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Consistency problem

1 In the latter half of the 19th century, set theory developed by
G. Cantor has been regarded as a central framework for
mathematics, in the sense that every mathematics can be
represented in it.

2 But, it was found that various paradoxes will occur if
mathematics is to be developed freely. For example, axiom of
comprehension admits the existence of a set {x |P(x)} for any
given ”property” P(x).

3 Then, Russell’s paradox happens, if we take x 6∈ x for P(x). In
fact, if the set a is defined by a = {x |x 6∈ x}, then the equality
a ∈ a⇐⇒ a 6∈ a must hold. Obviously this is a contradiction.
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I How to avoid this paradox? By imposing some restrictions on
the axiom of comprehension?

I But will such restrictions really remove every paradox?

I How can we confirm the consistency of mathematics? On
which basis?

Formalism (D. Hilbert), Intuitionism (L.E.J. Brouwer), Logicism
(B. Russell)

Hiroakira Ono Proof-theoretic approach to logic an introduction



I How to avoid this paradox? By imposing some restrictions on
the axiom of comprehension?

I But will such restrictions really remove every paradox?

I How can we confirm the consistency of mathematics? On
which basis?

Formalism (D. Hilbert), Intuitionism (L.E.J. Brouwer), Logicism
(B. Russell)

Hiroakira Ono Proof-theoretic approach to logic an introduction



I How to avoid this paradox? By imposing some restrictions on
the axiom of comprehension?

I But will such restrictions really remove every paradox?

I How can we confirm the consistency of mathematics? On
which basis?

Formalism (D. Hilbert), Intuitionism (L.E.J. Brouwer), Logicism
(B. Russell)

Hiroakira Ono Proof-theoretic approach to logic an introduction



Hilbert’s program — formalist point of view

We can develop a mathematics of various objects freely,
regardless of their existence in reality, as long as the theory is
consistent (i.e. not contradictory).

On the other hand, contradictions may sneak into the theory
if we allow unlimited abstraction and unrestricted use of
notions, as examples of paradoxes in set theory have shown.

Therefore, the consistency of each mathematical theory, like
natural number theory, real number theory and ultimately set
theory, should be guaranteed.
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David Hilbert (1862 - 1943)
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♣ Then, how to show the consistency?

A theory T is consistent ⇔ A contradiction (e.g. α ∧ ¬α) is not
provable in T ( ⇔ No contradictions are provable in T ).

To show that a proposition β is provable in T , it is enough to
give a concrete proof of β.

But, how can we assure that “β is not provable in T ”? We
need to check infinitely many “possible proofs” and show that
any of them never be a proof of β.
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♣ Formalizing theories

Moreover, we must state explicitly which statement is an axiom of
T and which is not, and also which inference or reasoning is
allowed. To eliminate any ambiguity, it will be necessary to
represent them by using formal or symbolic expressions.

1 Formalizing logic itself · · · D. Hilbert, G. Gentzen . . .

2 Formalizing mathematical theories (number theory, set theory)
· · · G. Peano, E. Zermelo, A. Fraenkel . . .

D. Hilbert & W. Ackermann, Grundzüge der theoretischen Logik, 1928,
1938.

Proof theory of Hilbert-style systems (with epsilon symbol)
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Axiomatization of number theory (Peano arithmetic PA)

s(x) 6= 0, s(x) = s(y)→ x = y ,

x + 0 = x , x + s(y) = s(x + y),

x × 0 = 0, x × s(y) = (x × y) + x ,

(mathematical induction) for any formula ϕ(x),

[ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(s(x))]→ ∀xϕ(x).
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I Is Peano arithmetic consistent? If so, how can we show this?

Here, we say that Peano arithmetic is consistent if the formula 0 = 1 is not

provable in it.

I What assumptions can we assume in the proof of the
consistency?

For example, can we accept the following argument?

It suffices to give a concrete model of PA, in order to show the
consistency. So, take the set N of natural numbers, and interpret function
symbols +,× etc. in a natural way. Surely, N gives a model of PA, and
hence PA is consistent.

But, how we can assure the existence of N? By set theory? But we don’t know

whether set theory is consistent. Moreover, if it is consistent, the consistency of

PA becomes trivial.
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F Gödel’s second incompleteness theorem says that the
consistency of Peano arithmetic cannot be proved with using
nothing beyond Peano arithmetic.

