
Introduction Logics with Protocol Announcements Epistemic Modelling Epistemic Abstraction Open Questions

Epistemic Modelling and Protocol Dynamics

Yanjing Wang

Department of Philosophy, Peking University
Oct. 26, 2010



Introduction Logics with Protocol Announcements Epistemic Modelling Epistemic Abstraction Open Questions

1 Introduction

2 Logics with Protocol Announcements

3 Epistemic Modelling

4 Epistemic Abstraction

5 Open Questions



Introduction Logics with Protocol Announcements Epistemic Modelling Epistemic Abstraction Open Questions

A classic example

Muddy Children - the setting
Out of n children, k ≥ 1 got mud on their foreheads while
playing.

They can see whether other kids are dirty, but there is no
mirror for them to discover whether they are dirty
themselves.
Then father walks in and states: “At least one of you is
dirty!” Then he requests “If you know you are dirty, step
forward now.”
If nobody steps forward, he repeats his request: “If you
now know you are dirty, step forward now.”
After exactly k requests to step forward, the k dirty children
suddenly do so (assuming they are honest and perfect
reasoners).
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A perfect logic for explaining the puzzle?

The language of Public Announcement Logic
(PAL [Pla89, GG97]) is defined as follows:

φ ::= p | φ ∧ φ | ¬φ | Kiφ | [!φ]φ

It is interpreted on S5 modelsM = (S , {∼i}i∈I,V):

M, s ! Kiφ ⇔ for all t , if s ∼i t thenM, t ! φ
M, s ! [!ψ]φ ⇔ ifM, s ! ψ thenM|ψ, s ! φ

whereM|ψ = (S′, {∼′i }i∈I,V ′) with S′ = {s ∈ S | M, s ! ψ},
∼′i = ∼i ∩ (S′ × S′), and V ′ = V |S′
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When there are 3 dirty children...

D1D2D3
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3
2

“At least one of you is dirty!”
Announcement: ψ0 = D1 ∨ D2 ∨ D3
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Announcement: ψ1 = ¬K1D1 ∧ ¬K2D2 ∧ ¬K3D3
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When there are 3 dirty children...

D1D2D3

Now all the children know that they are dirty.
M, (D1D2D3) ! [!ψ0][ψ1][ψ1]K1D1 ∧ K2D2 ∧ K3D3
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Is it really perfect?

Where was the father after the first announcement?
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Is it really perfect?

Example (Procedural information is important)

A : a1,a2 inform !! B : b1,b2

E : e

overhear

A “promising protocol” for this scenario is that A announces the
disjunction of his actual hand (say 01) with all the different
combinations of the remaining cards, so he would announce “I
have 01 or 23 or 24 or 34.”

“If you know the protocol and it is assumed to be correct, then it
may turn incorrect!”
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overhear

A “promising protocol” for this scenario is that A announces the
disjunction of his actual hand (say 01) with all the different
combinations of the remaining cards, so he would announce “I
have 01 or 23 or 24 or 34.”

It can go wrong if we assume...
The goal of the protocol is commonly known.
The procedure to generate the announcement is
commonly known.

“If you know the protocol and it is assumed to be correct, then it
may turn incorrect!”
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How to build a suitable model?
What if there are a lot of children?
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Is it really perfect?

Dynamic (epistemic) logics with protocol announcements

Epistemic modelling
Epistemic abstraction
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Protocols and their functions

Protocols: in a very broad sense
Procedural rules that govern our everyday life

Functions of protocols
Let us know what to do (do a then do b or c).
Let us know the meaning of actions (if p then do a).
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Protocols and their functions

Francois De La Rochefoucauld
True love is like ghosts, which everybody talks about and few
have seen.

However...
You can actually show this ghost without seeing it or
understanding what it is.
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Protocol dynamics

This is how we did it in the past
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Protocol dynamics

Until something evil came in...
Häagen-Dazs: “Love her, take her to Häagen-Dazs”.

The announcement of the slogan makes it commonly known
that buying an icecream shows your love.
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Protocol dynamics

Until something evil came in...
Häagen-Dazs: “Love her, take her to Häagen-Dazs”.

The announcement of the slogan makes it commonly known
that buying an icecream shows your love.
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Protocol dynamics

Even “better”: a true “father” can change his mind.
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Protocol dynamics

Current situation
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Protocol announcement logic

Previous research
Protocols are not specified in the logical languages in the
existing work of Dynamic Epistemic Logic and Epistemic
Temporal Logic [HY09, vBGHP09, Hos09, HF89, PR03]

To specify protocols and their dynamics explicitly!
Our logics are based on:

Propositional Dynamic Logic (PDL [FL79])
Public Announcement Logic (PAL [Pla89, GG97])
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Protocol announcement logic

The first language PDL!

