
Introduction Components as Coalgebras UML Logic Future Directions

Modeling Complex Systems: A
Coalgebraic Perspective

Sun Meng

LMAM & Department of Informatics, School of Mathematical Sciences,
Peking University,

Beijing, China
http://www.math.pku.edu.cn/teachers/sunm

November 29, 2016

Introduction Components as Coalgebras UML Logic Future Directions

Roadmap

1. Introduction.

2. Components as Coalgebras.

3. A Coalgebraic Perspective on UML.

4. Coalgebras and Logic (almost ∅).

5. Future Opportunities.

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• The development of science proceeds in a cycle of activi-
ties:

• Analysis: Understand the problem;
• Abstraction: creating a mathematical model by eliminating

irrelevant details in order to identify what is essential;
• Reasoning: reasoning within the model, getting a collection

of general laws;
• Specialization: the general laws are instantiated to the spe-

cific problem and a solution (= an implementation) is cal-
culated, which leads to further understanding, and input for
another round of activities.

• Is this process relevant to the development of software sys-
tems?

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• The development of science proceeds in a cycle of activi-
ties:

• Analysis: Understand the problem;
• Abstraction: creating a mathematical model by eliminating

irrelevant details in order to identify what is essential;
• Reasoning: reasoning within the model, getting a collection

of general laws;
• Specialization: the general laws are instantiated to the spe-

cific problem and a solution (= an implementation) is cal-
culated, which leads to further understanding, and input for
another round of activities.

• Is this process relevant to the development of software sys-
tems?

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• The development of science proceeds in a cycle of activi-
ties:

• Analysis: Understand the problem;
• Abstraction: creating a mathematical model by eliminating

irrelevant details in order to identify what is essential;
• Reasoning: reasoning within the model, getting a collection

of general laws;
• Specialization: the general laws are instantiated to the spe-

cific problem and a solution (= an implementation) is cal-
culated, which leads to further understanding, and input for
another round of activities.

• Is this process relevant to the development of software sys-
tems?

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• The development of science proceeds in a cycle of activi-
ties:

• Analysis: Understand the problem;
• Abstraction: creating a mathematical model by eliminating

irrelevant details in order to identify what is essential;
• Reasoning: reasoning within the model, getting a collection

of general laws;
• Specialization: the general laws are instantiated to the spe-

cific problem and a solution (= an implementation) is cal-
culated, which leads to further understanding, and input for
another round of activities.

• Is this process relevant to the development of software sys-
tems?

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• The development of science proceeds in a cycle of activi-
ties:

• Analysis: Understand the problem;
• Abstraction: creating a mathematical model by eliminating

irrelevant details in order to identify what is essential;
• Reasoning: reasoning within the model, getting a collection

of general laws;
• Specialization: the general laws are instantiated to the spe-

cific problem and a solution (= an implementation) is cal-
culated, which leads to further understanding, and input for
another round of activities.

• Is this process relevant to the development of software sys-
tems?

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• The development of software systems proceeds in a cycle
of activities:

• Requirement Analysis: Understanding the domain problem;
• System Modeling: Creating a model for the system by elimi-

nating irrelevant details in order to identify essential proper-
ties;

• Detailed Design: Providing detailed specification of the sys-
tem;

• Implementation: Final System;
• Verification and Testing: To grarantee the correctness of the

final implementation w.r.t. the specification.

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• The development of software systems proceeds in a cycle
of activities:

• Requirement Analysis: Understanding the domain problem;
• System Modeling: Creating a model for the system by elimi-

nating irrelevant details in order to identify essential proper-
ties;

• Detailed Design: Providing detailed specification of the sys-
tem;

• Implementation: Final System;
• Verification and Testing: To grarantee the correctness of the

final implementation w.r.t. the specification.

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• The development of software systems proceeds in a cycle
of activities:

• Requirement Analysis: Understanding the domain problem;
• System Modeling: Creating a model for the system by elimi-

nating irrelevant details in order to identify essential proper-
ties;

• Detailed Design: Providing detailed specification of the sys-
tem;

• Implementation: Final System;
• Verification and Testing: To grarantee the correctness of the

final implementation w.r.t. the specification.

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• The development of software systems proceeds in a cycle
of activities:

• Requirement Analysis: Understanding the domain problem;
• System Modeling: Creating a model for the system by elimi-

nating irrelevant details in order to identify essential proper-
ties;

• Detailed Design: Providing detailed specification of the sys-
tem;

• Implementation: Final System;
• Verification and Testing: To grarantee the correctness of the

final implementation w.r.t. the specification.

