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Abstract

In everyday life, people get lost even when they have the map: they simply may not
know where they are in the map. However, when moving forward they may have
new observations which can help to locate themselves via reasoning. In this paper,
we propose and develop a semantic-driven dynamic epistemic framework to handle
epistemic reasoning in such navigation scenarios. Our framework can be viewed as a
careful blend of dynamic epistemic logic and epistemic temporal logic, thus enjoying
features from both frameworks. We made an in-depth study on many model theor-
etical aspects of the proposed framework and provide a complete axiomatization.
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1 Introduction

1.1 Motivation

Have you ever been lost with a map? Almost everyone had such an experience
as a tourist in an unfamiliar city: even when you have the map of the city, it is
sometimes still hard to figure out exactly where you are and how to reach your
destination. There are typical cases when you just cannot find the street name,
or you are on a long long street with a lot of turns (welcome to Amsterdam!).
In such scenarios, a little bit of wandering and reasoning may help:

This circular street along the canal is called Prinsengracht, but I am not sure
whether I am at place A or B. Let me walk a bit further. Now I see that I can
turn left but according to the map if I were at B I would not be able to turn
left so soon. Thus I must have been A. Now I know my way to Leidseplein.

In the above reasoning process, the important elements are: the map, the
uncertainties about your location and your observations of the current available

1 The title is taken from the poem All that is gold does not glitter by J.R.R. Tolkien. The
first author would like to thank Dr. Mehrnoosh Sadrzadeh for pointing out the problem of
robot navigation during her visit to Amsterdam in 2010.
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actions. We reason by matching the actual available moves with the moves at
the possible current locations according to the map.

Sometimes, it is more important to reach your destination than locating
yourself exactly. In the Mission Impossible-like films, the secret agent sneaking
in an enemy building is usually guided by his headquarters (often a geek sitting
behind a laptop). However, the communication with the HQ will almost always
be lost at some point for some reason. Finally the agent has to find his own
way. Suppose the agent has the following floor plan with safety zones marked
(though there are no special signs at those places) but does not know whether
he is currently at s2 or at s3 (denoted by the dashed line):

s7 s6loo s8:Safe s9:Safe

s1 r // s2 r //

u

OO

s3 r //

u

OO

s4:Safe r //

u

OO

s5

Now suppose that the agent is actually at s3 and he can only observe the
available short routes at his current location, e.g., at s3 he only observes that
he may move right (r) or move up (u). Let us consider the following scenarios:

• Knowing the actual location of the agent, the HQ may guide the agent to
move right (do r) to a safe place (s4). However, merely following the com-
mand, the agent may not know that he is safe after doing r, since if he were at
s2, doing r would get him to a non-safe place s3, but s3 and s4 share exactly
the same available routes (r and u), thus he can not distinguish them.

• The HQ may alternatively guide the agent to move up (u) to s8. This
time the agent should know that he is safe: he sees that he cannot move any
further, however, if he were at s2 initially and thus at s6 after moving u, then
he would be able to move left which contradicts his current observations.

• Suppose the communication with the HQ is lost, the agent may make his
own plan as follows: he knows that no matter where exactly he is right now,
moving first r and then u will make sure that he is safe, although afterwards
he still does not know where he is.

In this paper, we formalize the epistemic reasoning behind such scenarios by
proposing a semantic-driven dynamic epistemic logical framework with the fol-
lowing real life applications in mind as the long term goals:

• Global navigation: given the map with uncertainties and the actual location
of a subject (human or robot), navigate it to guarantee certain (epistemic)
goals, e.g., transport the prisoners to a safe place without letting them know
where they are.

• Local navigation: given only the map with uncertainties of the current loc-
ation of a subject, let the subject navigate itself to guarantee certain (epi-
stemic) goals, e.g., the robot should plan its own way in an endangered
nuclear power plant to make sure it “knows” that it will reach all the critical
machines that need to be shut down.
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1.2 Related work

Related Work Dynamic epistemic logics (DEL) are designed to handle know-
ledge updates caused by events (cf. e.g, [17,1,19]). Arguably the most general
framework of DEL is the one using event models proposed in [2]. It is natural
to apply the existing techniques of DEL with event models in the navigation
setting which is also about knowledge updates after actions. However, as we
will show in the later part of the paper, the standard event model approach
(even extended with protocols as in [18,10]) is not suitable to handle epistemic
reasoning in such scenarios. On the other hand, algebraic approaches inspired
by DEL have been proposed to model the robot navigation in [14,15,9]. Des-
pite the apparent differences in frameworks (algebra vs. logic), we depart from
this series of works in the way of handling the map information and actions.
In [14,15,9], the nodes of the map are encoded by basic propositions and thus
the moves in the map are taken to be actions that change the truth value of
basic propositions (encodings of the current position). In our semantic-driven
approach, we simply take the maps with uncertainties as models and moving
in a map does not change the truth values of any basic propositions but the
current position and epistemic uncertainties. Instead of the theorem proving
in the algebraic approach we can model check a rich class of desired properties
expressed by a natural yet simple logic language, which can be fully automated.

Another usual framework for reasoning about knowledge and developments
of a system is the epistemic temporal logic (ETL) approach proposed in [7,16].
Efforts have been made to merge the frameworks of ETL and DEL [18,10]. Our
approach can also be viewed as a careful blend of ETL and DEL in the sense
that the temporal development is explicitly encoded in the map as in ETL but
the epistemic developments are computed in spirit of DEL. 2

The planning problem with uncertainties and non-deterministic actions
(conformant planning) are well-studied in Artificial Intelligence (cf. e.g., [8]),
since it was raised in [13]. Our models are similar to the belief spaces used
in solving such planning problem (cf. e.g., [4]). The focus there, however, is
on the algorithms and heuristics to the planning problem while we would like
to present a semantics-driven logic for reasoning about knowledge, which also
differs from the calculus based logical planning approaches such as [12]. We
hope to encode various planning problems by model checking problems in the
extensions of our framework, which we leave for further occasions.

The technical contributions and the structure of the paper can be summar-
ized as follows:

• In Section 2, we propose a dynamic epistemic framework on maps with un-
certainties. The semantics is non-standard in the sense that we only assign
truth values to the formulas on certain states of the models (not all of them!).

2 The connections to belief space planning was suggested to us by Prof. Bernhard Nebel,
Dr. Christian Becker-Asano and Dr. Andreas Witzel, when the first author was in Isaac
Newton Institute in 2012 for a project coordinated by Prof. Benedikt Löwe.
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• An substitution-closed axiomatization is provided in Section 3 to capture
the validity of the logic and the completeness is proved by using a detour
technique handling the interactions of the epistemic operator and the action
operators.

• Section 4 discusses some model theoretical properties of the proposed logic:
the structural invariance, the finite model property and notably a non-trivial
normal form theorem which says that any formula is equivalent to an (expo-
nentially longer) formula where K operator only appear outside the scopes
of action operators.

• In Section 5, we compare our logic with ETL via an intuitive translation. We
also show that, due to technical reasons, DEL with event models and protocols
are not suitable for handling navigation tasks compared to our logic.

2 Preliminaries

2.1 Kripke model with uncertainties

Given a set P of basic propositions and a set A of basic actions, a multimodal
Kripke model N w.r.t. P and A is a tuple: N = 〈S, {Ra | a ∈ A}, V 〉 where
S is a non-empty set of states (or locations), Ra ⊆ S × S is a binary relation,

V : P → P(S) is a valuation function. To simplify notations, we write s
a→ t

for sRat. Given a Kripke model N , we denote its set of states, relations and
valuation by SN ,

a→N and VN . Given an s ∈ SN , let e(s) be the set of available

actions at s, i.e., e(s) = {a | ∃s′ ∈ SN such that s
a→ s′}. Such a Kripke model

may be viewed as an abstract “map” with some basic facts decorating the
states. Note that non-deterministic actions are allowed: executing a at the
same state may result in different states, which models uncertainties about
actions, e.g., moving east, west, south, north may look exactly the same to an
agent at a cross road.

