
Hyperintensions

Carl Pollard1

Abstract

Standard possible worlds semantics has been known from the start
to have a problem with granularity: for a wide range of natural-
language (NL) entailment patterns, not enough meaning distinctions
are available to make predictions consistent with robust intuitions.
Though numerous solutions have been proposed, often of great inge-
nuity and technical sophistication, none of these has gained widespread
acceptance. As a result, most semanticists have made a practical de-
cision to work in a framework known to have dubious foundations and
leave the foundational problems to mathematical logicians. Here a
new approach is proposed which may be simple enough and conserva-
tive enough to be practical for working empirical and computational
semanticists. More specifically, I show how the use of a higher-order
logic with definable subtypes leads to a novel and surprisingly straight-
forward solution of the granularity problem. I also call attention to
a hitherto unnoticed problem in standard approaches to NL seman-
tics having to do with nonprincipal ultrafilters and show why it does
not arise under my proposal. The two main technical innovations that
drive the proposal are (1) axiomatizing NL entailment as a preorder
(as opposed to an order) on the set of (primitive) propositions, and (2)
defining worlds as certain sets of propositions (viz. ultrafilters). These
innovations provide just the tools we need to develop a formally explicit
theory of hyperintensions2, mathematical models of Fregean senses of a
finer granularity than the familiar intensions (functions to extensions
from worlds, where the worlds in turn are theoretical primitives) of
mainstream Kripke/Montague-inspired NL semantics.

0. Introduction

Standard possible worlds semantics has been known from the start to have
a problem with granularity: for a wide range of entailment patterns, not

1For advice and clarifying discussion, I am grateful to Robin Cooper, David Dowty,
Chris Fox, Nissim Francez, Paul Gilmore, Howard Gregory, Jim Lambek, Shalom Lappin,
Scott Martin, Drew Moshier, Reinhard Muskens, Phil Scott, Rich Thomason, and two
anonymous referees. Alas, it cannot be assumed that any of these people accept my
conclusions. The research reported here was supported by grant no. BCS-0349521 from
the National Science Foundation and by a Special Research Assignment from the Ohio
State University College of Humanities.

2The proposal repairs a number of defects in an earlier effort to formulate a simply-
typed hyperintensional semantic theory (Fox et al. 2002), Fox and Lappin 2005).

1

enough meaning distinctions are available to make predictions consistent
with robust intuitions. Though a great many solutions have been proposed
from the early 1940s on, often of great ingenuity and technical sophistica-
tion, none of these has gained widespread acceptance. As a result, most
semanticists have made a practical decision to work in a framework known
to have dubious foundations and leave the foundational problems to mathe-
matical logicians. In this paper, a new approach is proposed which, I believe,
is simple enough and conservative enough to be practical for working empir-
ical and computational semanticists. More specifically, I show how the use
of a higher-order logic with definable subtypes leads to a novel and surpris-
ingly straightforward solution of the notorious granularity problem about
natural-language (NL) meanings. I also call attention to a hitherto unno-
ticed problem in standard approaches to NL semantics having to do with
nonprincipal ultrafilters and show why it does not arise under my proposal.
The two main technical innovations that drive the proposal are (1) axiom-
atizing NL entailment as a preorder (as opposed to an order) on the set of
(primitive) propositions, and (2) defining worlds as certain sets (viz. ultra-
filters) of propositions.

To formalize my semantic theory, I work within a version of higher-
order logic similar in its essentials (though not in the details of its pre-
sentation) to the boolean version of Lambek and Scott’s (1986) higher-
order categorical logic. This logic differs from the higher-order logics
in the Church-Henkin-Montague tradition familiar to linguists in providing
for lambda-definable subtyping, which plays a central role in my pro-
posal. Set-theoretic models of theories in this kind of logic are very much
like the familiar Henkin-style models, but augmented with cartesian prod-
ucts and lambda-definable subsets. The simplicity and familiarity of such
models makes this kind of logic accessible and practical for working linguis-
tic semanticists. However, there are more general categorical models (local
boolean toposes), which make allowance for the possibility of uninhabited
types (i.e. types other than the empty (counit) type for which there are
no closed terms) should the need arise; and the boolean condition is eas-
ily dropped should one wish to experiment with intuitionistic theories of
linguistic meaning.3

The paper is organized as follows. In section 1, I briefly review the main
features of standard possible-worlds-based NL semantic theory, distinguish-
ing those which I wish to retain from those that I will target for elimination.
Section 2 reviews the well-known granularity problem, with special attention

3Hereafter, occasional categorical considerations will mostly be relegated to footnotes.

2

to its two most notorious subproblems, Frege’s Hesperus-Phosphorus puzzle
and the antisymmetry of entailment. Section 3 is an introduction to the
general philosophical approach underlying my technical proposal, viz. that
propositions are primitives and worlds constructed from them, not the other
way around as is usually assumed. Section 4 introduces the second, and
heretofore evidently unrecognized, problem of nonprincipal ultrafilters. In
section 5, working in the metalanguage, I provide an algebraic theory of
propositions that solves both the granularity problem and the nonprincipal
ultrafilters problem. The remaining sections develop the logic within which
I will formalize my theory, lay out the theory itself, and show by examples
how it connects with—and serves as an adequate replacement for—standard
posible-worlds semantics. Section 6 is an overview of the typed lambda cal-
culus underlying the logic. Section 7 extends the typed lambda calculus to
a higher-order logic. Section 8 develops the semantic theory and illustrates
its application. And section 9 summarizes the main features of my proposal.

1 Trouble in Paradise

In NL semantics, at least in its static (as opposed to dynamic) aspects,
there is a widely accepted, generally Fregean, story about the basics. It
runs something like this:

(1) The Peaceable Kingdom of NL Semantics

a. Meaning is a function from NL expressions4 to things called senses.

b. Declarative sentence meanings are called propositions.

c. Meanings of names are called (after Carnap) individual concepts.

d. A sense has an extension, and what that extension is in general
depends on contingent facts (how things are).

e. The extension of an expression’s meaning is called the expression’s
reference or denotation.

f. The things that can be the extension of a proposition (and therefore,
the reference of a declarative sentence) are called truth values; and
there are exactly two of them, called true and false.

g. One proposition is said to entail another just in case, no matter
how things are, if its extension is true, then so is the extension of
the other.

4Here, as throughout, I write ‘expression’ as a shorthand for ‘contextualized utterance
of an expression’, and likewise, mutatis mutandis, for ‘declarative sentence’, ‘name’, and
other terms referring to categories of linguistic expressions.

3

h. It follows from the preceding that entailment is a preorder (reflexive
transitive relation) on propositions, and so mutual entailment is an
equivalence relation, also called truth-conditional equivalence.

i. One declarative sentence is said to follow from another iff the
proposition it expresses is entailed by the proposition expressed by
the other.

j. The things that can be extensions of individual concepts (and there-
fore, the references of names) are called entities.

k. The individual concepts typically expressed by names are rigid, in
the sense that their extensions are independent of how things are.

Now the mainstream training in NL semantics includes an indoctrination
into a certain classical higher-order formalization of this story, one which
was mostly synthesized by Montague in the late 1960’s out of ideas drawn
from Carnap, Kripke, Church, and Henkin, and subsequently streamlined
by Bennett, Gallin, Dowty and others in the 1970’s and early 1980’s. For
expository purposes, I will present what I take to be the main components
of this formalization in two groups: those which I do not wish to take issue
with (at least not here), and those which I analyze as the source of the
problems. First, those aspects of the Standard Formalization that will be
preserved in my proposal:

(2) The Standard Formalization: Aspects Worth Keeping

One theorizes about senses and their extensions in a higher-order logic
similar to Henkin’s (1950) formulation of Church’s (1940) simple theory
of types:

a. A typed (βη-)lambda calculus with a type Bool for formulas and a
basic type Ent for entities;

b. equality constants =A at all types;

c. the familiar lambda-calculus term equivalences (conversion) are for-
malized as object-language axioms about the =A;

d. the usual logical constants are definable à la Tarski/Quine in terms
of the =A and λ.

e. Following Henkin (1950), one adopts the axiom (explicitly rejected
by Church) of Boolean Extensionality:

∀x∈Bool∀y∈Bool[(x↔ y) → (x = y)]

f. The resulting logic is (a) two-valued; and (b) sound and complete

4

with respect to (unrestricted5) Henkin models.

g. As in Gallin (1975), there is a type World (possible worlds). This
improves on Montague’s IL: e.g. there is a complete proof theory,
and no up and down operators.

h. Meanings are assigned to NL expressions by translating them into
the logic and then interpreting the logic into a model.

i. Thus meanings, their extensions, and worlds all live in the same
model, and one can write nonlogical axioms (meaning postulates)
about how these things are related to each other,

j. In any model, the set of propositions is equipped with a boolean
structure in terms of which entailment and the meanings of NL
“logical words” can be represented.

