On the Finite Model Property of S4 Logics with Finite Width

李楷

北大哲学系, 2016.1.29

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

4 The f.m.p. for logics without infinite though chain

For transitive logics, we have many results in modal logic: concerning finite model property in modal logic.

- (Segerberg, 1971) and (Bull and Segerberg, 1984) shows that any transitive logic with finite depth has the f.m.p.
- (Fine, 1974) shows that any transitive logic with finite width is complete
- (Bull, 1966) and (Fine, 1971) shows that any normal extension of S4.3 has the f.m.p.
- (Xu, 2002) and (Xu, 2013) show that any normal extension of G.3 and a class of normal extension of K4.3 has the f.m.p.and is finitely aximotizable,
- (Li, 2011) shows that any any normal extension of K4.3z has the f.m.p.and is finitely aximotizable,
- In this slides we mainly concern finite model property of reflective

Finite Width

Definition

Finite width S4 logic is a logic containing following formulas $I_n(n > 0)$ and S4 where:

$$\mathbf{I}_n = \bigwedge_{i=0}^n \Diamond p_i \to \bigvee_{0 \leqslant i \neq j \leqslant n} \Diamond (p_i \land (p_j \lor \Diamond p_j))$$

Finite Width

Definition

Finite width S4 logic is a logic containing following formulas $I_n(n > 0)$ and S4 where:

$$\mathbf{I}_n = \bigwedge_{i=0}^n \Diamond p_i \to \bigvee_{0 \leqslant i \neq j \leqslant n} \Diamond (p_i \land (p_j \lor \Diamond p_j)) \diamond$$

Let $\mathfrak{F} = (W, R)$ be any frame, let $w, u \in W$ and let $A \subseteq W$. w and u are (*R*-)*incomparable* if neither *wRu* nor *uRw*. A is a *cluster* if $A \neq \emptyset$ and for all $w, u \in A$, *wRu* and *uRw*. A is an *anti-chain* if for all $w, u \in A$, $w \neq u$ only if w and u are incomparable.

Finite Width

Definition

Finite width S4 logic is a logic containing following formulas $I_n(n > 0)$ and S4 where:

$$\mathbf{I}_n = \bigwedge_{i=0}^n \Diamond p_i \to \bigvee_{0 \leqslant i \neq j \leqslant n} \Diamond (p_i \land (p_j \lor \Diamond p_j)) \diamond$$

Let $\mathfrak{F} = (W, R)$ be any frame, let $w, u \in W$ and let $A \subseteq W$. w and u are (*R*-)*incomparable* if neither *wRu* nor *uRw*. *A* is a *cluster* if $A \neq \emptyset$ and for all $w, u \in A$, *wRu* and *uRw*. *A* is an *anti-chain* if for all $w, u \in A$, $w \neq u$ only if w and u are incomparable.

Fact

Any frame \mathfrak{F} of a finite width (containing \mathbf{I}_n) S4 logic is reflective,

p-morphism

Definition (*p*-morphism)

- Let $\mathfrak{F}=(\mathit{W},\mathit{R})$ and $\mathfrak{F}'=(\mathit{W},\mathit{R}')$ be two frame. A function
- $f\colon W
 ightarrow W$ is a *p*-morphism from \mathfrak{F} to \mathfrak{F}' if
 - f is a surjection from W to W,
 - **②** for all w, u ∈ W, wRu implies f(w)R'f(u),
 - for all $w \in W$ and $u' \in U$, f(w)Ru' implies wRu for some $u \in W$ such that f(u) = u'.

 \mathfrak{F}' is a *p*-morphic image of \mathfrak{F} if there is a *p*-morphism from \mathfrak{F} to \mathfrak{F}' .

p-morphism

Definition (*p*-morphism)

- Let $\mathfrak{F}=(\mathit{W},\mathit{R})$ and $\mathfrak{F}'=(\mathit{W},\mathit{R}')$ be two frame. A function
- $f\colon W
 ightarrow W$ is a *p-morphism* from \mathfrak{F} to \mathfrak{F}' if
 - f is a surjection from W to W,
 - 2 for all $w, u \in W$, wRu implies f(w)R'f(u),
 - for all $w \in W$ and $u' \in U$, f(w)Ru' implies wRu for some $u \in W$ such that f(u) = u'.
- \mathfrak{F}' is a *p*-morphic image of \mathfrak{F} if there is a *p*-morphism from \mathfrak{F} to $\mathfrak{F}'.$

Fact

If \mathfrak{F} is a frame of some logic and \mathfrak{F}' is a p-morphic image of \mathfrak{F} , then \mathfrak{F}' is also a frame of this logic.