An uncertainty map (UM) is a Kripke model with a set of uncertainties
about the current location of an agent. Formally, a UM model M is a tuple

〈S, {Ra | a ∈ A}, V, U〉

where 〈S, {Ra | a ∈ A}, V 〉 is a Kripke model and a non-empty set U ⊆ S such
that for all s, t ∈ U : e(s) = e(t). The requirement of U actually says that the
uncertainties should comply with the observation about the available actions.
We use UM to denote the uncertainty set of M. A pointed UM model (M, s)
is a UM model M with a designated state s ∈ UM representing the actual
location of the agent. Given a model M, let E(s) be the set of states that
share the same available actions, i.e., E(s) = {t ∈ S | e(s) = e(t)}.

The graph we mentioned in the introduction can be viewed as an illustration
of a UM model w.r.t P = {Safe} 3 and A = {l, u, r} with the uncertainty set
{s2, s3} (the states connected by the dotted line).

3 If there is no label Safe at a state, then it means the proposition Safe is not true there.
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2.2 Language and semantics

To reason about knowledge and actions in the scenarios mentioned earlier, we
use the following simplest modal language EALAP (Epistemic Action Language)
with knowledge and actions as modalities:

φ ::= > | p | ¬φ | φ ∧ φ | 〈a〉φ | Kφ

where p ∈ P, a ∈ A. As usual, we use the following abbreviations: ⊥ := ¬>,
φ ∨ ψ := ¬(¬φ ∧ ¬ψ), φ → ψ := ¬φ ∨ ψ, [a]φ := ¬〈a〉¬φ, K̂φ := ¬K¬φ.
Intuitively, Kφ says that the agent knows that φ and 〈a〉φ expresses that it is
possible that after doing a, φ holds (a may be non-deterministic).

Given any UM model M = 〈S, {Ra | a ∈ A}, V, U〉 and any point s ∈ U
the satisfaction relation is defined on pointed UM model M, s as:

M, s � > ⇐⇒ always

M, s � p ⇐⇒ s ∈ V (p)

M, s � ¬φ ⇐⇒ M, s 2 φ
M, s � φ ∧ ψ ⇐⇒ M, s � φ and M, s � φ

M, s � 〈a〉φ ⇐⇒ ∃t ∈ S : such that s
a→ t and M|at , t � φ

M, s � Kφ ⇐⇒ ∀u ∈ U :M, u � φ

where M|at = 〈S, {Ra | a ∈ A}, V, U |at 〉 and U |at = U |a ∩ E(t) with

U |a = {r′ | ∃r ∈ U such that r
a→ r′}.

It is easy to check that in the clause of 〈a〉φ, t ∈ U |at and U |at ⊆ E(t) thus
M|at , t is indeed a pointed UM model.

The semantics of Kφ is rather intuitive as in epistemic logic. The intuition
behind the semantics of 〈a〉φ formulas is as follows: when you move forward
by a and then end up at t, your uncertainty set should be carried forward with
you along the possible a moves, which explains the first set in the definition of
U |at ; As for the second part, note that you may eliminate some uncertainties
according to the actual observation about the available actions at t.

Here are a few points we have to highlight before moving further:

• We define semantics on pointed UM models and only the states in UM can
be taken as the designated points to evaluate formulas. This means that the
truth values of EALAP formulas are not defined on all the states in a model.

• In particular, your knowledge at a certain state in the model only become
clear when you have moved there or one of its indistinguishable states, thus
the knowledge is essentially path-dependent (see the example below).

• Therefore, we say that a formula φ is valid (� φ) iff for any pointed UM
model M, s: M, s � φ.

Let us consider the following example (it is a tweaked version of a common
example used in [14,15,9]).
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Example 2.1 The left and right graphs below depict the initial pointed model
M, s1, and the pointed model after a b move (M|bs3 , s3) respectively.

s1 b //

a

��

s3 : p

s2 b //

a

<<

s4

b→

s1 b //

a

��

s3 : p

s2 b //

a

<<

s4

It is easy to verify that M, s1 � K¬p ∧ 〈b〉¬Kp.
The left, middle, and right graphs below depict the pointed models M, s1,

M|as2 , s2 and (M|as2)|as3 , s3 respectively.

s1 b //

a

��

s3 : p

s2 b //

a

<<

s4

a→

s1 b //

a

��

s3 : p

s2 b //

a

<<

s4

a→

s1 b //

a

��

s3 : p

s2 b //

a

<<

s4

Now we see thatM, s1 � K¬p∧〈a〉〈a〉Kp. Compare (M|as2)|as3 , s3 andM|bs3 , s3,
it is clear that checking whether Kp is true at s3 depends on how do you get
to s3. It does not mean much to evaluate the knowledge of an agent on the
states that the he thinks he cannot be currently. The agent may know more or
stay ignorant after wandering around.

Going back to our “mission impossible” example in the introduction, we
can now verify the claims about three scenarios w.r.t. the model (call itMMI):

• MMI, s3 � 〈r〉(Safe ∧ ¬KSafe) (HQ guides you safe but you do not know it)

• MMI, s3 � 〈u〉(Safe ∧KSafe) (HQ guides you safe and you know it)

• MMI, s3 � K(〈r〉〈u〉Safe∧ [r][u]Safe) (You know the plan will make you safe)

Given a UM model pointed M, s, a goal expressed by a EALAP formula φ
and a plan as a sequence of actions a1 · · · an, we can verify whether the plan
can possibly satisfy the goal by checking M, s � 〈a1〉 · · · 〈an〉φ.

3 Axiomatization

In this section, we provide a sound and complete axiomatization of EALAP on
UM models. Recall that a formula is valid if it holds on all the pointed models.
In the sequel we assume that both A and P are finite.

Given a UM model M, let MML be the Kripke “core” of M (by simply
ignoring the uncertainty set UM); letMEL be the S5 model 〈UM,∼, V ′〉 where
∼ = UM × UM and V ′ = VM|UM . Let �ML and �EL denote the standard
semantics for multimodal logic and epistemic logic respectively (cf. e.g., [3]).

Two easy observations follow immediately from the semantics of EALAP :

Proposition 3.1 For any K-free EALAP-formula φ: M, s � φ iff MML, s �ML φ.
For any 〈·〉-free EALAP-formula φ: M, s � φ iff MEL, s �EL φ.

However, it is clear that EALAP cannot be reduced, qua expressive power, to
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any of these two fragments of EALAP , due to the two dimensional nature (action
and knowledge) of the UM models. This means that the usual axiomatization
of DEL-style logic (e.g., [17] and [1]) via reductions does not work here. In
the axiomatization, we include the axioms of epistemic logic and multimodal
logic with extra axioms capturing the dynamics in terms of the interaction
between 〈a〉 and K. Inspired by [20], the Henkin-style completeness proof
makes use of an auxiliary semantics which transforms dynamics of models into
static relations in the canonical model.

3.1 Finite axiomatization SEALAP

System SEALA
P

Axioms Rules

TAUT all the axioms of propositional logic MP
φ, φ→ ψ

ψ

DISTK K(p→ q) → (Kp→ Kq) NECK
φ

Kφ

DIST(a) [a](p→ q) → ([a]p→ [a]q) NEC(a)
φ

[a]φ

OBS(a) K〈a〉> ∨K¬〈a〉> SUB
φ(p)

φ(ψ)

T Kp→ p

4 Kp→ KKp

5 ¬Kp→ K¬Kp

ZIG(a) 〈a〉K̂p→ K̂〈a〉p

ZAG(a)
∧

B⊆A(K̂〈a〉(p ∧ ψB) → [a](ψB → K̂p))

where a ranges over A, p, q range over P and in the last clause, ψB =
(
∧

b∈B〈b〉>) ∧ (
∧

b 6∈B ¬〈b〉>). Since A,P are finite, EALAP is a finite axiomatic
system.

Based on the semantics of EALAP and Proposition 3.1, it is easy to verify that
the following axioms and rules are valid: DISTK, DIST(·), T, 4, 5, NECK, NEC(·).
The validity of OBS(·) is due to the requirement on the uncertainty sets in UM
models. Note that the uniform substitution SUB is also valid according to our
semantics, which is different from the usual DEL-style logics (cf. [19]).