By contrast, I identify the following features of the Standard Formaliza-
tion as the problematic ones to be weeded out:

(3) The Standard Formalization: Aspects to Eliminate

a. The type World is basic, i.e. worlds are primitives (cf. Kripke 1963).

b. Meanings are intensions, i.e. functions from the set of worlds6.

i. Name meanings (individual concepts):

• are functions from worlds to entities; and so

• if one assumes the rigidity of names (Kripke 1980), then
co-referring names have the same meaning.

ii. Declarative sentence meanings (propositions):

• are (characteristic functions of) sets of worlds;

• entailment is the subset-inclusion ordering on sets of worlds;

• the meanings of and, or, and if . . . then are, respectively,
intersection, union, and relative complement.

• In particular, entailment is antisymmetric. Thus:

• truth-conditionally equivalent propositions are identical; and
so

• sentences that follow from each other have the same mean-
ing.

5In the sense that the interpretations of the functional types only have to contain
enough functions to interpret all closed terms.

6Or at least are equivalent to such functions, up to a permutation of their arguments.
See, e.g. Carpenter 1997.

5

I will show that eliminating these undesirable aspects of mainstream seman-
tics is not only easy, but also that it does no harm; nothing that linguists
actually need semantic theory for depends on these features. To put it an-
other way: they do not really model anything about linguistic meanings,
but are mere artifacts of the formalization, and pernicious ones at that.

With the scene set, we can now turn to the first of the two problems
with the Standard Formalization that we have set our sights on: there are
not enough intensions.

2 The Granularity Problem

By way of review, we briefly consider two manifestations of the granularity
problem.

2.1 Hesperus and Phosphorus

As Frege (1892) realized, having the same reference is not a sufficient con-
dition to allow replacement of one name for another in a sentence while
preserving truth:

(4) Hesperus and Phosphorus

a. (The ancients realized that) Hesperus was Hesperus.

b. (The ancients realized that) Hesperus was Phosphorus.

Frege’s view was that the names Hesperus and Phosphorus, while referring
to the same planet (viz. Venus), express different senses and therefore there
is no reason to expect Hesperus is Hesperus and Hesperus is Phosphorus to
express the same proposition. And consequently, it is unsurprising that the
ancients might well have believed the first but not the second.

But in the Standard Formalization, the senses of the two names Hes-
perus and Phosphorus are functions from worlds to entities, and at least
one of these worlds, the two functions have the same value, namely the
planet Venus. But if Kripke was right about the rigidity of names, then the
two functions must both be the constant function that maps each world to
Venus, i.e. Hesperus and Phosphorus mean the same thing. So by standard
considerations of compositionality, Hesperus is Hesperus and Hesperus is
Phosphorus must express the same proposition.

Of course there is a copious literature that seeks to justify the acceptance
of this seemingly unattractive consequence. But on our proposal, which can

6

be seen as a technical implementation of Frege’s view, there is no such
consequence, and therefore no need for a justification.

2.2 Equivalent Propositions

As we noted, in the Standard Formalization, entailment is an order, and so
truth-conditionally equivalent propositions are identical. The (elementary)
proof depends crucially on the antisymmetry, and so does not generalize to
preorders (transitive symmetric relations).

But there is a naive, robust intuition that declarative sentences can follow
from each other without meaning the same thing. We illustrate with two
examples.

(5) Woodchucks and Groundhogs

a. Phil is a woodchuck.

b. Phil is a groundhog.

On standard accounts, the equivalence of (5a) and (5b) would follow from a
meaning postulate asserting that, necessarily, anything that is a woodchuck
is a groundhog and conversely. Thus, we cannot accept that (say) Jim
knows Phil is a groundhog without also accepting that Jim knows Phil is a
woodchuck.

(6) Paris Hilton and the Riemann Hypothesis

a. Paris Hilton is Paris Hilton.

b. S. [Where S is either ‘All nontrivial zeros of ζ have real part 1/2’
or ‘Not all nontrivial zeros of ζ have real part 1/2’, whichever is
true.]

In our second example of equivalent propositions, the propositions in ques-
tion are both necessary truths. But according to the Standard Formaliza-
tion, there is only one necessary truth (viz. the set of all worlds). And
so it seems that the plausible premiss that Justin Timberlake knows that
Paris Hilton is Paris Hilton forces the implausible conclusion that Justin
Timberlake knows whether the Riemann Hypothesis is true.

Again, there are strenuous arguments (most notably by Stalnaker) on be-
half of accepting these (naively) unsavory consequences. Rather than bother
with constructing counterarguments, we will propose an account where there
simply are no such consequences, and hence no need for justification.

7

Yang Wenli
附注
因为种名是专名?例如水是H2O

3 Soft Actualism Recalled

In his defense of possible worlds, Stalnaker (1984) compares the standard
view (that propositions are sets of possible worlds) with an alternative po-
sition, soft actualism, put forward by Robert Adams (1974). In Adams’
terminology, this contrasts with hard actualism, which flatly denies the
existence of nonactual possible worlds. Adams’ position can be summarized
as follows:

(7) An Alternative: Robert Adams’ (1974) “Soft Actualism”

a. Nonactual possible worlds exist in the sense of being logically con-
structed out of the actual world. Specifically:

b. possible worlds are maximal consistent sets of propositions.

c. Thus propositions are primitive and worlds are constructed, (not
the other way around as per the Standard Formalization).

In fact, soft actualism was anticipated by Kripke’s (1959) completeness
theorem for S5, which implemented possible worlds as complete assignments
of truth values to formulas, which are just characteristic functions of max-
imal consistent sets of formulas. Kripke’s complete assignments in turn
can be seen as a more precise rendering of Carnap’s (1947) notion of a
state description. And as Kripke (1963) noted, the essentials of his analy-
sis of modal logic had also been anticipated in algebraic form by Jónsson
and Tarski’s (1951) representation theorem for boolean algebras with n-ary
operators: the Kripke semantics is the case n = 1. Ultimately the roots
of this approach lie in Stone’s (1936) Representation Theorem (which the
Jónsson-Tarski theory extends to the case of boolean algebras with opera-
tors). Stone’s theorem implies (inter alia) that any boolean algebra B can
be isomorphically embedded into a powerset ℘(X), by taking X to be the
cospectrum of B (i.e. the set of B’s ultrafilters).7 The connection is that
if B is taken to be the set of propositions (in the sense of declarative sen-
tence meanings) and the order induced by the boolean structure is taken to
be entailment, then the ultrafilters correspond to exactly to the complete
assignments.

But in 1963, for his more general completeness theorem for normal modal
propositional calculi, Kripke abandoned this approach (of worlds as maximal
consistent sets or ultrafilters) in favor of taking possible worlds as unana-
lyzed primitives. And in his influential papers on NL semantics, Montague

7The embedding maps each b ∈ B to the set of ultrafilters containing it.

8

(1974) followed the lead of Kripke 1963, not Kripke 1959, in providing a
possible-worlds semantics of English. Subsequently, it seems to have simply
been taken for granted that Montague’s way is the way, not because argu-
ments were set forth somewhere or other that the Standard Formalization
(worlds as primitives) provides a better framework for NL semantics than
Soft Actualism (worlds as maximal consistent sets), but rather because the
alternative was not even considered. Below we will consider the alterna-
tive, and argue that, as far as NL semantics is concerned, Soft Actualism is
preferable to the Standard Formalization

In the sequel we will find it convenient to cast the essential content of
the two approaches in algebraic terms, as follows:

(8) Soft Actualism in Algebraic Form (Preliminary Version)

a. Propositions are elements of a boolean algebra8 .

b. Entailment is the order on that algebra,

c. Possible worlds are the ultrafilters of that algebra.

d. ‘p is true at w’ means p ∈ w.

(9) The Standard Formalization in Algebraic Form

a. Propositions are sets of possible worlds.

b. Entailment is the subset inclusion order on the powerset of the set
of possible worlds (which is of course a boolean algebra).

c. ‘p is true at w’ means w ∈ p.

How different are the two approaches? We focus on this question in the
next two sections.

4 Nonprincipal Ultrafilters: an Overlooked Prob-

lem

To facilitate the comparison of (algebraicized) Soft Actualism and the Stan-
dard Formalization, it will be helpful to first lay out some of the basic facts
about ultrafilters, starting with the following definition:

(10) Definition (Ultrafilter of a Boolean Algebra)

Suppose B is a boolean algebra and U ⊆ B. Then U is an ultrafilter
of B just in case the following three conditions are satisfied:

8Later we will weaken this to a boolean prealgebra.

9

a. it is closed under finite meets;

b. it is upper-closed relative to the order ⊑ on B induced by the
boolean structure, i.e. for each b ∈ U , ↑ b ⊆ U9; and

c. for every b ∈B, exactly one of b and b′ is in it.

For our purposes, the Stone Representation Theorem is most conve-
niently stated in the following form:10

(11) Stone Representation Theorem

a. Any boolean algebra B can be isomorphically embedded as a sub-
algebra of a powerset algebra ℘(X).

b. X can be taken to be the set of ultrafilters of B, with the embedding
mapping each b ∈B to the set of ultrafilters containing it.