The formulas of PDL! are built from a set of basic proposition
letters P and a finite set of atomic action symbols Σ as follows:

φ ::= * | p | ¬φ | φ ∧ φ | [π]φ | [!π]φ
π ::= 1 | 0 | a | π · π | π+ π | π∗

Example (The language of regular expressions)
(a + (b · c))∗ = {ε,a,bc,abc,aaa,bcbca . . . }
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The semantics

input derivative: \w
The language of the π\w of a regular expression π is defined
as L(π\w) = {v | wv ∈ L(π)}.

We can axiomatize the operation
\w (cf. [Brz64, Con71]).We say w ∈ Σ∗ is compliant with π
(notation: w ∝ π ) if π\w ! 0.

Example (Deriving the remaining protocol)
(a + (b · c))∗\b = (a\b + (b · c)\b) · (a + b · c)∗ =
(0 + (1 · c)) · (a + b · c)∗ = c · (a + (b · c))∗
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The semantics

We interpret PDL! formulas on Kripke modelsM = (S ,→,V):

M, s ! φ ⇔ M, s !Σ∗ φ
M, s !π p ⇔ p ∈ V(s)
M, s !π ¬φ ⇔ M, s !π φ

M, s !π φ ∧ ψ ⇔ M, s !π φ andM, s !π ψ
M, s !π [π′]φ ⇔ for all (w, s′) : if w ∈ L(π′),w ∝ π, s w→ s′

thenM, s′ !π\w φ
M, s !π [!π′]φ ⇔ M, s ! 〈π′〉* =⇒ M, s !π′ φ

where the mode Σ∗ stands for the universal protocol
(a0 + a1 + · · ·+ an)∗ if Σ = {a0,a1, . . . ,an}.
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s a "" • c ""

d
## •

s !c+d 〈d〉*
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The semantics

M, s !π [π′]φ ⇔ for all (w, s′) : if w ∈ L(π′),w ∝ π, s w→ s′
thenM, s′ !π\w φ

M, s !π [!π′]φ ⇔ M, s ! 〈π′〉* =⇒ M, s !π′ φ

Example
Consider the following modelM:

s a "" • c ""

d
## •

s !a·c+b ·d [a + b](¬〈d〉* ∧ 〈c〉* ∧ [!(c + d)]〈d〉*)

s !c+d 〈d〉*



Introduction Logics with Protocol Announcements Epistemic Modelling Epistemic Abstraction Open Questions

The semantics

M, s !π [π′]φ ⇔ for all (w, s′) : if w ∈ L(π′),w ∝ π, s w→ s′
thenM, s′ !π\w φ

M, s !π [!π′]φ ⇔ M, s ! 〈π′〉* =⇒ M, s !π′ φ
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d
## •

s !c (¬〈d〉* ∧ 〈c〉* ∧ [!(c + d)]〈d〉*)

s !c+d 〈d〉*



Introduction Logics with Protocol Announcements Epistemic Modelling Epistemic Abstraction Open Questions

The semantics

M, s !π [π′]φ ⇔ for all (w, s′) : if w ∈ L(π′),w ∝ π, s w→ s′
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Consider the following modelM:

s a "" • c ""

d
## •

s !c+d 〈d〉*
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Expressivity

Theorem
PDL!is equally expressive as test-free PDL.

M, s !π [π′]φ ⇔ for all (w, s′) : if w ∈ L(π′),w ∝ π, s w→ s′
thenM, s′ !π\w φ

Proof.
By a translation:

t(φ) = tΣ∗(φ)
tπ(p) = p

tπ(¬φ) = ¬tπ(φ)
tπ(φ1 ∧ φ2) = tπ(φ1) ∧ tπ(φ2)

tπ([π′]φ) =
∧k

i=0([θi]tπ\πi (φ))
tπ([!π′]φ) = 〈π′〉* → tπ′(φ)

The idea behind tπ([π′]φ): partition {w | w ∝ π and w ∈ L(π′)}
by their consequences. "
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Other variations

Introducing [!π(x)]

M, s !π [!π′(x)]φ ⇔ (M, s ! 〈π′(π)〉* =⇒ M, s !π′(π) φ)

We can then concatenate, add, insert and repeat protocols by
announcing x · π′, x + π′, π′ + x, and x∗ respectively.

Refinement operator [!(a/π′)]

M, s !π [!(a/π′)]φ ⇔ M, s ! 〈π[a/π′]〉* =⇒ M, s !π[a/π′] φ
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Other variations

Introducing [!π(x)]

M, s !π [!π′(x)]φ ⇔ (M, s ! 〈π′(π)〉* =⇒ M, s !π′(π) φ)
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Public event logic

The language PDL!?b

φ ::= * | p | ¬φ | φ ∧ φ | [π′]φ | [!π]φ | Kiφ
π ::= ?φb | a | π · π | π+ π | π∗

π is test-free. A uniform guarded string over finite sets P and Σ
is a sequence ρa1ρa2ρ . . . ρanρ for some ρ ⊆ P [Koz01].

