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Relational semantics for interpreting modal logic

Kripke frame and model

Kripke frame F = (W ,R), where W is the set of states and R is a
binary relation on W

Kripke modelM = (F ,V), where V : Prop→ P(W) is the valuation
on F
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Relational semantics for interpreting modal logic

Satisfaction relation

F,V ,w  p iff w ∈ V(p);

F,V ,w  ⊥: never;

F,V ,w  >: always;

F,V ,w  ¬ϕ iff (F,V ,w 1 ϕ);

F,V ,w  ϕ ∧ ψ iff (F,V ,w  ϕ and F,V ,w  ψ);

F,V ,w  ϕ ∨ ψ iff (F,V ,w  ϕ or F,V ,w  ψ);

F,V ,w  ϕ→ ψ iff (F,V ,w  ϕ ⇒ F,V ,w  ψ);

F,V ,w  ^ϕ iff ∃v(Rwv and F,V , v  ϕ);

F,V ,w  �ϕ iff ∀v(Rwv ⇒ F,V , v  ϕ).

Algorithmic correspondence and canonicity for possibility semantics
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From relational semantics to algebraic semantics

We can extend V to the set of all modal formulas such that
V(ϕ) = {w ∈ W | F,V ,w  ϕ}.

Proposition

V(⊥) = ∅;

V(>) = W ;

V(¬ϕ) = W − V(ϕ);

V(ϕ ∧ ψ) = V(ϕ) ∩ V(ψ);

V(ϕ ∨ ψ) = V(ϕ) ∪ V(ψ);

V(ϕ→ ψ) = (W − V(ϕ)) ∪ V(ψ);

V(^ϕ) = m(V(ϕ)), where
m(X) = {w ∈ W | there is a v ∈ W such that Rwv and v ∈ X};

V(�ϕ) = W −m(W − V(ϕ)).
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Algebraic semantics for interpreting modal logic

Boolean algebra with operator

Boolean algebra with operator (BAO)
B = (B ,⊥B,>B,∧B,∨B,−B,^B), where (B ,⊥B,>B,∧B,∨B,−B) is a
Boolean algebra, ^B satisfies the following two conditions:

(normality) ^B⊥B = ⊥B;
(additivity) ^B(a ∨B b) = ^Ba ∨B ^Bb.

Assignment θ : Prop→ B, which can be extended to all modal
formulas as follows:

Algorithmic correspondence and canonicity for possibility semantics
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Algebraic semantics for interpreting modal logic

Interpretation

θ(⊥) = ⊥B;

θ(>) = >B;

θ(¬ϕ) = −Bθ(ϕ);

θ(ϕ ∧ ψ) = θ(ϕ) ∧B θ(ψ);

θ(ϕ ∨ ψ) = θ(ϕ) ∨B θ(ψ);

θ(ϕ→ ψ) = (−Bθ(ϕ)) ∨B θ(ψ);

θ(^ϕ) = ^Bθ(ϕ);

θ(�ϕ) = −B^B −B θ(ϕ).
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The complex algebra of Kripke frame

Complex algebra

Given a Kripke frame F = (W ,R), its complex algebra is given by
F+ = (P(W),∅,W ,∩,∪, (·)c ,^F

+
), where

(X)c = W − X ;

^F
+
X = m(X).

Proposition

Given a Kripke frame F, its complex frame F+ is a BAO.

Algorithmic correspondence and canonicity for possibility semantics
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The equivalence between Kripke frame and its complex
algebra

For any Kripke frame F = (W ,R) and its complex algebra F+, any
valuation V : Prop→ P(W) on F, any assignment θ : Prop→ P(W) on
F+, any w ∈ W , any formula ϕ,

{w ∈ W | F,V ,w  ϕ} = θV (ϕ) where θV (p) = V(p) for all p ∈ Prop;

{w ∈ W | F,Vθ,w  ϕ} = θ(ϕ) where Vθ(p) = θ(p) for all p ∈ Prop;

F  ϕ iff F+ � ϕ.