To prove the soundness of EALAP , we still need to show that ZIG(·) and ZAG(·)
are valid. In the following, we verify the corresponding axiom schemas where
p is replaced by an arbitrary φ.

Proposition 3.2 � 〈a〉K̂φ→ K̂〈a〉φ
Proof For any M, s, if M, s � 〈a〉K̂φ, then there is a t ∈ S, such that

s
a→ t and M|at , t � K̂φ, then there is a v ∈ U |at , M|at , v � φ. Because

v ∈ U |at = U |a∩E(t), then there is a u ∈ U , such that u
a→ v and E(v) = E(t).

Thus U |av = U |at , thenM|at =M|av , thenM|av , v � φ. Since u
a→ v,M, u � 〈a〉φ,

because u ∈ U then M, s � K̂〈a〉φ. 2
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Proposition 3.3 �
∧

B⊆A(K̂〈a〉(φ ∧ ψB)→ [a](ψB → K̂φ))

Proof For any M, s, we need to prove that for any B ⊆ A, M, s � K̂〈a〉(φ ∧
ψB) → [a](ψB → K̂φ). If M, s � K̂〈a〉(φ ∧ ψB), then there is a u ∈ UM,

such that M, u � 〈a〉(φ ∧ ψB), then there is a v ∈ SM, such that u
a→ v and

M|av , v � φ ∧ ψB. Then we need to prove that M, s � [a](ψB → K̂φ). Namely,

for any t ∈ S, if s
a→ t and M|at , t � ψB, we need to show that M|at , t � K̂φ.

Since M|av , v � ψB, then E(t) = E(v), thus UM|at = UM|av and M|at = M|av .
Since M|av , v � φ, M|at , v � φ. Now since v ∈ UM|at , M|at , t � K̂φ. 2

Since we include DIST(·), DISTK, NEC(·), NECK in the system, it is easy to
verify the following propositions as standard exercises in normal modal logic.

Proposition 3.4 ` [a](φ ∧ ψ) ↔ ([a]φ ∧ [a]ψ), ` [a]φ ∨ [a]ψ → [a](φ ∨ ψ),
K(φ ∧ ψ)↔ (Kφ ∧Kψ).

Proposition 3.5 If ` φ↔ φ′, ` ψ ↔ ψ′, then ` ¬φ↔ ¬φ′, ` φ∧ψ ↔ φ′∧ψ′,
` 〈a〉φ↔ 〈a〉φ′, ` Kφ↔ Kφ′.

Based on the above proposition, we can show the useful inference rule of
replacements of equivalents is an admissible rule of the system SEALAP

.

Proposition 3.6 If ` ψ ↔ ψ′, and φ′ is obtained by substituting some occur-
rences of ψ in φ with ψ′, then ` φ↔ φ′.

3.2 Completeness

To prove the completeness, we will use an auxiliary semantics of EALAP on
epistemic multimodal models (EM models). Formally, an EM model N is a
tuple 〈S, {Ra | a ∈ A}, V,∼〉, where 〈S, {Ra | a ∈ A}, V 〉 is a multimodal
Kripke model and ∼ is an equivalence relation over S such that s ∼ t implies
e(s) = e(t). Note that ∼ can also be viewed as a partition of S. Therefore the
difference between a UM modelM and an EM model N is that UM denotes a
single equivalence class while ∼ denotes a set of the equivalence classes which
form a partition of SN . EALAP formulas can be interpreted on EM models with
the usual Kripke semantics (denoted as ):

N , s  〈a〉φ ⇐⇒ ∃t : s
a→ t and N , t  φ

N , s  Kφ ⇐⇒ ∀t : s ∼ t implies N , t  φ

However, we cannot always transform a UM model M into an EM model
M′ by simply adding more equivalence classes such that for any EALAP -formula
φ: M, s � φ ⇐⇒ M′, s  φ. In Example 2.1, based on the initial UM model,
it is impossible to assign an equivalence class including s3 to make sure that
〈b〉¬Kp and 〈a〉〈a〉Kp both hold at s1.

On the other hand, an EM model can also be viewed as a UM model with
extra epistemic information. Given an EM model N = 〈S, {Ra | a ∈ A}, V,∼〉
and s ∈ S, let Ns be the UM model 〈S, {Ra | a ∈ A}, V, Us〉 where Us = {t |
s ∼ t in N}. We say � and  coincide on an EM model N if for any s ∈ SN
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and any EALAP -formula φ: N , s  φ ⇐⇒ Ns, s � φ. It is not hard to see that
the two semantics do not coincide on arbitrary EM models in general, however,
as we will show later, the two semantics do coincide on the canonical EM model
which is essential in the proof of completeness.

Our proof strategy can be summarised as follows:

(i) Prove the Lindebaum-like lemma: every SEALAP
-consistent set of formulas

can be extended into a maximal consistent set (SEALAP
-MCS).

(ii) Construct a canonical EM model C and prove the truth lemma w.r.t. the
auxiliary semantics ().

(iii) Show that � and  coincide on the canonical model thus obtaining the
truth lemma w.r.t. �. Finally, given a SEALAP

-MCS Γ, (CΓ,Γ) is the UM
model which can satisfy all the formulas in Γ.

The Lindebaum lemma is routine. We define a canonical EM model based
on MCSs of SEALAP

as usual for normal model logics (cf. e.g., [3]):

C = < Sc, {Rc
a | a ∈ A},∼c, V c >

where:

• Sc is the set of all SEALAP
-MCSs;

• sRc
at ⇐⇒ for any φ ∈ t then 〈a〉φ ∈ s ⇐⇒ for any [a]φ ∈ s then φ ∈ t;

• s ∼c t ⇐⇒ for any φ ∈ t then K̂φ ∈ s ⇐⇒ for any Kφ ∈ s then φ ∈ t;
• V c(p) = {s | p ∈ s}.
According to the canonicity of axioms T, 4, and 5, we know that ∼c is indeed
an equivalence relation on Sc. To verify that C is indeed a EM model, we need
to verify that s ∼c t implies e(s) = e(t).

Proposition 3.7 In the canonical model C, a ∈ e(s) ⇐⇒ 〈a〉> ∈ s.

Proof ⇒: If a ∈ e(s), according to the definition of e(s), there is a t ∈ Sc, s
a→

t,because > ∈ t, then 〈a〉> ∈ s.
⇐: Let D = {φ | [a]φ ∈ s}. Since ` [a](φ ∧ ψ) ↔ [a]φ ∧ [a]ψ, s is closed

under finite conjunctions. If D is not consistent, then there is φ ∈ D, ` φ→ ⊥.
By the rule NEC(a), ` [a](φ → ⊥) thus by DIST(a), ` [a]φ → [a]⊥, namely
` [a]φ→ ¬〈a〉>. Since [a]φ ∈ s, ¬〈a〉> ∈ s which is contradictory to 〈a〉> ∈ s.
Therefore there is a maximal consistent set t such that D ⊆ t. According to
the definition of Rc

a, we have sRc
at thus a ∈ e(s). 2

Proposition 3.8 In the canonical model C, if s ∼c t then e(s) = e(t).

Proof For any a ∈ A, if a ∈ e(s), then according to Proposition 3.7, 〈a〉> ∈ s.
By axioms OBS(a) and T, K〈a〉> ∈ s. Since s ∼c t, 〈a〉> ∈ t, by Proposition
3.7, a ∈ e(t), namely e(s) ⊆ e(t). It is symmetric to show e(t) ⊆ e(s). 2

In the rest of this section, we will show that the two semantics coincide
on C. To prove this, the key idea is to show that the equivalence classes of
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C captures all the possible dynamics of the uncertainty sets, e.g., if you move
from a state s in an equivalence class Us in C to a state t, then the updated
uncertainty set (Us)|at is exactly the equivalence class that t belongs to in C.
Formally, we have the following proposition (recall that Us = {t | s ∼c t in C}).

Proposition 3.9 In the canonical model C, if s
a→ t, then (Us)|a ∩E(t) = Ut.

Namely Us|at = Ut and thus Cs|at = Ct.