Example
If P = {p} then Lg(?p · a · b+?¬p · a · c) = {{p}a{p}b{p}, ∅a∅c∅}
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Public event logic

The language PDL!?b

φ ::= * | p | ¬φ | φ ∧ φ | [π′]φ | [!π]φ | Kiφ
π ::= ?φb | a | π · π | π+ π | π∗

π is test-free. A uniform guarded string over finite sets P and Σ
is a sequence ρa1ρa2ρ . . . ρanρ for some ρ ⊆ P [Koz01].

Lg(a) = {ρaρ | ρ ⊆ P}
Lg(?ψ) = {ρ | ρ ∈ Xψ}
Lg(π1 · π2) = {w 4 v | w ∈ Lg(π1), v ∈ Lg(π2)}
Lg(π1 + π2) = Lg(π1) ∪ Lg(π2)
Lg(π∗) = {ε} ∪

⋃
n>0(Lg(πn))

4 is the fusion product: w 4 v = w′ρv′ when w = w′ρ and
v = ρv′.

Example
If P = {p} then Lg(?p · a · b+?¬p · a · c) = {{p}a{p}b{p}, ∅a∅c∅}
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π is test-free. A uniform guarded string over finite sets P and Σ
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φ ::= * | p | ¬φ | φ ∧ φ | [π′]φ | [!π]φ | Kiφ
π ::= ?φb | a | π · π | π+ π | π∗

π is test-free. A uniform guarded string over finite sets P and Σ
is a sequence ρa1ρa2ρ . . . ρanρ for some ρ ⊆ P [Koz01].

Example
If P = {p} then Lg(?p · a · b+?¬p · a · c) = {{p}a{p}b{p}, ∅a∅c∅}

We can define π\w for a guarded string w as:

Lg(π\w) = {v | w 4 v ∈ Lg(π)}
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Public event logic

The language PDL!?b

φ ::= * | p | ¬φ | φ ∧ φ | [π′]φ | [!π]φ | Kiφ
π ::= ?φb | a | π · π | π+ π | π∗

π is test-free. A uniform guarded string over finite sets P and Σ
is a sequence ρa1ρa2ρ . . . ρanρ for some ρ ⊆ P [Koz01].

Example
If P = {p} then Lg(?p · a · b+?¬p · a · c) = {{p}a{p}b{p}, ∅a∅c∅}

We can define π\v for a standard string v as:

Lg(π\w) = {v | ∃w ∈ Lg(v) and w 4 v ∈ Lg(π)}
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Public event logic

The language PDL!?b

φ ::= * | p | ¬φ | φ ∧ φ | [π′]φ | [!π]φ | Kiφ
π ::= ?φb | a | π · π | π+ π | π∗

π is test-free. A uniform guarded string over finite sets P and Σ
is a sequence ρa1ρa2ρ . . . ρanρ for some ρ ⊆ P [Koz01].

Example
If P = {p} then Lg(?p · a · b+?¬p · a · c) = {{p}a{p}b{p}, ∅a∅c∅}

Example
Lg((?p · a · b+?¬p · a · c + b)\a) = {{p}b{p}, ∅c∅} =
Lg(?p · b+?¬p · c).
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The semantics

Now we interpret PDL!?b on the S5 models (S , {∼i}i∈I,V) as
follows:

M, s ! φ ⇔ M, s !Σ∗ φ
M, s !π p ⇔ p ∈ V(s)
M, s !π ¬φ ⇔ M, s !π φ

M, s !π φ ∧ φ′ ⇔ M, s !π φ andM, s !π φ′
M, s ! Kiφ ⇔ for all t : s ∼i t =⇒ M, t ! φ

M, s !π [π′]φ ⇔ for all w ∈ L(π′) : ifM, s ! φw
π

thenM|φw
π
, s !π\w φ

M, s !π [!π′]φ ⇔ if (∃w : w = ρv ∈ Lg(π′) and V(s) = ρ)
thenM, s !π′ φ

where:
φw
π =
∨{φρ | v = ρa1ρa2ρ · · ·ρakρ,Lp(v) = w, v ∝g π}.For

example, let π =?p · a · b+?¬p · a · c, w = a, then φw
a = p ∨ ¬p.
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For
example, let π =?p · a · b+?¬p · a · c, w = a, then φw

a = p ∨ ¬p.
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where:
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π =
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The semantics

