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Minesweeper is 
NP-complete 

NP-completeness 
Many programming  p rob lems  require  the  design of  an al- 

gor i thm which  has  a "yes" or  "no" ou tput  for  each  input. 
For  example ,  the  p rob lem of  test ing a whole  number  for  
pr imal i ty  requires  an a lgor i thm which  answers  "yes" if the 

input  number  x is prime, and  "no" otherwise.  
In trying to devise an algori thm to solve a given problem, 

one aspec t  of  obvious pract ical  impor tance  is the t ime it 
takes  to run. Since a typical  algori thm may  take more  t ime 

on some inputs than others, the running t ime of  an algori thm 
is usually regarded as a function of  the input. For  technical  
reasons,  it is convenient  to consider  the way this function 

varies with the number of symbols required to write  the in- 
put. (This number  of  symbols  is usually denoted  by n.) For  
example,  for the input 17, our  algori thm may require this 
number  to be  wri t ten in binary (as 10001), so here n = 5. 

Different  a lgor i thms for the  same  p rob lem may  rtm in 
different  amoun t s  of  time, due pe rhaps  to  the  different  cod- 
ing me thods  used  or  to different  theore t ica l  bases  for the  
algori thms.  However ,  it  may  be that  for  a par t icu lar  prob-  

lem, all val id a lgor i thms can  be  shown to take  at  leas t  a 
cer ta in  amoun t  o f  time, due to  the  inherent  difficulties in 
the  p rob lem being solved. Complexity theory aims to s tudy 
the inherent difficulties of  problems,  ra ther  than the t ime 

or  m e m o r y  resources  used  by  any par t icu la r  a lgor i thm or  
program.  

It is cer ta inly  poss ib le  to find p rob lems  that  can only be  
solved on a compute r  using a huge amount  of  time. It is 

also poss ib le  to find sensible-sounding p rob lems  that  can- 
not  be solved on a compute r  at all! However ,  there  are  two 
classes  of  p rob l ems  that  are  of  grea tes t  in teres t  for com- 
plexi ty- theoris ts .  

The first  of  these  c lasses  is the collection,  P, of  Poly- 
nomial-time computable problems.  These  are  the prob-  

lems that  can be  solved on a normal  compu te r  and  within 
an amount  of t ime of  order  n, or  n 2, or  n 3, or  n 4 , . . . .  (As be- 

fore, n is the  number  o f  symbols  required to  wr i te  down 
the input  to the problem.  Note in par t i cu la r  that  the  run- 

ning t ime of  such a p rogram is bounded  by  a po lynomia l  
in the length of the input, not  the input  itself.) 

Of course,  for a r igorous  t rea tment  of  the  subject ,  a pre- 
cise definit ion of  the  mathemat ica l  mode l  of  compute r  we 

are  using and wha t  const i tu tes  the running t ime of  the  com- 
puter,  mus t  be  given. Fo r  the pu rposes  of  this  ar t ic le  I will 
be  less precise,  but  give here  the two main  points .  Firstly, 

our  compute r s  will have an unl imited amoun t  of  m e m o r y - -  
that  is to say that  they  a lways  have enough m e m o r y  to com- 
ple te  the  computa t ion  in hand. This does  not  s eem part ic-  
ular ly restrict ive,  as  any terminat ing computa t ion  can only 

use  a fmite amount  of  memory  anyway,  and  for mos t  al- 
gor i thms cons ide red  here,  the amount  of  m e m o r y  required 
for  any par t icu lar  computa t ion  can be es t imated  fairly ac- 
cura te ly  in advance.  Secondly,  the t ime taken  by  the com- 
pu te r  is the number  of  s teps  required, where  a single s tep 
can  only p roces s  a single charac te r ' s  wor th  of  informat ion 

and a "character"  comes  f rom a fLxed a lphabet .  (Charac ters  
could  be  single bits, o r  bytes,  or  32-bit words,  or  symbols  
f rom some o ther  finite set, p rovided  this finite se t  is spec- 
flied in advance.)  To give an i l lustrative example ,  observe  

that  a rb i t rary  natura l  numbers  can be r ep resen ted  on such 
compute r s  (as sequences  of  b inary  digits, for  example)  and 
two such numbers  can be  mul t ip l ied  together,  but  the t ime 
taken  to mult iply these  numbers  will not  be a single s t e p - -  
it will ins tead be  a funct ion of  the length of  the  numbers ,  

