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Abstract. Description Logics (DLs) model concepts, roles, and individuals. Especially, con-
cept is the main modeling object. DLs describe the intension of concepts implicitly only by
means of the subsuption relationship between concepts. As it is known, the intension of a con-
cept not only involves the relationship with other concepts, but also some properties of its own.
This paper extend the generic sentences to the basic description logic ALC, and get a new logic
G-ALC. A kind of intensional semantics is provided to G-ALC, according to which a tableau
algorithm is proposed for the reasoning problems of G-ALC. The important properties such as
soundness and completeness of this algorithm are strictly proved.
Keywords: Description Logic, Generic Sentence, Extension, Tableau Algorithm, Soundness,
Completeness

1 Introduction

This paper backgrounds on the concept descriptions in the description logics
(DLs) [4]. DLs mainly model concepts, roles and individuals, and especially concepts
are the important modeling elements. Though concepts’ extensions are explicitly
interpreted by a collection of objects, the intensions are only dealed implicitly by the
subsumption relationship between concepts. As a matter of fact, a concept has many
intensions besides the relationship with other concepts. For instance, the concept bird
has the intension being a subconcept of animal, as well as the intensions such as fly,
feathered, lay eggs, · · · . Hence, concepts also need to be interpreted intensionally.
In order to describe the knowledge more precisely, DLs need to take care of the
concepts’ intensions.

To enhance the intensional expressive power of DLs, this paper extend a kind of
intensional knowledge, generic sentences [1, 13], to the basic description logic ALC,
and get a new logic denoted as G-ALC. G-ALC compounds ALC and the reasoning
systems GAG and Gaa for generics [16]. We provide an intensional semantics for
G-ALC, of which the frames preserve the properties of that of GAG and Gaa. In this
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semantics, a concept (a terminology precisely) has four-layer interpretation, namely,
sense, extension, intension and concept [11]. Based on this intensional semantics,
we propose a tableau algorithm for the reasoning problems of G-ALC. Because that
all the typical reasoning problems can be reducted to the satisfiability of a formula
w.r.t a knowledge base, it’s suffice to ensure the tableau algorithm is effective for this
reducted problem.

The tableau algorithm provides a reasoning rule for each kind of G-ALC formula
and each of the transforming rules holding intuitively. The important properties of
this algorithm such as the soundness and completeness are strictly proved with help
of induction method and some other technical ways. The termination property is
relatively more obvious, therefore a proof in details is omitted in this paper.

The body part of this article comprise five sections range from 2 to 6. In section
2, we introduces the generic extension G-ALC in syntax, semantics and the knowl-
edge base. In section 3, the tableau algorithm is set up and some properties and
notations are talked about. In section 4, the relationship between a G-ALC model
and a tableau is shown. This is the basis of the proof the tableau algorithm. In section
5 and 6, the soundness and completeness are proved in details.

2 The generic extension of ALC

In this part, we introduce G-ALC in three aspects: syntax, semantics and the
knowledge base based on G-ALC. First, let us have a quick look at the syntax part.

2.1 G-ALC syntax

Language G −A L C . 1. symbols：enumerable variables x1, x2, · · · ; constants
c1, c2, · · · ; concepts C1, C2, · · · ; roles R1, R2, · · · . 2. concept constructors: ∼
,u,t,∀,∃, N . 3. connectives: ¬,v,≡, G,>. 4. aux Symbols: (, ). Variable set is
denoteds as V ar, constant set is denoted asCon, concept set is denoted as CA (means
atomic concepts), role set is denoted asR. The term set Term = V ar ∪ Con.

Concept descriptions in G −A L C are formed according to the following syn-
tax rule:

C,D ::= > | ⊥ | A |∼ C | C uD | C tD | ∀R.C | ∃R.C | N(C,D)

Particularly,A ∈ CA, R ∈ R,⊥ =∼ >, CtD =∼ (∼ Cu ∼ D), ∃R.C =∼ ∀R. ∼
C, G −A L C concept description set is denoted as CG−A L C。

Formulae in G −A L C are formed according to hte following syntax rule:
α, β ::= C(t) | R(t1, t2) | C v D | C ≡ D | G(C,D) | α > β | ¬(α > β)

Particularly, t, t1, t2 ∈ Term, C,D ∈ CA, R ∈ R. The G −A L C formula set is
denoted as FG−A L C .
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2.2 G-ALC semantics

Let’s look into the G-ALC frame and structure first.

Definition 1 A G-ALC frame is a tuple F = 〈W,D, C,N ,~〉. W and D are
nonempty sets, C is a map from ℘(D)W to ℘(℘(D)W )W called concept generat-
ing function. N is a function ranging over W and D called the normal individual
collecting function. ~ is a set sellect function over W .

Definition 2 A G-ALC structure is a pair S = 〈F, ε〉. F is a G-ALC frame, ε is the
sense interpretation for G-ALC constants, concepts and roles on frame F：

(1) For any constant c, ε(c) ∈ DW。ε(c) is also written as cε.
(2) For any concept C, ε(C) ∈ ℘(D)W . ε(C)is also written as Cε. And for any

possible world w ∈W , ε(C)(w) is defined as follow.

(a) ε(>)(w) = D.
(b) ε(∼ C)(w) = D − ε(C)(w).
(c) ε(⊥)(w) = D − ε(>)(w) = ∅.
(d) ε(C1 u C2)(w) = ε(C1)(w)

⋂
ε(C2)(w).

(e) ε(C1 t C2)(w) = ε(∼ (∼ C1u ∼ C2))(w) = D − ε(∼ C1u ∼
C2)(w) = ε(C1)(w)

⋃
ε(C2)(w).

(f) ε(∀R.C)(w) = {a ∈ D | ∀b ∈ D((a, b) ∈ ε(R)(w)→ b ∈ ε(C)(w))}.
(g) ε(∃R.C)(w) = ε(∼ ∀R. ∼ C)(w) = D − ε(∀R. ∼ C)(w) = {a ∈ D |
∃b ∈ D((a, b) ∈ ε(R)(w) ∧ b ∈ ε(C)(w))}.

(h) ε(N(C,D))(w) = N (C,D)(w) ⊆ ε(C)(w)

(3) For any role R, ε(R) ∈ (℘(D ×D))W . ε(R) is also written as Rε.

Here now we go on to the G-ALC assignment and model.

Definition 3 A G-ALC model is a pair M = 〈S, σ〉. S is a G-ALC structure, σ is
an assignment, which assigns an individual sense to each variable, σ : V ar → DW .

Let F = 〈W,D, C,N ,~〉 be a G-ALC frame, structure S = 〈F, ε〉 can be writ-
ten as 〈W,D, C,N ,~, ε〉; modelM = 〈S, σ〉 can be written as 〈W,D, C,N ,~, ε, σ〉.
Let M = 〈W,D, C,N ,~, ε, σ〉 be a G-ALC model, WM ,DM , εM , σM be the ele-
ments of M , FM , SM be frame and stucture respectively.