(12) Definition (Principal Ultrafilter)

Suppose B is a boolean algebra and U an ultrafilter of B. Then U is
called a principal ultrafilter provided it has a least element a. In that
case a is said to be the generator of U , or to generate U .

(13) Basic Facts about Principal Ultrafilters

a. Suppose U is a subset of a boolean algebra B. Then U is a principal
ultrafilter iff there is an atom of B, a, such that U = ↑ a. In that
case, a is the generator of U .

b. Hence there is a one-to-one correspondence between the atoms of
B and its principal ultrafilters, mapping each atom to its upset.

c. If B is finite, every ultrafilter is principal. In that case the Stone
embedding maps each b∈B to the set of principal ultrafilters whose
generators are the atoms a such that a ⊑ b.

d. But if B is infinite, then (assuming the Axiom of Choice) not every
ultrafilter is principal.

This last fact has a consequence for the Standard Formalization that
seems to have gone unnoticed. To see why, suppose that the Standard
Formalization is correct. In that case propositions are defined to be sets of
possible worlds, and entailment is the subset inclusion order on the boolean

9For any member a of a boolean algebra (or, more generally, of a preorder) B, ↑ a =def

{b ∈ B | a ⊑ b}. This is called the upset of a, or simply up of a.
10Stone’s formulation was in terms of boolean rings (rather than boolean algebras) and

their prime ideals, and had an important topological dimension that is ignored here.

10

algebra ℘(W), where W is the set of all possible worlds. Then what does
(13) say about the case B = ℘(W)? Well, in this case the atoms are just the
singleton sets {w}, where w is a possible world. From (13b) it follows that
there is a one-to-one correspondence between possible worlds and principal
ultrafilters of B, with each world w corresponding to the set ↑({w}) whose
members are those sets of worlds of which w is a member. Note that this is
just the set of all propositions true at w.

Now suppose for a moment that the set of standard-formalization propo-
sitions were finite. Obviously this could be the case iff the set of possible
worlds were finite. In that case all ultrafilters of B would be principal, so
that the function mapping each world to the set of propositions true at that
world would be a bijection fromW to the set of ultrafilters of B. Specifically,
each world w would be mapped to the principal ultrafilter whose generator
is the singleton set whose only member is w (in other words, the ultrafil-
ter whose members are those sets of worlds which have w as a member).
From this it follows that Soft Actualism and the Standard Formalism would
amount to the same thing, since a world w would belong to a proposition
(set of worlds) p iff p belonged to the ultrafilter consisting of all those sets
of worlds that have w as a member.

But the set of propositions is (uncontroversially) infinite, since it is easy
to find a countably infinite set S of English sentences such that no seman-
ticist would be willing to allow that there are two members of S that are
even truth-conditionally equivalent, to say nothing of two members of S that
express the same proposition. One such set consists of the sentences Frege
had a cat, Frege had two cats, Frege had three cats, etc.; another consists
of the sentences Frege erred, Russell knew Frege erred, Frege knew Russell
knew Frege erred, etc.

As before, let B be the boolean algebra of Standard-Formalization propo-
sitions (sets of possible worlds), and remember that in B, conjunction, dis-
junction, implication, and negation are represented, respectively, by inter-
section, union, relative complement, and complement (of sets of worlds),
and that entailment is represented by subset inclusion (of sets of worlds).
Recall also that by definition, a subset U of B (i.e. a set of sets of worlds)
is an ultrafilter iff (a) the intersection of any two of its members is in U (b)
for any p∈U , every set of worlds with p as a subset is also in U ; and (c) for
every set of worlds p, exactly one of p and W \p is a member of U . In other
words, (a) the conjunction of any two propositions in U is also in U ; (b)
any proposition entailed by a proposition in U is also in U ; and (c) for any
proposition p, exactly one of p and its negation is in U . This is exactly what
we mean by a maximal consistent set of propositions. Intuitively, such a set

11

is a “possible way things might be”: it tells, for every proposition, whether
or not it is true; and it does so in a consistent way, in the sense that, even
though it contains all the entailments of each of its members, it does not
contain W (the set of all worlds, i.e. analytic falsehood).

Now of course many of these ultrafilters will be principal, generated by a
singleton set {w}. Such an ultrafilter is the set of all Standard-Formalization
propositions true at w. There is nothing surprising about this: of course
we would expect the set of all propositions true at a given world w to be a
maximal consistent set. But now assume—as we will—that our ambient set
theory has Choice. Then at least one of the ultrafilters of B, call it N , is
nonprincipal. Like any other ultrafilter of B, N is still a maximal consistent
set of Standard-Formalization propositions. But since it is not principal,
it has no least member, and there is no world w such that N is the set of
all propositions true at w. So evidently there is at least one “possible way
things might be” that does not correspond to any of the (antecedently given)
possible worlds. Among ways things might be, N and its nonprincipal ilk
are second-class citizens.

What should a defender of the Standard Formalization say about such
second-class ways that things might be? I can think of two ways open.
One way is to say that the ambient set theory does not have Choice. Then
it could be consistently maintained that the algebra of propositions has
no nonprincipal ultrafilters. But this seems a high price to pay, given the
widely acknowledged utility of Choice in proving theorems. And anyway,
why should semantic theory get to dictate what ambient set theory we use?

The other way open is to argue that some maximal consistent sets of
propositions aren’t really possible ways things could be, and therefore, when
we are trying to tell two meanings apart, we don’t care what extensions they
have at them. I can’t begin to imagine how such an argument would go,
though the reader is of course welcome to try to develop one.

But why take on this burden? Why not just sidestep the whole problem
by simply adopting Soft Actualism instead? I’m not aware of any persua-
sive arguments against it. Rather, the general acceptance of the Standard
Formalization seems to have come about as a consequence of an accident of
history, viz. that Montague happened to borrow Kripke’s 1963 semantics
for S5 instead of his 1959 one. In fact the proposal I am leading up to will
be a form of Soft Actualism, so the existence of nonprincipal ultrafilters will
not be a problem.

12

5 Soft Actualism Refined

But what about Paris Hilton and the Riemann Hypothesis? As formulated
algebraically in (8), Soft Actualism shares with the Standard Formalization
the problem that equivalent propositions are identical. Why? Simply be-
cause in both cases, entailment is being modelled by the order on a boolean
algebra, and orders are antisymmetric. It’s time to meet this problem head
on.

In classical logics, the set of sentences does not form a boolean algebra
under entailment. To get one you have to ”divide out by logical equiva-
lence”, i.e. form the Lindenbaum algebra. Why bother to carry out this
construction? Well, if you only care about sentences up to equivalence, it is
a perfectly reasonable thing to do. But in our dealings with propositions,
things are different. We still need boolean operations, in order to give mean-
ings to the logical words like and and or, and we still want ultrafilters to do
duty for possible worlds. What we definitely do not want is for entailment
to be antisymmetric.11 In short, what we want is something like a boolean
algebra, but without the antisymmetry. Fortunately, there is just such a
thing: a boolean preordered algebra, or (for short) a boolean prealgebra.12

These were described, rather telegraphically, in Fox and Lappin 2001, Fox
et al. 2002, and Fox and Lappin 2005 under the name boolean prelattices13.
Here I present them in a more leisurely fashion.

(14) Definition (Equivalence in a Preorder)

Let ⊑ be a preorder on a set B. The equivalence induced by ⊑,
written ≡⊑, is defined by a ≡⊑ b iff a ⊑ b and b ⊑ a.

The subscript is omitted when no confusion can arise. It’s easy to see that
the equivalence induced by a preorder is indeed an equivalence relation.

(15) Definition: Boolean Prealgebra

A boolean prealgebra is a set equipped with a preorder |=; two
nullary operations Truth and Falsity; one unary operation not′; and

11The central importance to semantic theory of avoiding the antisymmetry of entail-
ment was pointed out to Shalom Lappin and the author by Howard Gregory in personal
communication.

12Categorists call these strict boolean categories, and then dismiss them on the grounds
that up to categorical equivalence they are the same thing as boolean algebras.

13These were used provide a model theory for a logic called FIL (fine-grained intensional
logic). The present proposal can be seen as an attempt to overcome certain problematic
aspects of FIL as a theory of natural language semantics (see Fox and Lappin 2005 and
Pollard in preparation for discussion).