Chains

Definition

Let $\mathfrak{F} = (W, R)$ be any frame. A sequence of points $w_1, w_2, \ldots, w_n \in W$ is an *R*-chain if $w_{i+1}Rw_i$ for each *i* with $0 < i \le n$. We use C, C', \ldots for *R*-chains, and we abuse the notation $w \in C$, $C \cap C'$ and $C \subseteq A$ for *w* is an element in this sequence, the set consisting of the common elements of *C* and *C'*, and every element of *C* is in *A*. *R*-chain w_1, w_2, \ldots, w_n is strict if not $w_i Rw_{i+1}$ for all *i* with $0 < i \le n$. \mathfrak{F} is Notherian if \mathfrak{F} is transitive and there is no infinite strict *R*-chain.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Chains

Definition

Let $\mathfrak{F} = (W, R)$ be any frame. A sequence of points $w_1, w_2, \ldots, w_n \in W$ is an *R*-chain if $w_{i+1}Rw_i$ for each *i* with $0 < i \le n$. We use C, C', \ldots for *R*-chains, and we abuse the notation $w \in C, C \cap C'$ and $C \subseteq A$ for *w* is an element in this sequence, the set consisting of the common elements of *C* and *C'*, and every element of *C* is in *A*. *R*-chain w_1, w_2, \ldots, w_n is strict if not $w_i Rw_{i+1}$ for all *i* with $0 < i \le n$. \mathfrak{F} is Notherian if \mathfrak{F} is transitive and there is no infinite strict *R*-chain.

Theorem (Completeness Result by Fine)

Any logic contains $I_n(n > 0)$ and S4 is characterized by a class of Notherian frames.

Witness Set

Definition (witness set)

Let $\mathfrak{M} = (W, R, V)$ be any model and let α be any formula satisfiable on \mathfrak{M} . We use $final(\alpha)$ for the set of *R*-maximal points in $\{w \in W | \mathfrak{M}, w \models \alpha\}$, i.e., for each $w \in W$, $w \in final(\alpha)$ iff $\mathfrak{M}, w \models \alpha$ and for each $u \in W$ such that $\mathfrak{M}, u \models \alpha$, wRu implies uRw. Furthermore we use $sub(\alpha)$ for the set of all subformulas of α . The witness set of α (w.r.t. \mathfrak{M}) is $\bigcup_{\beta \in sub(\alpha)} final(\beta)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Witness Set

Definition (witness set)

Let $\mathfrak{M} = (W, R, V)$ be any model and let α be any formula satisfiable on \mathfrak{M} . We use $final(\alpha)$ for the set of *R*-maximal points in $\{w \in W | \mathfrak{M}, w \models \alpha\}$, i.e., for each $w \in W$, $w \in final(\alpha)$ iff $\mathfrak{M}, w \models \alpha$ and for each $u \in W$ such that $\mathfrak{M}, u \models \alpha$, wRu implies uRw. Furthermore we use $sub(\alpha)$ for the set of all subformulas of α . The witness set of α (w.r.t. \mathfrak{M}) is $\bigcup_{\beta \in sub(\alpha)} final(\beta)$.

Fact

Let $\mathfrak{M} = (W, R, V)$ be any model and let α be any formula satisfiable on \mathfrak{M} . If \mathfrak{M} is of finite width, then the witness set of α is finite.

Notherian

Lemma

Let $\mathfrak{M} = (W, R, V)$ be any Notherian model and let α be any formula satisfiable on \mathfrak{M} . If there is a p-morphism f from (W, R)to $\mathfrak{F} = (W', R')$, the witness set A of α is a subset of W and the f restricted to A is an isomorphism, then α is satisfiable in \mathfrak{F} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Notherian

Lemma

Let $\mathfrak{M} = (W, R, V)$ be any Notherian model and let α be any formula satisfiable on \mathfrak{M} . If there is a p-morphism f from (W, R)to $\mathfrak{F} = (W', R')$, the witness set A of α is a subset of W and the f restricted to A is an isomorphism, then α is satisfiable in \mathfrak{F} .

Definition

A logic has the finite model property (f.m.p.) if it is characterized by a class of finite model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Notherian

Lemma

Let $\mathfrak{M} = (W, R, V)$ be any Notherian model and let α be any formula satisfiable on \mathfrak{M} . If there is a p-morphism f from (W, R)to $\mathfrak{F} = (W', R')$, the witness set A of α is a subset of W and the f restricted to A is an isomorphism, then α is satisfiable in \mathfrak{F} .