Proof ⊆: If v ∈ (Us)|a ∩ E(t), we need to prove v ∈ Ut, namely v ∼c t. If

v ∈ (Us)|a, then there is a u, such that u ∼c s and u
a→ v. Let B = {a | a ∈

A and 〈a〉> ∈ v}, then ψB ∈ v. For any φ ∈ v, it is clear that φ ∧ ψB ∈ v.

Since u
a→ v, 〈a〉(φ ∧ ψB) ∈ u. By u ∼c s we have K̂〈a〉(φ ∧ ψB) ∈ s. Now by

axiom ZAG(a) and rule SUB, [a](ψB → K̂φ) ∈ s. Since s
a→ t, ψB → K̂φ ∈ t.

Because v ∈ E(t), then ψB ∈ t thus K̂φ ∈ t. By the definition of ∼c, we have
v ∼c t, namely v ∈ Ut.
⊇: If v ∈ Ut, by Proposition 3.8, e(v) = e(t) then v ∈ E(t). In order

to prove v ∈ (Us)|a ∩ E(t), we only need to show that v ∈ (Us)|a. In the

following we will construct an MCS u such that s ∼ u and u
a→ v. Let

D = {ψ | Kψ ∈ s} ∪ {〈a〉φ | φ ∈ v}. It is easy to see that {ψ | Kψ ∈ s}
is closed under finite conjunctions. If D is not consistent, we must have `
ψ ∧ 〈a〉φ1 ∧ · · · ∧ 〈a〉φn → ⊥ for some Kψ ∈ s and φ1 . . . φn ∈ v, then ` ψ →
([a]¬φ1∨· · ·∨[a]¬φn). Because ` [a]¬φ1∨· · ·∨[a]¬φn → [a](¬φ1∨· · ·∨φn), then
` ψ → [a](¬φ1∨· · ·∨¬φn). By NECK and DISTK, ` Kψ → K[a](¬φ1∨· · ·∨¬φn).
By ZIG(a) and SUB, ` K[a](¬φ1 ∨ · · · ∨ ¬φn) → [a]K(¬φ1 ∨ · · · ∨ ¬φn), then
` Kψ → [a]K(¬φ1 ∨ · · · ∨ ¬φn). Since Kψ ∈ s, [a]K(¬φ1 ∨ · · · ∨ ¬φn) ∈ s.
Due to the fact that s

a→ t, K(¬φ1 ∨ · · · ∨ ¬φn) ∈ t. Since v ∼c t, then
¬φ1 ∨ · · · ∨ ¬φn ∈ v. This is contradictory to φ1 . . . φn ∈ v and that v is
consistent. Therefore D is consistent, then there is a maximal consistent set
u, such that D ⊆ u. Clearly u ∼c s and u

a→ v, thus v ∈ (Us)|a. In sum,
v ∈ (Us)|a ∩ E(t). 2

To prove the truth lemma w.r.t. � we make use of the following truth
lemma w.r.t.  as a standard exercise for normal modal logic (cf. e.g., [3]).

Lemma 3.10 For any EALAP formula φ, any s in C: C, s  φ ⇐⇒ φ ∈ s.

All we need now is to show that two semantics coincide on C.

Lemma 3.11 For any EALAP formula φ, any s in C: C, s  φ ⇐⇒ Cs, s � φ

Proof Do induction on the structure of φ. The cases for φ = p, φ = ¬ψ, and
φ = φ1 ∧ φ2 are immediate.

φ = 〈a〉ψ, if C, s  〈a〉ψ, then there is a t ∈ Sc, such that s
a→ t, and

C, t  ψ. According to IH, Ct, t � ψ. Because of Proposition 3.9, Cs|at = Ct,
then Cs|at , t � ψ, therefore Cs, s � 〈a〉ψ. On the other hand, if Cs, s � 〈a〉φ, then

there is a t ∈ Sc, such that s
a→ t and Cs|at , t � φ, by Proposition 3.9, Cs|at = Ct,

then Ct, t � φ, by IH, C, t  φ, then C, s  〈a〉φ.
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φ = K̂ψ, if C, s  K̂ψ, then there is a u, such that s ∼c u and C, u  ψ.
By IH, Cu, u � ψ. Since s ∼c u, then Us = Uu thus Cs = Cu, therefore
Cs, u � ψ. Since u ∈ Us, Cs, s � K̂ψ. On the other hand, if Cs, s � K̂φ, then
there is a u ∈ Us, such that Cs, u � φ. Since u ∈ Us, then Us = Uu, thus
Cs = Cu, therefore Cu, u � φ. By IH C, u  φ. Since u ∈ Us, then u ∼c s, thus
C, s  K̂φ. 2

Based on Lemmata 3.10 and 3.11, every SEALAP
-consistent set of formulas

has a model Cs, s, thus the completeness is immedeate.

Theorem 3.12 SEALAP
is sound and complete on UM models.

4 Modal theoretical properties of EALAP
In this section, we prove three results which can help us to understand EALAP on
UM models better. We first show that EALAP is invariant under a special notion
of bisimulation between UM models, which inspired a normal form theorem as
our second result, and finally we prove the finite model property of EALAP based
on the previous insights.

4.1 Structural invariance for EALAP

Recall that given a UM model M = 〈S, {Ra | a ∈ A}, U, V 〉, MML is the
multimodal model without U , namely MML = 〈S, {Ra | a ∈ A}, V 〉. Let MLAP
be the K-free fragment of EALAP .

Next, we define a structural relation between UM models based on the
notion of bisimilarity (↔) on multimodal models w.r.t. P and A (cf. e.g., [3]).

Definition 4.1 For any UM models M and N , we say that M is U-bisimilar
to N (notation: M� N ) iff:

• for any u ∈ UM, there is a u′ ∈ UN , such that MML, u↔ N ML, u′,

• for any u′ ∈ UN , there is a u ∈ UM, such that MML, u↔ N ML, u′.

We say two pointed UM models are U-bisimilar (M, u � N , u′) iff MML, u ↔
N ML, u′ and M� N .

Now we prove that the moves in UM models preserve U-bisimilarity.

Proposition 4.2 If M, s � N , u, s
a→ t in M, u

a→ v in N , and MML, t ↔
N ML, v, then M|at , t� N|av , v.

Proof Since (M|at )ML = MML, (N|av)ML = N ML and MML, t ↔ N ML, v, then by
the definition of �, we only need to prove thatM|at � N|av , namely for each x′

in UM|at there is a y′ in UN |av such that (M|at )ML, x′ ↔ (N|av)ML, y′ (the reverse
condition can be proved symmetrically).

For each x′ ∈ UM|at = UM|a ∩ E(t), there is an x ∈ UM and x
a→ x′ in

M. Since M� N , then there is a y ∈ UN , such that MML, x↔ N ML, y. Since
x

a→ x′ inM, then according to the definition of bisimilarity, there is a y′ ∈ SN ,
such that y

a→ y′ in N andMML, x′ ↔ N ML, y′ (thus (M|at )ML, x′ ↔ (N|av)ML, y′.).
Clearly y′ ∈ UN |a. We only need to show that y′ ∈ E(v) in order to prove that
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y′ ∈ UN |av . Since MML, x′ ↔ N ML, y′, e(y′) = e(x′). Now due to the fact that
x′ ∈ UM|at , we have e(x′) = e(t). Since MML, t ↔ N ML, v, then it is easy to see
that e(t) = e(v), thus e(y′) = e(x′) = e(t) = e(v), therefore y′ ∈ E(v), namely
y′ ∈ UN |av . 2

We can show that U-bisimilarity indeed preserves the truth values of the
EALAP -formulas. Let us fix some notations. We say a UM model M is image-

finite if 1. UM is finite, and 2. for any s ∈ SM and any a ∈ A: {t | s a→ t} is
finite. Let ≡EALAP

be the logical equivalence relation between pointed models.

Proposition 4.3 For any pointed UM models M, u, N , u′ : M, u � N , u′
implies M, u ≡EALAP

N , u′. If the models are image-finite then the converse also
holds.

