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Abstract

Carnap’s 𝜆-continuum fails to confirm Raven Paradox. If Solomonoff prior is introduced

to Inductive Logic, then it can confirm the hypothesis “all ravens are black” in any computable

world as long as all ravens are really black in that world.
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§1 An Introduction to Inductive Logic

In early 20th century, Keynes tried to assign to inductive generalizations, according to available

evidence, probabilities that should converge to 1 as the generalizations are supported by more and

more independent events.

Carnap[1] developed the antecedent of the modern inductive logic, in which he tried to use logic

to distinguish alternative states of affairs that can be expressed in a given formal language, then define

inductive probabilities for sentences by taking advantage of symmetry assumptions concerning such

states of affairs. In a deductively valid argument, every possible world in which the premises are

true also makes the conclusion true. In a good inductive argument, the set of worlds in which the

premises are true and the conclusion false is sufficiently “small”.

Assume the first order language L contains countable constants C and 𝑚 monadic predicates

R = {𝑅1,𝑅2, . . . ,𝑅𝑚} with no function symbols nor equality. The constants C name all the indi-

viduals in some Universe though there is no prior assumption that they necessarily name different

individuals.

Notation: 𝑓↾𝑋 ∶= {(𝑥, 𝑦) ∈ 𝑓 ∶ 𝑥 ∈𝑋}, and 𝑓−1(𝑋) ∶= {𝑥 ∶ 𝑓(𝑥) ∈𝑋}.
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2 1 AN INTRODUCTION TO INDUCTIVE LOGIC 2

Definition 1 (Probability on Sentences).
A probability on sentences is a non-negative function 𝑤∶S → (︀0,1⌋︀ such that

𝑃1. ⊧ 𝜓Ô⇒ 𝑤(𝜓) = 1

𝑃2. 𝜓1 ⊧ ¬𝜓2Ô⇒ 𝑤(𝜓1 ∨ 𝜓2) = 𝑤(𝜓1) +𝑤(𝜓2)

𝑃3. 𝑤(∃𝑥𝜓(𝑥)) = lim
𝑛→∞

𝑤 (
𝑛

⋁
𝑖=1
𝜓(𝑎𝑖))

Theorem 1. If 𝑤 satisfies 𝑃1, 𝑃2, then for 𝜑,𝜓 ∈ S

(i) 𝑤(¬𝜑) = 1 −𝑤(𝜑)

(ii) ⊧ ¬𝜑Ô⇒ 𝑤(𝜑) = 0

(iii) The following are equivalent:

(a) 𝑤(𝜑) = 1Ô⇒⊧ 𝜑

(b) 𝑤(𝜑) = 0Ô⇒⊧ ¬𝜑

(iv) 𝜑 ⊧ 𝜓Ô⇒ 𝑤(𝜑) ≤ 𝑤(𝜓)

(v) ⊧ 𝜑↔ 𝜓Ô⇒ 𝑤(𝜑) = 𝑤(𝜓)

(vi) 𝑤(𝜑) +𝑤(𝜓) = 𝑤(𝜑 ∧ 𝜓) +𝑤(𝜑 ∨ 𝜓)

Theorem 2 (Extension Theorem).
Suppose 𝑤∶S𝑄𝐹 → (︀0,1⌋︀ over quantifier-free sentences satisfies 𝑃1, 𝑃2, then 𝑤 has an unique exten-

sion to 𝑤+∶S → (︀0,1⌋︀ satisfying 𝑃1, 𝑃2, 𝑃3.

Let 𝑄𝑖 ≡
𝑚

⋀
𝑗=1

±𝑅𝑗 for 1 ≤ 𝑖 ≤ 2𝑚 =∶ 𝑟, where ±𝑅 means one of {𝑅,¬𝑅}, then Q = {𝑄1,⋯,𝑄𝑟} is

a 𝑟-fold classification system of some Universe with domain C , and every individual in the universe

has to satisfy one and only one 𝑄-predicate which is determined by the state description function

ℎ∶𝑎𝑖 ↦ 𝑄ℎ𝑖 . The set of state descriptions of 𝑎⃗ = (𝑎1, . . . , 𝑎𝑛) is

ℋ𝑎⃗ ∶= {
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖) ∶ ℎ∶ {1, . . . , 𝑛} → {1, . . . , 𝑟}(︀

Sometimes we write 𝑛𝑖 ∶= ⋃︀ℎ↾{1,...,𝑛}−1(𝑖)⋃︀ to denote the number of times that event 𝑄𝑖 occurs in

𝑛 trials
𝑛

⋀
𝑗=1
𝑄ℎ𝑗(𝑎𝑗). Carnap takes {𝑛𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑟} as the structure description.

