
RICHARD KAYE

Minesweeper is
NP-complete

NP-completeness
Many programming p rob lems require the design of an al-

gor i thm which has a "yes" or "no" ou tput for each input.
For example , the p rob lem of test ing a whole number for
pr imal i ty requires an a lgor i thm which answers "yes" if the

input number x is prime, and "no" otherwise.
In trying to devise an algori thm to solve a given problem,

one aspec t of obvious pract ical impor tance is the t ime it
takes to run. Since a typical algori thm may take more t ime

on some inputs than others, the running t ime of an algori thm
is usually regarded as a function of the input. For technical
reasons, it is convenient to consider the way this function

varies with the number of symbols required to write the in-
put. (This number of symbols is usually denoted by n.) For
example, for the input 17, our algori thm may require this
number to be wri t ten in binary (as 10001), so here n = 5.

Different a lgor i thms for the same p rob lem may rtm in
different amoun t s of time, due pe rhaps to the different cod-
ing me thods used or to different theore t ica l bases for the
algori thms. However , it may be that for a par t icu lar prob-

lem, all val id a lgor i thms can be shown to take at leas t a
cer ta in amoun t o f time, due to the inherent difficulties in
the p rob lem being solved. Complexity theory aims to s tudy
the inherent difficulties of problems, ra ther than the t ime

or m e m o r y resources used by any par t icu la r a lgor i thm or
program.

It is cer ta inly poss ib le to find p rob lems that can only be
solved on a compute r using a huge amount of time. It is

also poss ib le to find sensible-sounding p rob lems that can-
not be solved on a compute r at all! However , there are two
classes of p rob l ems that are of grea tes t in teres t for com-
plexi ty- theoris ts .

The first of these c lasses is the collection, P, of Poly-
nomial-time computable problems. These are the prob-

lems that can be solved on a normal compu te r and within
an amount of t ime of order n, or n 2, or n 3, or n 4 , (As be-

fore, n is the number o f symbols required to wr i te down
the input to the problem. Note in par t i cu la r that the run-

ning t ime of such a p rogram is bounded by a po lynomia l
in the length of the input, not the input itself.)

Of course, for a r igorous t rea tment of the subject , a pre-
cise definit ion of the mathemat ica l mode l of compute r we

are using and wha t const i tu tes the running t ime of the com-
puter, mus t be given. Fo r the pu rposes of this ar t ic le I will
be less precise, but give here the two main points . Firstly,

our compute r s will have an unl imited amoun t of m e m o r y - -
that is to say that they a lways have enough m e m o r y to com-
ple te the computa t ion in hand. This does not s eem part ic-
ular ly restrict ive, as any terminat ing computa t ion can only

use a fmite amount of memory anyway, and for mos t al-
gor i thms cons ide red here, the amount of m e m o r y required
for any par t icu lar computa t ion can be es t imated fairly ac-
cura te ly in advance. Secondly, the t ime taken by the com-
pu te r is the number of s teps required, where a single s tep
can only p roces s a single charac te r ' s wor th of informat ion

and a "character" comes f rom a fLxed a lphabet . (Charac ters
could be single bits, o r bytes, or 32-bit words, or symbols
f rom some o ther finite set, p rovided this finite se t is spec-
flied in advance.) To give an i l lustrative example , observe

that a rb i t rary natura l numbers can be r ep resen ted on such
compute r s (as sequences of b inary digits, for example) and
two such numbers can be mul t ip l ied together, but the t ime
taken to mult iply these numbers will not be a single s t e p - -
it will ins tead be a funct ion of the length of the numbers ,

for the compute r can only p rocess the numbers character -

by-character .
A large amount of heuris t ic evidence exis ts suppor t ing

the thesis that the not ion of a polynomial - t ime computab le

�9 2000 SPRINGER-VERLAG NEW YORK, VOLUME 22, NUMBER 2, 2000 9

p r ob l em is independent of the par t icu la r compu te r mode l

used. That is, if a p rob lem is solved in po lynomia l t ime on
one compute r then the a lgor i thm used can be t rans fe r red
to a different kind of compu te r and will also run in poly-
nomial t ime there. There is a lso s t rong evidence that sug-

ges ts tha t the complex i ty class P consis ts of p rec i se ly those
p rob l ems that are soluble i n practice on an ord inary com-
puter . Problems not in P may be theoret ica l ly soluble, bu t

only with impract ica l running t imes even on the very fas tes t
computer .