13

three binary operations and′, or′, and if ′ . . . then′ . . ., such that, for all
p, q, and r,

a. Truth: p |= Truth

b. Falsity: Falsity |= p.

c. and′-elimination: (i) (p and′ q) |= p; and (ii) (p and′ q) |= q.

d. and′-introduction: If p |= q and p |= r, then p |= (q and′ r).

e. or′-introduction: (i) p |= (p or′ q); and (ii) q |= (p or′ q).

f. or′-elimination: If p |= r and q |= r, then (p or′ q) |= r.

g. Modus Ponens: ((if ′ p then′ q) and′ p) |= q.

h. Deduction: If (r and′ p) |= q, then r |= (if ′ p then′ q).

i. Negation: not′ p ≡ (if ′ p then′ Falsity)

j. Double Negation: (not′ (not′ p)) |= p

Later, the boolean prealgebra we care about is going to be used to model
the entailment relation on propositions qua declarative sentence meanings;
Truth is going to be some necessarily true proposition and Falsity some nec-
essarily false one; the other boolean operations are going to be the meanings
of the English logical words of the same spelling (less the prime).

The names given to the constraints on the boolean operations are chosen
from logic rather than algebra as a gentle reminder of the origins of classical
propositional logic as an attempt to codify the laws of valid natural-language
argumentation. In algebraic terms: Truth is a top (greatest element); Falsity
a bottom (least element); and′ a meet (greatest lower bound); or′ a join
(least upper bound); if ′ . . . then′ a relative pseudocomplement; and not′

a pseudocomplement. Double negation makes the algebra (so far just a
heyting prealgebra, i.e. a bicartesian closed preorder) boolean (and so we
can drop the ‘pseudo’-prefixes).

The fundamental fact about boolean prealgebras is that any equalities
we expect to obtain in a boolean algebra obtain here too, but only up to
(induced) equivalence; double negation is a case in point here. To put it
another way: a boolean algebra is just a boolean prealgebra in which the
preorder is antisymmetric (i.e. ≡ is equality).

Boolean prealgebras are a special case of a still more general notion,
viz. preordered algebras:

(16) Definition: Preordered Algebra

A preordered algebra is a set with both a preorder and an algebraic
structure, such that the algebra operations are tonic (either monotonic
or antitonic) on each of their arguments.

14

This fact can be expressed in more explicit form as follows:

(17) Theorem (Tonicity of Boolean Operations)

For all members p, q, r of a boolean prealgebra, if p |= q, then:

a. (i) (p and′ r) |= (q and′ r), and (ii) (r and′ p) |= (r and′ q)

b. (i) (p or′ r) |= (q or′ r), and (ii) (r or′ p) |= (r or′ q)

c. (if ′ q then′ r) |= (if ′ p then′ r)

d. (if ′ r then′ p) |= (if ′ r then′ q)

e. (not′ q) |= (not′ p)

An immediate consequence of tonicity is the following highly restrictive
form of substitutivity:

(18) Corollary (Substitutivity with respect to Booleans)

For all members p, q, r of a boolean prealgebra, if p ≡ q, then:

a. (i) (p and′ r) ≡ (q and′ r), and (ii) (r and′ p) ≡ (r and′ q)

b. (i) (p or′ r) ≡ (q or′ r), and (ii) (r or′ p) ≡ (r or′ q)

c. (if ′ q then′ r) ≡ (if ′ p then′ r)

d. (if ′ r then′ p) ≡ (if ′ r then′ q)

e. (not′ q) ≡ (not′ p)

Now in the case we will be concerned with, we use a boolean prealge-
bra to model the set of propositions. In that case, the preorder |= models
the entailment relation, and the algebra operations model the meanings of
the corresponding English logic words. Thus replacing, e.g. a conjunct of
a conjunctive English sentence, or the antecedent of a conditional English
sentence, by a sentence with an equivalent meaning is predicted to preserve
equivalence (mutual entailment) of the meaning of the whole sentence, and
therefore truth as well. But it is unreasonable to expect substitutivity to
hold of other propositional operations (e.g. the meaning of Paris Hilton be-
lieves that . . .), because there is no reason to expect propositional operations
in general to be tonic. To do so would be of the same order of unreasonable-
ness as expecting every function of a real variable to be either nondecreasing
or nonincreasing.

Now the notion of an ultrafilter generalizes straightforwardly from boolean
algebras to boolean prealgebras:

15

Yang Wenli
附注
重点在于定义了一个新的关系,在其中代入是有效的,而在其他操作词中则不然

(19) Definition (Ultrafilter of a Boolean Prealgebra)

A subset w of a boolean prealgebra B is called an ultrafilter iff, for
all p, q ∈B14:

a. if p, q ∈ w then (p and′ q) ∈w;

b. if p ∈ w and p |= q, then q ∈ w; and

c. either (exclusive disjunction) p ∈w or (not′ p) ∈ w.

The following generalizes a standard result about boolean algebras:

(20) Theorem (Ultrafilters and Boolean Homomorphisms)

A subset of a boolean prealebra is an ultrafilter iff its characteris-
tic function is a boolean homomorphism to the two-element boolean
(pre)algebra.

It is obvious on a moment’s reflection that the Stone Representation
Theorem does not generalize to boolean prealgebras, since powerset algebras
are antisymmetric, and therefore the function that maps each element to the
set of ultrafilters containing it is not in general one-to-one.15 However, the
principal lemma Stone used to prove it does generalize:

(21) Stone’s Lemma (There are Enough Ultrafilters)

If p and q are elements of a boolean prealgebra and p 6|= q, then there
is an ultrafilter w such that p ∈ w but q /∈ w.

This has the following important consequence:

(22) Corollary (Propositional Equivalence and Ultrafilters)

If p and q are elements of a boolean prealgebra, then p ≡ q iff for every
ultrafilter w, p ∈ w iff q ∈ w.

In particular, in the case of the prealgebra of propositions, if p and q
are propositions, then they are equivalent (mutually entailing) iff they
are true in the same worlds.

To summarize, we can now revise the algebraicization of Soft Actualism
to the following form:

14Our choice of metavariables serves as a reminder that we are now thinking of the
prealgebra elements as propositions and the ultrafilters as possible worlds.

15However, viewed categorically rather than algebraically, this function is a boolean
category iso onto its image.

16

(23) Soft Actualism in Algebraic Form (Revised Version)

a. Propositions are elements of a boolean prealgebra.

b. Entailment is the preorder.

c. Possible worlds are the ultrafilters.

d. ‘p is true in w’ means p ∈ w.

The only changes in this formulation from the preliminary version (8) are
to replace the boolean algebra by a boolean prealgebra and the order by
the preorder. With this change, which will be incorporated as a central
feature of my proposal, Algebraic Soft Actualism solves both the problem
of equivalent propositions and the problem with nonprincipal ultrafilters.
In particular, equivalent propositions, even though true in exactly the same
possible worlds, need not be identical. An analogous move is not available for
the Standard Formalization because there the propositions are a powerset
algebra with entailment as subset inclusion, and there is just no getting
around the fact that subset inclusion is antisymmetric.

(24) Algebraic Soft Actualism solves both:

a. the problem with equivalent propositions (they need not be
equal), and

b. the problem with nonprincipal ultrafilters (they count as
worlds).

c. No analog of this solution exists for the Standard Formal-
ization: there is just no getting around the fact that subset inclu-
sion is antisymmetric!

d. The remaining task is to incorporate Algebraic Soft Actualism into
a formal theory of NL meaning.

The remainder of this paper is devoted to laying out a proposal incor-
porating this form of Soft Actualism into a logical theory that preserves
the desirable features of the Standard Formalization (2) while excluding the
problematic ones (3). We begin by describing the lambda calculus underly-
ing the logic within which the theory will be expressed.

6 The Underlying Typed Lambda Calculus

Our point of departure is a (simply) typed lambda calculus (hereafter, TLC)
along the lines of Henkin 1950 and Gallin 1975. The only difference is that we

17

follow Lambek and Scott(1986) in having finite product types, both nullary
(the unit type 1) and binary (A×B)16.

(25) TLC overview

a. Syntactically, a TLC consists of:

i. types;

ii. terms of each type; and

iii. an equivalence relation on terms.

b. In a (set-theoretic) interpretation:

i. types denote sets;

ii. a term denotes a member of the set denoted by its type; and

iii. equivalent terms denote the same thing.

(26) Types of the Underlying Typed Lambda Calculus

a. Each basic type is a type;

b. 1 is a type;

c. if A and B are types, so is A×B; and

d. if A and B are types, so is A⇒ B.

(27) Terms of the Underlying Typed Lambda Calculus

a. Each basic constant of type A is a term of type A;

b. For each type A there is a countably infinite set of variables xA
i

(i ∈ ω) of type A ;

c. ∗ :: 1;

d. For all f :: A and g :: B, (f, g) :: (A×B);

e. For all h :: (A×B), πA,B(h) :: A and π′A,B(h) :: B;

f. For all f :: A⇒ B and a :: A, f(a) :: B;

g. For all b :: B, λx∈Ab :: A⇒ B.

In the preceding, ‘::’ is to be read as ‘is of type’.
In the following, ‘=’ is used as a metalanguage name for the term equiv-

alence relation:

16Thus the underlying type logic is positive intuitionistic propositional logic.