Definition 4 Let M be a model, σM be the assignment of M , σM (s/x) is a variant
of σM with respect to x, if and only if, σM (s/x) : V ar → DWM satisfies the following
property.

σM (s/x)(y) =

{
s : y = x

σM (y) : y 6= x
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LetM =< S, σ > be a model, σM (d/x) is a variant of σM . Model< S, σM (s/x) >

is denoted as M(s/x).

Definition 5 Let M be a G-ALC model, t is a term, the interpretation of t in M is
tM , a map defined as follows:

tM =

{
εM (a) : t = c

σM (x) : t = x

Definition 6 Let M = 〈W,D, C,N ,~, ε, σ〉 be a G-ALC model, α be a G-ALC
formula, ‖ α ‖M is a set defined as follows：

1. ‖ C(t) ‖M= {w ∈W | tM (w) ∈ Cε(w)}
2. ‖ R(t1, t2) ‖M= {w ∈W | (tM1 (w), tM2 (w)) ∈ Rε(w)}
3. ‖ C v D ‖M= {w ∈W | Cε(w) ⊆ Dε(w)}
4. ‖ C ≡ D ‖M=‖ C v D ‖M

⋂
‖ D v C ‖M

5. ‖ G(C,D) ‖M= g∗(Cε, Dε) = {w ∈W | Dε ∈ (Cε)C}
6. ‖ α > β ‖M= ∪{X ⊆W | ~(X, ‖ α ‖M ) ⊆‖ β ‖M}
7. ‖ ¬(α > β) ‖M= W− ‖ α > β ‖M

2.3 G-ALC knowledge base

Distinct from the ALC knowledge base, which comprises TBox and ABox, a
knowledge base based on G-ALC comprises three sub-bases: TBox, ABox and G-
Box. TBox is defined as usual in DL, which is a finite set of formulae with the form
such as C v D,C ≡ D. ABox is a finite set of formulae with the form such as
C(t), R(t1, t2), N(C,D)(t). A GBox is a finite set of formuae with the form such as
G(C,D), α > β,¬(α > β).

3 A tableau algorithm for G-ALC

As we know, all the ALC reasoning problems can be reducted to the concept
satisfiability problem. Similarly, all the G-ALC reasoning problems can be reducted
to a kind of problem, that is the satisfiability of a G-ALC formula with respect to a
knowledge base KB. Because of the page number restriction, the reduction proof
is not given in details. The satisfiability of a G-ALC formula α with respect to a
G-ALC knowledge base KB is just the consistance of set KB

⋃
{α}, i.e., decide

whether KB
⋃
{α} has a G-ALC model. Let’s call such problem ”restricted satisfi-

ability”. So, for G-ALC reasoning problems, it is suffice to provide an algorithm for
the ”restricted satisfiability” problem. The tableau algorithm specified below is just
deserved.
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Before proposing the G-ALC tableau algorithm formally, we first show what’s
tableau algorithm and some important terminologies and notations of it. Tableau al-
gorithm uses a tableau, which indicate the relationship between the semantics and
syntax of the problem domain, to decide whether the problem holds. A tableau algo-
rithm comprises a group of rules to build a tableau, as well as a group rules to decide
whether the tableau is open or closed.

A tableau is a pair T = < N,S >, while N is a set of nodes, and S a direct-
ed binary relation between the nodes called deriving relation, which is irreflexive,
asymmetry and intransitive. For every node, there is a set K of two kind of node ex-
pressions with forms of [i, α] and r(i, α, j). Particularly, α is a G-ALC formula,and
i, j are natural numbers. The number i in [i, α] called the tab1 for α.

A tableau for the restriced satisfiability of formula α w.r.t knowledge KB is de-
noted as T(KB,α). Each tableau is built using the tableau rules step by step. The
tableau T(KB,α) built by n steps, that is to say, using n rules can be denoted as
T(KB,α)(n). Especially, T(KB,α)(0) only has one node, and the node-expression set
is K(KB,α)(0) = {[0, α] | α ∈

⋃
KB}

⋃
{[0, α]}.

For every tableau T(KB,α) = < N,S >, there are two kinds of special nodes
named root-node and end-node. The root-node is the node with K(KB,α)(0) as
node-expression set. For any x ∈ N , if there is no y ∈ N such that Sxy, then x is a
end-node of T(KB,α).

Let T = < N,S > be a tableau, B = < N ′, S′ > a sub-tableau of T (N ′ ⊆
N,S′ ⊆ S). If N ′ contains the root-node u and an end-node v of T , satisfying that
S′nuv (n ≥ 0) and B contains no other end-node of T , then B is a branch of T .
S′nuv means that there are x1, · · · , xn−1, such that S′ux1∧S′x1x2∧· · ·∧S′xn−1v.
n is the length of B. In convention, n = 0 when S = ∅.

Let K be a node-expression set of an end-node. All the formulae in K are of
negative normal form. The formula-rules are given below.

1. [u]：If [i, (C1 u C2)(t)] ∈ K and [i, C1(t)] /∈ K or [i, C2(t)] /∈ K, then this
node derives a new node such that K′ = K

⋃
{[i, C1(t)], [i, C2(t)]}.

2. [t]：If [i, (C1 t C2)(t)] ∈ K and [i, C1(t)] /∈ K, [i, C2(t)] /∈ K, then this
node derives two new nodes such that K′ = K

⋃
{[i, C1(t)]}, and K′′ =

K
⋃
{[i, C2(t)]}. (In this case, one branch forks two branches. )

3. [∀]：If [i,∀R.C(t)] ∈ K, [i, R(t, t′)] ∈ K, and [i, C(t′)] /∈ K, then this node
derives a new node such that K′ = K

⋃
{[i, C(t′)]}.

4. [∃]：If [i,∃R.C(t)] ∈ K, then this node derives a new node such that K′ =

K
⋃
{[i, R(t, c)], [i, C(c)]}. (c is a new constant haven’t occurred in K.)

5. [v]：If [i, C1 v C2] ∈ K and [i, C1(t)] ∈ K, [i, C2(t)] /∈ K, then this node de-

1i, j represent possible worlds, and the intuitionistic meaning of [i, α] is that α is true on possible
world i. r(i, α, j) is a ternary relation obtained according to the set collection function ~ in G-ALC
frame. The meaning of r(i, α, j) is wj ∈ ~({wi}, ‖ α ‖M) [16].
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rives a new node such that K′ = K
⋃
{[i, C2(t)], [i, G(C2, D) > G(C1, D)]}.

(D is any concept occurred in K.)
6. [≡]：If [i, C1 ≡ C2] ∈ K, and [i, C1 v C2] /∈ K or [i, C2 v C1] /∈ K, then

this node derives a new node such that K′ = K
⋃
{[i, C1 v C2], [i, C2 v C1]}.