This shows a limitation of Hilbert’s program in its original form. Nevertheless,

by analyzing structures of proofs in the sequent system for Peano arithmetic,

Gentzen succeeded to show that:

♣ If a certain transfinite induction is added to (a weaker) Peano
arithmetic then the consistency of Peano arithmetic is provable in
this system.
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Gentzen and sequent systems

Gentzen introduced both natural deduction systems and sequent
systems for classical and intuitionistic logics in his thesis (1935).
His main result was to show cut elimination theorem.

Gerhard Gentzen: Untersuchungen über das logische Schliessen I, II,
Mathematische Zeitschrift (1934, 1935)

Then, he formalized Peano arithmetic over the sequent system LK
for classical logic, and obtained the aforementioned consistency
result, through deep analysis of proofs of his system.
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Gerhard Gentzen (1909 - 1945)
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♣ Sequent system LK for classical logic

A sequent of LK is an expression of the following:

α1, . . . , αm ⇒ β1, . . . , βn

Intuitively, it expresses that β1 ∨ . . . ∨ βn follows from the
assumptions α1, . . . , αm, or equivalently from the assumption
α1 ∧ . . . ∧ αm. Note that ‘the meaning of “commas” in the
left-hand side is different from that in the right-hand side.

Each sequent system consists of initial sequents (axioms) and
rules. They determine “true” sequents in the system.
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An initial sequent of the sequent system LK is a sequent of the
form α⇒ α for any formula α.

Each rule of LK has one or two upper sequents and one lower
sequent, which expresses that the lower sequent can be derived by
these upper sequents.

Rules of LK can be divided into the following three.

Rules for logical connectives

Cut rule

Structural rules
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♠ Gentzen’s system LK

Capital Greek letters denote finite sequences of formulas in the following.

Rules for implication

Γ⇒ Λ, α β,∆⇒ Π

α→ β, Γ,∆⇒ Λ,Π
(→⇒)

α, Γ⇒ Λ, β

Γ⇒ Λ, α→ β
(⇒→)

Rules for negation

Γ⇒ Λ, α

¬α, Γ⇒ Λ
(¬ ⇒)

α, Γ⇒ Λ

Γ⇒ Λ,¬α (⇒ ¬)
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Rules for ∨ and ∧:

Γ⇒ Λ, α

Γ⇒ Λ, α ∨ β (⇒ ∨1)
Γ⇒ Λ, β

Γ⇒ Λ, α ∨ β (⇒ ∨2)

α, Γ⇒ Π β, Γ⇒ Π

α ∨ β, Γ⇒ Π
(∨ ⇒)

α, Γ⇒ Π

α ∧ β, Γ⇒ Π
(∧1⇒)

β, Γ⇒ Π

α ∧ β, Γ⇒ Π
(∧2⇒)

Γ⇒ Λ, α Γ⇒ Λ, β

Γ⇒ Λ, α ∧ β (⇒ ∧)
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Cut rule

Γ⇒ Λ, α α,∆⇒ Π

Γ,∆⇒ Λ,Π
(cut)

Structural rules

exchange rules:

Θ, α, β, Γ⇒ Π

Θ, β, α, Γ⇒ Π

Γ⇒ Θ, α, β,Σ

Γ⇒ Θ, β, α,Σ

contraction rules:

α, α, Γ⇒ Π

α, Γ⇒ Π

Γ⇒ Σ, α, α

Γ⇒ Σ, α

weakening rules:
Γ⇒ Π
α, Γ⇒ Π

Γ⇒ Λ
Γ⇒ Λ, α
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A sequent S is provable in LK (LJ) if it can be derived from initial
sequents by applying rules of LK (LJ) repeatedly. Tree-like figures
which express how S can be derived are called proofs of S.

We can show the following:

Lemma

A sequent α1, . . . , αm ⇒ β1, . . . , βn is provable in LK iff
α1 ∧ . . . ∧ αm ⇒ β1 ∨ . . . ∨ βn is provable in LK.
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A proof of distributive law in LK (we omitted applications of
exchange rule below)

α⇒ α
α, β ⇒ α

(weak)
β ⇒ β

α, β ⇒ β
(weak)

α, β ⇒ α ∧ β
α, β ⇒ (α ∧ β) ∨ (α ∧ γ)

α⇒ α
α, γ ⇒ α (weak)

γ ⇒ γ
α, γ ⇒ γ (weak)

α, γ ⇒ α ∧ γ
α, γ ⇒ (α ∧ β) ∨ (α ∧ γ)

α, β ∨ γ ⇒ (α ∧ β) ∨ (α ∧ γ)
α ∧ (β ∨ γ), β ∨ γ ⇒ (α ∧ β) ∨ (α ∧ γ)

α ∧ (β ∨ γ), α ∧ (β ∨ γ)⇒ (α ∧ β) ∨ (α ∧ γ)
α ∧ (β ∨ γ)⇒ (α ∧ β) ∨ (α ∧ γ)

(cont)

I Give a proof of the following dual form of the distributive law.