18

(28) Term Equivalence for the Underlying Typed Lambda Calculus

a. (equivalence relation)

i. ⊢ a = a (reflexivity);

ii. a = b ⊢ b = a (symmetry);

iii. a = b, b = c ⊢ a = c (transitivity);

b. (congruence with respect to the term constructors)

i. a = c, b = d ⊢ (a, b) = (c, d);

ii. f = g, a = b ⊢ f(a) = g(b);

iii. a = b ⊢ λxa = λxb;

c. (products)

i. ⊢ a = ∗ for all a :: 1;

ii. ⊢ π(f, g) = f ;

iii. ⊢ π′(f, g) = g;

iv. ⊢ (π(h), π′(h)) = h;

d. (conversion)

i. (β) ⊢ [λx∈Aφ[x]](a) = φ[a] if a :: A is substitutable for x17;

ii. (η) ⊢ λx∈Af(x) = f for all f :: A ⇒ B provided x does not
occur freely in f ; and

iii. (α) ⊢ λx∈Aφ[x] = λy∈Aφ[y] if y is substitutable for x.

(29) Interpretation of the Underlying Typed Lambda Calculus

A (set-theoretic) interpretation I18 assigns to to each type A a set
I(A) and to each basic constant a :: A a member I(a) of I(A), subject
to the following constraints:

a. I(1) = {0};19

b. I(A×B) = I(A) × I(B);

c. I(A⇒ B) ⊆ I(A) ⇒ I(B).20

17‘Substitutable for x’ means that no free variable occurrence in a or y becomes bound
upon substitution for x.

18More generally, typed lambda calculi can be interpreted into (strict cartesian closed)
categories which need not be set-theoretic. In the more general setting, I(A) is an object
of the category and for a term α :: A, I(α) is an arrow from the terminal object I(1) to
I(A). For expository simplicty, I speak as if the set-theoretic interpretations are the only
ones, but there is no theoretical justification for this restriction.

19I do not distinguish notationally between the type 1 and its set-theoretic interpretation
1 = {0}. Analogous remarks apply to the type constructors × and ⇒.

20As in Henkin 1950, the set inclusion in clause (3) can be proper, as long as there are
enough functions to interpret all functional terms.

19

(30) Definition

A variable assignment relative to an interpretation I is a function
α that maps each variable to a member of the set that interprets its
type, i.e. for each x :: A, α(x) ∈ I(A).

(31) Extending an Interpretation Relative to an Assignment

Given a variable assignment α relative to an interpretation I, there is
a unique extension of I, denoted by Iα, that assigns interpretations to
all terms, such that:

a. For each variable x, Iα(x) = α(x);

b. for each basic constant a, Iα(a) = I(a);

c. Iα(∗) = 0;

d. for each f :: A and g :: B, Iα((f, g)) is 〈Iα(f), Iα(g)〉;

e. for each h :: (A×B), Iα(π(h)) is the first component (= projection
onto I(A)) of Iα(h); and Iα(π′(h)) is the second component (=
projection onto I(B)) of Iα(h);

f. for each f :: A⇒ B and a :: A, Iα(f(a)) = (Iα(f))(Iα(a)); and

g. for each b :: B, Iα(λx∈Ab) is the function from I(A) to I(B) that
maps each a ∈ I(A) to Iβ(b), where β is the variable assignment
that coincides with α except that β(x) = a.

Note that for any term a, Iα(a) depends only on the restriction of α to the
free variables of a. In particular, if a is a constant (i.e. a closed term), then
Iα(a) is independent of α so we can simply write I(a). Thus, an interpre-
tation for the basic types and basic constants extends uniquely to all types
and all constants. Moreover, in any such interpretation, the interpetations
of equivalent terms are always identical.

7 From Typed Lambda Calculus to Higher-Order

Logic

In typed lambda calculi such as the one just introduced, the equality symbol
denoting term equivalence is a metalanguage symbol, not a symbol of the
calculus; and correspondingly, an “equation” between two terms is not itself
a term: the equivalence of two terms can only be asserted in the metalan-
guage, not in the calculus itself.

Following Henkin (1950) and Lambek and Scott (1986), we now turn our
typed lambda calculus into a higher-order predicate logic as follows:

20

(32) From TLC to HOL

a. Assume a basic type Bool of truth values.

b. For each type A, add a basic constant =A:: (A×A) ⇒ Bool.

c. The equations (28) are no longer taken as defining an equivalence re-
lation on terms, but rather as object-language axioms about equal-
ity (of whatever the terms denote).

Now all the usual (intuitionistic) connectives and quantifiers are defin-
able:21

(33) Definitions of Logical Constants in HOL

a. true =def ∗ = ∗

b. ∀x∈Aφ =def λx∈Aφ = λy∈Atrue for φ ∈ Bool

c. false =def ∀x∈Boolx

d. ∧ =def λ(x,y)∈Bool×Bool(x, y) = (true, true)

e. → =def λ(x,y)∈Bool×Bool(x = x ∧ y)

f. ↔ =def λ(x,y)∈Bool×Bool[(x→ y) ∧ (y → x)]

g. ¬ =def λx∈Bool(x→ false)

h. ∨ =def λ(x,y)∈Bool×Bool∀t∈Bool(((x⇒ t) ∧ (y ⇒ t)) ⇒ t)

i. ∃x∈Aφ =def ∀t∈Bool(∀x∈A(φ⇒ t) ⇒ t)

In spite of the suggestive name Bool, so far this higher-order logic is only
intuitionistic.22 To make it classical, we add (again following Lambek and
Scott) the axiom23

(34) Axiom of Excluded Middle

⊢ ∀t∈Bool(t ∨ ¬t)

We also need the following axiom, explicitly rejected by Church but
added by Henkin (for completeness relative to Henkin models):

21Church went in the other direction, introducing negation, disjunction, and universal
quantification as basic constants and then defining equality via Leibniz’s Law:

a =A b =def ∀f∈A⇒Bool[f(a) → f(b)]

22This is reflected by the definitions of false, ∨, and ∃. In the presence of (34), these
reduce to the familiar definitions as DeMorgan duals of true, ∧, and ∀, respectively.

23Caution: This axiom looks as if it makes the logic not only classical but also bivalent.
In fact it does give bivalence for set-theoretic models, but not for general categorical ones.

21

(35) Axiom of Boolean Extensionality

⊢ ∀(x,y)∈Bool×Bool[(x↔ y) → (x = y)]

This axiom equates bi-implication with boolean equality. Church deliber-
ately omitted this axiom because he had a more intensional notion of the
boolean type: for him it was a type of propositions, not just truth values.
But for us, this axiom is not problematic, because in our semantic theory
we will add another basic type Prop for propositions. For our purposes, two
truth values (i.e. members of I(Bool)) will be just fine.

The next ingredient of our HOL, again borrowing from Lambek and
Scott, provides for (separation) subtypes:

(36) Subtypes and Characteristic Functions

a. Besides (26), we have one more way of forming types: if a :: A ⇒
Bool is closed, then Aa is a type (intuitively, the subtype of A whose
members satisfy the predicate a);

b. Besides (27), we have one more way of forming terms: if a :: A ⇒
Bool is closed, then emba :: Aa ⇒ A; and

c. we have two additional axiom schemas

i. ⊢ ∀(y,z)∈Aa×Aa
[(emb(y) = emb(z)) → y = z]

ii. ⊢ ∀(x,a)∈A×(A⇒Bool)(a(x) ↔ ∃y∈Aax = emba(y))

Intuitively: emba is the subset embedding of Aa into A; the axiom schemas
say that emba is injective and that a is the characteristic function of Aa.
More carefully put: for any set in the model that interprets a type A,
any subset of that set whose characteristic function is lambda-definable
(i.e. which interprets a closed term of type A⇒ Bool) is also in the model.24

We require the following axiom to ensure that there are really two truth
values (not just one):

(37) Nondegeneracy

⊢ ¬(true = false)

Finally, we need to ensure that we will be able to prove an object-
language analog of Stone’s Lemma for the specific (internal) boolean pre-
algebra we are using to model the set of propositions. There are numer-
ous options here. For example, we can impose one of the standard higher-
order versions of Choice, from which Stone’s Lemma (for all boolean pre-
algebras) is known to follow. Alternatively, we can just directly impose

24Together with the rules and axioms already given, these axioms says of a categorical
model that it is a boolean topos with I(true) : I(1) → I(Bool) as its subobject classifier.

22

Stone’s Lemma.25 Or weaker still, we can just impose Stone’s Lemma for
the boolean prealgebra of propositions, i.e.

⊢ ∀p,q∈Prop[(p 6|= q) → ∃s∈(Prop⇒Bool)(u(s) ∧ s(p) ∧ ¬s(q))]

where Prop is the type of propositions, |= is the constant of type (Prop ×
Prop) ⇒ Bool that denotes the entailment relation, and u is a certain term
(see following section) of type (Prop ⇒ Bool) ⇒ Bool) which encodes the
property (of sets of propositions) of being an ultrafilter.