7. [N ]: If [i,N(C,D)(t)] ∈ K, then this node derives a new node such that
K′ = K

⋃
{[i, C(t)]}.

8. [G]: If [i, G(C,D)] ∈ K, then this node derives a new node such that K′ =

K
⋃
{[i,N(C,D)t > D(t)], [i, C(t) > N(C,D)(t)]} (t is a term occurred in

K).
9. [>]: If [i, α > β] ∈ K and r(i, α, j) ∈ K, [j, β] /∈ Kthen this node derives a

new node such that K′ = K
⋃
{[j, β]}.

10. [¬ >]: If [i,¬(α > β)] ∈ K, then this node derives a new node such that
K′ = K

⋃
{r(i, α, j), [j,¬β]}. (j = m+ 1,m is the largest tab in K).

The r-rules are given below.

1. [rv]: If r(i, C1 v C2, j) ∈ K, then this node derives a new node such that
K′ = K

⋃
{r(i, G(C2, D) > G(C1, D), j)}. (D is any concept occurred in

K).
2. [r>]: If r(i, α, j), r(i, α > β, j) ∈ K, then this node derives a new node such

that K′ = K
⋃
{[j, β], r(i, β, j)}.

3. [ru]: If r(i, (C u D)(t), j) ∈ K, then this node derives a new node such that
K′ = K

⋃
{r(i, C(t), j), r(i,D(t), j)}.

4. [rt]: If r(i, (C t D)(t), j) ∈ K, then this node derives a new node such that
K′ = K

⋃
{r(i, C(t), j)}, K′′ = K

⋃
{r(i,D(t), j)}.

5. [r∀]: If r(i,∀R.C(t), j), r(i, R(t, t′), j) ∈ K, then this node derives a new
node such that K′ = K

⋃
{r(i, C(t′), j)}.

6. [r∃]: If r(i,∃R.C(t), j) ∈ K, then this node derives a new node such that
K′ = K

⋃
{r(i, R(t, c), j), r(i, C(c), j)}. (c is a new constant haven’t occurred

in K).
7. [rGAG]: If {[i, C1 v C2], [i, G(C2, D)], r(i, C1 v C2, j), r(i, G(C2, D), j)} ⊆
K, then this node derives a new node such that K′ = K

⋃
{[j,G(C1, D)]}.

8. [rID]: If {r(i, α, j)} ⊆ K, then this node derives a new node such that K′ =

K
⋃
{[j, α]}.

9. [rTT ]: If {[i, α > β], [i, β > γ]} ⊆ K, then this node derives a new node such
that K′ = K

⋃
{[i, α > γ]}.

10. [rGaa]: If {[i, G(C,D)], [i, C(t)], r(i, G(C,D), j), r(i, C(t), j)} ⊆ K, then
this node derives a new node such thatK′ = K

⋃
{[j,D(t)]}.

Regulation of the usage of abovementioned tableau rules: each rule can’t be used
repeatedly, namely, we can’t use a used rule for the same formula more than once.

Definition 7 Let K be a node-expression set. K is clashed if there is i, t such that
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{[i,⊥(t)]} ⊆ K, or i, α such that {[i, α], [i,¬α]} ⊆ K. Otherwise, K is consistent.

Definition 8 Let T be a tableau, B is a branch of T . If there exists clashed node-
expression set in B, then B is a closed branch, otherwise it’s open. If all the branched
of T are closed, then T is closed tableau, otherwise, it’s open.

Definition 9 A branch which is closed or has no rules can be used is called finished.
A tableau with all branches finished is a finished tableau.

Proposition 1 Let T be a tableau, u is a node of T , v is derived directly from u,
K,K′ are node-expression set of u, v respectively, then K ⊆ K′.

Proof It can be proved easily according to the tableau rules. Proof in details is
omitted here. �

Corollary 1 Let T be a tableau, B is a branch of T with length of n. K0,K1, · · · ,
Kn are the node-expression sets of B from the root-node to the end-node. Then
K0 ⊆ K1 ⊆ · · · ⊆ Kn.

Proof It can be obtained from proposition 1 obviously. Proof in details is omitted
here. �

Proposition 2 Let T be a tableau, B is a branch of T with length of n. K0,K1, · · · ,
Kn are the node-expression sets of B from the root-node to the end-node. B is open,
iff, the node-expression set of end-node Kn is consistent.

Proof =⇒: If B is open, then K0,K1, · · · ,Kn are consistent. Therefore, Kn is
consistent holds obviously.
⇐=：If B is closed, then there is an inconsistent node-expression set Ki, (0 ≤

i ≤ n). According to the corollary 1, Ki ⊆ Kn. So Kn is inconsistent. �

From this proposition, we can infer that whether a branch B is open correspon-
dence to the consistency of the end-node expression set. So we call the end-node
expression set Kn the characteristic set for branch B, denoded as KB.

G-ALC tableau algorithm comprises the tableau rules, the regulation of rules
and the definition of open (closed) tableau.

4 The relationship between the G-ALC model and tableau

As mentioned above, tableau bridges the syntax aspect and the semantics aspect.
In the following part, we will show how it bridges the two sides. This question leads
to two branches, with (1) is to construct a G-ALC model according to a end-node
expression set on a tableau, and (2) is to unfold the fact that the restricted satisfiablil-
ity of a formula α w.r.t a knowledge base KB correspondence to the open (closed)
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property of the tableau T(KB,α). As for (2), it’s in nature the soundness and complete-
ness of the G-ALC tableau algorithm. Soundness: if formula α is satisfiable w.r.t a
knowledge base KB, then the tableau T(KB,α) is open. Completeness is the converse
proposition of soundness: if the tableau T(KB,α) is open, then formula α is satisfiable
w.r.t a knowledge base KB. In this section, we will look into the subquestion (1), and
the subquesetion (2) will be left to the two coming sections.

Definition 10 Let T be a finished tableau, K a consistent end-node expression set
on it. MK = < WK,DK,NK,~K, εK, CK, σK > ia called a model based on K, for
short, K-model, ifMK satisfies the following conditions.

1. WK = I(K), i.e. the set of all the tabs in K.
2. DK = {ti | [i, α(t)] ∈ K, i ∈ I(K)}. t is a term in K.
3. ~K : ℘(WK) × ℘(WK) → ℘(WK) is the set sellection function on ℘(WK).

r(i, α, j) ∈ K, iff, j ∈ ~({i}, ‖ α ‖).
4. NK ∈ ℘(DK) × ℘(DK) → ℘(DK). For any CεK , DεK ∈ ℘(DK), i ∈ WK,

NK(CεK , DεK)(i) = {ti | [i,N(C,D)(t)] ∈ K}.
5. εK is the interpretation of constants, concepts and roles on frame FK：(1) for

any constant c, cεK ∈ DKWK , for any i ∈ WK, cεK(i) = ci, iff, there is a formula α
such that [i, α(c)] ∈ K; (2) for any concept C, CεK ∈ ℘(DK)WK , for any i ∈ WK,
CεK(i) = {ti | [i, C(t)] ∈ K}; (3) for any role R, RεK ∈ (℘(DK×DK))WK , for any
i ∈ WK, RεK(i) = {< tMK(i), t′MK(i) >| [i, R(t, t′)] ∈ K}.