Algorithmic correspondence and canonicity for possibility semantics
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Complex algebras are not arbitrary BAOs

An auxiliary definition

In a Boolean algebra B, we say that an element a ∈ B is an atom if
a , ⊥B and there is no element b ∈ B such that ⊥B < b < a.

Example: singleton in the power set algebra

Boolean algebra with no atoms: the Lindenbaum-Tarski algebra of
classical propositional logic with countably many propositional
variables, i.e. the Boolean algebra of propositional formulas (in the
language of countably many propositional variables) modulo
provability equivalence

Algorithmic correspondence and canonicity for possibility semantics
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Complex algebras are not arbitrary BAOs

Properties of BAOs

We say that a BAO B is

complete, if arbitrary meet and arbitrary join exist in B;

atomic, if for any element a , ⊥ there is an atom b ∈ B such that
⊥ < b < a;

completely additive, if ^B(
∨

X) =
∨
{^Ba | a ∈ X}.

Theorem

For any Kripke frame F, its complex algebra F+ is complete, atomic and
completely additive (CABACO), in addition, every element of F+ can be
represented as a (possibly infinite) join of atoms.

Algorithmic correspondence and canonicity for possibility semantics
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One-to-one correspondence between Kripke frames and
CABACOs

Indeed, given a complete, atomic and completely additive BAO, we
can construct an equivalent Kripke frame out of it. (Hint: a complete
atomic Boolean algebra is isomorphic to a powerset algebra)

Furthermore, we have a one-to-one correspondence between
Kripke frames and complete, atomic and completely additive BAOs,
by the constructions we give.
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General frame

General frame and general frame-based model

A general frame G = (W ,R ,A), where A ⊆ P(W) is called the set of
admissible values such that

if X ,Y ∈ A , then X ∩ Y ∈ A (close under intersection);
if X ∈ A , then W − X ∈ A (close under complementation);
if X ∈ A , then m(X) ∈ A (close under modality).

Admissible valuation V : Prop→ A

General frame-based model: M = (G,V) where V is an admissible
valuation

The underlying BAO of a general frame

Given a general frame G = (W ,R ,A), its underlying BAO is given by
G∗ = (A ,∅,W ,∩,∪, (·)c ,^F

+
).

How to construct a general frame from a BAO?

Algorithmic correspondence and canonicity for possibility semantics
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General ultrafilter frame

Ultrafilter

Given a Boolean algebra B, an ultrafilter u on B is a proper subset of B
such that

>B ∈ u;

if a ∈ u and a ≤ b, then b ∈ u (upward closeness);

if a, b ∈ u, then a ∧ b ∈ u (close under meet);

for any a ∈ B, either a ∈ u or −Ba ∈ u.

Algorithmic correspondence and canonicity for possibility semantics
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General ultrafilter frame

Definition

Given a BAO B, its general ultrafilter frame B+ = (W ,R ,A) is defined as
follows:

W is the collection of all ultrafilters on B;

Ruv iff (for all a ∈ B, if a ∈ v then ^Ba ∈ u);

A = {â| a ∈ B}, where â={u ∈ W | a ∈ u}.

What is special of this general frame?

Algorithmic correspondence and canonicity for possibility semantics
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Descriptive general frame

Some properties of general frame

Given a general frame G = (W ,R ,A), it is

differentiated, if for all u, v ∈ W , u = v iff (∀a ∈ A)(u ∈ A ⇔ v ∈ A);

tight, if for all u, v ∈ W , Ruv iff (∀a ∈ A)(a ∈ v ⇒ m(a) ∈ u);

compact, if
⋂

A0 , ∅ for every subset A0 of A which has the finite
intersection property;

descriptive, if it is differentiated, tight and descriptive.

Theorem

Given a BAO B, its general ultrafilter frame B+ is descriptive.