8 A Hyperintensional Semantic Theory

8.1 First Steps

Now that we have a suitable logic, we can use it to precisely formalize a Soft
Actualist semantic theory that retains the desirable characteristics of stan-
dard possible-worlds semantics while eliminating the problematic aspects
discussed earlier. We start by choosing our basic nonlogical types. Instead
of one (Henkin) or two (Gallin), we have three: Ind (individual concepts),
Ent (entities, the things that can be extensions of individual concepts), and
Prop (propositions). The type Bool of things (truth values) that can be ex-
tensions of propositions has already been supplied by the HOL.26 Crucially,
there is no basic type World.

(38) Basic Nonlogical Types for Hyperintensional Semantics

a. Ent (entities)

b. Ind (individual concepts, the hyperintensions that have entities as
their extensions)

c. Prop (propositions, the hyperintensions that have truth values as
their extensions)

Although we will be able to construct Carnap/Montague-style intensions
in our theory, we will not use them to model meanings (Fregean senses).
Instead, we use hyperintensions, which are of the following types:

25This is known to be equivalent to the Boolean Prime Ideal Theorem and weaker than
Choice in toposes.

26The basic types Ent and Prop (but not Ind) should be reminiscent of Thomason’s
(1980) Intentional Logic. This and other points of comparison with Thomason’s system
are discussed in Pollard (in preparation).

23

(39) The set of hyperintensional types is defined as follows:

a. 1 is a hyperintensional type27;

b. Ind and Prop are hyperintensional types;

c. If A and B are hyperintensional types, so are A×B and A⇒ B;

d. If a :: A ⇒ Bool is closed and A is a hyperintensional type, so is
Aa.

e. Nothing else is a hyperintensional type.

In short, the hyperintensional types are obtained by closing the set of basic
hyperintensional types under the TLC type constructors and subtyping.

For simplicity, let us assume that the syntactic part of our linguistic the-
ory provides the basic syntactic types NP, It, There28, N, and S, and that ×
and ⇒ are the only syntactic type constructors.29 Then at the level of types,
the mapping from linguistic expressions to their senses (hyperintensions) is
defined recursively as follows:

(40) The Mapping from NL Syntactic Types to Meaning Types

a. Sem(It) = Sem(There) = 1;

b. Sem(NP) = Ind;

c. Sem(S) = Prop;

d. Sem(N) = Ind ⇒ Prop

e. Sem(X × Y) = Sem(X) × Sem(Y); and

f. Sem(X ⇒ Y) = Sem(X) ⇒ Sem(Y).

g. Sem(Xa) = Sem(X).

Thus dummy pronouns are semantically vacuous; NPs (for simplicity, limited
to names) express individual concepts; sentences express propositions; the
TLC type constructors are preserved; and embedding a linguistic expression
of a certain type into a supertype does not affect its meaning.30

271 is used as the meaning type for “semantically vacuous” saturated expressions,
e.g. dummy pronouns.

28It and There are syntactic types for the dummy pronouns it and there respectively.
29In particular, we eschew Lambek’s directional (/ and \) implications. Instead, we fol-

low Curry (1961), de Groote (2001), Ranta (2002), Muskens (2003), and Pollard (2004a,b)
in assuming that abstract syntactic combinatorics (or tectogrammar, to use Curry’s term)
is nondirectional, with word order determined by the interface between tectogrammar and
phenogrammar (roughly, phonology broadly construed to include word order).

30The term-level syntax-to-meaning mapping sem is also ‘structure-preserving’ in the
sense of being a cartesian-closed functor, i.e. it preserves pairing, projections, function
application, and lambda-abstraction. See Pollard 2004a,b for discussion.

24

Again at the level of types, the mapping from hyperintensions to exten-
sions is defined recursively as follows:31

(41) Extensional types corresponding to hyperintensional types

a. Ext(1) =def 1;

b. Ext(Ind) =def Ent;

c. Ext(Prop) =def Bool;

d. Ext(A×B) =def Ext(A) × Ext(B);

e. Ext(A⇒ B) =def A⇒ Ext(B); and

f. Ext(Aa) =def Ext(A)

The first clause has the effect that semantically vacuous linguistic expres-
sions also have vacuous reference. The next two clauses have the effect that
names refer to entities and sentences to truth values. Clause (d) has the
effect that a pair of expressions (e.g. the two complements of a ditransitive
verb taken as a unit) denotes the pair of references of the two expressions.
The last clause says that the reference of an expression of a given type
remains unchanged if the expression is embedded into a supertype.

The interesting clause is (e). Two examples suffice to motivate it.32

First, consider an intransitive verb (type NP ⇒ S) such as barks, and let
bark’ = sem(barks) :: Ind ⇒ Prop. Then for any given world w (just what we
mean by that will be spelled out presently), the reference of barks at w will
be the extension at w of bark’, which has type Ind ⇒ Bool (essentially a set
of individual concepts, viz. the ones which ‘bark at w’).33 Second, consider
a predicate such as it-is-obvious-that (type S ⇒ S)34, and let obvious’ =
sem(it-is-obvious-that) :: Prop ⇒ Prop. Then for any world w, the reference

31Here we make the usual, but unjustified, simplifying assumption that every meaning
has an extension at every world. In a refinement of the theory discussed in Pollard (in
preparation), partial function types are used to account for the fact that some meanings
(e.g. meanings of names of fictional characters) may lack extensions at some worlds.

32Here and henceforth, we engage in a systematic abuse of notation whereby an object-
language term is used as a metalanguage name of the interpretation of the term into a
set theoretic model I . This is to reduce the notational clutter that would result from
constantly writing ‘I(α)’ in place of ‘α’. For example, we say ‘the verb barks expresses the
property of individual concepts bark’’ in place of the technically correct ‘the verb I(barks)
expresses the property of individual concepts I(bark’)’.

33The fact that whether or not an individual concept i barks at w depends only on
the extension of i at w, i.e. that bark’ is an extensional property, will be captured by a
meaning postulate.

34For simplicity we ignore the distinction between uncomplementized and complemen-
tized sentences.

25

of it-is-obvious-that at w will be the extension at w of obvious’, which has
type Prop ⇒ Bool (essentially a set of propositions, viz. the ones which are
obvious at w).

What about the extensions themselves? Since the extension of a given
hyperintension varies from world to world, it might appear that the lack of a
basic type World is going to pose a problem. In fact it won’t; we will return
to this point too in the following subsection.

The time has come to deal with the relation that forms the central sub-
ject matter of NL semantics, viz. entailment. In a model of our theory,
entailment is the interpretation of the basic object-language constant

|=:: (Prop × Prop) ⇒ Bool

and equivalence of propositions is defined as mutual entailment:

≡ =def λ(p,q)((p |= q) ∧ (q |= p))

For readers reared on Montague’s IL or on Ty2, where entailment is
modelled by the subset inclusion relation on propositions (qua sets of pos-
sible worlds), it might appear puzzling that there is a basic object-language
constant (|=) which is interpreted in a model as the entailment preorder on
the set of propositions. By comparison, in Ty2 (with types s and t renamed
to World and Bool respectively, and World ⇒ Bool the type for proposi-
tions qua sets of worlds), the constant (i.e. closed term) that is interpreted
as entailment is λp∈World⇒Boolλq∈World⇒Bool∀w∈World[p(w) → q(w)], which
is of course not a basic constant. This difference is directly reflective of the
fundamental philosophical difference between the Standard Formalization,
(where worlds are theoretical primitives, while propositions and the entail-
ment relation are constructed) and our algebraic version of Soft Actualism,
where the entailment relation on propositions is a theoretical primitive.

Another possible source of confusion is that there is another sense of the
word entailment as model-theoretic semantic consequence: if φ and ψ are two
sentences (in the sense of closed boolean terms) of our object language, then
φ entails ψ in this sense provided, for every interpretation I, if I(φ) = true,
then I(ψ) = true. Assuming our proof theory is complete this is equivalent
to ⊢ φ → ψ. We will reserve the term entailment for natural language
entailment, the empirical relation between declarative sentence meanings
whose investigation is widely considered to be the central task of natural
language semantics.

We now introduce nonlogical axioms which say of entailment that it is a
preorder:

26

(42) Preorder Axioms for Entailment

a. ⊢ ∀p(p |= p)

b. ⊢ ∀p,q,r(p |= q) → ((q |= r) → (p |= r)))

Crucially, entailment is not antisymmetric; ≡ cannot be proven equal to
=Prop.