Example
Consider the following modelM:

s : p 1 t : ¬p

M, s ! [!(?p · a · b+?¬p · a · c)][a](¬K1p ∧ [b]K1p)
⇐⇒ M, s !?p·a·b+?¬p·a·c [a](¬K1p ∧ [b]K1p)
⇐⇒ M|p∨¬p , s !?p·b+?¬p·c (¬K1p ∧ [b]K1p)
⇐⇒ M, s !?p·b+?¬p·c ¬K1p andM, s !?p·b+?¬p·c [b]K1p
⇐⇒ M, s ! ¬K1p andM|p , s !?p K1p
⇐⇒ M, s ! ¬K1p andM, s !PAL [!p]K1p

Consider the Häagen-Dazs protocol: πH-D =?plove · abuy ,
[!πH-D ][abuy ]Kiplove is valid. However, buying an ice cream
without the announcement !πH-D does not mean anything:
[abuy ]Kiplove is not valid.
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Expressivity

Theorem
PDL!?b is equally expressive as PAL on S5 models.

Note that [!p](Kip ∧ [!q]q) can be reinterpreted in PDL!?b as

[!(?p · a+?q · b)∗][a](Kip ∧ [b]q).

Thus we can separate actions from their meanings.
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Expressivity

Theorem
PDL!?b is equally expressive as PAL on S5 models.

Proof.
We can define the following translation from PDL!?b to PAL:

t(φ) = tΣ∗(φ)
tπ(p) = p

tπ(¬φ) = ¬tπ(φ)
tπ(φ1 ∧ φ2) = tπ(φ1) ∧ tπ(φ2)

tπ(Kiφ) = Kitπ(φ)
tπ([π′]φ) =

∧{[!ψj]tθj (φ) | L(πj) ∩ L(π′) ! ∅}
tπ([!π′]φ) = χπ′ → tπ′(φ)

"

Note that [!p](Kip ∧ [!q]q) can be reinterpreted in PDL!?b as

[!(?p · a+?q · b)∗][a](Kip ∧ [b]q).

Thus we can separate actions from their meanings.
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Expressivity

Theorem
PDL!?b is equally expressive as PAL on S5 models.

Note that [!p](Kip ∧ [!q]q) can be reinterpreted in PDL!?b as

[!(?p · a+?q · b)∗][a](Kip ∧ [b]q).

Thus we can separate actions from their meanings.
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Composing models: Joint work with van Eijck and
Sietsma

Aristotle said...
Love is composed of a single soul inhabiting two bodies.

Definition (Merging Composition of “Partial” Kripke Models)
Given two models with the same set of agents I :
M = (S ,P, I,∼,V) and N = (T ,P′, I,∼′,V ′), the merging
compositionM "N is given by (S′′,P ∪ P′, I,∼′′,V ′′), where:

S′′ = {(s, t) | s ∈ S , t ∈ T ,V(s) ∩ P′ = V ′(t) ∩ P},
(s, s′) ∼′′i (t , t ′) iff s ∼i t and s′ ∼′i t ′,
V ′′(s, t) = V(s) ∪ V ′(t).
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Aristotle said...
Love is composed of a single soul inhabiting two bodies.

Definition (Merging Composition of “Partial” Kripke Models)
Given two models with the same set of agents I :
M = (S ,P, I,∼,V) and N = (T ,P′, I,∼′,V ′), the merging
compositionM "N is given by (S′′,P ∪ P′, I,∼′′,V ′′), where:

S′′ = {(s, t) | s ∈ S , t ∈ T ,V(s) ∩ P′ = V ′(t) ∩ P},
(s, s′) ∼′′i (t , t ′) iff s ∼i t and s′ ∼′i t ′,
V ′′(s, t) = V(s) ∪ V ′(t).
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Composing models

Example (Composing Muddy Children)
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Composing models

We define the unit model E as the model ({s}, ∅, I,∼,V) where
V(s) = ∅ and ∼i= {(s, s)} for any i. In a picture:

∅ I

Theorem
Kripke models with the same set of agents form a commutative
monoid under the " operation, with total bisimilarity as the
appropriate equality notion. In particular, we have:

E "M ↔ M
M " E ↔ M

M " (N "K) ↔ (M "N) "K
M "N ↔ N "M
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Composing models

The commutative monoid yields the algebraic preordering ≤ on
the class of Kripke models with different vocabularies:

M ≤ N iff there is a K withM "K ↔ N .

Given two modelsM and N such that PM ⊆ PN , a
left-simulation betweenM and N is a relation R ⊆ SM × SN
such that sRt implies that the following hold:
Restricted Invariance VM(s) = VN(t) ∩ PM;

Zag If for some i ∈ I there is a t ′ ∈ SN with t i−→ t ′ then
there is a s′ ∈ SM with s i−→ s′ and s′Rt ′.
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Composing models

Theorem

For any modelsM,N with arbitrary vocabularies:

M ≤N =⇒ M←−– N

Theorem

LetM be a propositionally differentiated model. Then

M ≤ N ⇐⇒ M←−– N
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Composing models

Theorem

IfM, s ≤ N , t then all formulas φ in the diamond fragment of
PDLPM,I are preserved from right to left under left simulation: if
N , t ! φ thenM, s ! φ. Equivalently, the box fragment of
PDLPM,I is preserved from left to right under left simulation.