Proof ⇒: We prove by induction on the structure of φ:
The cases for φ = p, φ = ¬ψ and φ = ψ1 ∧ ψ2 are trivial based on the fact

that MML, u↔ N ML, u′ and IH.
φ = 〈a〉ψ, if M, u � 〈a〉ψ, then there is a v, such that u

a→ v in M, and
M|av , v � ψ. Since M, u � N , u′, we have MML, u ↔ N ML, u′, thus there is

a v′, such that u′
a→ v′ in N and MML, v ↔ N ML, v′. By Proposition 4.2,

M|av , v � N|av′ , v′. By IH, N|av′ , v′ � ψ, then N , u′ � 〈a〉ψ. The other direction
is totally symmetric.

φ = Kψ: Without loss of generality, suppose towards contradiction that
N , u′ � Kψ, but M, u 2 Kψ then there is an v ∈ UM, such that M, v 2 ψ.
Since M � N , then there is a v′ ∈ UN , such that MML, v ↔ N ML, v′,
thus M, v � N , v′. Now by IH, N , v′ 2 ψ. Since u′ ∈ UN , N , u′ 2 Kψ,
contradiction.

⇐ (under the assumption of image-finiteness): Suppose M, u ≡EALAP
N , u′

we want to show that M, u � N , u′. By the definition of � we need to show
that (1). MML, u ↔ N ML, u′ and (2). for each v ∈ UM we have v′ ∈ UN such
that MML, v ↔ N ML, v′ and vice versa for each v′ ∈ UN .

For (1): since M, u ≡EALAP
N , u′ then MML, u ≡MLAP

N ML, u′ by Proposi-

tion 3.1. Due to the Hennessey-Milner theorem (cf. e.g., [3]) and the image-
finiteness, we have M, u↔ N , u′.

For (2): Without loss of generality, assume towards contradiction that there
is a v0 ∈ UM, for any v′ ∈ UN : MML, v0 6↔ N ML, v′. Due to the Hennessey-
Milner theorem again, for any v′ ∈ UN : M, v0 6≡MLAP

N , v′. Then for each

v′ ∈ UN , there is a formula φv′ ∈ MLAP , such that M, v0 � φv′ but N , v′ 2 φv′ ,
based on Proposition 3.1. Let D = {φv′ |v′ ∈ UN }. Due the image-finiteness
again, UN is finite, thus D is finite. Let ψ =

∧
D then M, v0 � ψ, thus

M, u � K̂ψ. Since M, u ≡EALAP
N , u′, then N , u′ � K̂ψ, there is a v′ ∈ UN ,

such that N , v′ � ψ, contradictory to the fact that for any v′ ∈ UN there is a
formula φv′ such that N , v′ 2 φv′ . 2
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4.2 Normal form

Proposition 4.3 says that the distinguishing power of EALAP is bounded by the
U-bisimilarity. A closer look reveals something more surprising: qua expressive
power, the full language of EALAP is equivalent to its fragment where knowledge
operator only appears outside the action modalities. Formally, formulas φ in
this fragment (EALKAP) can be generated by:

φ ::= > | p | ψ | ¬φ | φ ∧ φ | Kφ
ψ ::= > | p | ¬ψ | ψ ∧ ψ | [a]ψ

where a ∈ A and p ∈ P. For the ease of the proof we take [·] as primitive
modalities instead of 〈·〉.

In this subsection we will show that every EALAP formula is equivalent to
an (exponentially longer) EALKAP formula. Note that although Proposition 4.3
already suggests that EALAP and EALKAP have the same distinguishing power,
their expressive powers may still differ, 4 thus the result does not follow from
Proposition 4.3.

Definition 4.4 We define the K-degree of EALAP formulas (kd(φ)) as follows:

kd(>) = 0 kd(p) = 0

kd(¬φ) = kd(φ) kd(φ ∧ ψ) = max{kd(φ), kd(ψ)}
kd([a]φ) = 0 kd(Kφ) = 1 + kd(φ)

where p ∈ P and a ∈ A.

Note that we treat the outmost [·]φ (not in the scope of any other [·]) as
atomic formulas by setting kd([·]φ) = 0, e.g., kd(K[a]K[b]p) = 1.

Definition 4.5 An EALAP formula φ is in K-conjunctive normal form (K-CNF)
iff:

• φ = α1 ∧ · · · ∧αn such that ∀1 ≤ i ≤ n : αi = βi1 ∨ · · · ∨βim for some m ≥ 1,

• each βij is in the shape of p,¬p, [·]ψ,¬[·]ψ, Kχ or K̂χ where kd(χ) = 0.

Note that SEALAP
includes all the axioms and rules of S5. Thus by using the

standard result for S5 logic, we can turn each EALKAP formula into K-CNF.

Proposition 4.6 For any EALAP-formula φ, there is an EALAP formula φ′, such
that � φ↔ φ′ and φ′ is in K-CNF. In particular, for each EALKAP-formula there
is an equivalent EALKAP-formula in K-CNF.

Proof We take the outmost [·]ψ formulas as atomic formulas when massaging
the original formula according to the standard normal form result for S5 (cf.
e.g., [11]), thus keeping the formulas in EALKAP . 2

4 Here by distinguishing power we mean the power of a language to tell two models apart
while expressive power measures the power of the language to define classes of models (prop-
erties of the models).
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Note that in an EALAP formula of K-CNF, there may still be some occurrences
of K modality inside the scope of [·] modalities. In the sequel, we will try to
push the K operator out. Here are two crucial results proved using the spirit
behind the validity of axioms ZIG(·) and ZAG(·). 5

Proposition 4.7

(1) � [a](Kφ ∨ χ)↔
∧
B⊆A

(〈a〉(ψB ∧ ¬χ)→ K[a](ψB → φ))

(2) � [a](K̂φ ∨ χ)↔
∧
B⊆A

(〈a〉(ψB ∧ ¬χ)→ K̂〈a〉(ψB ∧ φ))

Proof
(1) Left to right: IfM, s � [a](Kφ∨χ), we need to prove that for any B ⊆ A,

M, s � 〈a〉(ψB∧¬χ)→ K[a](ψB → φ). Now supposeM, s � 〈a〉(ψB∧¬χ), then

there is a t, such that s
a→ t, andM|at , t � ψB∧¬χ. BecauseM, s � [a](Kφ∨χ),

then M|at , t � Kφ ∨ χ, then M|at , t � ψB ∧Kφ.
We need to prove that M, s � K[a](ψB → φ), namely for any u ∈ UM we

need to showM, u � [a](ψB → φ). That is, for any v such that u
a→ v, we need

to show M|av , v � ψB → φ. Suppose M|av , v � ψB, we have then E(v) = E(t)
since M|at , t � ψB. Therefore UM|at = UM|a ∩ E(t) = UM|a ∩ E(v) = UM|av ,
thus M|at =M|av and v ∈ UM|at . SinceM|at , t � Kφ, we have M|at , v � φ, thus
M|av , v � φ.

(1) Right to left: Suppose for any B ⊆ A, M, s � 〈a〉(ψB ∧ ¬χ) →
K[a](ψB → φ), we need to show that M, s � [a](Kφ ∨ χ). Suppose not, then

there is a t, such that s
a→ t and M|at , t � ¬Kφ ∧ ¬χ ∧ ψB for some B = e(t).

ThenM, s � 〈a〉(ψB∧¬χ). SinceM, s � 〈a〉(ψB∧¬χ)→ K[a](ψB → φ), then
M, s � K[a](ψB → φ). SinceM|at , t � ¬Kφ, then there is v ∈ UM|at , such that
M|at , v � ¬φ (∗). Since v ∈ UM|at , then v ∈ E(t) and there is a u ∈ UM such

that u
a→ v. Since M, s � K[a](ψB → φ), then M, u � [a](ψB → φ). Since

u
a→ v, M|av , v � ψB → φ. Since v ∈ E(t) and B = e(t), we have M|av , v � ψB

thus M|av , v � φ. Again by the fact that v ∈ E(t) we have UM|at = UM|av , thus
M|at = M|av . Now it is easy to see that M|at , v � φ which is contradictory to

(∗). Thus there is no such t that s
a→ t and M|at , t � ¬Kφ ∧ ¬χ, therefore

M, s � [a](Kφ ∨ χ).
(2) Left to right: If M, s � [a](K̂φ ∨ χ), we need to prove that for any

B ⊆ A: M, s � 〈a〉(ψB ∧ ¬χ)→ K̂〈a〉(ψB ∧ φ).

