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Introduction

Polyadic modal logics are logics with n-ary modalities other than the
usual unary ones. They differ from the standard modal logic in
various aspects, e.g., Sahlqvist-like fragments in correspondence
theory, detailed techniques for proving completeness, and issues
about decidability.

Recently Wang and Gu found in [4] that the “Knowing value” logic
(KvL) can be treated as a normal modal logic with binary modalities.
This led them to consider some basic properties about binary modal
logic, in order to prove the decidability of KvL. However, there is not
much previous research on this topic in general.
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Introduction

Actually KvL is a special kind of polyadic logic since we only need
special binary modalities where the two arguments are the same. It
is also called (binary) “diagonal modalities”. In general, it is also
natural to consider the n-ary diagonal modalities where the
arguments are all the same. There is indeed some research on this
topic in the literature of modal logic. The logic with such modalities
are called weak aggregative modal logics (WAL), which was first
introduced by Schotch and Jennings in [7], and the completeness
proofs for these logics are highly non-trivial (e.g., [2]).

Recently, Yanjing Wang and I show that the WAL do have a natural
bisimulation notion which can be used to give a van Benthem-like
characterization theorem, and we can simplify the completeness
proof based on some new ideas.
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Polyadic modal logic



Language

Definition1

A modal similarity type is a pair τ = (O, ρ) where O is a non-empty
set, and ρ is a function O → N. The elements of O are called modal
operators; we use △,△0, . . .△n to denote elements of O. The func-
tion ρ assigns to each △ ∈ O a finite arity, indicating the number of
arguments △ can be applied to.

A modal language ML(τ,Φ) is built up using a modal similarity type
τ = (O, ρ) and a set of propositional letters Φ. Formulas is given by
the rule

ϕ := p | ⊥ | ¬ϕ | ϕ1 ∧ ϕ2 | △(ϕ1, . . . , ϕρ(△))

where p ∈ Φ.

1We use the definition in [3].

6



Polyadic frame

Definition

A frame is a tuple F consisting of the following ingredients:

(i) a non-empty set W,

(ii) for each n ≥ 1, and each n-ary modal operator △, an (n + 1)-ary
relation R△.

As for the modal case, when ρ(△) > 0 we define

M,w |= △(ϕ1, . . . , ϕn) iff for some v1, . . . , vn ∈ W with R△wv1, . . . , vn we
have, for each i, M, vi |= ϕi.
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(Normal polyadic modal logic

Definition2

A modal logic is a set of formulas containing all tautologies that is
closed under modus ponens and uniform substitution. A modal logic
Λ is normal if for every operator ▽ it contains: the axiom Ki▽(for all i
such that 1 ≤ i ≤ ρ(▽)); the axiom Dual▽ and is closed under Nec∗▽.

The required axioms are obvious polyadic analogs of the K and Dual
axioms:
(Ki▽) ▽(r1, . . .p→ q, . . . , rρ(△)) → (▽(r1, . . .p, . . . , rρ(△))

→ ▽(r1, . . .q, . . . , rρ(△)))
3

Dual▽ △(r1, . . . , rρ(△)) ↔ ¬▽(¬r1, . . .¬rρ(▽))

Nec∗▽ ⊢Λ ϕ =⇒⊢Λ ▽(⊥, . . . ϕ, . . .⊥)
2This one is from [3] and we will show it’s not the right version leter.
3where p and q occur in the i-th argument place
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A Remark for the above definition

The right version of the normal logic should be subsititute Nec∗▽ by
Nec▽, which is as follows.

Nec▽ ⊢Λ ϕ =⇒ ⊢Λ ▽(ϕ0, . . . ϕ, . . . ϕn) , where ϕ0, . . . ϕn are
arbitrary formulas.

Now we will show that we cannot derive the rule Nec in the above
system K∗.
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Remark

Nec is independent in the logic K∗.

Proof. We define a new semantics ⊩ w.r.t. the Kripke model to show
the independence.

The truth definitions for the propositional letters and boolean cases
are the same as |=. For the modal case: w ⊩ ▽(ϕ1, . . . , ϕn) iff one of
the followings hold:

1. w is a dead end, i.e. there is no v1, . . . , vn s.t. Rwv1, . . . , vn.

2. There are some v1, . . . , vn s.t. Rwv1, . . . , vn and

∃k ∈ [1,n](∀w1, . . . ,wn(Rww1, . . . ,wn →

(wk ⊩ ϕk ∧ ∀m ̸= k∃w′

1, . . . ,w
′

n(Rww
′

1, . . . ,w
′

n ∧ w
′

m ⊩ ¬ϕm).