for  the compute r  can  only p rocess  the  numbers  character -  

by-character .  
A large amount  of  heuris t ic  evidence exis ts  suppor t ing  

the  thesis  that  the  not ion  of  a polynomial - t ime computab le  
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p r ob l em is independent  of  the  par t icu la r  compu te r  mode l  

used.  That  is, if a p rob lem is solved in po lynomia l  t ime on 
one compute r  then the a lgor i thm used can be  t rans fe r red  
to a different  kind of  compu te r  and will also run in poly-  
nomial  t ime there. There is a lso  s t rong evidence that  sug- 

ges ts  tha t  the complex i ty  class  P consis ts  of  p rec i se ly  those  
p rob l ems  that  are  soluble  i n  practice on an ord inary  com- 
puter .  Problems  not  in P may  be  theoret ica l ly  soluble,  bu t  

only  with impract ica l  running t imes  even on the very  fas tes t  
computer .  

The second  class of  p rob l ems  of  in teres t  is the  class  of  
Nondetermin is t ic  Polynomia l - t ime  computable problems,  
NP. These  are  p rob lems  that  can be solved in po lynomia l  
t ime as before,  but  on a spec ia l  "enhanced" compu te r  ab le  

to pe r fo rm "nondeterminis t ic"  algori thms. The r eason  for  
the  in teres t  in NP is that  this  c lass  contains  a grea t  many  
p rob lems  of  significant p rac t ica l  impor tance  that  are  not  

known  to be soluble  by  an ord inary  polynomial - t ime algo- 
ritltm, including some  very  wel l -known p rob lems  such as  
tha t  o f  the  "travelling sa lesman."  

To defme NP, we jus t  need  to explain  the idea  of  a non- 

de terminis t ic  algorithm. These  algori thms are  l ike ordi-  
na ry  ("determinist ic")  ones  excep t  that  there  is an ex t r a  

kind of  instruct ion a l lowed which  instructs  the c o m p u t e r  
to guess  a number.  The c o m p u t e r  performing this  instruc-  
t ion is a ssumed  to have the very  special  abil i ty a lways  to 
make  a cor rec t  guess  if one is available,  and it is  this  as- 

pec t  of  nonde te rmin ism that  is difficult to implement  in 
pract ice!  Having made  a guess,  the  nondete rmin is t ic  algo- 
r i thm is required to verify that  the  guess was indeed  a cor- 

rec t  one, because  only by  doing this can it de te rmine  
w he the r  a correct  guess  was  poss ib le  at  all. 

F o r  example,  i t  is easy  to use  nonde te rmin i sm to tel l  if  
a whole  number  input  x is compos i t e  (i.e., no t  pr ime) .  The 
mach ine  should guess two whole  numbers  y, z > 1 and 

compute  their  product ,  yz. If  yz  = x then the mach ine  has  
ver if ied that  the guess  was  correct ,  so may  answer  yes, the  
n u m b e r  x is composi te .  If  y z  r x then the mach ine  may  
safely answer  no, as  in this  case  it is a l lowed to assume 
tha t  no  be t te r  guess  was  available,  i.e., that  x rea l ly  is 

pr ime.  Since a single mul t ip l ica t ion can be car r ied  out  
ra ther  quickly, this nonde te rmin is t i c  machine  will dec ide  
if  a number  is compos i t e  very  rapidly  wi thout  any lengthy 
sea rch  over  all the poss ib le  factors.  

A nondeterminis t ic  mach ine  is not  a l lowed to guess  the  

answer  ("yes" or  "no") to the  p rob lem and output  that,  be- 
cause  the  machine  would  no t  have verif ied this  guess.  The 
specia l  p o w e r  of  these  machines  lies in the  fact  that  it  is 
not  necessa ry  to verify that  any  par t icu lar  guess  was  in- 

correct (because  only cor rec t  guesses  are chosen  if they  

are  available).  It is only required to verify that  a guess  is 
correct. Because  of  the  different  nature  of  these  "yes" and 
"no" answers ,  it is not  a lways  t rue that  the  complemen t  of  
a p rob lem solvable  using nonde te rmin i sm is as  easy  to 
solve nondeterminis t ical ly .  In the  case  of  compos i t e  and 

This a lgor i thm is based  on the p rope r ty  that  a num- 

ber  x > 2 is p r ime  if and only if  there  is y such that  
y X -  1 ~_ 1 m o d x  and yq ~ 1 m o d x f o r a l l  q < x  - 1. 

It is recurs ive  in the sense  tha t  it cal ls  i tself  with 
smal le r  values.  