Theorem

If a pointed model (M, s) is decomposable into models
(M0, s0), . . . , (Mn, sn) with disjoint vocabularies P0,P1, . . . ,Pn,
then for any i: Mi , si ↔Pi M, s. Therefore for any φ in
PDLPi ,I :Mi , si ! φ ⇐⇒ M, s ! φ.
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Composing models

We sayM is locally generated if, for every agent i, there is a
non-empty set of boolean formulas Φi (the set of local
observables) based on PM such that:

for all s, s′ ∈ SM, s ∼i s′ iff for all ϕ ∈ Φi ,M, s |= ϕ⇔M, s′ |= ϕ

Theorem (Decomposition by agents)

Given a set of agent I = {1,2, . . .n}. IfM = (S ,P, I,∼,V) is
locally generated w.r.t. Φ1, . . . ,Φn, then there are models
M1, . . . ,Mn andM0 such that:

M↔ (M0 "M1 " · · · "Mn);
|SMj | ≤| S | andMi is bisimulation contracted model;
PMj = {p ∈ PM | p appears in Φj} for j > 0;
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Composing models

Theorem (Decomposition by issues)

Given a set of agent I = {1,2, . . .n} and a set of proposition
letters P = {p1, . . . ,pk }, ifM = (S ,P, I,∼,V) is locally generated
by Φ1, . . . ,Φn such that Φi only contains atomic propositions
(i.e., Φi ⊆ P), then there are modelsM1, . . . ,Mk andM0 such
that:

M↔ (M0 "M1 " · · · "Mk );
PMj = {pj} for j > 0 and P0 = P;
|SMj | = 2 for j > 0
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Composing models

Definition (Model expansion)
GivenM we define the expansion ofM w.r.t. vocabulary P′ as
follows: M ) P′ =M "MI

P′ .

m1 m1
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Composing models

Definition (Extended Product Update)
Given a static modelM and an event model A for the same set
of agents I. Let X = PA − PM. Then the extended product
updateM #A is the static model defined by (M ) X) ⊗A.

Theorem
When A is propositionally differentiated:
(M "N) #A↔ (M #A) " (N #A)

Theorem
Let A "B be the composition of event models:
M # (A "B)↔ (M #A) " (M #B).
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Counting models: joint work with Siestma

In Anna Karenina:
All happy families are happy alike, all unhappy families are
unhappy in their own way.

In other words...
Given a finite set of formulas, how many different models are
there?

To be more precise, we consider:
modal µ−calculus formulas
bisimulation as the equivalence notion between models
only image-finite models
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Counting models: joint work with Siestma

In Anna Karenina:
All happy families are happy alike, all unhappy families are
unhappy in their own way.

My question is...
How many different kinds of unhappiness are there?

In other words...
Given a finite set of formulas, how many different models are
there?

To be more precise, we consider:
modal µ−calculus formulas
bisimulation as the equivalence notion between models
only image-finite models
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Counting models

Modal µ-calculus [Koz83]

φ ::= * | ⊥ | X | p | p̄ | φ ∧ φ | φ ∨ φ | 〈a〉φ | [a]φ | µX .φ | νX .φ

Very expressive: µX .!X which expresses well-foundedness. It
is shown in [vBI08] that Mu is closed under product update.

However, we do not work with formulas directly but..

Definition (µ-automata [JW95, DN05])
A µ-automaton A on set of basic propositions P and set of basic
actions Σ is a tuple: A = (Q ,B ,q0,→OR ,→BR ,L ,Ω).

µ automata recognizes (infinite) trees. Let L(A) be the
language of A, i.e., the set of trees which are accepted by A.
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Counting models

Theorem ([JW95])
For each µ−automaton there is an equivalent Mu−formula. For
each Mu−formula there is an equivalent µ−automaton .

Example (µX .!X and its µ-automata)
T : (r : p)

$$ %%

A : (q : 1)

&& '' (( ))

R : (r ,q)

τ
%%

(b0 : {p}) (b1 : {p})

**

(b2 : ∅) (b3 : ∅)

++

(r ,b1)

%%,,
(w1 : p) (w′1 : ¬p)

%%

(w1,q)

τ
%%

(w′1,q)

τ
%%

(w1,b0) (w′1,b3)

%%
(w′2 : p)

%%

(w′2,q)

%%
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Counting models

Theorem
Let A be a µ-automaton. Then the following are equivalent:

1 |L(A)|/↔ = 2ℵ0 ,

2 |L(A)|/↔ > ℵ0,
3 L(A) contains a tree with infinite non-bisimilar subtrees

(non-B-regular tree).

