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Introduction Typicalness Unpredictability Incompressibility Martin-Löf-Chaitin Thesis

What is randomness

An example of random sequence by tossing coin:
0101001101111011011101010100000101111...

Typicalness: (The statistician’s approach)A random object is
the typical outcome of a random variable. Random
sequences should not have effectively rare
properties.

Unpredictability: (The gambler’s approach)A random object
should be impossible to predict.

Incompressibility: (The coder’s approach)A random object
should not have a shorter description than itself.
No effective martingale (betting) can make an
infinite amount betting of the bits.
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Notations

We will study randomness for infinite binary sequences.

We represent natural number x by the finite string, the
binary representation of x + 1 with the first bit 1 removed.
We interpret sequences X ∈ 2N as sets of natural
numbers, SX = {n ∈N : X(n) = 1}, or as real numbers in
[0,1], αX =

∑
n X(n)2−n.
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the statisticians approach

von Mises, 1919 : A random sequence should have as
many 0’s as 1’s. But what about 1010101010101010......

von Mises idea: For some particular increasing functions
onN, if we select a subsequence {af(0),af(1),af(2), ...} then
the number of 0’s and 1’s divided by the number of
elements selected should end to 1

2 . (Law of Large
Numbers)
Church: We should just allow all computable functions.
Ville, 1939 : No countable selection possible!
Martin-Löf, 1966: Using shrinking effective null sets as
representing effective tests.
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Martin-Löf Tests and Randomness

Definition
A Martin-Löf (ML) test (for Lebesgue measure) is a
recursively enumerable set W ⊂N × 2<N such that, if we
let Wn = {σ : (n, σ) ∈W }, for all n ∈N,∑

σ∈Wn

2−|σ| < 2−n.

A sequence X ∈ 2N fails the test if X ∈
⋂

m Gm, otherwise
X passes the test.
X is Martin-Löf (ML) random if X passes each ML-test.
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Universal ML-test

Proposition
The class of all ML-random sequences is conull.

Proposition
There exist a universal ML-test U such that X is ML-random iff
X is not covered by

⋂
n Un.

Enumerate all c.e. sets W (e)
⊂N × 2<N, stopping should

one violated the measure condition of some W (e)
n .

Then we can define a universal test U by letting

Un =
⋃

e

W (e)
n+e+1
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Martingales

Definition

A betting strategy b is a function b : 2<N → {0,1} × [0,1].

We can keep track of the player’s capital through a function:

Definition

A martingale is a function F : 2<N → [0,∞) satisfies

F(σ0) + F(σ1) = 2F(σ), for every σ ∈ 2<N

A martingale F is successful on an infinite sequence X if

lim sup
n→∞

F(X �n) = ∞
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c.e. martingales and ML randomness

Definition

A function F : 2<N → R is computably enumerable(c.e.) if there
exists, uniformly in σ, a recursive nondecreasing sequence
(q(σ)

k ) of rational numbers such that q(σ)
k → F(σ),

or equivalently, the left cut of F(σ) is uniformly enumerable, i.e.
the set {(q, σ) : q < F(σ)} is c.e.

Theorem
A sequence X is ML-random if and only if no c.e. martingale
succeeds on it.
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Machine complexity

Let M be a Turing machine. M computes a partial recursive
function 2<N → 2<N.

We define the M-complexity of a string x as

CM(x) = min{|σ| : M(σ) = x}

where min ∅ = ∞.
A machine R is optimal if for every machine M there exists
a constant eM such that

(∀x)[CR(x) ≤ CM(x) + eM]

.



Introduction Typicalness Unpredictability Incompressibility Martin-Löf-Chaitin Thesis

Machine complexity

Let M be a Turing machine. M computes a partial recursive
function 2<N → 2<N.
We define the M-complexity of a string x as

CM(x) = min{|σ| : M(σ) = x}

where min ∅ = ∞.

A machine R is optimal if for every machine M there exists
a constant eM such that

(∀x)[CR(x) ≤ CM(x) + eM]

.



Introduction Typicalness Unpredictability Incompressibility Martin-Löf-Chaitin Thesis

Machine complexity

Let M be a Turing machine. M computes a partial recursive
function 2<N → 2<N.
We define the M-complexity of a string x as

CM(x) = min{|σ| : M(σ) = x}

where min ∅ = ∞.
A machine R is optimal if for every machine M there exists
a constant eM such that

(∀x)[CR(x) ≤ CM(x) + eM]

.



Introduction Typicalness Unpredictability Incompressibility Martin-Löf-Chaitin Thesis

The Invariance Theorem

Theorem (Kolmogorov)
There exists an optimal machine R.