(The above statement says that there is a unique argument which is
true at the corresponding position of every sequence of successors,
and we call this argument the unique truth.)
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Remark

continue the proof

Nowwe varify that⊩ is valid w.r.t. K∗. Since we don’t change any def-
inition of the propositional connectives, each tautology is still valid.
The case for dual and US are trivial and it is also easy to show that⊩
preserves truth under Nec∗. For the axioms K, suppose thatM,w is a
pointed model and the two premises are satisfied at M,w. Then we
know that pi is the unique true argument for some i, and if i = n+1,
qn+1 must be the unique, which means ▽(p1, . . .qn+1, . . . ,pm) is true
at w, since other pj must be wrong at some successors of w. If i ̸=
n+ 1, it follows that qn+1 must be wrong somewhere and hence we
also have ▽(p1, . . .qn+1, . . . ,pm) is true at w. As a result, ⊩ K.

Let M,w be a point model where w is not a dead end. Trivially,
⊩ ⊤, but w ⊩ ¬(⊤, . . . ,⊤, . . . ,⊤), which means Nec cannot preserve
truth. Thus we know that Nec is independent in the logic K∗.
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Remark

Actually we don’t need to add the full version of Nec to our system
to get what we need. If we want to make the necessitation simple as
Nec∗, we only need to add a series of axioms as follows:

C2 : ▽(p,⊥) → (▽(⊥,q) → ▽(p,q))

Cn : ▽(p1,⊥, . . . ,⊥) ∧ ▽(⊥,p2,⊥, . . . ,⊥) ∧ · · · ∧ ▽(⊥, . . . ,⊥,pn) →
▽(p1, . . . ,pn)

For n-ary modal logic, we need the Cn, and one can easily check that
with the help of Cn, we can derive Nec in our system.
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Weak aggregative logic



Preliminaries

Definition(language)

A weak aggregative language is built up using a set of propositional
letters Φ and a single unary modality ♢. Formulas is given by the rule

ϕ := p | ⊥ | ¬ϕ | ϕ1 ∧ ϕ2 | ♢ϕ

where p ∈ Φ.

So the language here is as same as the basic modal language.
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Preliminaries

Definition(Frames)

A frame is a tuple F consisting of the following ingredients:

(i) a non-empty set W,

(ii) an (n+1)-ary relation R, where n is a fixed positive natural number.

For WAL, the modal truth is just a special case of polyadic modal logic,
which is defined as follows:

M,w |= ♢ϕ iff for some v1, . . . , vn ∈ W with Rwv1, . . . , vn we have, for
each i, M, vi |= ϕ.
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Preliminaries

Definition(Logic)

The weakly aggregative modal logic Kn is axiomatized as follows4:

Axiom: □ϕ0 ∧ · · ·□ϕn → □
∨

(0≤i<j≤n)
ϕi ∧ ϕj (we also call this formula

Kn)

Rules: ⊢ ϕ =⇒⊢ □ϕ (N);

⊢ ϕ→ ψ =⇒⊢ □ϕ→ □ψ (RM).

It is easy to check that K1 is just the normal modal logic K. In the
following completeness proof we assume that the set of proposition
letters is countable to avoid the use of the axiom of choice. (actually
for the uncountable situation, we need the fact that the power set of
our language is well-orderable.)
4This is first introduced in [7]
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Completeness

• We will use the canonical model method to give a direct proof
for the completeness theorem of the weakly aggregative modal
logic.
The definition of the canonical model is the same as in [2].

• Let n ≥ 1 and Γ be the logic Kn. Define the canonical (n+ 1)-ary
model of Γ to be the model MΓ = ⟨WΓ,RΓ, VΓ⟩, where
WΓ =: {Σ ⊆ Form | Σ is maximally Γ-consistent},
RΓ =: {(Σ0,Σ1, . . .Σn) | □(Σ0) ⊆ ∪{Σ1, . . .Σn}},
VΓ(p) = {Σ ∈ WΓ | p ∈ Σ}
(here □(Σ0) = {α | □α ∈ Σ0}).
So we have: xRy0y1 . . . yn iff for each □ϕ ∈ x, ϕ ∈ Σi for some
i ≤ n.
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Completeness
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Completeness

In [2] and [1], Apostoli prove the completeness for these Kn by reduce
the n-forcing relation which introduce by jennings(1980). In [5],
Jennings with his two partners give a direct proof which based on
syntax. Here we will use the canonical model method to give a proof
just like we ordinarily did for normal modal logic, and in this proof
we will use a syntax proof in [5].
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Completeness

proposition[Truth lemma]