Algorithmic correspondence and canonicity for possibility semantics
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One-to-one correspondence between descriptive general
frames and BAOs

By the constructions we give, there is a one-to-one correspondence
between descriptive general frames and BAOs.
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Canonical extension of Boolean algebra

Definition

Given a Boolean algebra B, its canonical extension is a Boolean algebra
A such that B is a sub-Boolean algebra of A, and satisfies the following
two properties:

(denseness) every element of Bδ is both a meet of joins and a join of
meets of elements from B;

(compactness) for all S,T ⊆ B with
∧

S ≤
∨

T in Bδ, there exist
some finite subsets F ⊆ S and G ⊆ T such that

∧
F ≤
∨

G.

Theorem

Given a Boolean algebra, its canonical extension is unique up to
isomorphism.

Algorithmic correspondence and canonicity for possibility semantics



Duality theory
Algebraic correspondence theory

Distributive modal logic: a case study
Possibility semantics

Canonical extension of map

An element x ∈ Bδ is closed (resp. open) if it is the meet (resp. join) of
some subset of B. We let K(Bδ) and O(Bδ) respectively denote the sets
of closed and open elements of Bδ. It is easy to see that elements in B
are exactly the ones which are both closed and open (i.e. clopen).

Canonical extension of map

For any order-preserving map f : A→ B and all u ∈ Aδ, we define

fσ(u) =
∨
{
∧
{f(a) : x ≤ a ∈ A} : u ≥ x ∈ K(Aδ)}

fπ(u) =
∧
{
∨
{f(a) : y ≥ a ∈ A} : u ≤ y ∈ O(Aδ)}.

Since in a BAO, ^B is join-preserving, it is smooth, i.e. (^B)σ = (^B)π.

Algorithmic correspondence and canonicity for possibility semantics
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Canonical extension of BAO

Definition

Given a BAO B, its canonical extension Bδ is defined as its canonical
extension of the Boolean part together with (^B)σ.

Theorem

Given any BAO B, Bδ = (U(B+))+.
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Correspondence theory

one of the three pillars of modal logic

we say that a modal formula ϕ corresponds to a first-order formula α
if they are valid on the same class of Kripke frames

Example: �p → ��p corresponds to ∀xyz(Rxy ∧ Ryz → Rxz)

Algorithmic correspondence and canonicity for possibility semantics
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Unified correspondence theory

unified correspondence: moving from relational to algebraic
Component:

A modular definition of Sahlqvist and inductive formulas/inequalities,
which can be adapted easily to different semantic environment
An algorithm ALBA to compute first-order correspondents, which can
also be adapted easily

benifit: modularity and easy to generalize
distributive lattice
general lattice
regular modal logic
modal mu calculus
many-valued modal logic
hybrid logic
possibility semantics

extra benefit: applications in proof theory

Algorithmic correspondence and canonicity for possibility semantics
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Unified correspondence: from relational to algebraic

F+ � ϕ(~p) ⇔ F � ϕ(~p)

m

F+ �Pure(ϕ(~p)) ⇔ F �FO(Pure(ϕ(~p)))

Algorithmic correspondence and canonicity for possibility semantics
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The expanded language

ϕ ::= p | i | m | ⊥ | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ^ϕ | �ϕ | _ϕ | �ϕ

i is nominal, m is co-nominal, interpreted as follows:
V(i) = {w} for some w ∈ W , V(m) = W − {v} for some v ∈ W .
_ and � are interpreted as the tense “backward looking” modalities, i.e.:

F,V ,w  _ϕ iff ∃v(Rvw and F,V , v  ϕ).

F,V ,w  �ϕ iff ∀v(Rvw ⇒ F,V , v  ϕ).

Algorithmic correspondence and canonicity for possibility semantics
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Nominals and co-nominals: algebraically

What is the interpretation of nominals, co-nominals and the black
connectives in Boolean algebras?

In a Boolean algebra B, we say that an element a ∈ B is an co-atom
if a , >B and there is no element b ∈ B such that a < b < >B.

In F+, V(i) is an atom, and V(m) is a co-atom.

Indeed, nominals and co-nominals cannot be interpreted in arbitrary
Boolean algebras, since arbitrary Boolean algebra might not have
atoms or co-atoms.

In our setting, we only allow nominals and co-nominals to be
interpreted in CABACO.