35

Next we introduce the constants used to translate English ‘logic words’:

(43) Translations of English “Logic Words”

a. truth :: Prop abbreviates the translation of an arbitrarily chosen
necessarily true English sentence.

b. falsity :: Prop abbreviates the translation of an arbitrarily chosen
necessarily false English sentence.

c. not’ :: Prop ⇒ Prop translates it is not the case that.

d. and’, or’ :: (Prop × Prop) ⇒ Prop are the respective translations of
(the sentential conjunctions) and and or.

e. if’ . . . then’ translates if . . . then.

and suitable nonlogical (!) axioms (meaning postulates) for them which
ensure that in a model of the semantic theory, the interpretation of the type
Prop forms a boolean prealgebra with the meanings of the logic words as
the boolean operations (cf. 15):

(44) Meaning Postulates for the Translations of English Logic Words

a. ⊢ ∀p(p |= truth)

b. ⊢ ∀p(falsity |= p)

c. ⊢ ∀(p,q)((p and’ q) |= p)

⊢ ∀(p,q)((p and’ q) |= q)

d. ⊢ ∀(p,q)[((p |= q) ∧ (p |= r)) → (p |= (q and’ r))]

e. ⊢ ∀(p,q)(p |= (p or’ q))

⊢ ∀(p,q)(q |= (p or’ q))

f. ⊢ ∀(p,q,r)[((p |= r) ∧ (q |= r)) → ((p or’ q) |= r)]

g. ⊢ [((if’ p then’ q) and’ p) |= q]

h. ⊢ ∀(p,q,r)[((r and’ p) |= q) → (r |= (if’ p then’ q))]

i. ⊢ ∀p((not’ p) ≡ (if’ p then’ falsity))

j. ⊢ ∀p[(not’ (not’ p)) |= p]

35Cf. (35), which says ↔ is equal to =Bool.

27

8.2 Constructed Worlds

Now we have meanings, but how can we have any notion of meanings hav-
ing extensions at worlds if we don’t have worlds? In order to conduct the
usual semantic business with worlds (modality, counterfactuals, the taking
of extensions at worlds, etc.), we need to have worlds in the theory. This
might seem problematic, since we have no basic type for them. However,
the existence of lambda-definable subtypes comes to our rescue. The fact of
the matter is: we do have worlds:

(45) Without Worlds, how can Meanings have Extensions?

a. We do have worlds, but they are hiding. Where are they hiding?

b. Well, worlds are certain sets of propositions, so they are a subset of
the set that interprets Prop ⇒ Bool. Which subset?

c. Answer: the subset whose members are ultrafilters of the boolean
prealgebra that interprets Prop.

d. But this just a set-theoretic construction on models, isn’t it? Don’t
we really need a type of worlds in the logical theory?

e. Yes, but we have such a type: World is the type

(Prop ⇒ Bool)u

where u :: (Prop ⇒ Bool) ⇒ Bool is the predicate on sets of propo-
sitions such that u(s) says of s that it is an ultrafilter!

This is possible because ultrafilterhood is a definable predicate of sets of
propositions:

(46) Being an Ultrafilter is a Lambda-Definable Predicate:

a. u is λs[a(s) ∧ b(s) ∧ c(s) where

i. a(s) says s is closed under entailment;

ii. b(s) says s is closed under and’; and

iii. c(s) says that for each proposition p, exactly one of p and (not’p)
is in s.

b. To be explicit:

i. a(s) is ∀(p,q)[(s(p) ∧ p |= q) → s(q)];

ii. b(s) is ∀(p,q)[(s(p) ∧ s(q)) → s(p and’ q)]; and

iii. c(s) is ¬s(falsity’) ∧ ∀p(s(p) ∨ s(not’ p)).

28

So we really had worlds all along. This means we are in a position to
say what it means for a proposition to be true at one of them.

(47) How to Say “p is True at w”

a. In the Standard Formalization: p(w).

b. Under our proposal: the first guess would be w(p), but this is ill-
typed since w :: World, not w :: Prop ⇒ Bool.

c. But World = [Prop ⇒ Bool]u where u is defined as in (46), so
embu :: World ⇒ (Prop ⇒ Bool) denotes the embedding of the set
of worlds into the set of sets of propositions.

d. So the right way to say ‘p is true at w’ is embu(w)(p).

e. For this reason, I will usually abbreviate embu(w)(p) to p@w.

8.3 Extensions of Hyperintensions at Worlds

Now that we know what worlds are and what it means for a proposition
to be true at one of them, the time has come to make sense of the notion
of a meaning having an extension at a world. Remember: we can’t just
“evaluate” the meaning at the world, since meanings are hyperintensions,
not intensions! Instead, we treat the notion of extension as a family of
functions (parametrized by the set of hyperintensional types)

extA :: A⇒ (World ⇒ Ext(A))

that take hyperintensions to intensions (functions from worlds to extensions
of the appropriate type). We will get specific about this presently, but
first it is necessary to consider a fundamental asymmetry between the two
basic hyperintensional types Prop and Ind. It is generally agreed that the
extension of a meaning (Fregean sense) is determined by how things are,
or to put it another way, that a meaning and a world jointly determine
an extension. For us, meanings are hyperintensions, and for the nonbasic
hyperintensional types, we will be able to recursively define the extension
determined by a hyperintension and a world in terms of hyperintensions of
lower types whose extensions are were determined at an earlier stages of
the recursion. So what about the basic hyperintensional types? Well, for
propositions, we have already tipped our hand: the extension of p at w will
be p@w =def embu(w)(p). But what about individual concepts? Ind is a
basic type, so if i is an individual concept and w a world, the extension of
i at w cannot be calculated from a recursive definition. Rather, what the
extension of i is at w must be something about w. To get at this intuition,

29

we assume there is a basic constant has-as-extension :: (Ind × Ent) ⇒ Prop;
i.e. has-as-extension(i, e) is the proposition that i has e as its extension. So for
every world w, this proposition should be true at w just in case extInd(i)(w)
is e. We express this as a nonlogical axiom:

(48) The Determination of Extensions of Individual Concepts at
Worlds

⊢ ∀i∈Ind,e∈Ent,w∈World[(extInd(i)(w) = e) ↔ has-as-extension(i, e)@w]

From this it follows that for hyperintensions of both of the basic hyper-
intensional types, the extension at any world is directly given by which
propositions are true at that world.

Now we can explain how extensions at worlds are determined for hyper-
intensions of higher types.

(49) Axioms for Extensions of Hyperintensions of Nonbasic Types

a. ⊢ ∀w,p(extProp(p)(w) = p@w)

b. ⊢ ∀w,i[(extInd(i)(w) = e) ↔ has-as-extension(i, e)@w]

c. ⊢ ext1(w)(∗) = ∗

d. ⊢ ∀w,c(extA×B(c)(w) = (extA(π(c))(w), extB(π′(c))(w)))

e. ⊢ ∀w,f(extA⇒B(f)(w) = λx∈AextB(f(x))(w))

The first two clauses, the base of the recursion, just repeat (47d) and (48)
respectively. Clause (c) just says vacuous meanings have vacuous exten-
sions. Clause (d) says extensions of pair-meanings are just the pairs of the
corresponding extensions.

The last clause (49e) is the interesting one, because it makes explicit an
important respect in which the hyperintensional notion of compositionality
differs from that of the Standard Formalization (and of Frege). On the
standard view, reference is compositional: it is possible to determine the
reference of an expression from the references of its immediate constituents
and how they are put together. But there is something about this view that
is radically at odds with a fundamental fact about how language works:
We can figure out what an expression means without knowing what the
contingent facts of the world are! If we hear someone say that Paris Hilton
believes snow is white, we don’t have to look out the window to figure
out what proposition was expressed. In short, meaning is compositional.
Given that reference is jointly determined by meaning and the world, there
is simply no basis for claiming reference is compositional: we figure out
compositionally what the meaning of Paris Hilton believes snow is white

30

first, and then, if we want to determine the truth value, we try to determine
from the world whether the proposition that snow is white is the sort of
thing Paris Hilton believes. The extension (truth value) of that proposition
simply does not come into it.36

8.4 Extensional Properties

For A a hyperintensional type, we will call a closed term of type A⇒ Prop
an A-predicate and its interpretation an A-property. For many properties
that serve as NL meanings, for any world w, whether a meaning has that
property at w depends only on the meaning’s extension at w. Such properties
(and by extension, predicates whose interpretations are such properties) are
called extensional. For example barks expresses an extensional property
of individual concepts, but was believed by the ancients to be Phosphorus
does not; is false expresses an extensional property of propositions, but it is
obvious that does not. We can characterize this notion of extensionality by
the meaning postulate template in (50a).37

(50) Extensionality for Predicates

a. We define an A-predicate f to be extensional iff

⊢ ∀w,a,a′[(ext(a)(w) = ext(a′)(w)) → (f(a)@w = f(a′)@w)]

b. More generally, a closed hyperintensional term f :: A⇒ B is called
extensional iff:

⊢ ∀w,a,a′[(ext(a)(w) = ext(a′)(w)) → (ext(f(a)(w) = ext(f(a′)(w))

To take another kind of example, NL determiners are (A-parametrized)
families of extensional (A ⇒ Prop) × (A ⇒ Prop)-predicates: for two A-
predicates P and Q and a world w, whether every P is a Q at w depends
only on the extensions of P and Q at w. In our theory, this fact is derivable
from the following nonlogical axiom scheme:

36In order to square examples of this kind with his notion of compositionality, Frege had
to resort to claiming that utterances of sentences in certain contexts had the customary
sense of the sentence as the reference. Our account has no need for this sleight of hand.