MΓ, x |= ϕ iff ϕ ∈ x.

proof

By induction on ϕ and the key step is the one for ♢. So we need the
existential lemma.
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Completeness
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Completeness

proposition[Existential lemma]

♢ϕ ∈ x iff there are y1 . . . yn such that xRy0y1 . . . yn and ϕ ∈ yi for
each i ≤ n.

proof

Since the language is countable, we can assume that □(Σ0) = {ψi |
i ∈ ω}. What we need to show is that there is an n-partition(here we
admit ∅ part.) (Σ1, . . . ,Σn) of □(Σ0) such that each Σi∪{ϕ} is con-
sistent. From that we can use the traditional lindenbaum method
to get n MCSs y1 . . . yn s.t. xRy0y1 . . . yn and ϕ ∈ yi for each i ≤ n. No-
tice that ϕ itself is consistent since we have the rule N, so if Σi = ∅,
Σi ∪ {ϕ} is consistent.
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Completeness
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Completeness

proof

First we show that ifΣi is a singleton,Σi∪{ϕ} is consistent. Suppose
that {ψi, ϕ} is not consistent. So we have ⊢ ψi → ¬ϕ, and by RM we
know that ⊢ □ψi → □¬ϕ. Since□ψi ∈ x, □¬ϕ ∈ x, which contradicts
the fact that x is a MCS and ♢ϕ ∈ x.

We define a sequence of sets of n-tuple as follows:for each i,

B0 = {(σ1, . . . σn) | σi = {ϕ} for each i};

Bm = {(σs11 , . . . σ
sn
n ) | σsii = σi ∪ si where (s1, . . . , sn) is an n-partition

of Am = {ψi | i < m} s.t. each σi ∪ si is consistent.} for m > 0.
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Completeness

proof

Notice that |Bm| ≤ !
∣∣(ρ(Am))≤n∣∣, which means each Bm is finite.

Claim 1: each Bi is not empty.

Claim 2: there are ⟨σj1 | j < ω⟩, . . . , ⟨σjn | j < ω⟩ s.t. for each i ≤ n,
σji ⊆ σki if j < k, where (σj1, . . . σ

j
n) ∈ Bj.

If Claim 2 is true, let Σi =
∪
j∈ω

σji for each i < n. From the definition

and claims above, It’s easy to show that each Σi is consistent and
each ψj ∈ Σi for some i. It follows that Σ1, . . . ,Σn is an n-partition
of □(Σ0) such that each Σi ∪ {ϕ} is consistent.
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Completeness

proof

Next we prove that Claim 1 implies Claim 2. Suppose Claim 1 holds.

First we show that for each j ∈ ω, there must be some (σj1, . . . σ
j
n) ∈

Bj s.t.

∀k > j∃j′ > k∃(σj
′

1 , . . . σ
j′
n ) ∈ Bj′(

∧
i≤n

σji ⊆ σj
′

i ) (1)

Here we call such a (σj
′

1 , . . . σ
j′
n ) an extension of (σj1, . . . σ

j
n).

So (σj1, . . . σ
j
n) satisfies 1 means that its extensions are unbounded.
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Completeness

proof

If the assertion above is not true, we will find j and k s.t. for each
x ∈ Bj, there are no extension of x in Bk since Bj is finite. So Bk must
be empty, contradicts claim 1.(Since if y = (σ1, . . . σn) ∈ Bk, we can
delete all the ψh s.t. h ≥ j from these σ to get a y′ = (σ′

1, . . . σ
′
n) ∈ Bj

and it’s clear that y is an extension of y′ .)

Now we know that in each Bm there are some x whose extensions
are unbounded, which means that in Bm+1 there must be some x

′

extended x s.t. x′ has unbounded many extensions.
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Completeness

proof

Here we define a well-ordering <won
∪
m∈ω

Cm, where Cm = {f | f

is from m to n}.(one can see that each member of Cm decides a
partition of Am and hence decides a member of Bm.) If f ∈ Cm and
g ∈ Ck where m < k, then f <w g. If f0,f1 ∈ Cm, we order f0,f1 by their
left-lexicographic order on nm. Obviously <wis a well-ordering on∪
m∈ω

Cm.