The second class of p rob l ems of in teres t is the class of
Nondetermin is t ic Polynomia l - t ime computable problems,
NP. These are p rob lems that can be solved in po lynomia l
t ime as before, but on a spec ia l "enhanced" compu te r ab le

to pe r fo rm "nondeterminis t ic" algori thms. The r eason for
the in teres t in NP is that this c lass contains a grea t many
p rob lems of significant p rac t ica l impor tance that are not

known to be soluble by an ord inary polynomial - t ime algo-
ritltm, including some very wel l -known p rob lems such as
tha t o f the "travelling sa lesman."

To defme NP, we jus t need to explain the idea of a non-

de terminis t ic algorithm. These algori thms are l ike ordi-
na ry ("determinist ic") ones excep t that there is an ex t r a

kind of instruct ion a l lowed which instructs the c o m p u t e r
to guess a number. The c o m p u t e r performing this instruc-
t ion is a ssumed to have the very special abil i ty a lways to
make a cor rec t guess if one is available, and it is this as-

pec t of nonde te rmin ism that is difficult to implement in
pract ice! Having made a guess, the nondete rmin is t ic algo-
r i thm is required to verify that the guess was indeed a cor-

rec t one, because only by doing this can it de te rmine
w he the r a correct guess was poss ib le at all.

F o r example, i t is easy to use nonde te rmin i sm to tel l if
a whole number input x is compos i t e (i.e., no t pr ime) . The
mach ine should guess two whole numbers y, z > 1 and

compute their product , yz. If yz = x then the mach ine has
ver if ied that the guess was correct , so may answer yes, the
n u m b e r x is composi te . If y z r x then the mach ine may
safely answer no, as in this case it is a l lowed to assume
tha t no be t te r guess was available, i.e., that x rea l ly is

pr ime. Since a single mul t ip l ica t ion can be car r ied out
ra ther quickly, this nonde te rmin is t i c machine will dec ide
if a number is compos i t e very rapidly wi thout any lengthy
sea rch over all the poss ib le factors.

A nondeterminis t ic mach ine is not a l lowed to guess the

answer ("yes" or "no") to the p rob lem and output that, be-
cause the machine would no t have verif ied this guess. The
specia l p o w e r of these machines lies in the fact that it is
not necessa ry to verify that any par t icu lar guess was in-

correct (because only cor rec t guesses are chosen if they

are available). It is only required to verify that a guess is
correct. Because of the different nature of these "yes" and
"no" answers , it is not a lways t rue that the complemen t of
a p rob lem solvable using nonde te rmin i sm is as easy to
solve nondeterminis t ical ly . In the case of compos i t e and

This a lgor i thm is based on the p rope r ty that a num-

ber x > 2 is p r ime if and only if there is y such that
y X - 1 ~_ 1 m o d x and yq ~ 1 m o d x f o r a l l q < x - 1.

It is recurs ive in the sense tha t it cal ls i tself with
smal le r values.

1. On input x, if x = 2 answer "yes," and if x -- 1 an-
swer "no." Otherwise go to the nex t step.

2. Guess y and verify that yX - 1 _- 1 mod x. (If this

fails, an swer "no" and stop.)

3. Guess a p r ime factor isat ion a l a2 �9 �9 �9 an of x - 1
and run the algori thm recurs ively to check that
each a i is prime.

4. Verify that 2 (x - 1)/ai ~ 1 mod x for each pr ime fac-

tor ai of x - 1. If any of these fail, answer "no;"
o therwise answer "yes."