Algorithmic correspondence and canonicity for possibility semantics
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Black connectives: algebraically

We expand F+ by defining _F
+

and �F
+

as follows:

_F
+

(X) = {w ∈ W | ∃v(Rvw and v ∈ X)};

�F
+

(X) = {w ∈ W | ∀v(Rvw ⇒ v ∈ X)}.

Observation

_F
+

(X) ⊆ Y iff X ⊆ �F
+

(Y);

^F
+

(X) ⊆ Y iff X ⊆ �F
+

(Y).

Algorithmic correspondence and canonicity for possibility semantics
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Adjoints

Definition

Given any two complete lattices C and C′, the monotone maps
f : C→ C′ and g : C′ → C form an adjoint pair (notation: f a g), if for
every x ∈ C, y ∈ C′,

f(x) ≤C′ y iff x ≤C g(y).

Whenever f a g, f is called the left adjoint of g and g the right adjoint of f .
We also say f is a left adjoint and g is a right adjoint.

Proposition

_F a �F
+
;

^F
+
a �F

+
.

Algorithmic correspondence and canonicity for possibility semantics
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Adjoints

Proposition

For any complete lattice map f : C→ C′,

f is completely join-preserving iff it has a right adjoint;

f is completely meet-preserving iff it has a left adjoint.

We cannot guarantee that _B and �B to be well-defined in arbitrary
BAOs, because ^B (resp. �B) is not necessarily completely join- (resp.
meet-) preserving, but only finite join- (resp. finite meet-) preserving.

Algorithmic correspondence and canonicity for possibility semantics
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Summary

In the BAO setting,

Nominals and co-nominals are respectively interpreted as atoms
and co-atoms in the CABACO;

Black connectives are interpreted as adjoints of standard modal
operators (in the CABACO);

All the interpretations happen in CABACO instead of BAO.

Algorithmic correspondence and canonicity for possibility semantics
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The algorithm, an informal example

The Church-Rosser formula

∀p(^�p ≤ �^p)

∀p∀i∀m(i ≤ ^�p & �^p ≤ m ⇒ i ≤ m)

∀p∀i∀m∀j(i ≤ ^j & j ≤ �p & �^p ≤ m ⇒ i ≤ m)

∀p∀i∀m∀j(i ≤ ^j & _j ≤ p & �^p ≤ m ⇒ i ≤ m)

∀i∀m∀j(i ≤ ^j & & �^_j ≤ m ⇒ i ≤ m)

∀j(^j ≤ �^_j)

∀j(_^j ≤ ^_j)

∀x(R[R−1[{x}]] ⊆ R−1[R[{x}]])

∀x∀y∀z(Rxy ∧ Rxz ⇒ ∃w(Ryw ∧ Rzw))

Algorithmic correspondence and canonicity for possibility semantics
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Some auxiliary definitions

Signed generation tree

Given a modal formula ϕ, the positive (resp. negative) generation tree is
defined by first labelling the root of the generation tree of ϕ with + (resp.
−), and then labelling the children nodes as follows:

Assign the same sign to the children nodes of any node labelled with
�,^,∨,∧;

Assign the opposite sign to the child node of any node labelled with
¬;

Assign the opposite sign to the first child node and the same sign to
the second child node of any node labelled with→.

Nodes in signed generation trees are positive (resp. negative) if they are
signed + (resp. −).

Signed generation trees will be used in the inequalities ϕ ≤ ψ, where
positive generation tree +ϕ and negative generation tree −ψ will be
considered.

Algorithmic correspondence and canonicity for possibility semantics
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The algorithm, formally

The algorithm receives a modal formula ϕ→ ψ as input. The algorithm
first transform the input formula into an inequality ϕ ≤ ψ.
Stage 1: Preprocessing and initialization. In the signed generation
tree of +ϕ and −ψ,

Apply the distribution rules:
Push down +^,+∧, −¬ and − →, by distributing them over nodes
labelled with +∨, and
Push down −�,−∨, +¬ and − →, by distributing them over nodes
labelled with −∧.