Carnap’s aim is to find the right 𝑤.

Carnap believes that the right𝑤 should satisfy some symmetry principle. For example, it should

be invariant under finite permutations of names.
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3 1 AN INTRODUCTION TO INDUCTIVE LOGIC 3

for any permutation 𝜎 of N+,

𝑤(𝜓(𝑎1, . . . , 𝑎𝑛)) = 𝑤(𝜓(𝑎𝜎(1), . . . , 𝑎𝜎(𝑛))) (Ex)

for any permutation 𝜏 of {1,2, . . . , 𝑟},

𝑤 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) = 𝑤 (

𝑛

⋀
𝑖=1
𝑄𝜏(ℎ𝑖)(𝑎𝑖)) (Ax)

Besides the above symmetry principles there is a stronger postulate—sufficientness postulate,

which asserts that there exists a series of functions {𝑓𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑟} such that

𝑤 (𝑄𝑗(𝑎𝑛+1) ⋁︀
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) = 𝑓𝑗(𝑛𝑗, 𝑛) (SP)

Principle Ex asserts that 𝑤 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) depends only on the vector ∐︀𝑛ℎ𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛̃︀, so that it

is independent on the order of observing the individuals, while in the presence of Ex, principle Ax

asserts that 𝑤 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) depends only on {𝑛𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑟}, and 𝑤(𝑄𝑖(𝑎1)) = 1⇑𝑟 for all 1 ≤ 𝑖 ≤ 𝑟.

Considering the indifference principle, there are two intuitive ways to assign prior probability.

(A) All state descriptions have equal weight.

(B) All structure descriptions have equal weight.

Given 𝑛 individuals, there are 𝑟𝑛 possible state descriptions and

(𝑛 + 𝑟 − 1

𝑟 − 1
)

possible structure descriptions.

According to (A),

𝑚† (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) =

1

𝑟𝑛

and

c† (𝑄𝑗(𝑎𝑛+1) ⋁︀
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) =

𝑚† (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖) ∧𝑄𝑗(𝑎𝑛+1))

𝑚† (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

=

1

𝑟𝑛+1
1

𝑟𝑛

= 1

𝑟

It is independent of the history
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖), which means it violates the principle of learning

from experience and hence is unacceptable.

According to (B),

𝑚∗(𝑛1, . . . , 𝑛𝑟) =
1

(𝑛+𝑟−1
𝑟−1 )
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4 1 AN INTRODUCTION TO INDUCTIVE LOGIC 4

Since each structure description can be seen as ( 𝑛
𝑛1,...,𝑛𝑟

) possible state descriptions, and according

to principle Ex, every possible state description shares equal portion of its structure description, so

we have

𝑚∗ (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) =

𝑚∗(𝑛1, . . . , 𝑛𝑟)
( 𝑛
𝑛1,...,𝑛𝑟

)
= 1

(𝑛+𝑟−1
𝑟−1 )( 𝑛

𝑛1,...,𝑛𝑟
)

which depends only on structure description.

Carnap defines his favourite “degree of confirmation” as

c∗ (𝑄𝑗(𝑎𝑛+1) ⋁︀
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) =

𝑚∗ (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖) ∧𝑄𝑗(𝑎𝑛+1))

𝑚∗ (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

=
𝑛𝑗 + 1

𝑛 + 𝑟

Carnap’s 𝜆-continuum c𝜆 is a generalization of c∗.

Suppose (𝑄1,⋯,𝑄𝑟) are defined so that they have different relative widths 𝛾𝑖 such that
𝑟

∑
𝑖=1
𝛾𝑖 = 1,

Carnap’s 𝜆-continuum is

c𝜆 (𝑄𝑗(𝑎𝑛+1) ⋁︀
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) =

𝑛𝑗 + 𝜆𝛾𝑗
𝑛 + 𝜆

= 𝑛

𝑛 + 𝜆
𝑛𝑗
𝑛
+ 𝜆

𝑛 + 𝜆
𝛾𝑗

relative to a free parameter 0 < 𝜆 ≤ ∞ which indicates the weight given to logical or language-

dependent factors over and above purely empirical factors (observed frequencies). The parameter 𝜆

serves as an index of caution in singular inductive inference.