1. On input  x, if  x = 2 answer  "yes," and  if x -- 1 an- 
swer  "no." Otherwise  go to the nex t  step. 

2. Guess  y and  verify that  yX - 1 _- 1 mod  x. (If this 

fails, an swer  "no" and stop.)  

3. Guess  a p r ime  factor isat ion a l  a2 �9 �9 �9 an of x - 1 
and run the algori thm recurs ively  to  check that  
each  a i  is prime. 

4. Verify that  2 (x - 1)/ai ~ 1 mod x for  each  pr ime fac- 

tor  ai of x - 1. If any of  these  fail, answer  "no;" 
o therwise  answer  "yes." 

Figure 1. Pratt's nondeterministic algorithm for primality. 

pr ime numbers ,  for  example,  it is not  immedia te ly  obvious 
how one might  show that  the set  of  p r imes  (the comple-  

ment  of  the  set  of  compos i tes )  is recognizable  in polyno-  
mial  t ime by  a nondete rmin is t ic  algori thm. The p rob lem 
here  is to guess  something  that  shows  the  input  x is prime, 

and then  to verify our  guess quickly, but  wha t  should we 
guess? In fact, the re  is jus t  such a "cert if icate of  primality," 
as was  first  obse rved  by Prat t  1 (see Figure  1). 

Needless  to say, no "nondeterminism chip" has been  de- 
ve loped to use  in real  compute rs  ( though some  believe that  
quantum mechan ics  implies  that  someth ing  ra ther  l ike non- 
de te rminism might  be  built  into a usable  device). 

As a l ready  ment ioned,  the class NP of  Nondeterminis t ic  

Polynomial - t ime prob lems  is the class  of  p rob lems  that  
can be so lved  in po lynomia l  t ime on a nondeterminis t ic  
machine.  It is general ly  bel ieved tha t  nonde te rmin i sm re- 

ally does  in t roduce  p rob lems  that  were  not  a l ready in P, 
and also that  there  are  NP p rob lems  whose  complement  
does  not  lie in NP, bu t  here lies the  main  problem.  To date, 

no one has  ma na ge d  to fmd an  NP p rob l e m  and prove it  is 
not  in P. The famous  "P = NP" quest ion is whe ther  there  
is such a problem.  This is one of  the mos t  impor tan t  open 
p rob lems  in m a t h e m a t i c s - - p e r h a p s  even the most  impor-  
tant  open problem.  It has  the  same s ta tus  as Fe rmat ' s  last  
t heorem before  Wiles 's  solution, wi th  a long his tory (going 
back  well  before  computers) .  The major i ty  of  mathemat i -  
c ians bel ieve tha t  P and NP real ly a re  different  ( though sev- 
eral  wel l - respec ted  mathemat ic ians  cons ide r  it quite plau- 

sible that  P = NP), but  no one has  a proof.  Every 
mathemat ic ian  d r eams  of  solving a p rob l e m  like this, and  
a huge number  have tried, but  no one has  succeeded.  

The diff iculty of  proving that  P r NP is not  due to lack  
of  examples  of  in teres t ing p rob lems  in NP. In fact, mathe-  
mat ic ians  now have a huge list of  p r o b l e m s - - i n c l u d i n g  the 

travell ing sa lesman  and many o thers  of  prac t ica l  i n t e r e s t - -  

1V.R. Pratt, "Every prime has a succinct certificate," SIAM J. Comput. 4 (1975), 214-220. 
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A boolean c i rcu i t  is a circui t  buil t  of  the famil iar  logic gates  such as AND (/~), OR (~/), XOR ( + ) ,  and NOT (-m), each 
with inputs  that  may  be  t rue  (T)  or  false (F) .  A circui t  will have severa l  inputs  label led  Pl,  P2, - �9 �9 , Pn and an out- 

put  q. The p rob lem SAT is 

Given a boolean  circuit  C, is there  some combina t ion  of  t rue/false values  for the  inputs  of  C so that  the output  

of  C is t rue? 

There  are  a lgor i thms to answer  this  question, bu t  none  running in polynomial  t ime is known. The obvious  algori thm 
(to check all poss ib le  combina t ions  of  the inputs  of  C) t akes  too long, as there  a re  2 n combina t ions  for  n inputs. 

SAT is NP-complete.  