Apply the monotone and antitone variable-elimination rules:

α(p) ≤ β(p)

α(⊥) ≤ β(⊥)

β(p) ≤ α(p)

β(>) ≤ α(>)

where β(p) is positive in p and α(p) is negative in p.
Apply the splitting rules:

α ≤ β ∧ γ

α ≤ β α ≤ γ

α ∨ β ≤ γ

α ≤ γ β ≤ γ

Algorithmic correspondence and canonicity for possibility semantics
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The algorithm, formally

Let Preprocess(ϕ ≤ ψ) := {ϕi ≤ ψi | 1 ≤ i ≤ n} be the set of inequalities
obtained by applying the above rules exhaustively. Then the following
rule (which is called the first approximation rule) is applied to each ϕi ≤ ψi

in Preprocess(ϕ ≤ ψ):
ϕ ≤ ψ

i0 ≤ ϕ ψ ≤ m0

where i0 is a nominal and m0 is a co-nominal. After the first
approximation rule, for each inequality ϕi ≤ ψi ∈ Preprocess(ϕ ≤ ψ), the
algorithm produces a system of inequalities {i0 ≤ ϕi , ψi ≤ m0}.

Algorithmic correspondence and canonicity for possibility semantics
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The algorithm, formally

Stage 2: reduction and elimination stage. The present stage aims at
eliminating all propositional variables from each system obtained in the
previous stage. The variables are eliminated by the so called Ackermann
rules, and the other rules in this stage are applied in order to reach the
shape to apply the Ackermann rule.
In this stage, for each {i0 ≤ ϕi , ψi ≤ m0}, we apply the following rules
together with the splitting rules in the previous stage:

Algorithmic correspondence and canonicity for possibility semantics
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The algorithm, formally

Residuation rules:

α ∧ β ≤ γ

α ≤ β→ γ

α ≤ β ∨ γ

α ∧ ¬β ≤ γ

^α ≤ β

α ≤ � β

α ≤ �β

_α ≤ β

α ∧ β ≤ γ

β ≤ α→ γ

α ≤ β ∨ γ

α ∧ ¬γ ≤ β

¬α ≤ β

α ≤ ¬β

α ≤ ¬β

¬α ≤ β

α ≤ β→ γ

α ∧ β ≤ γ

α ≤ β→ γ

β ≤ α→ γ

Algorithmic correspondence and canonicity for possibility semantics
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The algorithm, formally

Approximation rules:

i ≤ ^α
j ≤ α i ≤ ^j

�α ≤ m
α ≤ n �n ≤ m

The nominals and co-nominals introduced by the approximation rules
must not occur in the system before applying the rule.

Algorithmic correspondence and canonicity for possibility semantics
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The algorithm, formally

The Ackermann rules: These two rules are the core of ALBA, since their
application eliminates proposition variables. In fact, all the preceding
steps are aimed at reaching a shape in which the rules can be applied.
Notice that an important feature of these rules is that they are executed
on the whole set of inequalities, and not on a single inequality.

Algorithmic correspondence and canonicity for possibility semantics
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The algorithm, formally

The right-handed Ackermann rule:

The system



α1 ≤ p
...
αn ≤ p
β1 ≤ γ1
...
βm ≤ γm

is replaced by


β1((α1 ∨ . . . ∨ αn)/p) ≤ γ1((α1 ∨ . . . ∨ αn)/p)
...
βm((α1 ∨ . . . ∨ αn)/p) ≤ γm((α1 ∨ . . . ∨ αn)/p)

where:

p does not occur in α1, . . . , αn;

Each βi is positive, and each γi negative in p, for 1 ≤ i ≤ m.