Suppose 𝑎⃗ = (𝑎1, . . . , 𝑎𝑛), and the state description of 𝑎⃗ is Θ(𝑎⃗) ≡
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖), which can be

assigned a degree of confirmation.

c𝜆(Θ(𝑎⃗)) = c𝜆 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

=
𝑛−1
∏
𝑖=0

c𝜆 (𝑄ℎ𝑖+1(𝑎𝑖+1) ⋁︀
𝑖

⋀
𝑗=0
𝑄ℎ𝑗(𝑎𝑗))

=
𝑛−1
∏
𝑖=0

𝑖ℎ𝑖+1 + 𝜆𝛾ℎ𝑖+1
𝑖 + 𝜆

When 𝜆 = 0, let

c0(Θ(𝑎⃗)) ∶=
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

1

𝑟
if ℎ1 = . . . = ℎ𝑛

0 otherwise
(1.1)

If we let 𝛾𝑖 = 1⇑𝑟 for all 1 ≤ 𝑖 ≤ 𝑟, then

c𝜆(Θ(𝑎⃗)) = c𝜆 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

=
𝑛

∏
𝑗=1

c𝜆 (𝑄ℎ𝑗(𝑎𝑗) ⋁︀
𝑛

⋀
𝑖=𝑗+1

𝑄ℎ𝑖(𝑎𝑖))
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5 1 AN INTRODUCTION TO INDUCTIVE LOGIC 5

=
𝑛

∏
𝑗=1

⎛
⎜⎜
⎝

⋃︀ℎ↾{𝑗+1,...,𝑛}−1(ℎ𝑗)⋃︀ +
𝜆

𝑟
𝑛 − 𝑗 + 𝜆

⎞
⎟⎟
⎠

=

𝑟

∏
𝑖=1

𝑛𝑖−1
∏
𝑗=0

(𝑗 + 𝜆
𝑟
)

𝑛−1
∏
𝑗=0

(𝑗 + 𝜆)
(1.2)

from 1.1 and 1.2 we can see that Carnap’s 𝜆-continuum is invariant under the two symmetry princi-

ples Ex and Ax. By adding 𝜆 = 𝑟, then c𝑟 = c∗.

Actually, Carnap proved the following theorem.

Theorem 3. Suppose language L has at least two predicates i.e. 𝑚 ≥ 2, then the probability

function 𝑤 on L satisfies Ex, SP if and only if 𝑤 = c𝜆 for some 0 ≤ 𝜆 ≤ ∞.

Namely,

𝑓𝑖(𝑛𝑖, 𝑛) =
𝑛𝑖 + 𝜆𝛾𝑖
𝑛 + 𝜆

where 𝛾𝑖 = 𝑓𝑖(0,0) and 𝜆 = 𝑓𝑖(0,1)
𝑓𝑖(0,0) − 𝑓𝑖(0,1)

.

By adding Ax, ∀𝑖 ∶ 𝛾𝑖 =
1

𝑟
.

The symmetry principles Ex and Ax says that the temporal order of events is irrelevant, but

in reality, the temporal order is of great significance. So the right ‘degree of confirmation’ should

go against them. If the temporal order is taken into consideration, the subscript of 𝑎 should rep-

resent the time stamp, and the conjunction
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖) indicates the time series of observations

∐︀𝑄ℎ1(𝑎1), . . . ,𝑄ℎ𝑛(𝑎𝑛)̃︀.
In 1963, Putnam[5, 6] criticized Carnap’s program. He took Carnap’s inductive logic as a

design for a ‘learning machine’, and the task of inductive logic is to construct a ‘universal learning

machine’. If there is a correct definition of ‘degree of confirmation’, then a machine which predicted

in accordance with the degree of confirmation would be the cleverest possible learning machine.

Then he suggested that sort of ‘degree of confirmation’ can be defined according to some ‘simplicity

order’, and either there are better and better ‘degree of confirmation’ functions, but no ‘best possible’,

or else there is a ‘best possible’ but it is not computable by a machine.

But, what is the correct language? What is the correct ‘degree of confirmation’? How many

evidences are strong enough to hold our belief?

By choosing the smallest model class that contains the true environment and the universal

(mixture) prior beliefs of the environments that reflect the simplicity criterion, Solomonoff [8] solved

the problem.
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§2 Solomonoff Prior in Inductive Logic

We assume the reader is familiar with the basics of Kolmogorov Complexity. Preliminaries can

be found in Li and Vitányi[3] or Hutter[2].

Solonomoff Prior
Every specific state description function ℎ determines an unique state description—an unique

universe, so any program 𝑝 generates an universe. We identify ℎ1∶𝑛 with history
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖) and

identify 𝑝 with the universe
∞
⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖) if 𝑈(𝑝) = ℎ1∶∞ without confusion.