(α ∨ β) ∧ (α ∨ γ)⇒ α ∨ (β ∧ γ)
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Cut elimination — the existence of “normal” proofs

The aim of proof theory is to analyze structures of proofs and to
extract logical information or logical properties from them. In this
respect, the following result must be fundamental, which says that
each sequent has a “normal proof” as long as it is provable. In
fact, “normal” proofs are proofs without detour (or without taking
any roundabout way).

• Here, the word “normal” means “canonical”, rather than “ordinary”.

Theorem (Cut elimination for LK)

If a given sequent is provable in LK, it is provable in LK without
using cut rule.
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But what are benefits of this result?

Theorem (subformula property)

If a given sequent Γ⇒ ∆ is provable in LK, it has such a proof P
that every formula appearing in P is a subformula of a formula
either in Γ or in ∆. In fact, any cut-free proof has this property.

This follows from cut elimination and the following observation: In each rule

except cut, every formula in upper sequents appears also in the lower sequent

as a subformula of a formula in the lower sequent.
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I Note:

Then, you may wonder why we don’t take the system without cut
rule, say LK−, from the beginning, if cut rule is redundant.

An elementary fact of classical logic says that if both α→ β and
β → γ hold then obviously α→ γ holds. If LK− were to be a
system for classical logic, then α⇒ γ must be derived from α⇒ β
and β ⇒ γ in LK−. To show this, i.e. to show the admissibility of
cut rule in LK− is nothing but to show cut elimination in LK.
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Many important logical properties follow from cut elimination.
Here are a few examples.

1 decidability, and often tractable proof search algorithms,

2 disjunction property

3 Maksimova’s variable separation property,

4 Craig’s interpolation property.
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Some discussions

� Comparison with natural deduction systems

1 Left rules for logical connectives in sequent systems
correspond to elimination rules in natural deduction systems,
while right rules correspond to introduction rules.

2 normalization theorem vs cut elimination theorem

3 nice correspondence between natural deduction for
intuitionistic logic and typed λ-calculus — Curry-Howard
isomorphism
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� Comparison with Hilbert-style systems

Modus ponens

from α and α→ β, infer β.

Axioms

α→ (β → α) (weakening),

(α→ (α→ γ))→ (α→ γ) (contraction),

(α→ (β → γ))→ (β → (α→ γ)) (exchange),

0→ α and (α→ β)→ ((γ → α)→ (γ → β)),

(α→ γ)→ ((β → γ)→ ((α ∨ β)→ γ),

α→ (α ∨ β) and β → (α ∨ β),

(γ → α)→ ((γ → β)→ (γ → (α ∧ β))),

(α ∧ β)→ α and (α ∧ β)→ β.

¬¬α→ α (Here, ¬α is defined by α→ 0.)
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1 In Hilbert-style systems, the implication → takes all jobs of
implications, commas and arrows in sequent systems.

2 Axioms for each logical connective are always expressed in
combination with implication. Thus, it can hardly have
subformula property.

3 It has a few rules of inference. Thus, for describing logics, it
has high “universality” or “modularity”.

4 By the same reason., it lacks “sensitivity” to logical properties
of a given logic. On the other hand, a cut-free system (i.e. a
sequent system for which cut elimination holds) is often highly
sensitive to these properties, while only a limited number of
logics have cut-free systems.
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Uniform framework provided by sequent formulation

It turned out recently that sequent formulation can provide us a
fresh perspective of nonclassical logics, through developments of
the study of substructural logics. In the rest of my talk, we will
make a brief introduction to substructural logics, and explain the
idea.