Figure 2. The NP-complete problem SAT. 

which are  in NP and for  which  we have a p roo f  that  if P r 

NP, then  the p rob lem is not  in P. A problem,  A, is typical ly  
shown to be  of  this type by  proving tha t  it is NP-complete, 

i.e., that  every o ther  NP problem,  B, can be solved by  a de- 
terminis t ic  polynomial - t ime p rogram which  conver ts  i ts in- 
put, x, for  the p rob lem B to an input, f ( x ) ,  for the  p rob lem 
A, with the  p rope r ty  that  the  answer  to p rob lem B for in- 

put  x is the s a m e  as the  answer  to p rob lem A for input f (x) .  
If there  is a polynomial - t ime computab le  func t ionf (x )  with 
these  proper t ies ,  we  say  the  p rob lem B reduces to the  prob-  
lem A. Loosely  speaking,  a p rob lem B reduces  to  a prob-  

lem A, if A "includes" all ins tances  of  B as  special  cases,  
and the NP-problem A is NP-complete  if it "includes" (in 

this  sense)  all other  NP-problems.  
To see the  impor tance  of  this, cons ider  a p rob lem B in 

NP, and suppose  also that  we  are  given an NP-complete  
problem,  A. Then there  is a polynomial - t ime compute r  pro- 
gram tha t  conver ts  each instance,  x, of  the  p rob lem B to 

an instance,  f i x ) ,  of  the p rob lem A. But if our  NP-complete  
p rob lem A is actual ly  in P, the p rob lem A for f (x )  can be  
solved in po lynomia l  t ime by  a determinis t ic  algori thm, 
hence  B also can be solved in determinis t ic  po lynomia l  

t ime, because  the  answers  for  A on i n p u t f ( x )  and B on in- 
put  x are  the  same. 2 This also appl ies  to any o ther  C in NP 

(with a different  funct ion f ( x )  of course) ,  so if A is in P, 
then every p rob lem in NP will be  in P, i.e., P = NP. 

Cook 3 and, independent ly ,  Levin 4 first  showed that  NP- 

comple te  p rob lems  exist.  In par t icular ,  the p rob lem SAT 

of  logical  sat isf iabi l i ty (see Figure 2) is NP-complete.  

Although there  are  a great  many  NP-complete  p rob lems  of  
prac t ica l  impor tance ,  no one has  found one which  may  be 

solved by  a polynomial - t ime algorithm, and it is widely  be- 
l ieved that  no such exist.  Turning a necess i ty  into a virtue, 
many  people  have a t t empted  to design c ryp tosys tems  so 

that  a potent ia l  c o d e b r e a k e r  would  have to solve an NP- 
comple te  p rob lem in o rde r  to b reak  the c o d e - - t a k i n g  too  
much  t ime even on the fas tes t  computer .  Ei ther  way, an 
answer  to the P -- NP quest ion would  have significant prac-  

t ical  impor tance .  

The Minesweeper Game 
Many of  the  ideas  ment ioned  above  may  be  i l lustrated ef- 
fect ively with a game many  readers  will be  famil iar  with. 
Minesweeper  comes  with  Microsoft ' s  Windows opera t ing  
system. 5 In it, the  p l aye r  is p re sen ted  with an initially b lank 
grid. Undernea th  each  square there  may  be  a mine, and  the 

objec t  of  the  game is to  locate  all these  mines  wi thout  be- 
ing b lown up. You se lec t  a square to be revealed;  if it is a 
mine you are  b lown up (and the game is over), but  with 
luck, pe rhaps  it isn't .  In this  second  case, when  the square 

is revea led  you see a number  from 0 to 8, which  is the  num- 
be r  of  mines  in the  eight immedia te ly  neighbouring 

squares.  Figure 3 shows  a typical  pos i t ion  in such  a game. 
The numbered  squares  a re  the  squares  that  have been  re- 
vealed,  and no others  have been  uncovered  yet. Two of  the  

unrevea led  squares  are  marked  with a *, and these  squares  
have a l ready been  ident if ied as having mines  in them. The 

o thers  have been  label led  with le t ters  for  identif ication.  

2There is an important technical consideration omitted from the argument here: if A is in P, then the running time for the algorithm for A on input f(x) is bounded by a 

polynomial in the length of f(x), not the length of x itself. However, f(x) itself is computed by a polynomial-time algorithm, and it is straightforward to deduce from this 

that the length of f(x) is itself bounded by a polynomial in the length of x, so the algorithm just outlined for B is really polynomial time in the input x. 

3S.A. Cook, "The complexity of theorem proving procedures," Proc. Third Annual ACM Symposium on the Theory of Computing (1971 ), 151-158. 

4L. Levin, "Universal search problems," Problems of Information Transmission 9 (1973), 265-266. 
5"Windows" is a trademark of Microsoft. The author has no connections with Microsoft, and nothing here should be regarded as comment on any of Microsoft's products. 
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Figure 3, An example positron in Minesweeper. 