This generalizes an earlier work by Niwiński [Niw91].

Proof.
Hard part: (3) =⇒ (1). The strategy is as follows:

1 Show every non-B-tree has an infinite ”non-bisimilar ” path.
2 Based on the special path, “Pump” a non-B-regular tree in
L(A) tree into 2ℵ0 non-bisimilar trees.

3 Show that all these tree are accepted by A.
"
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Counting models
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Counting models

Lemma

Given a µ−automaton A, if L(A) is countable up to bisimulation
then |alive(L(A))|/↔ is finite.

Theorem (Normal form of countable languages)
Given a µ−automaton A, if L(A) is countable up to bisimulation,
then it can be represented by

Fn[x1\T1, . . . , x1\Tn]

for some n < ω, {T1, . . . ,Tn} ⊆ alive(L(A)), and some Fn ⊆ Fn
which is recognizable by an finite automaton B on finite trees in
Fn.
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Model Abstraction

State space explosion: e.g., n children, 2n states.

m1 m1
1

"
m2

m2

2
"

m3

m3
3

=

m1m2m3

m1m2m3

m1m2m3

m1m2m3

1

1

2

2

m1m2m3

m1m2m3

m1m2m3

m1m2m3

1

1

2

2

3 3

3 3

Good representations may help.

More than 1020 states can be handled by symbolic model
checking [BCM+92].
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Model Abstraction

However, it is never enough...

Example (Guessing the other number)

a and b are given two natural numbers n and n + 1 respectively.
They are told that what they have are two consecutive natural
numbers, but they do not know who has the bigger one. We
can build the following model (suppose n is an even number):

s0 : (n,n + 1)
;; a <<

==

b
>>

(n,n − 1)
?? b @@

(n − 2,n − 1)
AA a

--· · ·55
b ))

(0,1)

(n + 2,n + 1)
;; a <<

(n + 2,n + 3)
?? b @@

(n + 4,n + 3)
AA a

--· · · · · ·
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Model Abstraction

Making the models smaller by abstraction

t0a,b
-- .. //
BB CC (0,1)

a,b
DD

Clearly, we may lose some information...

Model abstraction
Idea: safely reason about the big models at their small
abstractions.

“Most general [technique to reduce state space] and
flexible” [CGL94]. Can be fully automated [CGJ+03].



Introduction Logics with Protocol Announcements Epistemic Modelling Epistemic Abstraction Open Questions

Model Abstraction

Making the models smaller by abstraction

t0a,b
-- .. //
BB CC (0,1)

a,b
DD

Clearly, we may lose some information...

Model abstraction
Idea: safely reason about the big models at their small
abstractions.
“Most general [technique to reduce state space] and
flexible” [CGL94]. Can be fully automated [CGJ+03].
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Abstraction w.r.t. PAL: with Dechesne & Orzan

Definition (Kripke Modal Labelled Transition System [HJS01])
A Kripke Modal Labelled Transition System (KMLTS) is a tuple
M = (S ,P,Σ,#,→,V) where:

# is a set of transitions of the form s i# s′ where i ∈ Σ;

→ is a set of transitions of the form s i→ s′ where i ∈ Σ;
V is a valuation function: V : S → {true, false, ↑}P.

We require that→⊆# .

The signature ofM: (P,Σ) is also important.
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Model Abstraction

Recall the formulas of the Public Announcement Logic:

φ ::= p | φ ∧ ψ | ¬φ | !iφ | [!φ]φ

3-valued semantics:

$!iφ%M,s =



true if ∀s′ : s i# s′ =⇒ $φ%M,s′ = true
false if ∃s′ : s i→ s′ and $φ%M,s′ = false
↑ otherwise

$[!φ]ψ%M,s =



true if $φ%M,s = false or $ψ%M|φ,s = true
false if $φ%M,s = true and $ψ%M|φ,s = false
↑ otherwise
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Model Abstraction

Example
Example of a KMLTSM and a f ,g−abstraction of it where
f(1) = f(2) = c; g(p1) = g(p2) = pc .

•**

1

EE

FF

2

GG

•

c

%%
p1• •p2 pc•

c

HH
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Desired Property

Notation
Given two pointed models (M, s), (N , t), and two formulas φ,ψ,
we say $ψ%M,s ≤ $φ%N ,t if the following hold:

1 $ψ%M,s = true =⇒ $φ%N ,t = true;
2 $ψ%M,s = false =⇒ $φ%N ,t = false.