It follows that for x ∈ Bm we can choose the least extension x′ ∈
Bm+1 s.t. x′ has unbounded many extensions. As a result we find
what we need for claim 2.
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Completeness

proof

Now we come to prove claim 1. Suppose that Bm is empty for some
m ∈ ω. First it’s clear that m > n by our observation above. It
follows from the assumption that each partition P of Am would in-
troduce an inconsistent s(P), which means for each partition P, we
have ⊢

∧
i∈s(P)

ψi → ¬ϕ. It follows that ⊢
∨
P

∧
i∈s(P)

ψi → ¬ϕ. By RM, we

have ⊢ □
∨
P

∧
i∈s(P)

ψi → □¬ϕ.
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Completeness

Claim 3

⊢
∧
i<m

□ψi → □(
∨
P

∧
i∈s(P)

ψi)

Suppose that claim 3 holds, then by our original assumption, □ψi ∈
x for each i ∈ ω, so we have □(

∨
P

∧
i∈s(P)

ψi) ∈ x.

But ⊢ □
∨
P

∧
i∈s(P)

ψi → □¬ϕ, so □¬ϕ ∈ x, contradicts that ♢ϕ ∈ x.

We will give a sketch of proof for claim 3 later by using the method
in [5].
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Completeness

First we give some basic definition.

Definition

A non-empty family A of non-empty sets is an n-trace on a non-
empty set B iff for any n-partition (σ1, . . . σn) of B, there is some
a ∈ A s.t. a ⊆ σi for some i ≤ n.

If the above holds for B = ∪A, we call A is an n-trace. For any n-trace
A on some finite subset of Form, we define F(A) =

∨
a∈A

∧
ϕ∈a

ϕ.
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Completeness

Definition

The χ-product of a family A of sets is defined as follows:

χ(A) = {b | ∀a ∈ A(a ∩ b ̸= ∅) ∧∀b′ ⊂ b∃a ∈ A(b′ ∩ a = ∅)}

Proposition
5 Let A be an arbitrary n-trace on a finite subset of Σ = {ψi | i ∈ ω},
then ⊢

∧
ϕ∈∪A

□ϕ→ □F(A).

Since the Claim 3 is just a special case of the above proposition, we
can get the final result.

5One can find a proof in [5]
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Completeness
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Completeness
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Completeness

Theorem

K2 is complete w.r.t. all the ternary frame.
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Bisimulation

Definition

[bisimulation for WAL]Let M = (W,R△, V) and M
′
= (W′

,R′

△, V
′
) be two

models. A non-empty binary relation Z ⊆ W × W′ is called a bisimu-
lation between M and M′ if the following conditions are satisfied:

(i) If wZw′ , then w and w′ satisfy the same propositional letters.

(ii) IfwZw′ and R△wv1, . . . , vn then there are v
′

1, . . . , v
′

n inW
′ s.t. R△w

′v′1, . . . , v
′

n
and ∃f ⊆ Z−(f is a function from {v′i | 1 ≤ i ≤ n} to {vi | 1 ≤ i ≤ n})
(the forth condition).

(iii) IfwZw′ and R△w
′v′1, . . . , v

′

n then there are v1, . . . , vn inW s.t. R△wv1, . . . , vn
and ∃f ⊆ Z(f is a function from {vi | 1 ≤ i ≤ n} to {v′i | 1 ≤ i ≤ n}) (the
back condition)

31



Bisimulation

When Z is a bisimulation linking two states w in M and w′ in M′ we
say that w and w′ are bisimilar, and we write Z : M,w ↔ M′

,w′ . If
there is a bisimulation Z such that Z : M,w ↔ M′

,w′ , we sometimes
write M,w ↔ M′

,w′ ; likewise, if there is some bisimulation between
M and M′ , we write M ↔ M′ ,saying M and M′are bisimilar.

From the definition above we can see that if w and w′ are modal
bisimilar, they are clearly WAL-bisimilar. Since we know that WAL is a
fragment of polyadic modal logic, we will show that it is exactly the
fragment closed under the bisimulation above. First we show the
bisimulation is indeed sound w.r.t. the WAL-equivalence.
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Bisimulation

Proposition

Let M = (W,R△, V) and M
′
= (W′

,R′

△, V
′
) be two models. Then for

every w ∈ W and w′ ∈ W′ , w ↔ w′ implies w ↭ w′ . In words, WAL
formulas are invariant under bisimulation.

Proof.