2 2 2 2  
2 0 0 2  
2 0 0 2  
2 2 2 2  

Figure 4. Determine the location of all mines, 

Faced with such a position in a game, there are several 
things one can deduce about  the position of  the mines, and 
which squares can be revealed safely. First, the squares 
marked A have mines, because of  the 2s just  below them. 
Next, the squares marked B also have mines because of  
the 4s and the 5 to their left. (These numbers  include the 
two previously identified mines marked with stars.) 
Similarly, the square C has a mine. It follows that the 
squares marked D and E are clear since the mines at A, B 
and C account  for the numbers  neighbouring these squares. 
At this stage, it is not  possible to determine if square F has 
a mine or  not. However, the player may mark the identi- 
fied mines A, B, C and uncover  the safe squares D and E, 
and from the number  revealed at square D (a 2 or  a 3) de- 
termine if square F is safe or  has a mine, thereby clearing 
the whole board. 

Now that the rules of  the game have been explained, the 
reader  may like to consider the configuration in Figure 4. 
This particular game is played on a 6 x 6 board, and six- 
teen squares are revealed as shown. It is possible to de- 
duce the location of  all the mines from the information 
given. 

The general Minesweeper problem is: Given a rectan- 
gular grid partially marked with numbers  and/or mines, 
some squares being left blank, to determine if there is some 
pat tern of  mines in the blank squares that give rise to the 
numbers  seen. In other  words, to determine if the data 

given are consistent. This is a typical yes/no problem, as 
discussed above, and if we could solve this problem effi- 
ciently on a computer,  we would have an excellent method 
for playing the game. To determine if a square is safe, we 
could write down the configuration we currently see with 
a single change made by marking the square in question 
with a mine, and feed this into the computer;  if the com- 
puter  says this pattern is inconsistent, then there is no mine 
at the square in question and it is safe to reveal it, other- 
wise there may be a mine. Similarly, by changing the de- 
scription of  the square in question to one containing a "0", 
then a "1", and so on up to "8", we may determine if it is 
correct  to identify a mine at that square. 

The Minesweeper problem is in NP, for to determine if 
an incomplete description is consistent, it suffices to guess 
the positions of  the mines and then verify that these mines 
produce the numbers  seen. It is not  at all clear whether  the 
complementary  p rob lem--whe the r  some input configura- 
tion is inconsis tent- - is  in NP, for what  might we guess to 
show inconsistency? It is also reasonably straightforward 
to see that the Minesweeper problem can be reduced to 
SAT, for the rules of  the game and any particular configu- 
ration can be described by a boolean circuit (see Figure 5). 

In fact, the Minesweeper problem is NP-complete. This 
means it is just  as difficult as any of  the other  NP-complete 
problems (such as SAT, the travelling salesman, and so on) 
and it is highly unlikely that there is an efficient algorithm 

Consider a three-by-three block of  squares labelled as shown. 

a b c  

c l e f  

g h i  

Let am denote "there is a mine at a," and for 0 - - j  -- 8 let aj denote "there is no  mine at a and precisely j mines in 
the neighbouring squares around a"; and similarly for b, c, d , . . . ,  i. Then the rules of  Minesweeper for the centre 
square e can be described by the following statements: 

1. precisely one of  em, e0, et, �9 �9 �9 , es is true; 
2. for k = 0, 1 , . . . ,  8, if ek is true then precisely k of  am, bin, Cm, din, fro, gin, hm, im are true; 

and these can all be expressed (in a rather cumbersome fashion) by boolean circuits in the 90 inputs am, a0,. �9 �9 
is. If  we let C be the circuit consisting of  all of  these circuits for all points in the rectangular grid in place of  e, the 
outputs  of  all these being combined into a single AND gate, then the Minesweeper problem becomes  equivalent to 
an instance of  SAT: given certain inputs for C being true or false, are there truth values for the other  inputs that 
makes  the output of  the whole circuit C true? 

Figure 5. Reduction of the Minesweeper problem to SAT. 
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for  solving it. One way  to prove  Minesweeper  is NP-com- 

ple te  is to show how to bui ld "computers"  using Mine- 
sw e epe r  configurat ions.  Since compute r s  can be thought  

of  as  being made  out  of  wires  and logic circuits,  that  is 
wha t  we will t ry to imitate  in Minesweeper .  In fact, as  SAT 
is NP-complete ,  this  suffices, because  we will have shown 

how SAT reduces  to Minesweeper ,  and  Cook's  resul t  shows  
that  any NP p rob lem can be  r educed  to SAT. 