Algorithmic correspondence and canonicity for possibility semantics
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The algorithm, formally

The left-handed Ackermann rule:

The system



p ≤ α1
...
p ≤ αn

β1 ≤ γ1
...
βm ≤ γm

is replaced by


β1((α1 ∧ . . . ∧ αn)/p) ≤ γ1((α1 ∧ . . . ∧ αn)/p)
...
βm((α1 ∧ . . . ∧ αn)/p) ≤ γm((α1 ∧ . . . ∧ αn)/p)

where:

p does not occur in α1, . . . , αn;

Each βi is negative, and each γi positive in p, for 1 ≤ i ≤ m.
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The algorithm, formally

Stage 3: output stage. If in the previous stage, for some
{i0 ≤ ϕi , ψi ≤ m0}, the algorithm gets stuck, i.e. some proposition
variables cannot be eliminated by the application of the reduction rules,
then the algorithm halts and output “failure”. Otherwise, each initial tuple
{i0 ≤ ϕi , ψi ≤ m0} of inequalities after the first approximation has been
reduced to a set of pure inequalities Reduce(ϕi ≤ ψi), and then the
output is a set of quasi-inequalities
{&Reduce(ϕi ≤ ψi)⇒ i0 ≤ m0 : ϕi ≤ ψi ∈Preprocess(ϕ ≤ ψ)}.
If one is interested in the first-order correspondent, the resulting
quasi-inequalities can be translated into first-order logic.

Algorithmic correspondence and canonicity for possibility semantics
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Unified correspondence: from relational to algebraic

F+ � ϕ(~p) ⇔ F � ϕ(~p)

m

F+ �Pure(ϕ(~p)) ⇔ F �FO(Pure(ϕ(~p)))

Algorithmic correspondence and canonicity for possibility semantics



Duality theory
Algebraic correspondence theory

Distributive modal logic: a case study
Possibility semantics

Sahlqvist correspondence

Question: for which class of modal formulas can we get first-order
correspondents?

Chagrova: It is not decidable whether a modal formula is
frame-equivalent to a first-order formula. What we can do is to
approximate.

Sahlqvist and inductive formulas are famous examples.
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Some auxiliary notions

For an n-tuple (p1, . . . , pn) of propositional variables, the order-type ε of
(p1, . . . , pn) is an element in {1, ∂}n. We say that pi has order-type 1 if
εi = 1, and denote ε(pi) = 1 or ε(i) = 1, otherwise pi has order-type ∂ if
εi = ∂, and denote ε(pi) = ∂ or ε(i) = ∂.
For any given formula ϕ(p1, . . . pn), any order-type ε over n, and any
1 ≤ i ≤ n, an ε-critical node in a signed generation tree of ϕ is a leaf node
+pi when εi = 1 or −pi when εi = ∂. An ε-critical branch in a signed
generation tree is a branch from an ε-critical node.
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Classification of nodes in signed generation tree

Nodes in signed generation trees are called ∆-adjoints, syntactically left
residual (SLR), syntactically right adjoint (SRA), and syntactically right
residual (SRR), according to the table below.

Skeleton PIA
∆-adjoints SRA

+ ∨ ∧

− ∧ ∨

+ ∧ � ¬

− ∨ ^ ¬

SLR SRR
+ ∧ ^ ¬

− ∨ � ¬ →

+ ∨ →

− ∧

Table: Skeleton and PIA nodes.
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Some auxiliary notions

A branch in a signed generation tree is called a good branch if it is the
concatenation of two paths P1 and P2, one of which might be of length 0,
such that P1 is a path from the leaf consisting (apart from variable nodes)
of PIA-nodes only, and P2 consists (apart from variable nodes) of
Skeleton-nodes only. A good branch will be called excellent if P1 consists
of SRA nodes only.
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Sahlqvist and inductive inequality

Inductive

For any order-type ε and any irreflexive and transitive binary relation <Ω

on p1, . . . pn, the signed generation tree ∗ϕ (∗ ∈ {−,+}) of a formula
ϕ(p1, . . . pn) is (Ω, ε)-inductive if

for all 1 ≤ i ≤ n, every ε-critical branch with leaf pi is good;
every SRR-node in the critical branch is eitherF(γ, β) orF(β, γ),
where the critical branch is in β, and

ε∂(γ) ≺ ∗ϕ, and
pk <Ω pi for every pk that occurs in γ.