We use induction on formulars, and we focus on the modality case,
since others are trivial. Suppose that w ↔ w′ and w |= ♢ϕ. Then we
know that there are v1, . . . , vn s.t. R△wv1, . . . , vn, and each vi |= ϕ. By
the forth condition, there are v′1, . . . , v

′

n in W
′ s.t. R△w

′v′1, . . . , v
′

n and
∃f ⊆ Z−(f is a function from {v′i | 1 ≤ i ≤ n} to {vi | 1 ≤ i ≤ n}).
From the I.H. we have each v′i |= ϕ since for each v′i there is a vj s.t.
vjZv

′

i . As a result, w
′ |= ♢ϕ. For the converse direction just use the

back condition.
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Bisimulation

The bisimulation notion for WAL is similar with which for modal
logic, since we can generalize some modal theorem to WAL ones.

Theorem (Hennessy-Milner Theorem)

Let M = (W,R△, V) and M
′
= (W′

,R′

△, V
′
) be two image-finite models.

Then for every w ∈ W and w′ ∈ W′ , w ↔ w′ iff w↭ w′ .

Proof.

Similar to the proof for basic modal logic.
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Bisimulation

It is obvious that we have a standard translation from WAL to PML.
We can just translate ♢ϕ intio △(ϕ, . . . , ϕ), where the number of
arguments is depended on which polyadic language we use. Like the
Van Benthem Characterization Theorem for modal logic, we will show
a similar theorem for WAL: a PML formula is equivalent to the
translation of a WAL formula if and only if it is invariant under
WAL-bisimulations. The proof is based on the way of proving Van
Benthem Characterization Theorem for modal logic–by a Detour
Lemma.
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Bisimulation

Definition (Hennessy-Milner Classes)

K is a Hennessy-Milner class, or has the Hennessy-Milner property, if
for every two pointed models M,w and M′

,w′ in K, w ↔ w′ iff w↭ w′ .

Here we give a alternative definition of modal saturated model.

Definition (wa-saturated)

Let M = (W,R△, V) be an model where R△ is n + 1−ary. M is called
wa-saturated if for every state w ∈ W and every sequence Σ1, . . . ,Σn

of sets of WAL formulas we have the following.

If for every sequence of finite subsets ∆1 ⊆ Σ1, . . . ,∆n ⊆ Σn there
are states v1, . . . , vn s.t. R△wv1, . . . , vn and for each i there is a j s.t.
vi |= ∆j. then there are w1, . . . ,wn s.t. R△ww1, . . . ,wn and for each i
there is a j s.t. wi |= Σj.
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Bisimulation

Proposition

The class of wa-saturated models has the Hennessy-Milner property.

proof

Let M = (W,R△, V) and M
′
= (W′

,R′

△, V
′
) be two wa-saturated models.

It suffices to prove that the relation↭ of modal equivalence between
states in M and states in M′ is a bisimulation. We focus on the forth
condition, since the case for propositional letters is trivially satisfied,
and the back condition is completely analogous to the case we prove.
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proof

Assume that w, v1, . . . , vn ∈ W and w′ ∈ W′ satisfy Rwv1, . . . , vn and
w↭ w′ . Let Σi be the set of formulas true at vi for each i ≤ n.
obviously, for every sequence of finite subset ∆1 ⊆ Σ1, . . . ,∆n ⊆ Σn,
we have for each i, M, vi |=

∨
j≤n

∧
∆j, hence M,w |= ♢

∨
j≤n

∧
∆j. It

follows that M′
,w′ |= ♢

∨
j≤n

∧
∆j since w↭ w′ , which means w′ has a

sequence of sueccessors v′1, . . . , v
′

n s.t. for each i, v
′

i |=
∨
j≤n

∧
∆j i.e.

v′i |=
∧

∆j for some j. By wa-saturation, for each i there is a j s.t.
v′i |= Σj, which means for each v

′

i there is a vj s.t. v
′

i ↭ vj.
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Bisimulation

Proposition

Any countably saturated model is wa-saturated. It follows that the
class of countably saturated models has the Hennessy-Milner prop-
erty.

proof

Suppose that M = (W,R△, V) is a countably saturated model. Let w ∈
W and Σ1, . . . ,Σn be a sequence of sets of WAL formulas s.t. for every
sequence of finite subsets ∆1 ⊆ Σ1, . . . ,∆n ⊆ Σn there are states
v1, . . . , vn s.t. R△wv1, . . . , vn and for each i there is a j s.t. vi |= ∆j.
Define Σ = {Rwx1, . . . , xn} ∪

∪
j≤n

{
∨
i≤n

STxj(ϕi) | ϕi ∈ Σi}.