B o o l e a n  C i r c u i t s  in M i n e s w e e p e r  

Examine  the  configurat ion in Figure  6. (Here, again, the  
le t ters  x and x ' l a b e l  unrevea led  squares  which may  or  may  
not  conta in  mines.)  A moment ' s  thought  will show that  

there  are  ju s t  two poss ib le  configurat ions:  e i ther  all of  the  
squares  m a r k e d  x conta in  a mine and those  marked  x '  do 
not, or  else the  o ther  way  round. 

We shall  regard  this as  a wire  carrying a value which is 
t rue or  false depending on whe the r  the  xs  or  the  x ' s  have 

the  mines.  To define the value t rue or  false car r ied  in the  
wire precisely,  we arbi t rar i ly  choose  a di rect ion for  the  
w i r e - - h e r e  going from left to r i g h t - - a n d  say that  the value 

is true if the  xs  are mines,  and fa lse  otherwise.  In o ther  
words,  if the  squares jus t  behind  the centre  l s  are  mines  
("behind" meaning  in the sense  of  the  chosen  direct ion of  
the wire)  then the value car r ied  is true, and it is false oth- 

erwise.  Note in par t icu lar  that  the  t ruth of  the signal  in the 
wire is def ined relat ive to its d i rec t ion  and the pos i t ion  of  

the  cent re  ls ,  not  in t e rms  of  any abso lu te  pos i t ion  on the 
grid. 

We will need  to be able to bend  wires,  and to spli t  them. 
Figures  7 and 8 show how to do this. Figure 7(a) is a sim- 

ple  90 ~ bend  in the  wire.  Figure  7(b) shows  how a wire  can 
be  terminated.  In these  two diagrams,  the squares  marked  
* have mines  in them. Such conf igurat ions  can be given by  
explici t ly  marking  the square as  having a mine, but  in all 

of  the  configurat ions  here  it is not  necessa ry  to do so. In 
these  and all the  fol lowing diagrams,  the areas  outs ide  the  
bounding l ines are a s sumed  known  to contain  0s, and in 

par t icu la r  do not  contain  mines,  and  all the  pos i t ions  of  the 
mines  ind ica ted  by *s on the d iagrams can be deduced  f rom 
the numbers  given. Fo r  (a), the  mines  are  loca ted  by  the 
1221 to the  top  and to the r ight  and  the 3 be tween  them, 
and in (b) the  mines  are  loca ted  by  the 12321 to the  left. 
Figure 8 shows  a way of  "splitting" a wire. Notice that  the  

outputs  are  two signals X and an inver ted  signal X' .  Any of  
these  wires  can be te rmina ted  by  a p iece  as in Figure 7(b) 
and  the spl i t ter  can be combined  with bends  and  fur ther  
spli t ters,  to make  spl i t ters  with any number  of  outputs.  

Figure 9 shows  how to cons t ruc t  a NOT gate (s imilar  to 

X ~  1 

1 1 1 2  
l x ' x l  

1 1 1 ' 1  

2 2 ; 1  
�9 , 1 3  1 

X ' *  * 2 
2 x l *  2 
1 1 2 1  

1 x ' l  
l x  l X  

2 i * i 3  1 

3 * x ' x  
2 * ! 3  1 

(a) (b) 

Figure 7. (a) A bent wire. (b) A terminated wire.. 

X ----~ 
1 1 1  

1 x'  x 
1 1 1  

. .  

1 " "  

1 " ~  

t 
X 

X > X' ----+ 
" 

x 1 z '  2 x '  1 z 
1 1 1 x : 1 1  1 

X 
$ 

Figure 8. A three-way splitter. 

par t  of  the  spl i t ter  in Figure 8). This is obviously  an im- 
por tan t  device for logic circuits,  but  it is useful  here  in one 
o ther  impor tan t  respect :  s ince we  def ined truth/falsi ty in a 

wire relat ive to the pos i t ion  of  the cent re  i s  in the wire, 
we  may find a p rob lem when we want  to combine  two or  
more  signals if they  are  not  al igned correct ly.  Figure 10 

gives a configurat ion made  from two NOT gates  and pro-  
vides one poss ib le  solution: this device  enables  the  align- 
ment  of  the  l s  in three-by- three  b locks  to  change so that  

the  wire  in quest ion can  be  used  as  the  input  to some  o ther  
device p laced  jus t  about  anywhere  on the grid. (It is also 
poss ib le  to make  a phase-changer  out  of  three  bent  p ieces  
of  wire of  the  cor rec t  length.) 