Safe reasoning
(N , t) $f ,g (M, s) implies for all φ ∈ PALI′,P′ :

$%φ&f ,g%M,s ≤ $φ%N ,t .
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Translation of the formulas

Definition (Translation of formulas)

Given signatures (I′,P′), (I,P), and surjective functions
f : I′ → I,g : P′ → P, we define the translation of an
PALI′,P′-formula φ into an PALI,P -formula %φ&f ,g inductively as
follows:

%p′&f ,g = g(p′)
%¬ψ&f ,g = ¬%ψ&f ,g
%ψ1 ∧ ψ2&f ,g = %ψ1&f ,g ∧ %ψ2&f ,g
%Ki′ψ&f ,g = Kf(i′)%ψ&f ,g
%[χ]ψ&f ,g = [%χ&f ,g]%ψ&f ,g

Example
%[p ∧ q ∧ r ]K1p ∨ K2q&f ,g = [P ∧ R]KA P with f(1) = f(2) = A ;
g(p) = g(q) = P and g(r) = R .
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Logical Characterization

Lemma

(N , t) $f ,g (M, s) implies (N|χ, t) $f ,g (M|%χ&f ,g , s) under certain
condition.

Theorem
(N , t) $f ,g (M, s) implies for all φ ∈ PALI′,P′ :

$%φ&f ,g%M,s ≤ $φ%N ,t .

Theorem

If for every formula φ ∈ PALI′,P′ : $%φ&f ,g%M,s ≤ $φ%N ,t then
(N , t) $f ,g (M, s) (Image finitness assumed).
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Muddy Children - Abstraction of n=3 case

D1D2D3

3D2 D2D3

D3

D1D3

1

2

D1

D1D2

1

3
2

D1D2!!D3

D1!!D3

3

A

D3

D2!!D3

A A
A

A

A

Abstractions of the Muddy Children for n = 3 children.
f(1) = f(2) = A , f(3) = 3 and g = Id.!!D3 means proposition D3
has valuation ⊥ in the current state.
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Muddy Children - Abstraction of n=3 case

D1D2!!D3

D1!!D3

3

A

D3

D2!!D3

A A
A

A

A

First announcement: %D1 ∨ D2 ∨ D3&f ,g = D1 ∨ D2 ∨ D3.
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Muddy Children - Abstraction of n=3 case

D2!!D3

D1D2!!D3

D1!!D3

D3 A
A

A

A

%K3D3&f ,g = K3D3 holds at world D3. Announcement can be
made if more than one child is dirty:
%¬K1D1 ∧ ¬K2D2 ∧ ¬K3D3&f ,g = ¬KA D1 ∧ ¬KA D2 ∧ ¬K3D3.
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Muddy Children - Abstraction of n=3 case

D2!!D3

D1D2!!D3

D1!!D3

A

A

%K1D1&f ,g = KA D1 holds at world D1!!D3 and %K1D2&f ,g = KA D2
holds at D2!!D3. If all the three children are dirty then announce:
%¬K1D1 ∧ ¬K2D2 ∧ ¬K3D3&f ,g = ¬KA D1 ∧ ¬KA D2 ∧ ¬K3D3.
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Muddy Children - Abstraction of n=3 case

D1D2!!D3

%K1D1 ∧ K2D2&f ,g = KA D1 ∧ KA D2 holds at the only world.
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Model Abstraction

Recall the Guessing Number example

s0 : (n,n + 1)
;; a <<

==

b
>>

(n,n − 1)
?? b @@

(n − 2,n − 1)
AA a

--· · ·55
b ))

(0,1)

(n + 2,n + 1)
;; a <<

(n + 2,n + 3)
?? b @@

(n + 4,n + 3)
AA a

--· · · · · ·

Yes! Accelerated Modal LTS [EvdP06]

t0a,b
-- ..

(a·b)∗ //
BB

a,b
CC (0,1)

a,b
DD

〈π〉φ is true at s if there is a must-path s π1−→ s1
π2−→ · · · πn−→ sn

to a state where φ is true, such that L(π1 · · ·πn) ⊆ L(π). e.g,
〈(a + b)∗〉hasa0 is true on the above abstract model.
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Can we do better than this?

t0a,b
-- ..

a //
BB

b
CC (0,1)

a,b
DD

Not enough must transitions for evaluating existential formulas
(properties of reachability) e.g., 〈(a + b)∗〉hasa0.

Yes! Accelerated Modal LTS [EvdP06]
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(a·b)∗ //
BB

a,b
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a,b
DD

〈π〉φ is true at s if there is a must-path s π1−→ s1
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to a state where φ is true, such that L(π1 · · ·πn) ⊆ L(π). e.g,
〈(a + b)∗〉hasa0 is true on the above abstract model.
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PDL on Accelerated Models: with Chen & van de Pol

Question: how to model check PDL on AMLTS?