Our beliefs and hence probabilities are a result of our personal history. To be able to update

beliefs consistently we must first decide on the set of all explanations that may be possible. In

order to find the true governing process behind our entire reality we consider all possible universes

in a certain sense. The actual universe is just one of a large number of possible universes. Each

universe is in one of possible states; the probability assigned to each state is then the proportion

of the possible universes in which that state is attained. Each new measurement eliminates some

fraction of the universes in a given state, depending on how likely or unlikely that state was to

actually produce that measurement; the surviving universes then have a new posterior probability

distribution, which is related to the prior distribution by Bayes’ formula.

Definition 2 (Universal Probability).

c𝑀 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) = ∑

𝑝∶𝑈(𝑝)=ℎ1∶𝑛∗
2−⋃︀𝑝⋃︀

Where 𝑈 is a universal monotone Turing machine.

It can be regarded as the limit of the relative frequency of the consistent possible worlds over

all possible worlds:

c𝑀 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) = ∑

𝑝

2−⋃︀𝑝⋃︀J𝑈(𝑝) = ℎ1∶𝑛∗K

= lim
𝑛→∞

∑
𝑝∶⋃︀𝑝⋃︀≤𝑛

2𝑛−⋃︀𝑝⋃︀
s
𝑛

⋀
𝑖=1
𝑄∐︀𝑈(𝑝)̃︀𝑖(𝑎𝑖) ≡

𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)

{

2𝑛

≈ lim
𝑛→∞

⋀︀{𝑝 ∶ ⋃︀𝑝⋃︀ = 𝑛 &
𝑛

⋀
𝑖=1
𝑄∐︀𝑈(𝑝)̃︀𝑖(𝑎𝑖) ≡

𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖) ⋀︀

2𝑛

It means that c𝑀 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) is the frequentist probability that the program of a universal

monotone Turing machine 𝑈 generates
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖) when provided with uniform random noise (fair
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7 2 SOLOMONOFF PRIOR IN INDUCTIVE LOGIC 7

coin flips) on the input tape.

probability = ⋃︀consistent universes⋃︀
⋃︀all possible universes⋃︀

The benevolence of God is represented in the way he plays dice. God does not play dice directly

with us, but plays dice indirectly through some Universal Turing machine to offer us the freedom to

realize any possible regular world. And God’s dice is absolutely fair, which means God never play

tricks. God offers us the fullest freedom to chose the most perfect world, that is to say, the one which

is at the same time the simplest in hypothesis and the richest in phenomena.

Lemma 1. For every 𝜈 ∈ ℳ𝑈 there exists some monotone Turing machine 𝑇 such that

𝜈 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) = ∑

𝑝∶𝑇 (𝑝)=ℎ1∶𝑛∗
2−⋃︀𝑝⋃︀ and 𝐾(𝜈) += ⋃︀∐︀𝑇 ̃︀⋃︀

where 𝑇 (𝑝) = 𝑈(∐︀𝑇 ̃︀𝑝).

Lemma 2. For 𝜈 ∈ ℳ𝑈 ,

c𝑀 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

+≥2−𝐾(𝜈)𝜈 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

Proof.

c𝑀 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) = ∑

𝑝∶𝑈(𝑝)=ℎ1∶𝑛∗
2−⋃︀𝑝⋃︀

≥ ∑
𝑞∶𝑈(∐︀𝑇 ̃︀𝑞)=ℎ1∶𝑛∗

2−⋃︀∐︀𝑇 ̃︀𝑞⋃︀

= 2−⋃︀∐︀𝑇 ̃︀⋃︀ ∑
𝑞∶𝑇 (𝑞)=ℎ1∶𝑛∗

2−⋃︀𝑞⋃︀

×=2−𝐾(𝜈)𝜈 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) [Lemma1]

Define

c′𝑀(⊺) ∶= 1

c′𝑀 (
𝑡

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) ∶= c′𝑀 (

𝑡−1
⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

c𝑀 (
𝑡

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

∑
1≤𝑘≤𝑟

c𝑀 (
𝑡−1
⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖) ∧𝑄𝑘(𝑎𝑡))

=
c𝑀 (

𝑡

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

c𝑀(⊺)

𝑡

∏
𝑖=1

c𝑀 (
𝑖−1
⋀
𝑗=1
𝑄ℎ𝑗(𝑎𝑗))

∑
1≤𝑘≤𝑟

c𝑀 (
𝑖−1
⋀
𝑗=1
𝑄ℎ𝑗(𝑎𝑗) ∧𝑄𝑘(𝑎𝑖))

Obviously, for any state description Θ,Θ′,
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8 2 SOLOMONOFF PRIOR IN INDUCTIVE LOGIC 8