6. CK is the concept generating function from ℘(DK)WK to ℘(℘(DK)WK)WK . If
[i, G(C,D)] ∈ K, then (D)εK ∈ CεKCK(i), or else (D)εK /∈ CεKCK(i). For any sense
s, s′ ∈ ℘(DK)WK , any i ∈ WK, if s(i) ⊆ s′(i), then for any sense s′′, ~({i}, g∗(s′
, s′′)) ⊆ g∗(s, s′′).

7. σK is an assignment for the variables. For any variable x, xσK ∈ DKWK . For
any i ∈ WK, xσK(i) = xi.

Definition 11 For any G-ALC formula α, ‖ α ‖MK is a set defined as follow.

1. ‖ C(t) ‖MK= {w ∈ WK | tMK(w) ∈ CεK(w)}
2. ‖ R(t1, t2) ‖MK= {w ∈ WK | (tMK1 (w), tMK2 (w)) ∈ RεK(w)}
3. ‖ C v D ‖MK= {w ∈ WK | CεK(w) ⊆ DεK(w)}
4. ‖ C ≡ D ‖MK=‖ C v D ‖MK ∩ ‖ D v C ‖MK
5. ‖ G(C,D) ‖MK= g∗(CεK , DεK) = {w ∈ WK | DεK ∈ (CεK)CK}
6. ‖ α > β ‖MK= ∪{X ⊆MK | ~(X, ‖ α ‖MK) ⊆‖ β ‖MK}
7. ‖ ¬(α > β) ‖MK=MK− ‖ α > β ‖MK

In conclusion, this section provide a method to construct a G-ALC model from
a consistent end-node expression set. Then, let’s switch to the subquestion (2), the
soundeness and completeness of the G-ALC tableau algorithm.
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5 The soundness of the G-ALC tableau algorithm

Let B be a branch, I(B) is the tab set of B. For any i ∈ I(B), let F (B, i) = {α |
[i, α] occurs on B} called the formula set of tab i. Let C(B) = {F (B, i) | i ∈ I(B)},
namely the set of formula set of all the tabs on B, denoted as B − characteristics.
Let K be a node-expression set, I(K) is the tab set of K . For any i ∈ I(K),
let F (K, i) = {α | [i, α] occurs in K} be the formula set of tab i. Let C(K) =

{F (K, i) | i ∈ I(K)} be the set of formula set of all the tabs of K, denoted as
K − characteristics. According to the proposition 1, it’s obvious that C(B) =

C(KB).

Proposition 3 LetK be a node-expression set. K is consistent, iff, for all i ∈ I(K),
neither there is a formula α such that α ∈ F (K, i) and ¬α ∈ F (K, i), nor there is a
term t such that ⊥(t) ∈ F (K, i).

Proof It can be proved by the definition of the consistency of node-expression set.
Proof in details is omitted here. �

Definition 12 Let α be a G-ALC formula, K a node-expression set.
（1）α is satisfiable, iff, there is a G-ALC model M and a possible world

w ∈WM such that w ∈‖ α ‖M.（Also denoted as M, w |= α.
（2）C(K) is satisfiable, iff, there is a G-ALC model M, for any i ∈ I(K)

thereis a possible world w ∈ WM such that M, w |=
∧
F (K, i). (

∧
F (K, i) means

the conjunction of all the formulae in F (K, i))

Proposition 4 Let K be a node-expression set. C(K) is satisfiable, iff, K is consis-
tent.

Proof It can be proved according to proposition 4 and definition 19, 20. Proof in
details is omitted here. �

Proposition 5 Let K be a node-expression set. C(K) = {F (K, 0), · · · , F (K, i),
· · · , F (K, k)}, I(K) = {0, · · · , k}. Let K ′ be the node-expression set obtained by
the application of a tableau rule to K.

(1) Except for [¬ >], all the other tableau rules can not generate new tabs, i.e.,
I(K′) = I(K) = {0, · · · , k}.

(2) Except for [>], [¬ >], [r>], [rGAG], [rGaa, [rID], all the other tableau rules
only add new formulae to F (K, i), i.e., F (K, j) = F (K′, j), if j 6= i.

(3) [¬ >] can generate new tabs. If the rule [¬ >] is used to [i,¬(β > γ)] in K,
then C(K′) = {F (K, 0), · · · , F (K, k), F (K′, k + 1)}, and F (K′, k + 1) = {¬γ}，
I(K′) = {0, · · · , k, k + 1}.

(4) Only the rule [t] derives two new nodes.
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Proof It can be easily proved according to tableau rules. Proof in details is omitted
here. �

According to proposition 6, all the tableau rules can be devided into three kinds:
1. [t], [rt], which result in forks and do not change the formula set of other tabs; 2.
[u], [∀], [∃], [v], [≡], [N ], [G], [ru], [r∀], [r∃], [rv], [rTT ], which neither result in fork-
s nor change the formula set of other tabs; 3. [>], [¬ >], [r>], [rGAG], [rGaa], [rID],
which do not result in forks, but change the formula set of other certain tab. Three
propositions will be proved below to show all the tableau rules are satisfiable presev-
ing.

Proposition 6 Let K be a node-expression set, K′ and K′′ are obtained after the
application of [t]. If C(K) is satisfiable, then so is C(K′) or C(K′′).

Proof Let C(K) = {F (K, 0), · · · , F (K, k)}. K′ and K′′ are obtained after the ap-
plication of the rule [t] to [i, (CtD)(t)] inK. SoC(K′) = {F (K′, 0), · · · , F (K′, k)},
and F (K′, i) = F (K, i) ∪ {C(t)}. C(K′′) = {F (K′′, 0), · · · , F (K′′, k)}, and
F (K′′, i) = F (K, i) ∪ {D(t)}. By the proposition 6.(2), for any j 6= i, F (K′, j) =

F (K′′, j) = F (K, j). If C(K) is satisfiable, then there is a model M and possible
world w such that M,w |= (C tD)(t). By the G-ALC semantics, M,w |= C(t) or
M,w |= D(t). In addition, the rule [t] do not change the other tab’s formula set, so
C(K′) is satisfiable or C(K′′) is satisfiable. �

Proposition 7 Let K be a node-expression set. K′ is obtained after the applica-
tion of one of the following rules [u], [∀], [∃], [v], [≡], [N ], [G], [rTT ]. If C(K) is
satisfiable, then so is C(K′).

