.7	<i>er than Ramsey's Theorer</i> 2, 2007, 171-206.	n for Pairs.	
	P. Cholack, C. G. Jockusch, T.	A. Slaman		
	On the Strength of Ramsey's T Journal of Symbolic Logic Vol.6	<i>heorem for Pairs</i> . 66, 2001, 1-55.		
	C. T. Chong, T. A. Slaman, and	Y. Yang		
	The Metamathematics of Stabl	e Ramsey's Theorem for F	Pairs.	
	Journal for the American Mach	ematical Society Vol.27, 2	014, 863-892.	
	R. Downey, D. R. Hirschfeldt, S	. Lempp, and R. Solomon		
	$A \Delta_2^0$ set with no infinite low su Journal of Symbolic Logic Vol.6	bset in either it or its comp 66, 2001, 1371-1381.	olement.	
	S. G. Simpson,	A 111 11		
	Subsystems of Second Order A	Aritnmetic.		

Springer-Verlag, Berlin, 2009.

Introduction	Stability and cohesiveness	RT ² and ordering principles	References

THANKS!