Claim: Σ is consistent with th((M,w)), the first-order theory of (M,w).
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Proof

If we proves the Claim, we know that Σ itself is realized in some
v1, . . . , vn ∈ W since Σ is a n-type with just one parameter and M is
countably saturated. By (M,w) |= Rwx1, . . . , xn[v1, . . . , vn] it follows
that Rwv1, . . . , vn and by (M,w) |=

∪
j≤n

{
∨
i≤n

STxj(ϕi) | ϕi ∈ Σi}[v1, . . . , vn],

vj |= {
∨
i≤n

STxj(ϕi) | ϕi ∈ Σi}. Thus, vj |= Σi for some i: if not, we will

know that for each i, there is some ϕi ∈ Σi s.t. vj |= ¬STxj(ϕi), which
means vj |=

∧
i≤n

¬STxj(ϕi), contradicts that vj |=
∨
i≤n

STxj(ϕi).

Now we prove the Claim: Suppose that Σ is not consistent with the
first-order theory of (M,w). It follows that there are a sequence of
finite subsets ∆1 ⊆ Σ1, . . . ,∆n ⊆ Σn s.t.∪
i≤n

{
∨
i≤n

STxj(ϕi) | ϕi ∈ ∆i} ∪ {Rwx1, . . . , xn} ∪ th((M,w)) is inconsistent.

But that is impossible since we already know that for every sequence
of finite subsets ∆1 ⊆ Σ1, . . . ,∆n ⊆ Σn there are states v1, . . . , vn s.t.
R△wv1, . . . , vn and for each i there is a j s.t. vi |= ∆j.
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Proof
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Bisimulation

Theorem (Van Benthem Characterization Theorem)

Let ϕ be a polyadicmodal formula. Then ϕ is invariant forWAL-bisimulations
iff it is (equivalent to) the standard translation of a WAL formula.

Proof.

Just as the one for modal logic.
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Some syntax remarks



Introduction

In this section we will give some results about the relation between
KvL, PML and WAL, and basically we consider some syntax properties.

Recall that the syntax Gu and Wang give for KvL in [4] is as follows.
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System MLKVr

System MLKVr

Axiom Schemas

TAUT all the instances of tautologies

DISTK 2i (p → q)→ (2ip → 2iq)

DISTKvr 2i (p → q)→ (2c
i p → 2c

i q)

Kvr∨ 3i (p ∧ q) ∧3c
i (p ∨ q)→ (3c

i p ∨3c
i q)

Rules

MP
φ, φ→ ψ

ψ

NECK
φ

2iφ

NECKvr
φ

2c
i φ

SUB
φ

φ[p/ψ]

RE
ψ ↔ χ

φ↔ φ[ψ/χ]



Extended language MLKvr+

The extended language MLKvr+ is:

φ ::= > | p | ¬φ | (φ ∧ φ) | 2iφ | 2c
i (φ, φ)

The difference is that we no longer assume the two arguments to be the

same here.

The semantics are similar (easier to understand as 3c
i (φ, ψ)).



System MLKVr+

System MLKVr+

Axiom Schemas

TAUT all the instances of tautologies

DISTK 2i (p → q)→ (2ip → 2iq)

SYM 2c
i (p, q)→ 2c

i (q, p)

DISTBK 2c
i (p → q, r)→ (2c

i (p, r)→ 2c
i (q, r))

INC 3c
i (p, q)→ 3ip

ATEUC 3c
i (p, q) ∧3i r → 3c

i (p, r) ∨3c
i (q, r)

Rules

MP
φ, φ→ ψ

ψ

NECK
φ

2iφ

NECKvr
φ

2c
i (φ, ψ)

RE
ψ ↔ χ

φ↔ φ[ψ/χ]

SUB
φ

φ[p/ψ]



Remark

First we show that in KvL, one can derive a formula similar with K2,
and we call that formula K∗2 .

K1: □̇p ∧ □̇q→ □̇(p ∧ q)

K∗2 : □̇p ∧ □̇q ∧ □̇(¬p ∧ ¬q) → □̇(p ∧ q)

K2: □̇p ∧ □̇q ∧ □̇r→ □̇((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r))

K∗n+1: ϕn ∧ □̇(¬(p0 ∨ · · · ∨ pn)) → ψn

K∗n:
∧
i □̇pi ∧ □̇

∧
i ¬pi → □̇

∧
i pi

Proposition
⊢MLKVr K∗2

44



Proof

1 ♢ (¬p ∧ ¬q) ∧ □̇p ∧ □̇q→ □̇(p ∧ q) KvrV
2 □̇⊥ → □̇(p ∧ q)