(i) c′𝑀 (Θ(𝑎1, . . . , 𝑎𝑛)) ≥ 0

(ii) c′𝑀(⊺) = 1

(iii) c′𝑀 (Θ(𝑎1, . . . , 𝑎𝑛)) = ∑
Θ′(𝑎1,...,𝑎𝑛+1)⊧Θ(𝑎1,...,𝑎𝑛)

c′𝑀 (Θ′(𝑎1, . . . , 𝑎𝑛+1))

For any quantifier-free sentence 𝜓(𝑎⃗), let

c′𝑀 (𝜓(𝑎⃗)) ∶= ∑
Θ(𝑏⃗)⊧𝜓(𝑎⃗)

c′𝑀 (Θ(𝑏⃗))

where 𝑏⃗ is sufficiently large that all of the 𝑎⃗ are amongst 𝑏⃗, and ⋁
Θ(𝑏⃗)⊧𝜓(𝑎⃗)

Θ(𝑏⃗) is the full disjunctive

normal form of 𝜓(𝑎⃗).
𝜓(𝑎⃗) ≡ ⋁

Θ(𝑏⃗)⊧𝜓(𝑎⃗)
Θ(𝑏⃗) (DNF)

It is easy to see, c′𝑀 satisfies 𝑃1, 𝑃2, and according to Theorem2, c′𝑀 has an unique extension

over all of the sentences S of L . Then c′𝑀 induces a confirmation function

𝑐′𝑀(𝜓𝐻 ⋃︀𝜓𝐸) =
c′𝑀(𝜓𝐸 ∧ 𝜓𝐻)

c′𝑀(𝜓𝐸)

In fact, any 𝑤 satisfying (i),(ii),(iii) can extend to a probability function on L .

Theorem 4 (Completeness Theorem).
If the universe is generated by a computable stochastic process 𝜇, c′𝑀 predicts well with few errors.

∞
∑
𝑙=1

∑
ℎ1∶𝑙∈{1,...,𝑟}𝑙

𝜇(
𝑙

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) ⋅

⎛
⎝ ∑
ℎ𝑙+1∶𝑡∈{1,...,𝑟}𝑡−𝑙

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
c′𝑀 (

𝑡

⋀
𝑖=𝑙+1

𝑄ℎ𝑖(𝑎𝑖) ⋁︀
𝑙

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) − 𝜇(

𝑡

⋀
𝑖=𝑙+1

𝑄ℎ𝑖(𝑎𝑖) ⋁︀
𝑙

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

⎞
⎠

2

≤ 2(𝑡 − 𝑙)𝐷1∶∞(𝜇∏︁c𝑀)
+≤2(𝑡 − 𝑙)𝐾(𝜇) ln 2

< ∞

where

𝐷1∶𝑛(𝜇∏︁𝜌) ∶= ∑
ℎ1∶𝑛∈{1,...,𝑟}𝑛

𝜇(
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) ln

𝜇(
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

𝜌(
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))
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Proof.