So far the configurations have been comparat ively simple, 
but  in order  to mimic arbitrary boolean circuits we will need  

to have AND, OR, XOR gates, and so on. At first sight, it would 
seem that jus t  the AND gate will suffice, because  (as is well  

known from digital circuits) any gate or  boolean circuit can 
be made from a combinat ion of  AND and NOT gates. For  ex- 
ample, we can make  up an OR gate from AND and NOT gates 
by the familiar formula A k / B  = ~ ( - - d  A --,B). But in prin- 

ciple there  could  still  be  a difficulty, in that  we have not  

�9 - 0 

" "  1 

" "  X 

" "  1 

" "  0 

Figure 6. A wire. 

X ) 
0 1 0  O iO 0 0 0 0 0 0 0 t O  0 0 0 -  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .  

1 x ~ x 1 x ~ x 1 x ~ x 1 x ~ x 1 x ~ x �9 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -  

0 1 0  0 [ 0  0 0 0 0 0 0 : 0  0 0 0 0 ,. 

X ' ) X t 

�9 1 1 1 1 1 2 .  2 1 1 1 1 1  "" 

�9 z ' z  1 z '  z 3 z '  3 x x' 1 Ix z '  . .  
1 ! 1  1 1 1 2 * 2 1 1 1 1 1 -- 

Figure 9. A NOT gate. 
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Figure 10. A phase-changer made from two NOT gates. 
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~ 1 7 6  

yet  p rov ided  any me thod  by  which  two signals can c ross  

over  each  other. 
In fact, this turns out  not  to  be a p rob lem af ter  all. 

Cross ing two wires  over  is c lear ly  not  going to be  poss ib le  
in the  plane,  but  Figure  11 shows  that  a cross ing of two 
wires  can be s imula ted  in the  p lane  by using three  spl i t ters  

and three  XOR gates.  An XOR gate can in turn be made  out  
of  AND and NOT gates, as Figure 12 shows.  (Planar  cir- 
cuits l ike these  were  d iscovered by  Goldschlager .  6) 

Figure 13 shows  how an AND gate can be constructed.  
This is ra ther  more  compl ica ted  than previous  ones. It 

t akes  two input  wires  U and V, has  one output  wire, la- 

bel led T, and  has  a central  square at  the  hear t  of  the gate 
(containing a 4) which  is where  the  signals  are combined.  

The AND gate has two internal wires, R,S, which are 

aligned and looped  back  to a spli t ter  at  the  output  T Via a 

pair  of  devices label led al,  a2, a3 and bl, b2, b3 To analyse 
what  happens  here,  we first see wha t  happens  if the output  
T i s  true, i.e., if the ts are mines and the t ' s  are  clear. In this 

case, from the 3 above and be low a3, we have that  a2 and 
a3 must  be mines, so a 1 is clear, and s is a mine. Similarly r 
is a mine. Thus the central 4 a l ready sees  four  mines - - s ,  t, 

r, and the * - - so  u ' ,  v '  are both  clear  and the in- 
A ) 

I 
B -  ~ I 

)s 
)D 

Figure 11. Crossing two wires with three XOR gates. 

A > 

I 
B 

Figure 12. Making an XOR gate with AND and NOT gates. 
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1 2 2 1 1 1 .  * ! 4  * 3 2 3 * 2 1 1 2 t * 2 
2 * ! u '  2 214  s '  3 1 1 0 ! 1  1 1 0 0 1 2 2 1 
2 * * 3 u u '  s 2 1 1 1 1 1 1 1 1 1 t '  1 1 1 
2 4 5 * 4 j * i 4  t t '  1 t i t  I 1 t g 1 t 2 t 1 t I 

2 * * 3 v , V  r i 2  1 1 1 1 1 1 1 1 1 t ' i l  1 1 
2 * ! v '  2 2 4 r '  3 1 1 0 ! 1  1 1 0 0 1 2 2 1 
1 2 i 2  1 1 * * 4 * 3 2 ! 3  * 2 1 1 2 t * 2 

l i v  1 112 4 * r b l b 2 [ b a t '  3 t t '  3 * * j 2  
l l v '  1 2 * * 3 2 ] 3  * 2 1 2 * 3 211  

r 1 1 1 1 2 2 1 I1 1 1 1 1 1 

T ----~ 
1 1 . -  
t 1 . -  
1 1 . -  

Figure t3. An AND gate. 