Now suppose M, s � 〈a〉(ψB ∧ ¬χ), then there is a t, such that s
a→ t and

M|at , t � ψB ∧ ¬χ. Since M, s � [a](K̂φ ∨ χ), then M|at , t � K̂φ ∨ χ, then
M|at , t � ψB ∧ K̂φ. Thus there is a v ∈ UM|at , such that M|at , v � φ. Since

v ∈ UM|at , there is a u ∈ UM such that u
a→ v and v ∈ E(t). v ∈ E(t)

implies that M|at , v � ψB. Then M|at , v � ψB ∧ φ. Because v ∈ E(t), then
UM|at = UM|av , thus M|at = M|av . Therefore M|av , v � ψB ∧ φ, and then we
have M, u � 〈a〉(ψB ∧ φ). Since s, u ∈ UM, M, s � K̂〈a〉(ψB ∧ φ).

5 The equivalences can be proved in SEALA
P

too.
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(2) Right to left: Suppose for any B ⊆ A, M, s � 〈a〉(ψB ∧ ¬χ) →
K̂〈a〉(ψB ∧ φ) but M, s 2 [a](K̂φ ∨ χ), then there is a t, such that s

a→ t and
M|at , t � K¬φ∧¬χ∧ψB for some B = e(t) ⊆ A. ThereforeM, s � 〈a〉(ψB∧¬χ),
thusM, s � K̂〈a〉(ψB ∧φ) due to the assumption thatM, s � 〈a〉(ψB ∧¬χ)→
K̂〈a〉(ψB ∧ φ). Now there is a u ∈ UM such that M, u � 〈a〉(ψB ∧ φ). Then

there is a v, u
a→ v and M|av , v � ψB ∧ φ. Since M|av , v � ψB and e(t) = B, we

have v ∈ E(t), thus UM|at = UM|av . Therefore M|at = M|av , then M|at , v � φ

which contradicts to M|at , t � K¬φ. Thus there is no such t that s
a→ t and

M|at , t � K¬φ ∧ ¬χ, therefore M, s � [a](K̂φ ∨ χ). 2

Now we are ready to prove the main theorem of this subsection.

Theorem 4.8 For any EALAP formula φ, there is an EALKAP formula φ′, such
that � φ↔ φ′.

Proof Before we start the proof, note that by Proposition 3.6 and The-
orem 3.12, the replacements of the equals preserve validity. We will use it
repeatedly. We prove the theorem by an induction on the structure of φ:

The cases for φ = p,¬φ′, φ1 ∧ φ2, and Kφ can be easily proved by IH and
the replacement of equals.

φ = [a]ψ, by IH, there is an EALKAP -formula ψ′, such that � ψ ↔ ψ′. By
Proposition 4.6, there is a EALKAP -formula χ in K-CNF, such that � χ ↔ ψ′.
Since χ is in K-CNF, then we can assume that χ = α1 ∧ · · · ∧ αn, then [a]χ
is clearly equivalent to [a]α1 ∧ · · · ∧ [a]αn. We want to show that for each
1 ≤ i ≤ n, [a]αi is equivalent to an EALKAP -formula since then [a]α1∧· · ·∧ [a]αn

is also equivalent to an EALKAP -formula.
Since χ is an EALKAP -formula, each αi is also an EALKAP -formula. By

the definition of K-CNF, each αi is in the shape of β1 ∨ · · · ∨ βm, then
[a]αi = [a](β1 ∨ · · · ∨ βm). It is clear that for any 1 ≤ j ≤ m, βj is
an EALKAP -formula. By definition of K-CNF, each βj is in the shape of

p,¬p, [·]ψ,¬[·]ψ, Kχ or K̂χ where kd(χ) = 0. Note that for EALKAP - formulas
φ : kd(φ) = 0 ⇐⇒ φ is K-free. Now since βj is in EALKAP , then it is not

hard to see that βj contains K operator iff βj = Kχ or βj = K̂χ where χ is
K-free. Then we can sort all the βj into two categories depending whether it
is K-free and rearrange the disjuncts in αi as βi1 ∨ · · · ∨ βih ∨ · · · ∨ βim , such
that kd(βik) = 1 for 1 ≤ k ≤ h and kd(βik) = 0 for h < k ≤ m. We will prove
the following claim (?):

For any h ≥ 0 and any m > h there is an EALKAP -formula γ, such that
� γ ↔ [a](βi1 ∨ · · · ∨ βih ∨ · · · ∨ βim).

We prove it by induction on h. The case of h = 0 is trivial since all the βik
(1 ≤ k ≤ m) are K-free.

Now suppose the claim holds when h = n (for all m > h) we need to
prove the case of h = n + 1. Let χ = βi1 ∨ · · · ∨ βin ∨ βin+2

∨ · · · ∨ βim , then
[a](βi1 ∨ · · · ∨ βim) is equivalent to [a](χ ∨ βin+1

). Since kd(βin+1
) = 1, thus
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βin+1 contains K then βin+1 = Kχ′ or βin+1 = K̂χ′, where χ′ is K-free.
(i) If βin+1

= Kχ′, then [a](χ ∨ βin+1
) = [a](χ ∨Kχ′). By Proposition 4.7

(1), [a](χ ∨Kχ′) is equivalent to∧
B⊆A

(¬[a](¬ψB ∨ χ)→ K[a](¬ψB ∨ χ′))

Note that given an B ⊆ A, ψB is a K-free EALKAP -formula in the shape of∧
a∈B〈a〉> ∧

∧
b6∈B ¬〈b〉>. Therefore ¬ψB is still an EALKAP -formula which is

equivalent to
∨

a∈B[a]⊥ ∨
∨

b6∈B ¬[b]⊥. Therefore ¬ψB ∨ χ can be massaged
into a right disjunctive form βi1 ∨ · · · ∨ βin ∨ · · · ∨ βim+|A| . Now by IH, there

is an EALKAP -formula γB, such that γB is equivalent to [a](¬ψB ∨ χ). Since χ′

is K-free, then K[a](¬ψB ∨ χ′) is already an EALKAP -formula. Now let θB =
¬γB → K[a](¬ψB ∨ χ′) we can see that θB is equivalent to ¬[a](¬ψB ∨ χ) →
K[a](¬ψB ∨ χ′) and θ is an EALKAP -formula.

(ii) The case for βin+1
= K̂χ′ can be proved similarly by using Proposi-

tion 4.7 (2). Hereby we complete the proof for claim (?).
In sum, for each i: [a]αi is equivalent to an EALKAP -formula thus [a]ψ is equi-

valent to an EALKAP -formula therefore completing the proof of the theorem. 2

The above proof also suggests a naive algorithm to translate an EALAP -
formula into an EALKAP -formula, which works in the inside-out fashion:

(i) Find the minimal sub-formulas which are not in EALKAP , massage them
into K-CNF, and then use the method described in the above proof to
translate them into equivalent EALKAP -formulas by pushing K out.

(ii) Replacing those sub-formulas in the original formula by their EALKAP cor-
respondents.

(iii) Repeat step (i) until all the subformulas are in the right shapes. Every
step pushes the K operator one level out towards the outmost positions
thus the procedure terminates eventually.

For example let A = {a}, [a]Kp can be translated to a K-CNF
EALKAP formula:

([a][a]⊥ ∨K[a](〈a〉> → p)) ∧ ([a]〈a〉> ∨K[a]([a]⊥ → p))

Let χ1 = [a][a]⊥, χ2 = [a]〈a〉> and φ1 = [a](〈a〉> → p) and φ2 = [a]([a]⊥ → p).
Thus [a][a]Kp is equivalent to: [a](χ1 ∨Kφ1) ∧ [a](χ2 ∨Kφ2) and then to∧
i=1,2

((〈a〉(〈a〉>∧¬χi) → K[a](〈a〉> → φi))∧(〈a〉(¬〈a〉>∧¬χi) → K[a](¬〈a〉> → φi)))

Clearly, the translated formula is at least exponentially longer. We leave the
discussion on the succinctness of EALAP compared to EALKAP for future work.