∞
∑
𝑙=1

∑
ℎ1∶𝑙∈{1,...,𝑟}𝑙

𝜇(
𝑙

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) ⋅

⎛
⎝ ∑
ℎ𝑙+1∶𝑡∈{1,...,𝑟}𝑡−𝑙

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
c′𝑀 (

𝑡

⋀
𝑖=𝑙+1

𝑄ℎ𝑖(𝑎𝑖) ⋁︀
𝑙

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) − 𝜇(

𝑡

⋀
𝑖=𝑙+1

𝑄ℎ𝑖(𝑎𝑖) ⋁︀
𝑙

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

⎞
⎠

2

(𝑎)
≤ 2

∞
∑
𝑙=1

∑
ℎ1∶𝑙∈{1,...,𝑟}𝑙

𝜇(
𝑙

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) ⋅

∑
ℎ𝑙+1∶𝑡∈{1,...,𝑟}𝑡−𝑙

𝜇(
𝑡

⋀
𝑖=𝑙+1

𝑄ℎ𝑖(𝑎𝑖) ⋁︀
𝑙

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) ln

𝜇(
𝑡

⋀
𝑖=𝑙+1

𝑄ℎ𝑖(𝑎𝑖) ⋁︀
𝑙

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

c′𝑀 (
𝑡

⋀
𝑖=𝑙+1

𝑄ℎ𝑖(𝑎𝑖) ⋁︀
𝑙

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

= 2
∞
∑
𝑙=1

∑
ℎ1∶𝑡∈{1,...,𝑟}𝑙

𝜇(
𝑡

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

𝑡−1
∑
𝑚=𝑙

ln

𝜇(𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

c′𝑀 (𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

= 2
∞
∑
𝑙=1

𝑡−1
∑
𝑚=𝑙

∑
ℎ1∶𝑚+1∈{1,...,𝑟}𝑚+1

𝜇(
𝑚+1
⋀
𝑖=1

𝑄ℎ𝑖(𝑎𝑖)) ⋅

⎛
⎝ ∑
ℎ𝑚+2∶𝑡∈{1,...,𝑟}𝑡−𝑚−1

𝜇(
𝑡

⋀
𝑖=𝑚+2

𝑄ℎ𝑖(𝑎𝑖) ⋁︀
𝑚+1
⋀
𝑖=1

𝑄ℎ𝑖(𝑎𝑖))
⎞
⎠

ln

𝜇(𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

c′𝑀 (𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

≤ 2(𝑡 − 𝑙)
∞
∑
𝑚=1

∑
ℎ1∶𝑚+1∈{1,...,𝑟}𝑚+1

𝜇(
𝑚+1
⋀
𝑖=1

𝑄ℎ𝑖(𝑎𝑖)) ln

𝜇(𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

c′𝑀 (𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

= 2(𝑡 − 𝑙) lim
𝑛→∞

𝑛

∑
𝑚=1

∑
ℎ1∶𝑚+1∈{1,...,𝑟}𝑚+1

⎛
⎝ ∑
ℎ𝑚+2∶𝑛∈{1,...,𝑟}𝑛−𝑚−1

𝜇(
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

⎞
⎠

ln

𝜇(𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

c′𝑀 (𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

= 2(𝑡 − 𝑙) lim
𝑛→∞

𝑛

∑
𝑚=1

∑
ℎ1∶𝑛∈{1,...,𝑟}𝑛

𝜇(
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) ln

𝜇(𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

c′𝑀 (𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

= 2(𝑡 − 𝑙) lim
𝑛→∞ ∑

ℎ1∶𝑛∈{1,...,𝑟}𝑛
𝜇(

𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

𝑛

∑
𝑚=1

ln

𝜇(𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

c′𝑀 (𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))
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10 3 HOW TO CONFIRM “ALL RAVENS ARE BLACK”? 10

= 2(𝑡 − 𝑙) lim
𝑛→∞ ∑

ℎ1∶𝑛∈{1,...,𝑟}𝑛
𝜇(

𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) ln

𝑛

∏
𝑚=1

𝜇(𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

c′𝑀 (𝑄ℎ𝑚+1(𝑎𝑚+1) ⋁︀
𝑚

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

= 2(𝑡 − 𝑙) lim
𝑛→∞ ∑

ℎ1∶𝑛∈{1,...,𝑟}𝑛
𝜇(

𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) ln

𝜇(
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

c′𝑀 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

≤ 2(𝑡 − 𝑙) lim
𝑛→∞ ∑

ℎ1∶𝑛∈{1,...,𝑟}𝑛
𝜇(

𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) ln

𝜇(
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

c𝑀 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

+≤2(𝑡 − 𝑙)𝐾(𝜇) ln 2

< ∞

where
(𝑎)
≤ follows from Entropy Inequality and the last inequality

+≤ follows from Lemma2.

Compare Carnap’s 𝜆-continuum c𝜆 with c′𝑀 . With zero-knowledge (𝑛 = 0), Carnap would use

c𝜆 (𝑄𝑗(𝑎1)) =
0 + 𝜆𝛾𝑗
0 + 𝜆

= 𝛾𝑗

to estimate the future, while Solomonoff would prefer

c′𝑀 (𝑄ℎ1(𝑎1)) =
c𝑀 (𝑄ℎ1(𝑎1))
∑

1≤𝑗≤𝑟
c𝑀 (𝑄𝑗(𝑎1))

with sufficient experiences (𝑛 large enough), Carnap would use

c𝜆 (𝑄𝑗(𝑎𝑛+1) ⋁︀
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) =

𝑛𝑗 + 𝜆𝛾𝑗
𝑛 + 𝜆

≈
𝑛𝑗
𝑛

—the frequency of the phenomena, while Solomonoff would still use

c′𝑀 (𝑄𝑗(𝑎𝑛+1) ⋁︀
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

—the normalization of the frequency of the consistent universes/causes. In other words, Carnap

would like to know how while Solomonoff would like to know why. Besides, Carnap’s 𝜆-continuum

c𝜆 fails to confirm “all ravens are black” while c′𝑀 is qualified as a solution.

§3 How to Confirm “All Ravens are Black”?