Let (Me) be an effective enumeration of all Turing
machines.
On input σ, R parses σ and finds unique e and τ such that
σ = 0e1τ. Then let R outputs Me(τ).
Then we have R(0e1τ) = Me(τ), and
(∀x)[CR(x) ≤ CMe (x) + e + 1].
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Kolmogorov complexity

For two function f and g, if there exist a constant c such
that for all x, f(x) ≤ g(x) + c, we write f ≤+ g.
f =+ g if f ≤+ g and g ≤+ f
For any two optimal machine R and S, we have CR =+ CS .

We define the (plain) Kolmogorov complexity of a string x
as

C(x) = CR(x)
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Properties of C

There exists an e such that for all x, C(x) ≤ |x |+ e.

Actually, e is the index of the copying machine.
For each length n, there exist incompressible strings of
length n, i.e. strings x with C(x) ≥ |x |.
Because there are only

∑n−1
k=0 2k = 2n

− 1 programs of
length < n.
Then we can see that ∀x[C(x) ≤+ |x |] and
∃
∞x[C(x) ≥+ |x |], we say that |x | is an infinitely often tight

upper bound of C(x).
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Weakness of C

Theorem (Martin-Löf)
Let k ∈N. For any sufficiently long string x there exists an
initial segment y � x such that C(y) < |y | − k .

Corollary
Let k ∈N. There exists an x such that for some splitting x = yz
we have C(x) > C(y) + C(z) + k .
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Prefix-free machine

Definition

A set W ⊃ 2<N is prefix-free if for any x , y ∈W ,

x � y =⇒ x = y

.

A machine M is prefix-free if its domain is a prefix-free set.
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prefix-free Kolmogorov complexity

Similarly,
A prefix-free machine S is optimal if for every prefix-free
machine M there exists a constant eM such that

(∀x)[CS(x) ≤ CM(x) + eM]

Definition
The prefix-free complexity of a string x is defined as

K(x) = CS(x)
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existence of optimal prefix-free machine

Proposition
There exists an optimal prefix-free machine S.

Proof.
Enumerate all Turing machine.
Whenever we see that some machin Me is not prefix-free,
we stop enumerating its domain. This way we convert it to
a prefix-free machine M̃e. If Me is already prefix-free, it
remains unaltered.
Then (M̃e) is an enumeration of all prefix-free machine, we
define S(0e1σ) = M̃e(σ).

�
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Properties of K

Consider the upper bounds of K:

The copying machine is not prefix-free, but the machine
M(0|x |1x) = x is prefix-free. So we have

K(x) ≤+ 2|x |

.
Actually, we can get K(x) ≤+ |x |+ K(|x |) ≤+ |x |+ 2 log |x |.
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Schnorr Theorem

Theorem (Schnorr)
A sequence X is ML-random iff there exists a c such that for all
n,

K(X �n) ≥ n − c
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Halting probability

The halting probability of a prefix-free machine M is

ΩM =
∑

σ∈dom(M)

2−|σ|

Let Ω = ΩS

Theorem (Chaitin)
Ω is ML-random.
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Other randomness notions

weaker randomness notions:

Schnorr randomness
Computable randomness
Resource-bounded randomness

stronger randomness notions:
weak-2-randomness
2-randomness, n-randomness
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formalizing the notion of computability

Gödel, 1933: general recursive functions.
Church, 1936: λ-calculus.
Turing, 1936: Turing Machine.

Church-Turing Thesis

A function on the natural numbers is computable in an informal
sense (i.e., computable by a human being using a
pencil-and-paper method, ignoring resource limitations) if and
only if it is computable by a Turing machine.



Introduction Typicalness Unpredictability Incompressibility Martin-Löf-Chaitin Thesis

formalizing the notion of computability

Gödel, 1933: general recursive functions.
Church, 1936: λ-calculus.
Turing, 1936: Turing Machine.

Church-Turing Thesis

A function on the natural numbers is computable in an informal
sense (i.e., computable by a human being using a
pencil-and-paper method, ignoring resource limitations) if and
only if it is computable by a Turing machine.



Introduction Typicalness Unpredictability Incompressibility Martin-Löf-Chaitin Thesis

Martin-Löf-Chaitin Thesis

Martin-Löf-Chaitin Thesis
Martin-Löf randomness captures our commonly held intuitions
about randomness.

As Gödel noted, with the definition of computability “one has for
the first time succeeded in giving an absolute definition of an
interesting epistemological notion, i.e., one not depending on
the formalism chosen” (Collected Works, Volume II, p.150).
However, for randomness we cannot get this absoluteness in
Gödel’s sense.
Hence comes the so-called "The No-Thesis Thesis".
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