Figure 1. Pratt's nondeterministic algorithm for primality.

pr ime numbers , for example, it is not immedia te ly obvious
how one might show that the set of p r imes (the comple-

ment of the set of compos i tes) is recognizable in polyno-
mial t ime by a nondete rmin is t ic algori thm. The p rob lem
here is to guess something that shows the input x is prime,

and then to verify our guess quickly, but wha t should we
guess? In fact, the re is jus t such a "cert if icate of primality,"
as was first obse rved by Prat t 1 (see Figure 1).

Needless to say, no "nondeterminism chip" has been de-
ve loped to use in real compute rs (though some believe that
quantum mechan ics implies that someth ing ra ther l ike non-
de te rminism might be built into a usable device).

As a l ready ment ioned, the class NP of Nondeterminis t ic

Polynomial - t ime prob lems is the class of p rob lems that
can be so lved in po lynomia l t ime on a nondeterminis t ic
machine. It is general ly bel ieved tha t nonde te rmin i sm re-

ally does in t roduce p rob lems that were not a l ready in P,
and also that there are NP p rob lems whose complement
does not lie in NP, bu t here lies the main problem. To date,

no one has ma na ge d to fmd an NP p rob l e m and prove it is
not in P. The famous "P = NP" quest ion is whe ther there
is such a problem. This is one of the mos t impor tan t open
p rob lems in m a t h e m a t i c s - - p e r h a p s even the most impor-
tant open problem. It has the same s ta tus as Fe rmat ' s last
t heorem before Wiles 's solution, wi th a long his tory (going
back well before computers) . The major i ty of mathemat i -
c ians bel ieve tha t P and NP real ly a re different (though sev-
eral wel l - respec ted mathemat ic ians cons ide r it quite plau-

sible that P = NP), but no one has a proof. Every
mathemat ic ian d r eams of solving a p rob l e m like this, and
a huge number have tried, but no one has succeeded.

The diff iculty of proving that P r NP is not due to lack
of examples of in teres t ing p rob lems in NP. In fact, mathe-
mat ic ians now have a huge list of p r o b l e m s - - i n c l u d i n g the

travell ing sa lesman and many o thers of prac t ica l i n t e r e s t - -

1V.R. Pratt, "Every prime has a succinct certificate," SIAM J. Comput. 4 (1975), 214-220.

10 THE MATHEMATICAL INTELLIGENCER

A
"~A

B C> " D ") [b
A v B B A A B B

A --,A
T F

F T

A B
T T

T F
F T
F F

A V B

T
T

T
F

A B

T T
T F
F T

F F

A A B
T

F
F

F

A B

T T
T F
F T

F F

A + B
F

T
T
F

A boolean c i rcu i t is a circui t buil t of the famil iar logic gates such as AND (/~), OR (~/), XOR (+) , and NOT (-m), each
with inputs that may be t rue (T) or false (F) . A circui t will have severa l inputs label led Pl, P2, - �9 �9 , Pn and an out-

put q. The p rob lem SAT is

Given a boolean circuit C, is there some combina t ion of t rue/false values for the inputs of C so that the output

of C is t rue?

There are a lgor i thms to answer this question, bu t none running in polynomial t ime is known. The obvious algori thm
(to check all poss ib le combina t ions of the inputs of C) t akes too long, as there a re 2 n combina t ions for n inputs.

SAT is NP-complete.

Figure 2. The NP-complete problem SAT.

which are in NP and for which we have a p roo f that if P r

NP, then the p rob lem is not in P. A problem, A, is typical ly
shown to be of this type by proving tha t it is NP-complete,

i.e., that every o ther NP problem, B, can be solved by a de-
terminis t ic polynomial - t ime p rogram which conver ts i ts in-
put, x, for the p rob lem B to an input, f (x) , for the p rob lem
A, with the p rope r ty that the answer to p rob lem B for in-

put x is the s a m e as the answer to p rob lem A for input f (x) .
If there is a polynomial - t ime computab le func t ionf (x) with
these proper t ies , we say the p rob lem B reduces to the prob-
lem A. Loosely speaking, a p rob lem B reduces to a prob-

lem A, if A "includes" all ins tances of B as special cases,
and the NP-problem A is NP-complete if it "includes" (in

this sense) all other NP-problems.
To see the impor tance of this, cons ider a p rob lem B in