Remark 4.9 Is there a simpler translation? In many DEL-style logics, we can
often define a simple recursive translation from the full language to its fragment
by swapping the connectives and modalities, e.g., in public announcement logic,
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[ψ]¬φ ⇐⇒ ψ → ¬[ψ]φ (cf. e.g., [17]). However, such idea may not work here:
it seems there is no general equivalence-preserving rule to swap 〈a〉 and ¬.

4.3 Finite model property

Theorem 4.8 also suggests that EALAP has the finite model property : First of all,
it is not hard to see that for any EALKAP formula φ, φ has a UM model iff φ has
an EM model (w.r.t. ); Secondly, EALKAP on EM model has the finite model
property (an easy exercise for normal modal logic); Thirdly any pointed EM
model of an EALKAP -formula can be viewed as an EALKAP -equivalent UM model
by ignoring the equivalence classes that do not contain the designated point.

In the rest of this section, we directly prove the finite model property of
EALAP on UM models by using finite approximations of U-bisimilarity.

Definition 4.10 The modal degree of EALAP -formulas (md(φ)) is defined as
follows:

md(>) = 0 md(p) = 0

md(¬φ) = md(φ) md(φ ∧ ψ) = max{md(φ),md(ψ)}
md(〈a〉φ) = 1 +md(φ) md(Kφ) = md(φ)

Note that here K does not count for modal degrees. Let EALAPn = {φ | φ ∈
EALAP , and md(φ) = n}

Now we define the finite approximation of � based on n-bisimilarity w.r.t.
P and A (cf. [3]).

Definition 4.11 EM model M and N are n-U-bisimilar ( M �n N ) iff for
any u ∈ UM, there is a u′ ∈ UN such that MML, u ↔n N ML, u′ and for any
u′ ∈ UN , there is a u ∈ UM such thatMML, u↔n N ML, u′. For pointed models,
M, s�n N , u iff MML, s↔n N ML, u and M�n N .

Proposition 4.12 For n > 0: if M, s �n+1 N , u, s
a→ t, u

a→ v, and
MML, t ↔n N ML, v, then M|at , t�n N|av , v.

Proof Since (M|at )ML = MML and (N|av)ML = N ML, (M|at )ML, t ↔n (N|av)ML, v,
thus we only need to prove M|at �n N|av .

For any t′ ∈ UM|at = Ua
M ∩ E(t), there is an s′ ∈ UM, such that

s′
a→ t′. Since M, s �n+1 N , u, then there is a u′ ∈ UN , such that

MML, s′ ↔n+1 N ML, u′. Therefore there is a v′, such that u′
a→ v′ and

MML, t′ ↔n N ML, v′. Therefore v′ ∈ UN |a and e(v′) = e(t′) (due to the fact
that n > 0 and MML, t′ ↔n N ML, v′). Since e(t′) = e(t) and e(t) = e(v), we
have e(v′) = e(v), thus v′ ∈ E(v), therefore v′ ∈ UN |av . Now we have proved
that for any t′ ∈ UM|at , there is a v′ ∈ UN |av , such that MML, t′ ↔n N ML, v′,
namely (M|at )ML, t↔n (N|av)ML, v. The other direction is totally symmetric. 2

Proposition 4.13 M, s�n+1 N , u =⇒ M, s ≡EALAPn
N , u.

Proof The proof is based on induction on n: For n = 0, we can easily check
that all the EALAP0-formulas are preserved under �1. Now supposeM, s�k+1

N , u implies M, s ≡k N , u. We need to show M, s �k+1+1 N , u implies
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for all EALAPk+1 formula φ: M, s � φ ⇐⇒ N , u � φ. Now suppose that
M, s�k+1+1 N , u, we proceed by induction on the structure φ:

For Boolean cases, it is obvious.
φ = 〈a〉ψ: IfM, s � 〈a〉ψ, then there is a t, such that s

a→ t,andM|at , t � ψ.

Since M, s ↔k+2 N , u, then there is a v, u
a→ v, and MML, t ↔k+1 N ML, v.

By Proposition 4.12, M|at , t �k N|av , v. Since md(ψ) ≤ k, and by IH for k,
N|av , v � ψ, then N , u � 〈a〉ψ. The other direction is symmetric.

φ = Kψ, if N , u � Kψ but M, s 2 Kψ then there is a s′ ∈ UM, M, s′ 2
ψ. Since M, s �k+2 N , v then there is a u′ ∈ UN , MML, s′ ↔k+2 N ML, u′

then M, s′ �k+2 N , u′. By IH for simpler φ, N , u′ 2 ψ. Then N , u 2 Kψ,
contradiction. The other direction is symmetric. 2

The reader may wonder about the mismatch between n and n + 1 in the
above proposition. Actually it is not surprising since in the semantics we ac-
tually look one step forward to observe the available actions. The translation
of the previous subsection also showed that the EALKAP equivalent translation
may have larger modality depth than the original formula (check the example
of [a]Kp in the previous subsection). 6

Theorem 4.14 For each EALAP-formula φ, if it has a UM model then it has a
finite tree-like model with the depth of at most n+ 1 where n = md(φ).

Proof (Sketch:) Without loss of generality, we assume P and A are finite
(since a formula is about at most finitely many symbols). Let n = md(φ).
Suppose φ has a UM model M, we first “contract” the set UM according to
↔n+1 (equivalently, according to ≡MLn+1

, where MLn+1 is the K-free fragment of
EALAPn+1). Note that since MLn+1 is essentially a finite language modulo logical
equivalence, after the contraction there are only finitely many representatives
which form a finite set U ′. Then we finitely (up to n+ 1) unravel the pointed
multimodal models based on these states and prune the branches to make a
finite model. Finally we make a disjoint union of these unravellings with the
uncertainty set U ′. 2

To squeeze the model even further we also develop a highly non-trivial
filtration technique which we left for the full version of this paper. Based on
such a finite model property, we can conclude that EALAP is decidable on UM
models.

5 Comparisons

We claimed in the introduction that our EALAP framework is a blend of ETL and
DEL frameworks. In this section, we make it more precise by comparing it to
ETL and DEL. The conclusions can be summarized as follows:

• Our UM models can be viewed as compact representations of ETL structures
where the epistemic relations are computed based on 1. the previous epi-

6 Actually, a closer analysis would reveal that this can only happen when md(φ) = 1.
Proposition 4.13 can be strengthened to : for n > 1 :M, s�n N , u ⇐⇒ M, s ≡EALA

Pn
N , u.
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stemic uncertainties, 2. the executed actions and 3. the new observations,
which is, in spirit, similar to the DEL-like epistemic updates.

• On the other hand, the DEL approach via product updates on epistemic mod-
els with protocols can also be viewed as a logic on particular ETL structures,
however, satisfying a property which is violated in the navigation scenarios.
Due to this and other difficulties, the standard DEL with event models is not
suitable to handle the reasoning in the navigation scenarios.

To facilitate the comparisons, let us fix some notations first. Given a UM
modelM for EALAP , we say ρ = s0a1s1a2s2 · · · ansn is a path inM if s0 ∈ UM,

n ≥ 0 and for any 0 ≤ i ≤ n− 1: si
ai+1→ si+1 in M. Given a path ρ =

s0a1s1a2s2 · · · ansn let the len(ρ) = n be the length of ρ. Note that there are
paths of length 0 with a single state only.

5.1 Comparison with ETL

Technically speaking, an single-agent ETL model is just a tree-like EM model.
We can unravel a UM model into such an ETL model.

Definition 5.1 Given a UM model M = 〈S, {Ra | a ∈ A}, U, V 〉, we define
METL as 〈S•, {R•a | a ∈ A},∼, V •〉 where:

(i) S• = {ρ | ρ is a path in M starting with some s ∈ U}
(ii) ρ

a→ ρ′ in METL iff ρ′ = ρat for some t ∈ S and a ∈ A.