A + B  

puts  U, V are both true. This shows that  if t is a 

mine, all the other  unknown squares are deter- 
mined, and it is s t raightforward to check that these  
values are  consistent  with the da ta  given. 

Now suppose  one or  both  of  u, v is c lear  of  
mines,  i.e., at  least  one of  the  inputs  is false. Then, 

as  we have jus t  seen, t mus t  be  clear,  and t' must  
be  a mine. The central  4 sees  2 o r  3 mines  out  of  
the  u ' ,  v ' ,  and the *. So e i ther  one  or  both  of  r, s 

mus t  be mines.  We need to check  both  cases  are  
possible.  But if  s is a mine, it is easy  

to check that  a l  and  a3 being mines  
and a 2 c lear  is cons i s ten t  with the 
da ta  given. Likewise, i f s  is clear, then 

) a l  and a2 being mines  and as clear  is 
consistent .  The a rgument  is identical  

for  r, so if one or  bo th  of  the  inputs  
U,V is false then the output  T is false, 
and each case  is cons is ten t  with 
the  da ta  given. Therefore  the whole  
configuration represents  an AND gate, 

as  required.  

With these  building blocks,  we  now have 
enough informat ion on how to conver t  boolean  
circui ts  to Minesweeper  configurat ions.  Figure 
14 i l lustrates the idea for the formula  (P V Q) /k 
(R V -~Q). We write a program which, given as in- 

put  a boo lean  formula, cons t ruc t s  a Minesweeper  
conf igura t ion such as  that  in the  figure. The 
c rossed  l ines are cross-overs,  the  filled-in circles  
are  spli t ters ,  boxes  denote  gates, and  the l ines 

are  wires.  Square b racke t s  denote  terminators ,  as  
in Figure  7Co), except  that  the t e rmina to r  marked  
T forces  this wire to have the  value 'true'. (This 
can  be  done  by  s imply cut t ing a wire  going from 
left-to-right jus t  af ter  a ver t ical  row of  three  ls . )  
It is c lear  f rom the diagram how to devise an al- 
gor i thm that  conver ts  an arb i t ra ry  boolean  for- 

6L.M. Goldschlager, "The monotone and planar circuit value problems are log space complete for P," SIGACT News 9(2) (Summer 1977), 25-29. 
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Figure 14. A Minesweeper circuit for (P V Q) A (R V -~V) 

mula to a Minesweeper configuration that is consistent if 
and only if the boolean formula is satisfiable. Each gate, 
terminator, and crossover can be put inside an N x N box 
(for some fixed value of N that can be predetermined), and 
the overall size of the configuration is therefore of the or- 
der of N2n 2, where n is the number of symbols in the 
boolean formula. It follows that our program runs in poly- 
nomial time, and hence that SAT is reducible to the 
Minesweeper problem. But SAT itself is NP-complete, 
hence so is the Minesweeper problem. 

It is worth pointing out that the NP-completeness proof 
just given is slightly stronger than originally stated. First, 
as has been pointed out, no *s need be given in the 
Minesweeper configurations used to test the satisfiability 
of boolean formulas. This is because the position of these 
mines can rapidly be deduced from the numbers in neigh- 
bouring squares. More interestingly perhaps---as the ref- 
eree of this article has pointed out to me-- the configura- 
tions may be taken to satisfy the condition that all squares 
neighbouring one marked 0 are uncovered. (Certainly all 
the gadgets in the figures satisfy this restriction.) This 
means that the action of the Microsoft Minesweeper pro- 
gram to automatically clear all such squares does not give 
any significant help for solving the Minesweeper problem. 

Of course the configurations you can get in an actual 
game (where the mines are set at random by a computer) 
are unlikely to be like any of these boolean circuit config- 
urations, so there remains a considerable art to playing the 
game, and there are many nuances and different kinds of 
deductions that one can make other than those used here. 
So it may even be that some polynomial-time algorithm is 

] P  

3Q 
]R 

]PVQ 

]--,q 

]Rv 

T] 

"good enough" at solving the sort of Minesweeper 
problems that occur in practice, even though (as- 
suming P =# NP) it cannot actually solve all theo- 
retically possible configurations. Many of the other 
NP-complete problems known are studied in the 
same way, with a view to finding algorithms that 
are not guaranteed to work, but do seem to work 
in most cases of interest. Finally, it is nice to know 
that to current knowledge, there may still be an ef- 
ficient algorithm for Minesweeper, and finding it 
could solve one of mathematics's most important 
open problems. 
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