NP, and suppose also that we are given an NP-complete
problem, A. Then there is a polynomial - t ime compute r pro-
gram tha t conver ts each instance, x, of the p rob lem B to

an instance, f i x) , of the p rob lem A. But if our NP-complete
p rob lem A is actual ly in P, the p rob lem A for f (x) can be
solved in po lynomia l t ime by a determinis t ic algori thm,
hence B also can be solved in determinis t ic po lynomia l

t ime, because the answers for A on i n p u t f (x) and B on in-
put x are the same. 2 This also appl ies to any o ther C in NP

(with a different funct ion f (x) of course) , so if A is in P,
then every p rob lem in NP will be in P, i.e., P = NP.

Cook 3 and, independent ly , Levin 4 first showed that NP-

comple te p rob lems exist. In par t icular , the p rob lem SAT

of logical sat isf iabi l i ty (see Figure 2) is NP-complete.

Although there are a great many NP-complete p rob lems of
prac t ica l impor tance , no one has found one which may be

solved by a polynomial - t ime algorithm, and it is widely be-
l ieved that no such exist. Turning a necess i ty into a virtue,
many people have a t t empted to design c ryp tosys tems so

that a potent ia l c o d e b r e a k e r would have to solve an NP-
comple te p rob lem in o rde r to b reak the c o d e - - t a k i n g too
much t ime even on the fas tes t computer . Ei ther way, an
answer to the P -- NP quest ion would have significant prac-

t ical impor tance .

The Minesweeper Game
Many of the ideas ment ioned above may be i l lustrated ef-
fect ively with a game many readers will be famil iar with.
Minesweeper comes with Microsoft ' s Windows opera t ing
system. 5 In it, the p l aye r is p re sen ted with an initially b lank
grid. Undernea th each square there may be a mine, and the

objec t of the game is to locate all these mines wi thout be-
ing b lown up. You se lec t a square to be revealed; if it is a
mine you are b lown up (and the game is over), but with
luck, pe rhaps it isn't . In this second case, when the square

is revea led you see a number from 0 to 8, which is the num-
be r of mines in the eight immedia te ly neighbouring

squares. Figure 3 shows a typical pos i t ion in such a game.
The numbered squares a re the squares that have been re-
vealed, and no others have been uncovered yet. Two of the

unrevea led squares are marked with a *, and these squares
have a l ready been ident if ied as having mines in them. The

o thers have been label led with le t ters for identif ication.

2There is an important technical consideration omitted from the argument here: if A is in P, then the running time for the algorithm for A on input f(x) is bounded by a

polynomial in the length of f(x), not the length of x itself. However, f(x) itself is computed by a polynomial-time algorithm, and it is straightforward to deduce from this

that the length of f(x) is itself bounded by a polynomial in the length of x, so the algorithm just outlined for B is really polynomial time in the input x.

3S.A. Cook, "The complexity of theorem proving procedures," Proc. Third Annual ACM Symposium on the Theory of Computing (1971), 151-158.

4L. Levin, "Universal search problems," Problems of Information Transmission 9 (1973), 265-266.
5"Windows" is a trademark of Microsoft. The author has no connections with Microsoft, and nothing here should be regarded as comment on any of Microsoft's products.

VOLUME 22, NUMBER 2, 2000 1 1

! F D] 2] I 2 1
AAI3 *4 B
2 2 3 . , 5 B

Io i 4 B
~0 ~ 1 1 2 B

0 C E i E E

Figure 3, An example positron in Minesweeper.

2 2 2 2
2 0 0 2
2 0 0 2
2 2 2 2

Figure 4. Determine the location of all mines,

Faced with such a position in a game, there are several
things one can deduce about the position of the mines, and
which squares can be revealed safely. First, the squares
marked A have mines, because of the 2s just below them.
Next, the squares marked B also have mines because of
the 4s and the 5 to their left. (These numbers include the
two previously identified mines marked with stars.)
Similarly, the square C has a mine. It follows that the
squares marked D and E are clear since the mines at A, B
and C account for the numbers neighbouring these squares.
At this stage, it is not possible to determine if square F has
a mine or not. However, the player may mark the identi-
fied mines A, B, C and uncover the safe squares D and E,
and from the number revealed at square D (a 2 or a 3) de-
termine if square F is safe or has a mine, thereby clearing
the whole board.