N. Galatos, P. Jipsen, T. Kowalski, HO: Residuated Lattices: an algebraic

glimpse at substructural logics, Studies in Logic and Foundations of

Mathematics, vol.151, Elsevier, April, 2007
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Nick, Peter and Tomasz

Hiroakira Ono Proof-theoretic approach to logic an introduction



♣ Our starting point:

H. Ono and Y. Komori, Logics without the contraction rule, Journal of
Symbolic Logic (1985).

♣ Development of the idea of grasping various nonclassical logics
as logics lacking some or all of structural rules:

Suggested also by works on Lambek calculus (J. van Benthem and W.
Buszkowski), and on linear logic (J.-Y. Girard)

H. Ono, Structural rules and a logical hierarchy, presented at the Heyting
’88 conference in Bulgaria.
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Nonclassical logics from substructural viewpoint

Lambek calculus — logic without structural rules
Calculus for categorial grammer introduced by Ajdukiewicz and Bar-Hillel

(J. Lambek, 1958), which was rediscovered in early 80s by J. van

Benthem and W. Buszkowski.

Logic of residuated lattices
In 1974, S. Tamura introduced a sequent calculus for residuated lattices

and proved cut elimination theorem. As a result, he showed that the

equational theory of residuated lattices is decidable.

Relevant logics — logics without weakening rules
Logics of relevant implication mainly developed by A. Anderson, N.

Belnap Jr., R.K. Meyer and M. Dunn. A. Urquhart showed the

undecidability of relevant propositional logic R in 1984. Sometimes,

contraction-free relevant logics are also studied.
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Logics without contraction rule (BCK logics)
In his book in 1963, H. Wang mentioned that classical predicate logic

without contraction rules is decidable. In the 1970s, V. Grishin pointed

out that contraction rules are essentially used in deriving Russell’s

paradox. H.O. & Y. Komori in 1985 developed syntactic and semantical

study of logics without contraction rules (also Došen 88, 89).

 Lukasiewicz’s many-valued logics and fuzzy logics by P. Hájek
— logics without contraction rules.

Linear logic — logic only with exchange rule
J.-Y. Girard introduced linear logic in his influential paper published in

1987. Due to his exposition, substructural logics are sometimes regarded

as resource sensitive logics.

Johansson’s minimal logic — logic without right-weakening
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F Substructural logics are logics lacking some or all of structural
rules when they are formalized in sequent calculi.
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♣ Fusion — new logical connective

If a sequent calculus lacks either contraction or weakening, each
comma in a sequent can no more express conjunction. To
represent a comma explicitly as a logical symbol, we introduce a
new logical connective fusion (·, in symbol).

Rules for fusion

Γ⇒ α ∆⇒ β

Γ,∆⇒ α · β (⇒ ·) Σ, α, β,∆⇒ ϕ

Σ, α · β,∆⇒ ϕ
(· ⇒)
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Suppose that both α⇒ β and α⇒ γ are provable. Then;

(1) α, α⇒ β · γ is provable,
(2) α⇒ β · γ is not always provable,
(3) α⇒ β ∧ γ is provable.

I What does this mean, and what are the differences?

Assumptions will be “consumed”.

• α ∧ β is equivalent to α · β for all α and β iff both weakening rule and

contraction rule hold.
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F Substructural logics are resource sensitive logics
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♠ As we have shown, the class of substructural logics include
many important nonclassical logics as its subclasses.

I But, why ”substructural”? Sequent calculi will be one of options
in formalizing nonclassical logics, and structural rules are usually
regarded as auxiliary rules.

Is there any particular reason to be substructural, i.e. to take
sequent formulation?

• There must be some reasons. As a matter of fact, if we try to
formulate standard substructural logics by using either a
Hilbert-style formal system or a natural deduction system, we will
end up with a non-transparent and complicated formulation.
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The following three conditions are mutually equivalent.

1 ` α · β ⇒ ϕ,

2 ` α, β ⇒ ϕ,

3 ` β ⇒ α→ ϕ.

� Implication is the residual of fusion (or comma), or has the
Galois connection with fusion (in the dual order).

cf. Division is a residual of multiplication in arithmetic: a× b ≤ c iff b ≤ c/a.
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Thus, my conclusion is ...

1 Differences of logics come mostly from differences of their
implication.

2 Through the residuation relation, a change of fusion affects a
change of implication, and vice versa,

3 Fusion is usually hidden, or unnoticed in a logic, but its
sequent formulation will explicate the role of fusion in the
form of commas in sequents.

4 Structural rules represent basic conditions of fusion, and
hence are essential for the behavior of implication.
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F Substructural logics are logics of residuated structures

H. Ono, Substructural logics and residuated lattices — an introduction,
50 Years of Studia Logica, Trends in Logic 21, 2003

Hiroakira Ono Proof-theoretic approach to logic an introduction