The Raven Paradox induces two problems: (i) Can a non-black non-raven justify “all ravens

are black”? (ii) How many witnesses can confirm the fact that “all ravens are black”? We only take

care of problem (ii) in this paper.
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“All ravens are black” can be expressed by ∀𝑥(𝑅(𝑥) → 𝐵(𝑥)).
Since

𝑤(∀𝑥𝜓(𝑥)) = 1 −𝑤(∃𝑥¬𝜓(𝑥))

= 1 − lim
𝑛→∞

𝑤 (
𝑛

⋁
𝑖=1
¬𝜓(𝑎𝑖))

= lim
𝑛→∞

(1 −𝑤 (
𝑛

⋁
𝑖=1
¬𝜓(𝑎𝑖)))

= lim
𝑛→∞

𝑤 (
𝑛

⋀
𝑖=1
𝜓(𝑎𝑖))

To solve the Raven Paradox, we only have to make sure that lim
𝑛→∞

𝑤 (
𝑛

⋀
𝑖=1
(𝑅(𝑎𝑖) → 𝐵(𝑎𝑖))) > 0.

c′𝑀 (∀𝑥(𝑅(𝑥) → 𝐵(𝑥))

= lim
𝑛→∞

c′𝑀 (
𝑛

⋀
𝑖=1
(𝑅(𝑎𝑖) → 𝐵(𝑎𝑖)))

= lim
𝑛→∞

c′𝑀 (
𝑛

⋀
𝑖=1
(¬𝑅(𝑎𝑖) ∨𝐵(𝑎𝑖)))

= lim
𝑛→∞

c′𝑀
⎛
⎝

2𝑛

⋁
𝑗=1

(
𝑛

⋀
𝑖=1
(¬𝑅(𝑎𝑖)⇑𝐵(𝑎𝑖)))

𝑗

⎞
⎠

= lim
𝑛→∞

c′𝑀

⎛
⎜⎜⎜⎜
⎝

⋁
𝑛
⋀
𝑖=1

𝑄ℎ𝑖
(𝑎𝑖)⊧

2𝑛

⋁
𝑗=1

(
𝑛
⋀
𝑖=1

(¬𝑅(𝑎𝑖)⇑𝐵(𝑎𝑖)))
𝑗

𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)

⎞
⎟⎟⎟⎟
⎠

= lim
𝑛→∞ ∑

𝑛
⋀
𝑖=1

𝑄ℎ𝑖
(𝑎𝑖)⊧

2𝑛

⋁
𝑗=1

(
𝑛
⋀
𝑖=1

(¬𝑅(𝑎𝑖)⇑𝐵(𝑎𝑖)))
𝑗

c′𝑀 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

= lim
𝑛→∞ ∑

𝑛
⋀
𝑖=1

𝑄ℎ𝑖
(𝑎𝑖)⊧

2𝑛

⋁
𝑗=1

(
𝑛
⋀
𝑖=1

(¬𝑅(𝑎𝑖)⇑𝐵(𝑎𝑖)))
𝑗

c𝑀 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

c𝑀(⊺)

𝑛

∏
𝑖=1

c𝑀 (
𝑖−1
⋀
𝑗=1
𝑄ℎ𝑗(𝑎𝑗))

∑
1≤𝑘≤𝑟

c𝑀 (
𝑖−1
⋀
𝑗=1
𝑄ℎ𝑗(𝑎𝑗) ∧𝑄𝑘(𝑎𝑖))

= lim
𝑛→∞ ∑

𝑛
⋀
𝑖=1

𝑄ℎ𝑖
(𝑎𝑖)⊧

2𝑛

⋁
𝑗=1

(
𝑛
⋀
𝑖=1

(¬𝑅(𝑎𝑖)⇑𝐵(𝑎𝑖)))
𝑗

∑
𝑝∶𝑈(𝑝)=ℎ1∶𝑛∗

2−⋃︀𝑝⋃︀

∑
𝑝∈𝑑𝑜𝑚(𝑈)

2−⋃︀𝑝⋃︀

𝑛

∏
𝑖=1

∑
𝑝∶𝑈(𝑝)=ℎ<𝑖∗

2−⋃︀𝑝⋃︀

∑
1≤𝑘≤𝑟

∑
𝑝∶𝑈(𝑝)=ℎ<𝑖𝑘∗

2−⋃︀𝑝⋃︀

where 𝜓1⇑𝜓2 means that we mutual exclusively choose either 𝜓1 or 𝜓2.