(iii) For any two paths ρ = s0a1 · · · ansn and ρ′ = t0b1 · · · bmtm in S•: ρ ∼ ρ′

in M• iff (n = m, and for all i ≤ n: ai = bi and e(si) = e(ti)).

(iv) V •(s0a1 · · · ansn) = V (sn)

It is easy to show that ∼ is indeed an equivalence relation.

Proposition 5.2 ∼ in METL is reflexive, transitive and symmetric.

Moreover we can define ∼ more explicitly:

Proposition 5.3 ∼ ⊆ S• × S• is the minimal set of pairs satisfying the fol-
lowing conditions:

(i) s ∼ t for any s, t ∈ U
(ii) ρas ∼ ρ′a′s′ if ρ ∼ ρ′, a = a′ and e(s) = e(s′).

Let us unravel the initial model in Example 2.1.

Example 5.4 Given the initial model asM, METL can be depicted as follows
(where dotted lines denote the ∼ relation while omitting the reflexive arrows):

s1

a

zz
b

&&

s2

b

~~
a

##
s1as2

b

zz
a

$$

s1bs3 : p s2bs4 s2as3 : p

s1as2bs3 s1as2as4
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The following result is crucial to prove that METL is indeed a good trans-
formation preserving EALAP formulas.

Proposition 5.5 Let M = 〈S, {Ra | a ∈ A}, U, V 〉 and s ∈ U . If there exists

s′ ∈ S such that s
a→ s′, then M•, sas′ ↔ (M|as′)•, s′ (here the bisimilarity is

w.r.t. P,A and also ∼).

Proof We define a binary relation Z on SM•×S(M|a
s′ )
• as follows Z = {(ρ, ρ′) |

ρ ∈ SM• , ρ′ ∈ S(M|a
s′ )
• and there exists u ∈ UM such that ρ = uaρ′}.

Clearly sas′Zs′, thus Z is non-empty. Now we prove that Z is a bisimula-
tion. The propositional invariance condition and the back-and-forth conditions
for

a→ are obvious. We only need to check the back-and-forth conditions for
∼. In the sequel, suppose ρ = uaρ′ for some path ρ′ in S(M|a

s′ )
• then it is clear

that ρ′ starts with some state t ∈ SM such that e(t) = e(s′).
Now suppose ρ ∼ ξ then according to the definition of ∼, ξ must be in the

shape of vaξ′ where v ∈ UM and ξ′ must start with a state t′ ∈ SM such that
e(t′) = e(t) = e(s′). Therefore t′ ∈ UM|a

s′
, then it is not hard to see that ρ′ ∼ ξ′

in M|as′ . For the other direction, suppose ρ′ ∼ ξ′ in M|as′ then it is easy to see
that there is a v ∈ UM such that uaρ′ ∼ vaξ′ by definition of ∼ in M. 2

Now we are ready to prove the preservation result. Recall that  denotes
the satisfaction relation of the auxiliary semantics of EALAP language on EM
models, which we used in Section 3.

Theorem 5.6 For any EALAP formula φ: M, s � φ ⇐⇒ M•, s  φ.

Proof Boolean cases and the case for Kψ are trivial based on IH.
φ = 〈a〉ψ: M, s � 〈a〉ψ then there is s′, such that s

a→ s′ and M|as′ , s′ � ψ.
By IH, (M|as′)•, s′  ψ. Now by Proposition 5.5, and the fact that EALAP w.r.t.
 is invariant under bisimulation (cf. [3]), M•, sas′  ψ, thus M•, s  〈a〉ψ.
Conversely, if M•, s  〈a〉ψ then there is sas′ ∈ SM• , M•, sas′  ψ. Then

s
a→ s′ inM and by Proposition 5.5 (M|as′)•, s′  ψ. By IH,M|as′ , s′ � ψ, then

M, s � 〈a〉ψ. 2

Theorem 5.6 established the equivalence of our framework and ETL frame-
work with special definition of epistemic relations, however, it is not reasonable
to work ETL models explicitly since the unravelling turns a finite map into an
infinite forest if there are loops.

5.2 Comparison with DEL

As we mentioned in the introduction, there are efforts trying to merge ETL

and DEL frameworks. Most notably, [18] characterizes the DEL-generated ETL

models (under protocols) by a few properties. In [6] the authors argue that
some of these properties, e.g., various notions of perfect recall, are not inherent
features of DEL but are introduced by the specific translation. However, it is
commonly agreed that the property of (local) no miracles (LNM) is inevitable
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for a DEL-generated ETL model 7 . Formally, it says that in the DEL-generated
ETL model (notation adapted in our exposition)

((s
c→ s′, t

d→ t′, s′ ∼ t′) and (s ∼ w ∼ v, w c→ w′, v
d→ v′)) implies w′ ∼ v′.

In picture (whether s and t are indistinguishable is unknown):

t

d
��

s

c

��

w

c

��

v

d
��

t′ s′ w′ v′

In words, LNM roughly says that whenever the results of executing two actions
are indistinguishable, then executing these two actions on indistinguishable
states must result in indistinguishable states again. Actually, this property is
inherent in the definition of the updated epistemic relations according to the
standard product update [1], where two updated states are indistinguishable
after executing two actions on two old states respectively iff the two old states
are indistinguishable and the two actions are indistinguishable too.

However, in our navigation scenarios, it is often the case that executing the
same action (thus indistinguishable from itself) on previously indistinguishable
states will result in distinguishable states, e.g., in Example 5.4 performing
action a on indistinguishable states s1 and s2 will result in distinguishable
states. To see that it is an example violating LNM, let s = t = s2, s

′ = t′ =
s2as3, c = d = a,w = s1, v = s2 and w′ = s1as2, v

′ = s2as3 and check the
definition of LNM 8 .

The feature of our epistemic update mechanism is reflected in Proposi-
tion 5.3: the three conditions in the inductive case actually say (1) we also
respect the old uncertainties on states; (2) we do not have uncertainties about
actions with different names; (3) the observations at the new states may affect
the new uncertainties. It is the feature (3) which makes us deviate from LNM.

Merely technically speaking, we may still try to mimic the EALAP frame-
work by the standard DEL via event models. The difficulties and the potential
solutions are summarized below, interested readers may consult the algebraic
DEL-approaches in [14,15,9].

• Failure of LNM: try to split one action into different actions w.r.t. different
conditions, e.g., in Example 5.4 the two a moves must be treated differently
in the event model.

• The standard DEL-model is purely epistemic: use state-dependent protocols
to encode the moves in the map (cf. e.g.,[18]).

• No location changes: try to capture the changes of current location by factual
changing actions (cf. e.g., [15]).

7 Although we take the notion of LNM as in[18], our cunterexample also works for the other
no miracle notions in [6].
8 Actually LNM also prevents the application of standard DEL in security verification as
observed in [5].
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• DEL-updates are functional: to model non-deterministic actions multi-
pointed event models should be used.

6 Conclusion and future work

In this paper, we lay out a logical framework for dynamic epistemic reasoning
in navigation. The “philosophy” behind our work is summarized as follows:

• Keep the logical language and its models as simple and natural as possible,
while put the “burden” on the semantics.

• Combine the spirits from ETL and DEL by having the temporal possibilities
encoded in the model with an initial epistemic situation, while the further
epistemic developments are computed according to the update semantics.

• Try to reduce the dynamics of models into static relations in a larger model.

We think this is just the opening of an interesting story. A few future
directions are mentioned as follows. For the current framework, we have not
discussed the computational issues such as the complexity of satisfiability and
model checking problems and the succinctness compared to EALKAP . To general-
ize the current framework, we may consider more general observations instead
of observations of the currently available actions. Similar techniques for ax-
iomatization should work in the more general case. As in [15], the converse
operator may be introduced to express “I know where I were”. However, we
conjecture that such converse operators can be eliminated qua expressive power.

As we mentioned in the introduction, we are aiming at real-life applications
of navigation and planning, for which an epistemic Propositional Dynamic
Logic (EPDL) language is more attractive due to its program language. We
can then reduce the planning problem into model checking problem of EPDL-
formulas expressing sentences like “there is a plan that can make sure he knows
φ”. This extension may require new techniques and we leave it for future work.
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