Proof LetC(K) = {F (K, 0), · · · , F (K, i), · · · , F (K, k)}, and I(K) = {0, · · · , k}.
K′ is the result counterpart after the application of one of the above rules.

As for [u]. Suppose that the rule [u] is applied to [i, (C u D)(t)] ∈ K. Then
C(K′) = {F (K, 0), · · · , F (K′, i), · · · , F (K, k)}, andF (K′, i) = F (K, i)∪{C(t), D(t)}.
If C(K) is satisfiable, then there is a model M =< W,D,N ,~, C, ε, σ > and a pos-
sible world w ∈ W such that M,w |= F (K, i). Because (C u D)(t) ∈ F (K, i),
M,w |= C(t),M,w |= D(t). Therefore, M,w |= F (K′, i). For the rule [u] do not
change the formula set of other tabs, thus C(K′) is satisfiable.

As for [∀]. Suppose that the rule [∀] is allpied to [i,∀R.C(t)] ∈ K. Then
C(K′) = {F (K, 0), · · · , F (K′, i), · · · , F (K, k)}. For any term t′, if R(t, t′) ∈
F (K, i), then C(t′) ∈ F (K′, i). If C(K) is satisfiable, then there is a model M =<

W,D,N ,~, C, ε, σ >, and a possible world w ∈ W such that M,w |= F (K, i).
Because ∀R.C(t) ∈ F (K, i), M,w |= ∀R.C(t), i.e., tM (w) ∈ (∀R.C)ε(w) = {d ∈
D | ∀d′ ∈ D(< d, d′ >∈ Rε(w) → d′ ∈ Cε(w))}. For any term t′, if R(t, t′) ∈
F (K, i), then M,w |= R(t, t′), namely, < t, t′ >∈ Rε(w). Thus t′ ∈ Cε(w), i.e.,
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M,w |= C(t′). As a result, M,w |= F (K′, i). For the rule [∀] do not change the
formula set of other tabs, thus C(K′) is satisfiable.

As for [∃]. Suppose that the rule [∃] is allpied to [i,∃R.C(t)] ∈ K. Then
C(K′) = {F (K, 0), · · · , F (K′, i), · · · , F (K, k)}, andF (K′, i) = F (K, i)∪{R(t, c), C(c)}.
If C(K) is satisfiable, then there is a model M =< W,D,N ,~, C, ε, σ >, and a
possible world w ∈ W such that M,w |= F (K, i). Because ∃R.C(t) ∈ F (K, i),
M,w |= ∃R.C(t), i.e., tM (w) ∈ (∃R.C)ε(w) = {d ∈ D | ∃d′ ∈ D(< d, d′ >∈
Rε(w) ∧ d′ ∈ Cε(w))}. Let M ′ =< W,D,N ,~, C, ε′, σ >, and cε

′ ∈ {d ∈ D |<
tε(w), dε

′
(w) >∈ Rε(w) ∧ dε′(w) ∈ Cε(w))}, all the other interpretations coincide

with ε. So M ′, w |= R(t, c), and M ′, w |= C(c), i.e., M ′, w |= F (K′, i). For the
rule [∃] do not change the formula set of other tabs, thus C(K′) is satisfiable.

As for [v]. Suppose that the rule [v] is allpied to [i, C v D] ∈ K. Then
C(K′) = {F (K, 0), · · · , F (K′, i), · · · , F (K, k)}. For any term t, if C(t) ∈ F (K, i),
then F (K′, i) = F (K, i) ∪ {D(t)}. If C(K) is satisfiable, then there is a model
M =< W,D,N ,~, C, ε, σ >, and a possible world w ∈ W such that M,w |=
F (K, i). Because C v D ∈ F (K, i), M,w |= C v D, i.e., Cε(w) ⊆ Dε(w). For
any term t, if C(t) ∈ F (K, i), then M,w |= C(t), i.e., tε(w) ∈ Cε(w) ⊆ Dε(w).
Therefore, M,w |= D(t), and M,w |= F (K′, i). For the rule [v] do not change the
formula set of other tabs, thus C(K′) is satisfiable.

As for [≡]. Suppose that the rule [≡] is allpied to [i, C ≡ D] ∈ K. Then
C(K′) = {F (K, 0), · · · , F (K′, i), · · · , F (K, k)}, and F (K′, i) = F (K, i) ∪ {C v
D,D v C}. If C(K) is satisfiable, then there is a model M =< W,D,N ,~, C, ε,
σ >, and a possible world w ∈ W such that M,w |= F (K, i). Because C ≡ D ∈
F (K, i), M,w |= C ≡ D, i.e., Cε(w) ⊆ Dε(w) and Dε(w) ⊆ Cε(w). Thus
M,w |= C v D and M,w |= D v C. So M,w |= F (K′, i). For the rule [≡] do not
change the formula set of other tabs, thus C(K′) is satisfiable.

As for [N ]. Suppose that the rule [N ] is allpied to [i,N(C,D)(t)] ∈ K. Then
C(K′) = {F (K, 0), · · · , F (K′, i), · · · , F (K, k)}, and F (K′, i) = F (K, i)∪{C(t)}.
If C(K) is satisfiable, then there is a model M =< W,D,N ,~, C, ε, σ >, and a
possible world w ∈ W such that M,w |= F (K, i). Because N(C,D)(t) ∈ F (K, i),
M,w |= N(C,D)(t), i.e., tε(w) ∈ N (Cε, Dε)(w) ⊆ Cε(w). Therefore M,w |=
C(t), and M,w |= F (K′, i). For the rule [N ] do not change the formula set of other
tabs, thus C(K′) is satisfiable.

As for [G]. Suppose that the rule [G] is allpied to [i, G(C,D)] ∈ K. Then
C(K′) = {F (K, 0), · · · , F (K′, i), · · · , F (K, k)}. For any term t, if t occurs in
F (K′, i), then N(C,D)t > D(t), C(t) > N(C,D)(t) ∈ F (K′, i). If C(K) is sat-
isfiable, then there is a model M =< W,D,N ,~, C, ε, σ >, and a possible world
w ∈W such thatM,w |= F (K, i). BecauseG(C,D) ∈ F (K, i),M,w |= G(C,D),
i.e., w ∈‖ G(C,D) ‖M= g∗(Cε, Dε). According to the G-ALC frame condition
NG : g∗(Cε, Dε) ⊆ g(Cε, Dε) = {w ∈ W | ∀t,~({w}, ‖ N(C,D)(t) ‖M ) ⊆‖
D(t) ‖M}, M,w |= N(C,D)(t) > D(t). In addition for the G-ALC frame condi-
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tion DNæg∗(Cε, Dε) ⊆ {w ∈ W | ∀t,~({w}, ‖ C(t) ‖M ) ⊆‖ N(C,D)(t) ‖M}
, M,w |= C(t) > N(C,D)(t). Thus M,w |= F (K′, i). For the rule [G] do not
change the formula set of other tabs, thus C(K′) is satisfiable.