Since

∀𝑖 ∶
∑

𝑝∶𝑈(𝑝)=ℎ<𝑖∗
2−⋃︀𝑝⋃︀

∑
1≤𝑘≤𝑟

∑
𝑝∶𝑈(𝑝)=ℎ<𝑖𝑘∗

2−⋃︀𝑝⋃︀
≥ 1
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Hence c′𝑀 (∀𝑥(𝑅(𝑥) → 𝐵(𝑥)) > 0 if there exists some computable universe ℎ1∶∞ such that

∀𝑛(
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖) ⊧

𝑛

⋀
𝑖=1
(¬𝑅(𝑎𝑖)⇑𝐵(𝑎𝑖)))

In other words, if all of the ravens in a computable universe are black, c′𝑀 can confirm that “all

ravens are black”.

lim
𝑛→∞

c′𝑀 (∀𝑥(𝑅(𝑥) → 𝐵(𝑥)) ⋁︀
𝑛

⋀
𝑖=1
(¬𝑅(𝑎𝑖) ∨𝐵(𝑎𝑖)))

= lim
𝑛→∞

c′𝑀 (∀𝑥(𝑅(𝑥) → 𝐵(𝑥))

c′𝑀 (
𝑛

⋀
𝑖=1
(𝑅(𝑎𝑖) → 𝐵(𝑎𝑖)))

=
c′𝑀 (∀𝑥(𝑅(𝑥) → 𝐵(𝑥))

lim
𝑛→∞

c′𝑀 (
𝑛

⋀
𝑖=1
(𝑅(𝑎𝑖) → 𝐵(𝑎𝑖)))

=
c′𝑀 (∀𝑥(𝑅(𝑥) → 𝐵(𝑥))
c′𝑀 (∀𝑥(𝑅(𝑥) → 𝐵(𝑥))

= 1

For Carnap’s 𝜆-continuum c𝜆,

c𝜆 (∀𝑥(𝑅(𝑥) → 𝐵(𝑥))

= lim
𝑛→∞ ∑

𝑛
⋀
𝑖=1

𝑄ℎ𝑖
(𝑎𝑖)⊧

2𝑛

⋁
𝑗=1

(
𝑛
⋀
𝑖=1

(¬𝑅(𝑎𝑖)⇑𝐵(𝑎𝑖)))
𝑗

c𝜆 (
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖))

= lim
𝑛→∞ ∑

𝑛
⋀
𝑖=1

𝑄ℎ𝑖
(𝑎𝑖)⊧

2𝑛

⋁
𝑗=1

(
𝑛
⋀
𝑖=1

(¬𝑅(𝑎𝑖)⇑𝐵(𝑎𝑖)))
𝑗

𝑛−1
∏
𝑖=0

c𝜆 (𝑄ℎ𝑖+1(𝑎𝑖+1) ⋁︀
𝑖

⋀
𝑗=1
𝑄ℎ𝑗(𝑎𝑗))

= lim
𝑛→∞ ∑

𝑛
⋀
𝑖=1

𝑄ℎ𝑖
(𝑎𝑖)⊧

2𝑛

⋁
𝑗=1

(
𝑛
⋀
𝑖=1

(¬𝑅(𝑎𝑖)⇑𝐵(𝑎𝑖)))
𝑗

𝑛−1
∏
𝑖=0

𝑖ℎ𝑖+1 + 𝜆𝛾ℎ𝑖+1
𝑖 + 𝜆

≤ lim
𝑛→∞

𝑛−1
∏
𝑖=0

𝑖 + 𝜆(1 − min
1≤𝑡≤𝑟

𝛾𝑡)

𝑖 + 𝜆

= 0

The last step follows from

∏
𝑛≥1

𝑎𝑛 = 0 ⇐⇒ ∑
𝑛≥1

(1 − 𝑎𝑛) = ∞ for ∀𝑛 ∶ 0 < 𝑎𝑛 ≤ 1

The reason that c𝜆 fails to confirm universal generalization is that the speed of convergence is too

slow.
∞
∑
𝑖=0

𝜆 ⋅ min
1≤𝑡≤𝑟

𝛾𝑡

𝑖 + 𝜆
= ∞
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If we use

c′𝜆 (𝑄𝑗(𝑎𝑛+1) ⋁︀
𝑛

⋀
𝑖=1
𝑄ℎ𝑖(𝑎𝑖)) ∶=

𝑛2
𝑗 + 𝜆𝛾𝑗
𝑛2 + 𝜆

∑
1≤𝑘≤𝑟

𝑛2
𝑘 + 𝜆𝛾𝑘
𝑛2 + 𝜆

=
𝑛2
𝑗 + 𝜆𝛾𝑗
∑

1≤𝑘≤𝑟
𝑛2
𝑘 + 𝜆

rather than c𝜆, then the convergence is guaranteed. And c′𝜆 agrees with the principle Ex but violates

the postulate SP and the frequency interpretation.

In summary, c′𝑀 can confirm “all ravens are black” while c𝜆 can not. Although c′𝑀 can confirm

it yet the temporal order should not be neglected.
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