2.1 ⊥ → p ∧ q taut
2.2 □(⊥ → p ∧ q) neck
2.3 □(⊥ → p ∧ q) → (□̇⊥ → □̇(p ∧ q)) Kvr

2.4 □̇⊥ → □̇(p ∧ q) mp2,3
3 □̇(¬p ∧ ¬q) ∧ ¬□̇⊥ → ♢ (¬p ∧ ¬q)

3.1 □(⊤ → (p ∨ q))) ↔ □(¬ (p ∨ q) → ⊥) RE
3.2 □(¬ (p ∨ q) → ⊥) → (□̇¬ (p ∨ q) → □̇⊥) Kvr

3.3 □(¬ (p ∨ q) → ⊥) → (♢̇⊤ → ♢̇ (p ∨ q)) taut2
3.4 □(⊤ → (p ∨ q)) → (♢̇⊤ → ♢̇ (p ∨ q)) taut1,3
3.5 □ (p ∨ q) → □(⊤ → (p ∨ q)) K
3.6 □ (p ∨ q) ∧ ¬□̇⊥ → ♢̇(p ∨ q) mp4,5
3.7 □ (p ∨ q) → ♢̇(p ∨ q) ∨ □̇⊥ taut6
3.8 □̇(¬p ∧ ¬q) ∧ ¬□̇⊥ → ♢ (¬p ∧ ¬q) taut7

4 □̇(¬p ∧ ¬q) ∧ ¬□̇⊥ ∧ □̇p ∧ □̇q→ □̇(p ∧ q) taut1,3
5 □̇p ∧ □̇q ∧ □̇(¬p ∧ ¬q) → □̇(p ∧ q) taut2,4 45



Remarks

• However, we cannot replace K2 by K∗2 in WAL, which can be
showed by the following independence proof.

• First we need to introduce neighborhood semantics in [6] for
modal logic.

• A pair F = ⟨W,N⟩ is a called a neighborhood frame, or a
neighborhood system, if W is a non-empty set and N is a
neighborhood function from W to P(P(W)). M = ⟨F, V⟩ is a
model if V : prop→ 2W is a valuation function.
The truth for modality is different from which in Kripke frame,
and we introduce it here:
M,w |= □ϕ iff (ϕ)M ∈ N(w)
M,w |= ♢ϕ iff W− (ϕ)M /∈ N(w)
where (ϕ)M = {w | M,w |= ϕ}, i.e. the truth set of ϕ.

46



Remarks

• However, we cannot replace K2 by K∗2 in WAL, which can be
showed by the following independence proof.

• First we need to introduce neighborhood semantics in [6] for
modal logic.

• A pair F = ⟨W,N⟩ is a called a neighborhood frame, or a
neighborhood system, if W is a non-empty set and N is a
neighborhood function from W to P(P(W)). M = ⟨F, V⟩ is a
model if V : prop→ 2W is a valuation function.
The truth for modality is different from which in Kripke frame,
and we introduce it here:
M,w |= □ϕ iff (ϕ)M ∈ N(w)
M,w |= ♢ϕ iff W− (ϕ)M /∈ N(w)
where (ϕ)M = {w | M,w |= ϕ}, i.e. the truth set of ϕ.

46



Remarks

• However, we cannot replace K2 by K∗2 in WAL, which can be
showed by the following independence proof.

• First we need to introduce neighborhood semantics in [6] for
modal logic.

• A pair F = ⟨W,N⟩ is a called a neighborhood frame, or a
neighborhood system, if W is a non-empty set and N is a
neighborhood function from W to P(P(W)). M = ⟨F, V⟩ is a
model if V : prop→ 2W is a valuation function.
The truth for modality is different from which in Kripke frame,
and we introduce it here:
M,w |= □ϕ iff (ϕ)M ∈ N(w)
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Remarks

Lemma (universality)

M preserves truth under Nec iff ∀w ∈ W(W ∈ N(w)).

Lemma (monotonicity)

M preserves truth under RM iff ∀w ∈ W∀S ⊆ S′ ⊆ W(S ∈ N(w) → S′ ∈
N(w)).