As for [rTT ]. Suppose that the rule [rTT ] is allpied to [i, α > β], [i, β > γ] ∈ K.
Then C(K′) = {F (K′, 0), · · · , F (K′, k)}, and F (K′, i) = F (K, i) ∪ {[i, α > γ]}.
According to the proposition 6.(2), for any j 6= i, F (K′, j) = F (K, j). If C(K)

is satisfiable, then there is a model M =< W,D,N ,~, C, ε, σ >, and a possible
world w ∈ W such that M,w |= F (K, i). Because α > β, β > γ ∈ F (K, i),
M,w |= α > β,M,w |= β > γ. In addition for transitivity of the G-ALC frame,
M,w |= α > γ. Thus M |= C(K′). For the rule [rTT ] do not change the formula set
of other tabs, thus C(K′) is satisfiable. �

Definition 13 Let K be a node-expression set, M is a model of C(K). M is called
a RS model, if R(i, α, j) ∈ K, then there are possible worlds wi, wj ∈ WK, such
that wj ∈ ~({wi}, ‖ α ‖M). If a RS model models C(K), then C(K) is called
RS-satisfiable. K −models are such RS-models.

Proposition 8 Let K be a node-expression set, K′ is obtained by applying one of
the following rules [>], [¬ >], [rt], [ru], [r∀], [r∃], [r>], [rv], [rGAG], [rID], [rGaa].
If C(K) is RS-satisfiable, then so is C(K′).

Proof As for [>]. Suppose that the rule [>] is allpied to [i, α > β], r(i, α, j) ∈ K.
Then C(K′) = {F (K′, 0), · · · , F (K′, i), · · · , F (K′, k)}. Particularly, F (K′, j) =

F (K, j) ∪ {β}, 0 ≤ j ≤ k, and F (K′, l) = F (K, l), l 6= j. If C(K) is RS-
satisfiable, for α > β ∈ F (K, i), so there is a RS-model M and a possible world
wi such that M, wi |= α > β. Thus ~({wi}, ‖ α ‖M) ⊆‖ β ‖M. Because M is a
RS-model, and R(i, α, j) ∈ K, wj ∈ ~({wi}, ‖ α ‖M). Therefore wj ∈‖ β ‖M, i.e.,
MK, wj |= β. So MK is a RS-model of C(K′). According to the construcure of MK,
in fact, wi and wj are i and j respectively. Let i and j replace wi and wj respectively
in below.

As for [¬ >]. Suppose that the rule [¬ >] is allpied to [i,¬(α > β)] ∈ K. Then
R(i, α, j), [j,¬β] ∈ K′, and j = k+1 is a new tab. BecauseC(K) = {F (K, 0), · · · ,
F (K, i), · · · , F (K, k)}, C(K′) = {F (K, 0), · · · , F (K, i), · · · , F (K, k), F (K′, k +

1)}, and F (K′, k + 1) = {¬β}. If C(K) is RS-satisfiable, so there is a RS-model
M, for i, (0 ≤ i ≤ k), M |= F (K, i). For ¬(α > β) ∈ F (K, i), so there is
an i such that M, i |= ¬(α > β). So ~({i}, ‖ α ‖M) *‖ β ‖M, i.e., there is a
w′ ∈ ~({i}, ‖ α ‖M), and w′ /∈‖ β ‖M. Thus w′ ∈‖ ¬β ‖M. Let w′ = wk+1,
so M |= F (K′, k + 1). Therefore M |= C(K′). Now that j = k + 1, so there are
i, j ∈WK such that j ∈ ~({i}, ‖ α ‖M). So C(K′) is RS-satisfiable.

As for [rt]. Suppose that the rule [rt] is allpied to r(i, (C t D)(t), j) ∈ K.
Let C(K) = {F (K, 0), · · · , F (K, k)}, Kß and K′′ are obtained after the application
of rule [rt]. So C(K′) = {F (K′, 0), · · · , F (K′, k)}, and F (K′, i) = F (K, i)∪
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{r(i, C(t), j)}, C(K′′) = {F (K′′, 0), · · · , F (K′′, k)}, F (K′′, i) = F (K, i) ∪ {r(i,
D(t), j)}. According to the proposition 6.(2), for any j 6= i, F (K′, j) = F (K′′, j) =

F (K, j). If C(K) is RS-satisfiable, for r(i, (C t D)(t), j) ∈ F (K, i), so there is a
RS-model M and a possible worlds i, j such that j ∈ ~({i}, ‖ (C t D)(t) ‖M) =

~({i}, ‖ C(t) ‖M) ∪ ~({i}, ‖ D(t) ‖M). Therefore, j ∈ ~({i}, ‖ C(t) ‖M) or
j ∈ ~({i}, ‖ D(t) ‖M). Thus C(K′) is RS-satisfiable, or C(K′′) is RS-satisfiable.

As for [ru]. Suppose that the rule [ru] is allpied to r(i, (C uD)(t), j) ∈ K. Let
C(K) = {F (K, 0), · · · , F (K, k)}, then C(K′) = {F (K′, 0), · · · , F (K′, k)}, and
F (K′, i) = F (K, i) ∪ {r(i, C(t), j), r(i,D(t), j)}. According to the proposition
6.(2), for any j 6= i, F (K′, j) = F (K, j). If C(K) is RS-satisfiable, for r(i, (C u
D)(t), j) ∈ C(K), then there is a RS-model M and possible worlds i, j such that
j ∈ ~({i}, ‖ (C u D)(t) ‖M) = ~({i}, ‖ C(t) ‖M) ∩ ~({i}, ‖ D(t) ‖M). Thus
j ∈ ~({i}, ‖ C(t) ‖M), and j ∈ ~({i}, ‖ D(t) ‖M). So C(K′) is RS-satisfiable.

As for [r∀]. Suppose that the rule [r∀] is allpied to r(i,∀R.C(t), j), r(i, R(t, t′),

j) ∈ K. Let C(K) = {F (K, 0), · · · , F (K, k)}, then C(K′) = {F (K′, 0), · · · ,
F (K′, k)}, and F (K′, i) = F (K, i) ∪ {r(i, C(t′), j)}. According to the propo-
sition 6.(2), for any j 6= i, F (K′, j) = F (K, j). If C(K) is RS-satisfiable, for
r(i,∀R.C(t), j), r(i, R(t, t′), j) ∈ C(K), so there is a RS-model M and possible
worlds i, j such that j ∈ (~({i}, ‖ ∀R.C(t) ‖M) ∩ ~({i}, ‖ R(t, t′) ‖M)) ⊆
~({i}, ‖ C(t′) ‖M). Thus j ∈ ~({i}, ‖ C(t′) ‖M), and C(K′) is RS-satisfiable.