Sahlqvist

For any order-type ε, the signed generation tree ∗ϕ of a formula
ϕ(p1, . . . pn) is ε-Sahlqvist if for all 1 ≤ i ≤ n, every ε-critical branch with
leaf pi is excellent.
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Sahlqvist and inductive inequality

We will refer to <Ω as the dependence order on the variables. An
inequality ϕ ≤ ψ is (Ω, ε)-inductive (resp. ε-Sahlqvist) if the signed
generation trees +ϕ and −ψ are (Ω, ε)-inductive (resp. ε-Sahlqvist). An
inequality ϕ ≤ ψ is inductive (resp. Sahlqvist) if it is (Ω, ε)-inductive
(ε-Sahlqvist) for some (Ω, ε).

Theorem

The algorithm ALBA succeeds on all Sahlqvist and inductive formulas.
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Generalizing to other semantic setting

Analyze semantic environment

Change ALBA rules

Change the classification table
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The duality picture for distributive modal logic

L

Lδ

G

F

e U

�∂

�∂
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Distributive modal logic: formulas and semantics

ϕ ::= p | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ^ϕ | �ϕ | /ϕ | .ϕ

Distributive modal algebra: L = (L ,⊥L,>L,∧L,∨L,^L,�L, /L, .L) where

(L ,⊥L,>L,∧L,∨L) is a distributive lattice;

^L⊥L = ⊥L, ^L(a ∨L b) = ^La ∨L ^Lb;

�L>L = >L, �L(a ∧L b) = �La ∧L �Lb;

/L>L = ⊥L, /L(a ∧L b) = /La ∨L /Lb;

.L⊥L = >L, .L(a ∨L b) = .La ∧L .Lb.
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Some auxiliary notions

Definition

In a lattice L,

an element a is complete join-irreducible if whenever a =
∨

X , we
have a = x for some x ∈ X . Complete meet-irreducible is defined
similarly.

an element a is complete join-prime if whenever a ≤
∨

X then there
exists a b ∈ X such that a ≤ b. Complete meet-prime is defined
similarly.

Proposition

In distributive lattices, an element is complete join- (resp. meet-)
irreducible iff it is complete join- (resp. meet-) prime.
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Some auxiliary notions

Definition

We say that a distributive modal algebra L is perfect if it is complete,
completely distributive and every element is join-generated by some
completely join-irreducible elements, and is meet-generated by some
completely meet-irreducible elements, and all modal operations preserve
arbitrary joins or meets according to their finite preservation.

Proposition

The canonical extension of a distributive modal algebra is perfect.
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The expanded language and interpretations

ϕ ::= p | i | m | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ − ϕ |

^ϕ | �ϕ | /ϕ | .ϕ | _ϕ | �ϕ |J ϕ |I ϕ

In perfect distributive modal algebras, we do not necessarily have
enough atoms/coatoms, but we have enough complete join-(resp.
meet-) irreducibles such that every element can be represented both
as a join of complete join-irreducibles and a meet of complete
meet-irreducibles

We interpret nominals (resp. co-nominals) as complete join-(resp.
meet-) irreducibles

We interpret the black connectives as the adjoints of the white
connectives, since the white connectives are completely join- or
meet-preserving
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The design of ALBA rules

In Stage 1,

The distribution rules depend on the finite join- or meet-preservation
of connectives, X

The monotone and antitone rules depend on the semantic
monotonicity/antitonicity of formulas, X

The splitting rules depend on the properties of meet and join in
lattices, X

For the first approximation rule, by the join- or meet-presentation, we
have the following equivalence: ϕ ≤ ψ
iff {i | i ≤ ϕ} ⊆ {i | i ≤ ψ}
iff ∀i(i ≤ ϕ ⇒ i ≤ ψ)
iff ∀i(i ≤ ϕ ⇒ {m | ψ ≤ m} ⊆ {m | i ≤ m})
iff ∀i(i ≤ ϕ ⇒ ∀m(ψ ≤ m ⇒ i ≤ m))
iff ∀i∀m(i ≤ ϕ & ψ ≤ m ⇒ i ≤ m), X
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The design of ALBA rules

In Stage 2,

The splitting rules, X

The Ackermann rules depend on semantic monotonicity, X

The residuation rules depend on the fact that black connectives are
interpreted as the adjoints of white connectives, which are given
below:

α ∧ β ≤ γ

α ≤ β→ γ

α ≤ β ∨ γ

α − β ≤ γ

^α ≤ β

α ≤ � β

α ≤ �β

_α ≤ β

Cα ≤ β

J β ≤ α

α ≤ Bβ

β ≤I α
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The design of ALBA rules

In Stage 2,

For the approximation rules, we have the following analysis:
i ≤ ^α
iff i ≤ ^

∨
{j | j ≤ α}

iff i ≤
∨
{^j | j ≤ α}

iff there exists j ≤ α such that i ≤ ^j

The first step requires join-presentation, the second step requires that ^
is completely join-preserving, the third step requires that nominals are
interpreted as complete join-primes. In distributive lattices, complete
join-primes are the same as complete join-irreducibles, X
Therefore, we have the following approximation rules:

i ≤ ^α
j ≤ α i ≤ ^j

�α ≤ m
α ≤ n �n ≤ m

i ≤ Cα
α ≤ m i ≤ Cm

Bα ≤ m
i ≤ α B i ≤ m
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Classification of nodes in signed generation tree

Nodes in signed generation trees are called ∆-adjoints, syntactically left
residual (SLR), syntactically right adjoint (SRA), and syntactically right
residual (SRR), according to the table below.

Table: Skeleton nodes and PIA nodes for distributive modal logic.

Skeleton PIA
∆-adjoints SRA
+ ∨ ∧

− ∧ ∨

+ ∧ � B
− ∨ ^ C

SLR SRR
+ ∧ ^ C
− ∨ � B

+ ∨

− ∧
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Possibility semantics

Possibility semantics

a variant of standard Kripke semantics for modal logic

motivation: partial possibilities vs total worlds
constructive study of classical (modal) logic:

intuitionistic-style semantics: refinement relation
constructive completeness proofs
relation to constructive canonical extension

Algorithmic correspondence and canonicity for possibility semantics



Duality theory
Algebraic correspondence theory

Distributive modal logic: a case study
Possibility semantics

Possibility semantics

possibility frame: F = (W ,R ,v,RO(W ,v))

possibility model: M = (F,V) where V : Prop→ RO(W ,v)

refinement relation v: partial order on W

accessibility relation R: binary relation on W

RO(W ,v): set of admissible valuations

intuition behind RO(W ,v): subsets equal to their “double negation”
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Possibility semantics

Satisfaction relation

F,V ,w  p iff w ∈ V(p);

F,V ,w  ϕ ∧ ψ iff F,V ,w  ϕ and F,V ,w  ψ;

F,V ,w  ϕ ∨ ψ iff (∀v v w)(∃u v v)(F,V , u  ϕ or F,V , u  ψ);

F,V ,w  ϕ→ ψ iff (∀v v w)(F,V , v  ϕ ⇒ F,V , v  ψ);

F,V ,w  ¬ϕ iff (∀v v w)(F,V , v 2 ϕ);

F,V ,w  �ϕ iff ∀v(Rwv ⇒ F,V , v  ϕ).
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Algebraic correspondence: from frames to algebras

B  ∀~p(ϕ(~p)) ⇔ F  ϕ(~p)

m

B  ∀~iPure(ϕ(~p)) ⇔ F FO(Pure(ϕ(~p)))

In the dual BAO of Kripke frames, nominals are interpreted as
atoms.

How about possibility semantics?
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Dual algebras

Given F = (W ,v,R ,RO(W ,v)), the regular open dual BAO BRO

BRO is a complete and completely additive BAO, but not necessarily
atomic.

lack of atomicity: what is the consequence in correspondence
theory?
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Nominals and their interpretations

Algebraic setting Interpretation Dually corresponding to
for nominals

perfect atoms singletons
Boolean algebras

perfect complete w ↑
distributive lattices join-primes

perfect complete Galois closure of singletons
general lattices join-irreducibles

constructive closed elements N.A.
canonical extensions

complex algebras regular open
of possibility frames closures of singletons
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