Definition

A logic has the finite model property (f.m.p.) if it is characterized by a class of finite model.

Let ${\bf L}$ be any logic. In order to show that ${\bf L}$ has the f.m.p, we want to prove that:

for any formula α consistent with **L** and any model $\langle \mathfrak{F}, V \rangle$ satisfying α there is a finite model $\langle \mathfrak{F}', V \rangle$ satisfying α and \mathfrak{F}' is a

Interval and Substructure

Definition

Let $\mathfrak{F} = (W, R)$ be any frame, and let $A \subseteq W$. A is an *interval* if for all $w, u \in A$ and each $v \in W$, wRvRu only if $v \in A$. We use $A\uparrow_R$ for the set $\{w \in W | uRw \text{ for some } u \in A\}$, and $w\uparrow_R$ for $w\uparrow_R$ for.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Interval and Substructure

Definition

Let $\mathfrak{F} = (W, R)$ be any frame, and let $A \subseteq W$. A is an *interval* if for all $w, u \in A$ and each $v \in W$, wRvRu only if $v \in A$. We use $A\uparrow_R$ for the set $\{w \in W | uRw \text{ for some } u \in A\}$, and $w\uparrow_R$ for $w\uparrow_R$ for.

Definition

Let $\mathfrak{F} = \langle W, R \rangle$ be any frame. Frame $\mathfrak{G} = \langle U, S \rangle$ is a subframe of \mathfrak{F} if:

- $U \subseteq W$,
- $S = R \cap (U \times U)$.

Let $B \subseteq W$. $\mathfrak{G} = \langle U, S \rangle$ is the subframe of \mathfrak{F} restricted to B if U = B and \mathfrak{G} is a subframe of \mathfrak{F} . $\mathfrak{G} = \langle U, S \rangle$ is a generated subframe of \mathfrak{F} from B if $U = B\uparrow_{P}$. The submodel generated

Interval Cuts

Definition (Interval Cuts)

Let $\mathfrak{M} = (W, R, V)$ be any model, let α be any formula satisfiable on \mathfrak{M} and let A be the witness set of α . The *interval cuts* of \mathfrak{M} w.r.t. α is a sequence of anti-chains C_1, C_2, \ldots, C_n such that C_1 is the set of all R-maximal points in \mathfrak{M} . For each k + 1, C_{k+1} is a maximal anti-chain containing the R'-maximal elements of A in the submodel $\mathfrak{M}' = \langle W, R', V \rangle$ of \mathfrak{M} restricted to $W - C_k \uparrow_R$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Interval Cuts

Definition (Interval Cuts)

Let $\mathfrak{M} = (W, R, V)$ be any model, let α be any formula satisfiable on \mathfrak{M} and let A be the witness set of α . The *interval cuts* of \mathfrak{M} w.r.t. α is a sequence of anti-chains C_1, C_2, \ldots, C_n such that C_1 is the set of all R-maximal points in \mathfrak{M} . For each k + 1, C_{k+1} is a maximal anti-chain containing the R'-maximal elements of A in the submodel $\mathfrak{M}' = \langle W, R', V \rangle$ of \mathfrak{M} restricted to $W - C_k \uparrow_R$.

Lemma

Let $\mathfrak{M} = (W, R, V)$ be any Notherian model of finite width and let α be any formula satisfiable on \mathfrak{M} . Then the interval cuts of \mathfrak{M} w.r.t. α is a finite sequence.

Iner-connected Intervals

Definition

Let $\mathfrak{F} = (W, R)$ be any frame, let $w, u \in W$ and let $A \subseteq W$. w is tough if either there are incomparable points in $u, v \in W$ such that w is an R-maximal point to see both u and v, (i.e., wRu and wRv, and for each $w' \in W$, w'Ru, w'Rv and wRw' only if w'Rw) or w is an R-maximal point in W, (i.e., for each $u \in W$, wRu only if uRw).

Iner-connected Intervals

Definition

Let $\mathfrak{F} = (W, R)$ be any frame, let $w, u \in W$ and let $A \subseteq W$. w is *tough* if either there are incomparable points in $u, v \in W$ such that w is an R-maximal point to see both u and v, (i.e., wRu and wRv, and for each $w' \in W$, w'Ru, w'Rv and wRw' only if w'Rw) or w is an *R*-maximal point in *W*, (i.e., for each $u \in W$, *wRu* only if *uRw*). An interval B is iner-connected if it is an R-chain and for each $w, u \in B$, if w is tough, then uRw. An iner-connected interval B is maximal w.r.t. A if $B \subseteq A$ and there is no iner-connected interval B' such that $B \subset B' \subset A$.