Now that the rules of the game have been explained, the
reader may like to consider the configuration in Figure 4.
This particular game is played on a 6 x 6 board, and six-
teen squares are revealed as shown. It is possible to de-
duce the location of all the mines from the information
given.

The general Minesweeper problem is: Given a rectan-
gular grid partially marked with numbers and/or mines,
some squares being left blank, to determine if there is some
pat tern of mines in the blank squares that give rise to the
numbers seen. In other words, to determine if the data

given are consistent. This is a typical yes/no problem, as
discussed above, and if we could solve this problem effi-
ciently on a computer, we would have an excellent method
for playing the game. To determine if a square is safe, we
could write down the configuration we currently see with
a single change made by marking the square in question
with a mine, and feed this into the computer; if the com-
puter says this pattern is inconsistent, then there is no mine
at the square in question and it is safe to reveal it, other-
wise there may be a mine. Similarly, by changing the de-
scription of the square in question to one containing a "0",
then a "1", and so on up to "8", we may determine if it is
correct to identify a mine at that square.

The Minesweeper problem is in NP, for to determine if
an incomplete description is consistent, it suffices to guess
the positions of the mines and then verify that these mines
produce the numbers seen. It is not at all clear whether the
complementary p rob lem--whe the r some input configura-
tion is inconsis tent- - is in NP, for what might we guess to
show inconsistency? It is also reasonably straightforward
to see that the Minesweeper problem can be reduced to
SAT, for the rules of the game and any particular configu-
ration can be described by a boolean circuit (see Figure 5).

In fact, the Minesweeper problem is NP-complete. This
means it is just as difficult as any of the other NP-complete
problems (such as SAT, the travelling salesman, and so on)
and it is highly unlikely that there is an efficient algorithm

Consider a three-by-three block of squares labelled as shown.

a b c

c l e f

g h i

Let am denote "there is a mine at a," and for 0 - - j -- 8 let aj denote "there is no mine at a and precisely j mines in
the neighbouring squares around a"; and similarly for b, c, d , . . . , i. Then the rules of Minesweeper for the centre
square e can be described by the following statements:

1. precisely one of em, e0, et, �9 �9 �9 , es is true;
2. for k = 0, 1 , . . . , 8, if ek is true then precisely k of am, bin, Cm, din, fro, gin, hm, im are true;

and these can all be expressed (in a rather cumbersome fashion) by boolean circuits in the 90 inputs am, a0,. �9 �9
is. If we let C be the circuit consisting of all of these circuits for all points in the rectangular grid in place of e, the
outputs of all these being combined into a single AND gate, then the Minesweeper problem becomes equivalent to
an instance of SAT: given certain inputs for C being true or false, are there truth values for the other inputs that
makes the output of the whole circuit C true?

Figure 5. Reduction of the Minesweeper problem to SAT.

12 THE MATHEMATICAL INTELLIGENCER

for solving it. One way to prove Minesweeper is NP-com-

ple te is to show how to bui ld "computers" using Mine-
sw e epe r configurat ions. Since compute r s can be thought

of as being made out of wires and logic circuits, that is
wha t we will t ry to imitate in Minesweeper . In fact, as SAT
is NP-complete , this suffices, because we will have shown

how SAT reduces to Minesweeper , and Cook's resul t shows
that any NP p rob lem can be r educed to SAT.

B o o l e a n C i r c u i t s in M i n e s w e e p e r

Examine the configurat ion in Figure 6. (Here, again, the
le t ters x and x ' l a b e l unrevea led squares which may or may
not conta in mines.) A moment ' s thought will show that

there are ju s t two poss ib le configurat ions: e i ther all of the
squares m a r k e d x conta in a mine and those marked x ' do
not, or else the o ther way round.