Recall the semantics:

M, s ! 〈π〉φ ⇔ there exists a path s π1−→ s1
π2−→ · · · πn−→ sn :

M, sn ! φ and L(π1 · · ·πn) ⊆ L(π)

Example

s a+b "" •
M, s ! 〈a + b + c〉*
M, s ! 〈a〉*

t a ""

b
## •

M, t ! 〈a + b + c〉*
M, t ! 〈a〉* ∧ 〈b〉*

A straightforward idea which is hard to implement: reduce the
new to the old.
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PDL on Accelerated Models

Regular Expression Rewriting [CDGLV02]
Given a regular expression π, rewrite π, if possible, by a set of
other regular expressions E = {π0, π1, . . . πn}.

For example, we
can rewrite a∗ ·d by {a ·a∗,d}: a ·a∗ ·d +d. In most of the cases,
we do not have an exact rewriting. e.g., try to rewrite a + b by
{a}. In such cases we are interested in the maximal rewriting.

Theorem

([CDGLV02]) There is an essentially optimal algorithm to
compute the maximal E-rewriting of a given π w.r.t a given set E
in 2-Exptime.
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can rewrite a∗ ·d by {a ·a∗,d}: a ·a∗ ·d +d. In most of the cases,
we do not have an exact rewriting. e.g., try to rewrite a + b by
{a}. In such cases we are interested in the maximal rewriting.

Theorem

([CDGLV02]) The problem of verifying the existence of a
non-empty rewriting of a regular expression π′ w.r.t. a set E of
regular expressions is Expspace-complete.

Theorem

([CDGLV02]) There is an essentially optimal algorithm to
compute the maximal E-rewriting of a given π w.r.t a given set E
in 2-Exptime.
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in 2-Exptime.
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PDL on Accelerated Models

Definition (Rewriting PDL formula w.r.t. an accelerated model)
Given an AKMM and a PDLΣ formula φ, let 〈〉M be the set of
labels inM, RM(φ) is the rewriting of φ in the language PDLΣ〈〉M
defined by:

RM(〈π〉ψ) = 〈π̂〈〉M〉RM(ψ).

Theorem

For any pointed AKMM, s and any PDLΣ formula φ,

M, s ! φ ⇐⇒ %M&, s ' RM(φ).



Introduction Logics with Protocol Announcements Epistemic Modelling Epistemic Abstraction Open Questions

PDL on Accelerated Models

Definition (Rewriting PDL formula w.r.t. an accelerated model)
Given an AKMM and a PDLΣ formula φ, let 〈〉M be the set of
labels inM, RM(φ) is the rewriting of φ in the language PDLΣ〈〉M
defined by:

RM(〈π〉ψ) = 〈π̂〈〉M〉RM(ψ).

Theorem

For any pointed AKMM, s and any PDLΣ formula φ,

M, s ! φ ⇐⇒ %M&, s ' RM(φ).



Introduction Logics with Protocol Announcements Epistemic Modelling Epistemic Abstraction Open Questions

PDL on Accelerated Models

We also give a direct model checking algorithm by using the
following proposition:

Theorem

Given a pointed AKMM = (S ,Σ,→,V , s0) and T ⊆ S, if
T = {t | M, t ! φ}, then we have:

M, s0 |= 〈π〉φ ⇐⇒ L(M⊗T Aπ) ! ∅

where Aπ denotes the deterministic automaton corresponding
to π.
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PDL on Accelerated Models

Theorem

We can reduce the problem of the existence of the non-empty
rewriting to model checking problem.

there is a non-empty rewriting of π w.r.t. E ⇐⇒

ME, s ! 〈π〉φ.

Theorem
Model checking PDL on AKM is Expspace-complete.
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PDL on Accelerated Models

Definition
Rewriting of a PDL+Σ formula Given a PDL+Σ formula φ, let 〈〉φ be
the set {π | 〈π〉 appears in φ}, R(φ) is the rewriting of φ in the
language PDL+Σ〈〉φ

defined by:

R(〈π〉(ψ)) = 〈eπ〉R(ψ).
R([π]ψ) = [π̂〈〉φ ]R(ψ).

Theorem

Given a PDL+Σ formula φ, φ is satisfiable on an AKM ⇐⇒ R(φ)
is satisfiable on a standard Kripke model.
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Please contact me if you are interested in solving
them...

The succinctness of the newly introduced protocol logics
A version of 3-valued full DEL
Model composition with agent expansion
Rewriting a modal formula by other formulas
Counting S5 model modulo bisimulation
An epistemic logic of Cryptography
Is the derived protocol (as a set of possible sequences) at
a (finite) Kripke model over a finite set of action models
always regular?
Let DEL∗ be the language of DELwith the new modality
< A ∗ >. Can you fit this extended logic into a suitable fixed
point logic?
Is the model checking problem of DEL∗ decidable?
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Thank you very much for your attention!
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