As for [r∃]. Suppose that the rule [r∃] is allpied to r(i,∃R.C(t), j) ∈ K. Let
C(K) = {F (K, 0), · · · , F (K, k)}, then C(K′) = {F (K′, 0), · · · , F (K′, k)}, and
F (K′, i) = F (K, i) ∪ {r(i, R(t, c), j), C(c)}. According to the proposition 6.(2),
for any j 6= i, F (K′, j) = F (K, j). If C(K) is RS-satisfiable, for r(i,∃R.C(t), j) ∈
C(K), so there is a RS-model M =< W,D,N ,~, C, ε, σ > and possible worlds i, j
such that j ∈ (~({i}, ‖ ∃R.C(t) ‖M). Let M′ =< W,D,N ,~′, C, ε, σ >, and ~′

conincides with ~ except for j ∈ ~′({i}, R(t, c)), j ∈ ~′({i}, C(c)). Therefore M′

is also a RS-model, and M′ |= C(K′). So C(K′) is RS-satisfiable.
As for [rv]. Suppose that the rule [rv] is allpied to r(i, C1 v C2, j) ∈ K.

Then C(K′) = {F (K, 0), · · · , F (K′, i), · · · , F (K, k)}, and F (K′, i) = F (K, i) ∪
{G(C2, D) > G(C1, D)} with D being any concept occurs in K. If C(K) is RS-
satisfiable, then there is a RS-model M =< W,D,N ,~, C, ε, σ >, and possible
worlds i, j ∈W such that j ∈ ~({i}, ‖ C1 v C2 ‖M). BecauseC1 v C2 ∈ F (K, i),
M, w |= C1 v C2, i.e., Cε1(w) v Cε2(w). By the inverse proportion between the
concept extension and intension in the G-ALC semantics, we know that (Cε2)C(w) v
(Cε1)C(w). So for any concept D, ‖ G(C2, D) ‖M⊆‖ G(C1, D) ‖M. Thanks to
the ID condition of the G-ALC frame, {w ∈ W | ~({w}, ‖ G(C2, D) ‖M)} ⊆‖
G(C2, D) ‖M⊆‖ G(C1, D) ‖M. So ‖ C1 v C2 ‖M⊆‖ G(C2, D) > G(C1, D) ‖M.
In addition to the monotonicity of the set sellection function, we get that ~({w}, ‖
C1 v C2 ‖M) ⊆ ~({w}, ‖ G(C2, D) > G(C1, D) ‖M). Because that j ∈ ~({i}, ‖
C1 v C2 ‖M), wj ∈ ~({i}, ‖ G(C2, D) > G(C1, D) ‖M). So C(K′) is RS-
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satisfiable.

As for [r>]. Suppose that the rule [r>] is allpied to r(i, α, j), r(i, α > β, j) ∈ K.
Let C(K) = {F (K, 0), · · · , F (K, k)}, then C(K′) = {F (K′, 0), · · · , F (K′, k)},
and F (K′, i) = F (K, i) ∪ {[j, β], r(i, β, j)}. Accordint to the proposition 6.(2), for
any j 6= i, F (K′, j) = F (K, j). IfC(K) is RS-satisfiable, because r(i, α, j), r(i, α >
β, j) ∈ C(K), there is a RS-model M =< W,D,N ,~, C, ε, σ > and possible
worlds i, j such that j ∈ (~({i}, ‖ α ‖M)∩~({i}, ‖ α > β ‖M) ⊆‖ α ‖M ∩ ‖ α >
β ‖M). By the property of the set sellection, we know that ‖ α ‖M ∩ ‖ α > β ‖M
) ⊆‖ β ‖M. So M |= C(K′), i.e., C(K′) is RS-satisfiable.

As for [rID]. Suppose that the rule [rID] is allpied to r(i, α, j) ∈ K. Let
C(K) = {F (K, 0), · · · , F (K, k)}, then C(K′) = {F (K′, 0), · · · , F (K′, k)}, and
F (K′, i) = F (K, i) ∪ {[j, α]}. According to the proposition 6.(2), for any j 6=
i, F (K′, j) = F (K, j). If C(K)is RS-satisfiable, and r(i, α, j) ∈ C(K), so there
is a RS-model M =< W,D,N ,~, C, ε, σ > and possible worlds i, j such that j ∈
~({i}, ‖ α ‖M. By the ID property of the G-ALC frame, we know that ~({i}, ‖
α ‖M⊆‖ α ‖M. So j ∈‖ α ‖M, therefore, M |= C(K′). Consequently C(K′) is
RS-satisfiable.

As for [rGaa]. Suppose that the rule [rGaa] is allpied to [i, G(C,D)], [i, C(t)],

r(i, G(C,D), j), r(i, C(t), j) ∈ K. Let C(K) = {F (K, 0), · · · , F (K, k)}, then
C(K′) = {F (K′, 0), · · · , F (K′, k)}, and F (K′, i) = F (K, i) ∪ {[j,D(t)]}. For
the reason of proposition 6.(2), for any j 6= i, F (K′, j) = F (K, j). If C(K) is
RS-satisfiable, as G(C,D), C(t), r(i, G(C,D), j), r(i, C(t), j) ∈ C(K), so there is
a RS-model M =< W,D,N ,~, C, ε, σ > and possible worlds i, j such that M, i |=
G(C,D),M, i |= C(t), j ∈ (~({i}, ‖ G(C,D) ‖M ∩ ~ ({i}, ‖ C(t) ‖M). On the
grounds of the Gaa property of G-ALC frame, (~({i}, ‖ G(C,D) ‖M ∩ ~ ({i}, ‖
C(t) ‖M) ⊆‖ α ‖M. Hence j ∈‖ D(t) ‖M, and M |= C(K′). Consequenctly C(K′)
is RS-satisfiable.

As for [rGAG]. Suppose that the rule [rGAG] is allpied to [i, C1 v C2], [i, G(C2,

D)], r(i, C1 v C2, j), r(i, G(C2, D), j) ∈ K. LetC(K) = {F (K, 0), · · · , F (K, k)},
thenC(K′) = {F (K′, 0), · · · , F (K′, k)}, andF (K′, i) = F (K, i)∪{[j,G(C1, D)]}.
According to 6.(2), for any j 6= i, F (K′, j) = F (K, j). If C(K) is RS-satisfiable,
for the reason that [i, C1 v C2], [i, G(C2, D)], r(i, C1 v C2, j), r(i, G(C2, D), j) ∈
C(K), so there is a RS-model M =< W,D,N ,~, C, ε, σ > and possible worlds
i, j such that M, i |= C1 v C2,M, i |= G(C2, D), j ∈ (~({i}, ‖ C1 v C2 ‖M
∩ ~ ({i}, ‖ G(C2, D) ‖M). In addition to the GAG property of the G-ALC frame,
(~({i}, ‖ C1 v C2 ‖M ∩ ~ ({i}, ‖ G(C2, D) ‖M) ⊆‖ α ‖M. Hence j ∈‖
G(C1, D) ‖M and M |= C(K′). Consequently C(K′) is RS-satisfiable. �

Proposition 9 Let α be a G-ALC formula. If α is satisfiable w.r.t the knowledge
base KB, then the tableau T(KB,α) is open.
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Proof If the formula α is satisfiable w.r.t the knowledge base KB, namely the root-
node expression set K0 of the tableau T(KB,α) is satisfiable. For the reason of the
proposition 7,8,9, we know that there must be a branch B on tableau T(KB,α) such
that its end-node expression set KB is satisfiable. Thanks to the proposition 2, B is
open, iff, KB is satisfiable. Hence T(KB,α) must have an open branch, that is to say,
T(KB,α) is open. �

6 The completeness of the G-ALC tableau algorithm

Lemma 1 Let α be a G-ALC formula, T(KB,α) a finished open tableau, B a open
branch of T(KB,α), and KB the end-node expression set of B. For any G-ALC for-
mula β, if there is i ∈ I(KB) such that β ∈ F (KB, i), then MKB , i |= β.

Proof To prove by the induction on the formula structure.

1. In case β = C(t). In this case, [i, C(t)] ∈ KB, by the definition 18, tMKB (i) =

ti and CεKB (i) = {ti | [i, C(t)] ∈ KB}. Hence tMKB (i) ∈ CεKB (i). In
addition to the definition 19, MKB , i |= C(t).

2. In case β = R(t, t′). In this case, [i, R(t, t′)] ∈ KB, by the definition 18,
RεKB (i) = {< tMKB (i), t′MKB (i) > | [i, R(t, t′)] ∈ KB}. According to the
definition 19, i ∈ ‖ R(t, t′) ‖MKB , i.e., MKB , i |= R(t, t′).

3. In case β = C v D. In this case, [i, C v D] ∈ KB, and T(KB,α) is a finished
open tableau, so there is a term t such that [i, C(t)] ∈ KB. And the rule [v]

is used to [i, C v D]. Hence [i,D(t)] ∈ KB. According to the definition 18,
CεKB (i) ⊆ DεKB (i). Again by the definition 19, we get i ∈ ‖ C v D ‖MKB ,
i.e., MKB , i |= C v D.

4. In case β = C ≡ D. In this case, [i, C ≡ D] ∈ KB, and T(KB,α) is a finished
open tableau, so the rule [v] is used to [i, C v D]. Hence {[i, C v D], [i,D v
C]} ∈ KB. According to the definition 18, we get that CεKB (i) ≡ DεKB (i).
In addition to the definition 19, there goes that i ∈ ‖ C ≡ D ‖MKB , i.e.,
MKB , i |= C ≡ D.

5. In case β = G(C,D). For [i, G(C,D)] ∈ KB. According to the definition 18,
we get that DεKB ∈ (CεKB )CKB (i). In additon to the definition 19, we get that
i ∈ ‖ G(C,D) ‖MKB . Hence, MKB , i |= G(C,D).

6. In case β = α > γ. In this case, [i, α > γ] ∈ KB, and MKB is a RS-model,
then r(i, α, j) ∈ KB, iff, j ∈ ~({i}, ‖ α ‖MKB ). Because T(KB,α) is a finished
open tableau, if r(i, α, j) ∈ KB, then [i, α > γ] must use the rule [>]. Hence
[j, γ] ∈ KB, namely j ∈‖ γ ‖MKB . So if j ∈ ~({i}, ‖ α ‖MKB ), then
j ∈‖ γ ‖MKB . Therefore ~({i}, ‖ α ‖MKB ) ⊆‖ γ ‖MKB . According to the
definition 19, i ∈ ‖ α > γ ‖MKB , i.e., MKB , i |= α > γ.

7. In case β = ¬(α > γ). In this case, [i,¬(α > γ)] ∈ KB. Because
T(KB,α) is finished and open, [i,¬(α > γ)] must use the rule [¬ >]. Hence
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{r(i, α, j), [j,¬γ]} ⊆ KB. By the induction hypothesis, we know that j ∈‖
¬γ ‖MKB . By the definition 19, j /∈‖ γ ‖MKB . Because MKB is a RS-model,
r(i, α, j) ∈ KB, iff, j ∈ ~({i}, ‖ α ‖MKB ). Hence, j ∈ ~({i}, ‖ α ‖MKB ),
j /∈‖ γ ‖MKB , and ~({i}, ‖ α ‖MKB ) *‖ γ ‖MKB .By the definition 19,
i ∈ ‖ ¬(α > γ) ‖MKB , consequently MKB , i |= ¬(α > γ).

�

Proposition 10 Let α be a G-ALC formula. If T(KB,α)is a finished opem tableau,
then α is satisfiable w.r.t. the knowledge base KB.

Proof If T(KB,α) is open, then there is an open branch B. If T(KB,α) is finished,
then according to the lemma 1, for the reason that α ∈ F (KB, 0), so MB, 0 |= α.
For MB is a G-ALC model, so α is satisfiable w.r.t. the knowledge base KB. �

7 Conclusion

This paper extends generic sentences to the basic description logic ALC, and
get a new logic G-ALC. As a matter of fact, we compound ALC and the term logic
systems GAG and Gaa, for the reasoning of generic sentences, in syntax and seman-
tics. Then a tableau agorithm is given for the reasoning problems of G-ALC, and the
important properties such as the soundness and completeness of it are strictly proved.
The future work following this paper is to research the algorithm’s computational
complexity and the application of G-ALC in some certaim knowledge fields.
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描述逻辑的概称句扩张及其Tableau判定算法
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摘 要

描述逻辑主要刻画概念、角色和个体，特别地，概念是描述逻辑主要的刻

画对象。描述逻辑对概念的外延有确定的解释，是个体域的一个子集。描述逻辑

对概念的内涵也有处理，但是只是通过概念与其上下位概念之间的外延包含关系

来体现。事实上，一个概念的内涵不仅是它与上下位概念之间的关系，而且还有

它自己独特的性质。比如“鸟”这个概念不仅是“动物”的子概念，而且它还

有“会飞、有羽毛、生蛋”等等一些内涵项。既然描述逻辑的初衷是为了更好

地刻画知识，那么就要更好地刻画知识的内涵。本文把一种表达概念内涵的句子

概称句扩张到基本描述逻辑 ALC中去，扩张后的逻辑记为 G-ALC。把概称句推

理的系统 GAG和 Gaa与 ALC相结合，为 G-ALC提供了内涵语义，并且基于此

语义为其推理问题提供了 tabeau（树图）算法。算法的的可靠性和完全性在本文

中得到了细致的、严谨的技术化证明。本文的工作对描述逻辑处理自然语言、构

建语义本体都有理论意义，希望这一研究能够在语义网即相关研究中能够得到应

用。

关键词:描述逻辑，概称句，扩张，树图算法，可靠性，完全性
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