We shall regard this as a wire carrying a value which is
t rue or false depending on whe the r the xs or the x ' s have

the mines. To define the value t rue or false car r ied in the
wire precisely, we arbi t rar i ly choose a di rect ion for the
w i r e - - h e r e going from left to r i g h t - - a n d say that the value

is true if the xs are mines, and fa lse otherwise. In o ther
words, if the squares jus t behind the centre l s are mines
("behind" meaning in the sense of the chosen direct ion of
the wire) then the value car r ied is true, and it is false oth-

erwise. Note in par t icu lar that the t ruth of the signal in the
wire is def ined relat ive to its d i rec t ion and the pos i t ion of

the cent re ls , not in t e rms of any abso lu te pos i t ion on the
grid.

We will need to be able to bend wires, and to spli t them.
Figures 7 and 8 show how to do this. Figure 7(a) is a sim-

ple 90 ~ bend in the wire. Figure 7(b) shows how a wire can
be terminated. In these two diagrams, the squares marked
* have mines in them. Such conf igurat ions can be given by
explici t ly marking the square as having a mine, but in all

of the configurat ions here it is not necessa ry to do so. In
these and all the fol lowing diagrams, the areas outs ide the
bounding l ines are a s sumed known to contain 0s, and in

par t icu la r do not contain mines, and all the pos i t ions of the
mines ind ica ted by *s on the d iagrams can be deduced f rom
the numbers given. Fo r (a), the mines are loca ted by the
1221 to the top and to the r ight and the 3 be tween them,
and in (b) the mines are loca ted by the 12321 to the left.
Figure 8 shows a way of "splitting" a wire. Notice that the

outputs are two signals X and an inver ted signal X' . Any of
these wires can be te rmina ted by a p iece as in Figure 7(b)
and the spl i t ter can be combined with bends and fur ther
spli t ters, to make spl i t ters with any number of outputs.

Figure 9 shows how to cons t ruc t a NOT gate (s imilar to

X ~ 1

1 1 1 2
l x ' x l

1 1 1 ' 1

2 2 ; 1
�9 , 1 3 1

X ' * * 2
2 x l * 2
1 1 2 1

1 x ' l
l x l X

2 i * i 3 1

3 * x ' x
2 * ! 3 1

(a) (b)

Figure 7. (a) A bent wire. (b) A terminated wire..

X ----~
1 1 1

1 x' x
1 1 1

. .

1 " "

1 " ~

t
X

X > X' ----+
"

x 1 z ' 2 x ' 1 z
1 1 1 x : 1 1 1

X
$

Figure 8. A three-way splitter.

par t of the spl i t ter in Figure 8). This is obviously an im-
por tan t device for logic circuits, but it is useful here in one
o ther impor tan t respect : s ince we def ined truth/falsi ty in a

wire relat ive to the pos i t ion of the cent re i s in the wire,
we may find a p rob lem when we want to combine two or
more signals if they are not al igned correct ly. Figure 10

gives a configurat ion made from two NOT gates and pro-
vides one poss ib le solution: this device enables the align-
ment of the l s in three-by- three b locks to change so that

the wire in quest ion can be used as the input to some o ther
device p laced jus t about anywhere on the grid. (It is also
poss ib le to make a phase-changer out of three bent p ieces
of wire of the cor rec t length.)

So far the configurations have been comparat ively simple,
but in order to mimic arbitrary boolean circuits we will need

to have AND, OR, XOR gates, and so on. At first sight, it would
seem that jus t the AND gate will suffice, because (as is well

known from digital circuits) any gate or boolean circuit can
be made from a combinat ion of AND and NOT gates. For ex-
ample, we can make up an OR gate from AND and NOT gates
by the familiar formula A k / B = ~ (- - d A --,B). But in prin-

ciple there could still be a difficulty, in that we have not

�9 - 0

" " 1

" " X

" " 1

" " 0

Figure 6. A wire.

X)
0 1 0 O iO 0 0 0 0 0 0 0 t O 0 0 0 -

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .

1 x ~ x 1 x ~ x 1 x ~ x 1 x ~ x 1 x ~ x �9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

0 1 0 0 [0 0 0 0 0 0 0 : 0 0 0 0 0 ,.

X ') X t

�9 1 1 1 1 1 2 . 2 1 1 1 1 1 ""

�9 z ' z 1 z ' z 3 z ' 3 x x' 1 Ix z ' . .
1 ! 1 1 1 1 2 * 2 1 1 1 1 1 --

Figure 9. A NOT gate.

VOLUME 22, NUMBER 2, 2000 1 3

. .11

. , ~ 1 37

1 1

1 1 1 2
l x ' l x 3
1 1 1 2]

�9 3

x ~ 5
�9 3

I H H !

alqlni

1 1 1
l x ' x
1 1 1

Figure 10. A phase-changer made from two NOT gates.

. ~

~

~ 1 7 6

yet p rov ided any me thod by which two signals can c ross

over each other.
In fact, this turns out not to be a p rob lem af ter all.

Cross ing two wires over is c lear ly not going to be poss ib le
in the plane, but Figure 11 shows that a cross ing of two
wires can be s imula ted in the p lane by using three spl i t ters

and three XOR gates. An XOR gate can in turn be made out
of AND and NOT gates, as Figure 12 shows. (Planar cir-
cuits l ike these were d iscovered by Goldschlager . 6)

Figure 13 shows how an AND gate can be constructed.
This is ra ther more compl ica ted than previous ones. It

t akes two input wires U and V, has one output wire, la-

bel led T, and has a central square at the hear t of the gate
(containing a 4) which is where the signals are combined.

The AND gate has two internal wires, R,S, which are

aligned and looped back to a spli t ter at the output T Via a

pair of devices label led al, a2, a3 and bl, b2, b3 To analyse
what happens here, we first see wha t happens if the output
T i s true, i.e., if the ts are mines and the t ' s are clear. In this

case, from the 3 above and be low a3, we have that a2 and
a3 must be mines, so a 1 is clear, and s is a mine. Similarly r
is a mine. Thus the central 4 a l ready sees four mines - - s , t,

r, and the * - - so u ' , v ' are both clear and the in-
A)

I
B - ~ I

)s
)D

Figure 11. Crossing two wires with three XOR gates.

A >

I
B

Figure 12. Making an XOR gate with AND and NOT gates.

B - - - ~

A >

u 1 1 1 1 2 2 1 1 1 1 l i l 1
$ 1 u ' 1 2 * * 3 2 3 * 2 1 2 * 3 211

1 u 1 1 2 4 * s a l a2 ~3 t' 3 t t' 3 * * 2
1 2 2 1 1 1 . * ! 4 * 3 2 3 * 2 1 1 2 t * 2
2 * ! u ' 2 214 s ' 3 1 1 0 ! 1 1 1 0 0 1 2 2 1
2 * * 3 u u ' s 2 1 1 1 1 1 1 1 1 1 t ' 1 1 1
2 4 5 * 4 j * i 4 t t ' 1 t i t I 1 t g 1 t 2 t 1 t I

2 * * 3 v , V r i 2 1 1 1 1 1 1 1 1 1 t ' i l 1 1
2 * ! v ' 2 2 4 r ' 3 1 1 0 ! 1 1 1 0 0 1 2 2 1
1 2 i 2 1 1 * * 4 * 3 2 ! 3 * 2 1 1 2 t * 2

l i v 1 112 4 * r b l b 2 [b a t ' 3 t t ' 3 * * j 2
l l v ' 1 2 * * 3 2] 3 * 2 1 2 * 3 211

r 1 1 1 1 2 2 1 I1 1 1 1 1 1

T ----~
1 1 . -
t 1 . -
1 1 . -

Figure t3. An AND gate.

A + B

puts U, V are both true. This shows that if t is a

mine, all the other unknown squares are deter-
mined, and it is s t raightforward to check that these
values are consistent with the da ta given.