Iner-connected Intervals

Definition

Let $\mathfrak{F} = (W, R)$ be any frame, let $w, u \in W$ and let $A \subseteq W$. w is *tough* if either there are incomparable points in $u, v \in W$ such that w is an R-maximal point to see both u and v, (i.e., wRu and wRv, and for each $w' \in W$, w'Ru, w'Rv and wRw' only if w'Rw) or w is an *R*-maximal point in *W*, (i.e., for each $u \in W$, *wRu* only if *uRw*). An interval B is iner-connected if it is an R-chain and for each $w, u \in B$, if w is tough, then uRw. An iner-connected interval B is maximal w.r.t. A if $B \subseteq A$ and there is no iner-connected interval B' such that $B \subset B' \subset A$.

p-morphism and Iner-connected Intervals

Theorem (*p*-morphism and Iner-connected Intervals)

Let $\mathfrak{M} = (W, R, V)$ be any Notherian S4-modal, let α be any formula satisfiable on \mathfrak{M} and let C_1, C_2, \ldots, C_n be an interval cuts of \mathfrak{M} w.r.t. α . Let $W \subseteq W$ be the set such that $w \in W$ iff w is an R-maximal point in an iner-connected interval B is maximal w.r.t. $C_{k+1}\uparrow_R - C_k\uparrow_R$, then the submodel restricted to W is a p-morhic image of \mathfrak{M} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Tough Chains

Definition

 w_1, w_2, \ldots, w_n is an (*R*-)tough chain if it is a strict *R*-chain and w_i is tough for all *i*. *R*-chain (*R*-tough chain) *C* is maximal with respect to an interval A if $C \subseteq A$, and there is no longer R-chain (*R*-tough chain) in A contains every elements in C(, note that maximal implies filled). R-chain (R-tough chain) w_1, w_2, \ldots, w_n is *filled* if for each $w \in W$ (that is tough), $w_{i+1}RwRw_i$ for some i < nonly if either wRw_i or $w_{i+1}Rw$. Sequences w_1, w_2, \ldots, w_n and u_1, u_2, \ldots, u_m are conjugate if $w_1 = u_1$ and $w_n = u_m$. A sequence of *R*-chains are conjugate if any two of these chains are conjugate. A sequence of *R*-chains C_1, C_2, \ldots is *anti-chain generable* if they are distinct, pairwise conjugate and for each *i* such that 1 < i < nwhere n is the length of C. we is incomparable to any element

Lemma

Let $\mathfrak{F} = (W, R)$ be any frame without infinite tough chain. Suppose there is an inifinite sequence C_1, C_2, \ldots of distinct, filled and conjugate though chains. Then there is an inifinite sequence $S = (C'_1, C'_2, \ldots)$ of filled and anti-chain generable though chians such that each C'_i is a subchain of C_j for some $j \in \omega$.

Proof.

Let w_1, w_2, \ldots, w_n be C_1 . Without losing any generality, suppose n > 2. Then there is an infinite sub-sequence of S: $C_{i_1}, C_{i_2}, C_{i_3}, \ldots$ such that $C_{i_1} = C_1$ and for all j > 1 $C_{i_1} \cap C_{i_2} = C_{i_1} \cap C_{i_2}$. (because C_1 is finite, $\{C_1 \cap C_i | i \in \omega\}$ is finite, recall that each C_i is distinct.) $C_{i_1} \cap C_{i_2} = C_{i_1}$, for otherwise C_{i_1} is a subchain of C_{i_2} , contrary to our presupposition that they are filled and conjugate. Consider any $w_k \in C_{i_1} - (C_{i_1} \cap C_{i_2})$ and any j > 1. Let $C_{i_i} = (u_1, u_2, \dots, u_l)$. Without losing any generality, suppose $w_{k-1}, w_{k+1} \in C_{i_1} \cap C_{i_2}$ and $w_{k-1} = u_n, w_{k+1} = u_m$. Then $m \neq n + 1$, for otherwise $u_m R w_k R u_n$, contrary to that C_{i_i} is filled. Obviously w_k and $u_{k'}$ are incomparable for each k' such that n < V < m

Lemma

Let $\mathfrak{F} = (W, R)$ be any frame without infinite tough chain, let A be an interval. Then there is no infinite sequence of distinct and maximal though chains.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lemma

Let $\mathfrak{F} = (W, R)$ be any frame without infinite tough chain, let A be an interval. Then there is no infinite sequence of distinct and maximal though chains.