Proposition
K∗2 ̸⊢ K2
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Proof

Define F = ⟨W,N⟩ be the frame s.t. W = {an | 0 ≤ n < 5},
N(a0) = {S | S ⊇ {a1} ∨S ⊇ {a2} ∨S ⊇ {a3,a4}} and for n > 0,
N(an) = {W}. Let V be the assignment s.t. V(p0) = {a1,a4},
V(p1) = {a2} and V(p2) = {a3,a4}. Of course M = ⟨F, V⟩ has the above
two properties, so it preserves Nec and RM. It is easy to check that
□(¬p0 ∧¬p1) is wrong at a0 since {a0,a3} /∈ N(a0), so a0 |= K∗2 . By the
definition, we know a0 |= □p0 ∧□p1 ∧□p2. So we only need to show
that a0 |= ¬□((p0 ∧ p1) ∨ (p1 ∧ p2) ∨ (p0 ∧ p2)), but this is obvious:
only a4 satisfies two of pi but {a4} /∈ N(a0).
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Remarks

• However, we can prove K2 in the normal polyadic modal logic,
and hence we know that WAL(K2) is a subsystem of KvL, since KvL
is normal.

• Proposition

⊢K K2, where K means the normal polyatic modal logic, and K2 stands
for its translation in this language.

• proof

It is easy to show that in the normal polyatic modal logic K, the rule
RM(from ⊢ ϕ → ψ we can get ⊢ ∇(ϕ, ϕ) → ∇(ψ,ψ)) is derivable, and
actually we can prove a alternative version: ⊢ ϕ→ ψ& ⊢ ϕ′ → ψ

′
=⇒⊢

∇(ϕ, ϕ
′
) → ∇(ψ,ψ

′
), so we will just use them directly. Recall that the

formula K2 is just ∇(ϕ0, ϕ0) ∧ ∇(ϕ1, ϕ1) ∧ ∇(ϕ2, ϕ2) → ∇((ϕ0 ∧ ϕ1) ∨
(ϕ0 ∧ ϕ2)∨ (ϕ1 ∧ ϕ2), (ϕ0 ∧ ϕ1)∨ (ϕ0 ∧ ϕ2)∨ (ϕ1 ∧ ϕ2)) in polyatic modal
logic. For convenience, we still use □ϕ standing for ∇(ϕ, ϕ).

proof
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1 φ0 → φ0 ∨ φ1, φ0 → φ0 ∨ φ2, . . . , φ2 → φ1 ∨ φ2 taut

2 φ0 ∨ φ1 → ((φ0 ∨ φ2 → ((φ1 ∨ φ2) → (φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2))) taut

3 (φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2) → (φ0 ∧ φ1) ∨ (φ0 ∧ φ2) ∨ (φ1 ∧ φ2) taut

4 �((φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2)) → �((φ0 ∧ φ1) ∨ (φ0 ∧ φ2) ∨ (φ1 ∧ φ2)) RM3

5 ∇(φ0 ∨ φ1, φ0 ∨ φ1 → ((φ0 ∨ φ2 → ((φ1 ∨ φ2) → (φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2)))) Nec2

6 ∇(p, q → r) → (∇(p, q) → ∇(p, r)) K

7 ∇(φ0, φ0) → ∇(φ0 ∨ φ1, φ0 ∨ φ1) RM1

8 ∇(φ0 ∨ φ1, φ0 ∨ φ1) mp7, hyp

9 ∇(φ0 ∨ φ1, φ0 ∨ φ2 → ((φ1 ∨ φ2) → (φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2))) mp6, 8, 5

10 ∇(φ0 ∨ φ1, φ0 ∨ φ2) RM1, hyp

11 ∇(φ0 ∨ φ1, (φ1 ∨ φ2 → (φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2)) mp6, 9, 10

12 ∇(φ0 ∨ φ1, φ1 ∨ φ2) RM1, hyp

13 ∇(φ0 ∨ φ1, (φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2)) mp6, 11, 12

14 ∇(φ0 ∨ φ2, (φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2)) similar with the proof of 13

15 ∇(φ1 ∨ φ2, (φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2)) similar with the proof of 13

Let ψ = (φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2)

16 ∇(φ0 ∨ φ1 → ((φ0 ∨ φ2 → ((φ1 ∨ φ2) → (φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2))), ψ) Nec2

17 ∇((φ0 ∨ φ2 → ((φ1 ∨ φ2) → (φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2)), ψ) mp6, 13, 16

18 ∇((φ1 ∨ φ2 → (φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2)), ψ) mp6, 14, 17

19 ∇((φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2), ψ), i.e. �((φ0 ∨ φ1) ∧ (φ0 ∨ φ2) ∧ (φ1 ∨ φ2)) mp6, 15, 18

20 �((φ0 ∧ φ1) ∨ (φ0 ∧ φ2) ∨ (φ1 ∧ φ2)) mp4, 19

1
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