Now suppose one or both of u, v is c lear of
mines, i.e., at least one of the inputs is false. Then,

as we have jus t seen, t mus t be clear, and t' must
be a mine. The central 4 sees 2 o r 3 mines out of
the u ' , v ' , and the *. So e i ther one or both of r, s

mus t be mines. We need to check both cases are
possible. But if s is a mine, it is easy

to check that a l and a3 being mines
and a 2 c lear is cons i s ten t with the
da ta given. Likewise, i f s is clear, then

) a l and a2 being mines and as clear is
consistent . The a rgument is identical

for r, so if one or bo th of the inputs
U,V is false then the output T is false,
and each case is cons is ten t with
the da ta given. Therefore the whole
configuration represents an AND gate,

as required.

With these building blocks, we now have
enough informat ion on how to conver t boolean
circui ts to Minesweeper configurat ions. Figure
14 i l lustrates the idea for the formula (P V Q) /k
(R V -~Q). We write a program which, given as in-

put a boo lean formula, cons t ruc t s a Minesweeper
conf igura t ion such as that in the figure. The
c rossed l ines are cross-overs, the filled-in circles
are spli t ters , boxes denote gates, and the l ines

are wires. Square b racke t s denote terminators , as
in Figure 7Co), except that the t e rmina to r marked
T forces this wire to have the value 'true'. (This
can be done by s imply cut t ing a wire going from
left-to-right jus t af ter a ver t ical row of three ls .)
It is c lear f rom the diagram how to devise an al-
gor i thm that conver ts an arb i t ra ry boolean for-

6L.M. Goldschlager, "The monotone and planar circuit value problems are log space complete for P," SIGACT News 9(2) (Summer 1977), 25-29.

14 THE MATHEMATICAL INTELLIGENCER

P[

q[

R[

I

Figure 14. A Minesweeper circuit for (P V Q) A (R V -~V)

mula to a Minesweeper configuration that is consistent if
and only if the boolean formula is satisfiable. Each gate,
terminator, and crossover can be put inside an N x N box
(for some fixed value of N that can be predetermined), and
the overall size of the configuration is therefore of the or-
der of N2n 2, where n is the number of symbols in the
boolean formula. It follows that our program runs in poly-
nomial time, and hence that SAT is reducible to the
Minesweeper problem. But SAT itself is NP-complete,
hence so is the Minesweeper problem.

It is worth pointing out that the NP-completeness proof
just given is slightly stronger than originally stated. First,
as has been pointed out, no *s need be given in the
Minesweeper configurations used to test the satisfiability
of boolean formulas. This is because the position of these
mines can rapidly be deduced from the numbers in neigh-
bouring squares. More interestingly perhaps---as the ref-
eree of this article has pointed out to me-- the configura-
tions may be taken to satisfy the condition that all squares
neighbouring one marked 0 are uncovered. (Certainly all
the gadgets in the figures satisfy this restriction.) This
means that the action of the Microsoft Minesweeper pro-
gram to automatically clear all such squares does not give
any significant help for solving the Minesweeper problem.

Of course the configurations you can get in an actual
game (where the mines are set at random by a computer)
are unlikely to be like any of these boolean circuit config-
urations, so there remains a considerable art to playing the
game, and there are many nuances and different kinds of
deductions that one can make other than those used here.
So it may even be that some polynomial-time algorithm is

] P

3Q
]R

]PVQ

]--,q

]Rv

T]

"good enough" at solving the sort of Minesweeper
problems that occur in practice, even though (as-
suming P =# NP) it cannot actually solve all theo-
retically possible configurations. Many of the other
NP-complete problems known are studied in the
same way, with a view to finding algorithms that
are not guaranteed to work, but do seem to work
in most cases of interest. Finally, it is nice to know
that to current knowledge, there may still be an ef-
ficient algorithm for Minesweeper, and finding it
could solve one of mathematics's most important
open problems.

A c k n o w l e d g m e n t
The author would like to thank the anonymous referee for
particularly helpful remarks on the first draft of this paper,
which have proved invaluable in its revision.

VOLUME 22, NUMBER 2, 2000 15