37We call (50a) a template rather than a schema because we don’t want every substi-
tution instance to be a nonlogical axiom, just the ones resulting from the replacement of
f by predicates whose extensionality we want the theory to assert.

31

(51) Meaning Postulate for every

⊢ ∀w,P,Q[every’(P,Q)@w ↔ ∀x(ext(P)(w)(x) → ext(Q)(w)(x))]

8.5 Equivalence Revisited

It is noteworthy that even though meanings are not intensions according
to our theory, there is still a place for intensions, because for any hyperin-
tensional term a :: A, ext(a) is of type World ⇒ Ext(A). In other words,
Ext is interpreted as a (type-parametrized) function from hyperintensions
to intensions. It might seem paradoxical for the extension of a meaning to
be an intension, but from the hyperintensional perspective, intensions are
nothing more than the result of gluing together extensions across all worlds.

We call two hyperintensional terms a and b of the same type equivalent
iff

⊢ ext(a) = ext(b)

Correspondingly, we call two hyperintensions equivalent if, at every world
w, they have the same extension at w. Note that truth-conditional equiva-
lence (mutual entailment) of propositions, which as we have seen is provably
the same thing as as belonging to the same worlds (ultrafilters), is a spe-
cial case of equivalence in this sense. Representative examples of equivalent
hyperintensions are the meanings of:

1. Hesperus and Phosphorus

2. woodchuck and groundhog

3. Paris Hilton is Paris Hilton and whichever is true, the Riemann Hypoth-
esis or its denial.

Of course nothing forces equivalent hyperintensions to be the same. This
being the case, within the framework of hyperintensional semantics it be-
comes possible to raise a question which does not even make sense in inten-
sional semantics: are there any properties which, though not extensional,
are nevertheless intensional in the sense that, at any world and for any
hyperintension a of type A, whether a has the property at w depends only
on Ext(a)?

32

(52) Intensional Hyperintensions

Call a closed hyperintensional term f :: A⇒ B intensional iff

⊢ ∀a,b(ext(a) = ext(b) → ext(f(a)) = ext(f(b)))

Consider, for example, an S5-style neccessity operator as follows38:

(53) S5 Necessity

a. Introduce a constant nec :: Prop ⇒ Prop

b. Meaning Postulate: ⊢ ∀w,p((nec(p))@w ↔ (p ≡ truth))

Clearly, nec is an intensional property of propositions; if a proposition has
it at a world (and therefore at any world), then so does any equivalent
proposition. As expected, all necessary truths are equivalent. By contrast,
the propositional property of being obvious to Paris Hilton isn’t intensional:
presumably, that Paris Hilton is Paris Hilton is obvious to her, but whichever
of the Riemann Hypothesis and its denial is true surely is not. Indeed, we
might define a modal operator to be an intensional property of proposi-
tions.39

9 Conclusion

For over 60 years, it has been known that there are not enough intensions to
model NL meanings in a natural way. And the hitherto unremarked yet per-
plexing problem of nonprincipal ultrafilters (that some maximal consistent
sets of propositions don’t count as possible worlds) suggests that the idea of
taking worlds as a primitive of semantic theory is a serious misstep. In this
paper, I proposed an axiomatic theory of NL meaning that straightforwardly
solves both of these problems, seemingly at no penalty.

The theory is expressed in a simple extension of classical higher-order
predicate logic, which in turn is based on an altogether mainstream typed
lambda calculus; the only essential difference between the logic used here
and the familiar Henkin/Gallin-style logic is the addition of an analog of
the set-theoretic axiom scheme of separation. The set-theoretic models are
just the familiar Henkin models, augmented with cartesian products and
subsets with lambda-definable characteristic functions; and a more general,

38This illustrates another difference between the present proposal and Thomason (1980):
there is no need to reintroduce a basic world type to handle modality

39Another question suggested by this definition: besides modal operators, are there
other classes of intensional hyperintensions of semantic interest?

33

categorical model theory is also available should one care to explore the con-
sequences of setting aside familar assumptions, such as wellpointedness (the
assumption that there are no uninhabited types aside from ones isomorphic
to the counit type 0), or even Excluded Middle. Worlds and intensions are
still available, for whatever semantic uses one might choose to put them to;
but the worlds are constructed rather than primitive, and the intensions are
not meanings but rather what equivalent meanings have in common.

There are two key ideas that make the theory work:

1. Entailment is not assumed to be antisymmetric.

2. Worlds are constructed from propositions (as in Kripke 1959), not the
other way around (as in Kripke 1963).

The theory makes no recourse to untyped lambda calculus, polymorphic
typing, partial possible worlds, impossible worlds, giving up one or more of
Gentzen’s structural rules, or even giving up possible worlds. The math is
no harder than the math in PTQ, just a little different and considerably
less idiosyncratic. As far as I can tell, we can still do everything we wanted
to do in mainstream semantics, without having to accept (as mainstream
semantics requires us to do) that Paris Hilton knows whether the Riemann
hypothesis is true.

References

[1] R. Adams. Theories of actuality. Noûs, 8:211–231, 1974.

[2] Carpenter, B. Type-Logical Semantics. MIT Press, Cambridge, MA,
1997.

[3] Carnap, R. Meaning and Necessity. University of Chicago Press,
Chicago, 1947.

[4] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[5] Curry, H. Some logical aspects of grammatical structure. In R. Jakob-
son, ed., Structure of Language and its Mathematical Aspects, pages
56–68. American Mathematical Society, Providence, 1961.

[6] P. de Groote. Toward abstract categorial grammars. In Proceedings of
the 39th Annual Meeting and 10th Conference of the European Chapter
of the Association for Computational Linguistics, pages 148–155, 2001.

34

[7] C. Fox and S. Lappin. A framework for the hyperintensional semantics
of natural language with two implementations. In P. de Groote, G. Mor-
rill, and C. Retoré, eds., Logical Aspects of Computational Linguistics,
Springer Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin
and New York, pages 175–192, 2001.

[8] C. Fox and S. Lappin. Foundations of Intensional Semantics. Blackwell,
Oxford, 2005.

[9] C. Fox, S. Lappin, and C. Pollard. A higher-order fine-grained logic
for intensional semantics. In Proceedings of the Seventh International
Symposium on Logic and Language, pages 37–46, Pécs, Hungary, 2002.

[10] G. Frege. On sense and reference. In P. Geach and M. Black, eds.,
Translations from the Philosophical Writings of Gottlob Frege, 3rd edi-
tion, pages 56–78. Basil Blackwell, Oxford, 1980.

[11] D. Gallin. Intensional and Higher Order Modal Logic. North-Holland,
Amsterdam, 1975.

[12] R. Goldblatt. Topoi: the categorial analysis of logic. North-Holland,
Amsterdam, 1983.

[13] L. Henkin. Completeness in the theory of types. Journal of Symbolic
Logic, 15:81–91, 1950.

[14] B. Jónsson and A. Tarski. Boolean algebras with operators, part I.
American Journal of Mathematics, 73:891–939, 1951.

[15] S. Kripke. A completeness theorem in modal logic. Journal of Symbolic
Logic, 24:1–14, 1959.

[16] S. Kripke. Semantic analysis of modal logic I: normal modal proposi-
tional calculi. Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, 9:67–96, 1963.

[17] S. Kripke. Naming and Necessity. Harvard University Press, Cam-
bridge, Massachusetts, 1980.

[18] J. Lambek and P. Scott. Introduction to higher-order categorical logic.
Cambridge University Press, Cambridge, 1986.

[19] R. Montague. The proper treatment of quantification in ordinary En-
glish. In R. Thomason, editor, Formal Philosophy: Selected Papers of

35

Richard Montague, pages 247–270. Yale University Press, New Haven,
1974.

[20] R. Muskens. Languages, lambdas, and logic. In G.-J. Kruiff and
R. Oehrle, editors, Resource Sensitivity in Binding and Anaphora, pages
23–54. Kluwer, 2003.

[21] C. Pollard. Hyperintensions. Monograph in preparation.

[22] C. Pollard. Higher order categorical grammar. In Proceedings of Cate-
gorial Grammar 2004, pages 340–361, 2004. Revised version to appear
in a special issue of Journal of Applied Logic.

[23] C. Pollard. Type-logical HPSG. In Proceedings of Formal Grammar
2004, pages 107–124, 2004.

[24] A. Ranta. Grammatical framework. Journal of Functional Program-
ming, 14:145–189, 2002.

[25] R. Stalnaker. Inquiry. Bradford Books/MIT Press, Cambridge, MA,
1984.

[26] M. Stone. The theory of representation for boolean algebras. Transac-
tions of the American Mathematical Society, 40:37–111, 1936.

[27] R. Thomason. A model theory for propositional attitudes. Linguistics
and Philosophy, 4:47–70, 1980.

36