Proof.

Suppose there are inifinitely many such though chains. We prove that there is an infinite anti-chain.

There is an infinite sequence $S = (C_1, C_2, ...)$ of distinct and conjugate though chains. This is because any two distinct first elements of these though chains maximal w.r.t. A, say C and C', are incomparable, for otherwise C or C' is not maximal w.r.t. A. The same goes for the last elements.

Proof.

Hence by finite width, if there is no such S_1 , there is an infinite anti-chain.

We constuct an infinite anti-chain as follows:

Using Lemma 18, we have an inifinite sequence $S_1 = (C_1^1, C_2^1, C_3^1, ...)$ of filled and anti-chain generable though chians such that each C_i^1 is a subchain of C_j for some $j \in \omega$. Let w_1 be the second element of C_1^1 .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof.

If we have sequence $S_n = (C_1^n, C_2^n, C_3^n, \ldots)$ and w_n , using Lemma 18 on $C_2^n, C_3^n, C_3^n, \ldots$ we obtain an inifinite sequence $S_{n+1} = (C_1^{n+1}, C_2^{n+1}, C_3^{n+1}, \ldots)$ of filled and anti-chain generable though chians such that each C_i^{n+1} is a subchain of C_j^n for some $j \in \omega$ with j > 1. Let w_{n+1} be the second element of C_1^{n+1} .

Proof.

Now we claim that the sequence $w_1, w_2, w_3, ...$ is an anti-chain. Consider any nonzero $i < j \in \omega$. w_i and w_j are the second element of C_1^i and C_1^j respectively. An easy induction can show that C_1^j is a subchain of C_k^i for some $k \in \omega$ with k > 1. Furthermore by the definition of anti-chain generable, C_1^j has at least three elements, we can get that w_j is neither the first nor the last element of C_k^i , and then w_i and w_j are incomparable.

Theorem

Let **L** be any finite width **S4** logic without infinite though chain. Then **L** has the f.m.p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

Let \mathbf{L} be any finite width $\mathbf{S4}$ logic without infinite though chain. Then \mathbf{L} has the f.m.p.

Proof.

Consider any **L**-consistent formula α . We know that there is a point generated and Notherian **L**-model $\mathfrak{M} = \langle W, R, V \rangle$ such that α is true at the root of \mathfrak{M} . Let C_1, C_2, \ldots, C_n be an interval cuts of \mathfrak{M} w.r.t. α and let $\mathfrak{M}' = \langle W, R', V \rangle$ be the submodel of \mathfrak{M} such that $W = \{ w \in W | w \text{ is tough} \} \cup \bigcup_{0 < i \le n} C_i$. We have W is finite. We only need to show that there is a *p*-morphism *f* from $\langle W, R \rangle$ to $\langle W, R' \rangle$ and *f* restricted to *W* is an isomorphism.

f.m.p. for logics without infinite though chain

Theorem (f.m.p. for finite width S4 logic without infinite though chain)

Let L be any finite width S4 logic without infinite though chain. Then L has the f.m.p.

Proof.

It is easy to check that for each $w \in W$, $w \in W'$ iff w is an *R*-maximal point in an inerconnected interval maximal w.r.t. $C_{k+1}\uparrow_R - C_k\uparrow_R$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bull, R. A. (1966). That all normal extensions of S4.3 have the finite model property [J]. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 12:341–344.

- Bull, R. A. and Segerberg, K. (1984). Basic modal logic [A]. In Gabbay, D. M. and Guenthner, F., editors, *Handbook of Philosophical Logic*, volume 2, pages 1–88. Reidel, Dordrecht.
- Fine, K. (1971). The logics containing S4.3 [J]. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 17:371–376.
- Fine, K. (1974). Logics containing K4, part I [J]. The Journal of Symbolic Logic, 39:229–237.
- Li, K. (2011). Normal extensions of K4.3Z [Z]. Manuscript,
 August 2011, Department of Philosophy, Wuhan University.
 Segerberg, K. (1971). An Essay in Classical Modal Logic [D].

volume 13. Filosofiska Föreningen och Filosofiska Institutionen vid Uppsala Universitet, Uppsala.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Xu, M. (2002). Normal extensions of G.3 [J]. *Theoria*, 68(2):170–176.

Xu, M. (2013). Some normal extensions of K4.3 [J]. Studia Logica, 101 (3):583–599.