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• The development of software systems proceeds in a cycle
of activities:

• Requirement Analysis: Understanding the domain problem;
• System Modeling: Creating a model for the system by elimi-

nating irrelevant details in order to identify essential proper-
ties;

• Detailed Design: Providing detailed specification of the sys-
tem;

• Implementation: Final System;
• Verification and Testing: To grarantee the correctness of the

final implementation w.r.t. the specification.

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• Component based systems: The notion of components and
the compositional design principle are well established in all
other engineering disciplines, but until 1990s, were unsuc-
cessful in the world of software systems.

• Component Software Technologies: CORBA (OMG), COM+
(MicroSoft), JavaBeans (Sun), ...

• What is a software component?
• Software components are executable units of independent

production, acquisition, and deployment that can be com-
posed into a functioning system. (C. Szyperski, D. Gruntz
and S.Murer 2003)

• The characteristic properties of a component are that it:
• is a unit of independent deployment;
• is a unit of third-party composition;
• has no external observable state

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• Component based systems: The notion of components and
the compositional design principle are well established in all
other engineering disciplines, but until 1990s, were unsuc-
cessful in the world of software systems.

• Component Software Technologies: CORBA (OMG), COM+
(MicroSoft), JavaBeans (Sun), ...

• What is a software component?
• Software components are executable units of independent

production, acquisition, and deployment that can be com-
posed into a functioning system. (C. Szyperski, D. Gruntz
and S.Murer 2003)

• The characteristic properties of a component are that it:
• is a unit of independent deployment;
• is a unit of third-party composition;
• has no external observable state

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• Component based systems: The notion of components and
the compositional design principle are well established in all
other engineering disciplines, but until 1990s, were unsuc-
cessful in the world of software systems.

• Component Software Technologies: CORBA (OMG), COM+
(MicroSoft), JavaBeans (Sun), ...

• What is a software component?
• Software components are executable units of independent

production, acquisition, and deployment that can be com-
posed into a functioning system. (C. Szyperski, D. Gruntz
and S.Murer 2003)

• The characteristic properties of a component are that it:
• is a unit of independent deployment;
• is a unit of third-party composition;
• has no external observable state

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• Component based systems: The notion of components and
the compositional design principle are well established in all
other engineering disciplines, but until 1990s, were unsuc-
cessful in the world of software systems.

• Component Software Technologies: CORBA (OMG), COM+
(MicroSoft), JavaBeans (Sun), ...

• What is a software component?
• Software components are executable units of independent

production, acquisition, and deployment that can be com-
posed into a functioning system. (C. Szyperski, D. Gruntz
and S.Murer 2003)

• The characteristic properties of a component are that it:
• is a unit of independent deployment;
• is a unit of third-party composition;
• has no external observable state

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• Component based systems: The notion of components and
the compositional design principle are well established in all
other engineering disciplines, but until 1990s, were unsuc-
cessful in the world of software systems.

• Component Software Technologies: CORBA (OMG), COM+
(MicroSoft), JavaBeans (Sun), ...

• What is a software component?
• Software components are executable units of independent

production, acquisition, and deployment that can be com-
posed into a functioning system. (C. Szyperski, D. Gruntz
and S.Murer 2003)

• The characteristic properties of a component are that it:
• is a unit of independent deployment;
• is a unit of third-party composition;
• has no external observable state

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• Could we apply the general approach to the development of
component-based systems?

• Key: resort to the algebra vs. coalgebra duality as a mathe-
matical explanation of the intuitive symmetry between data
and behavioral structures.

• Algebra: abstract description of data structures. The em-
phasis is on construction.

• Coalgebra: abstract description of systems’ behaviors. The
emphasis is on observation.

• A mathematical model for components and their composi-
tion.

• Applying the model to component-based complex system
modeling and design.

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• Could we apply the general approach to the development of
component-based systems?

• Key: resort to the algebra vs. coalgebra duality as a mathe-
matical explanation of the intuitive symmetry between data
and behavioral structures.

• Algebra: abstract description of data structures. The em-
phasis is on construction.

• Coalgebra: abstract description of systems’ behaviors. The
emphasis is on observation.

• A mathematical model for components and their composi-
tion.

• Applying the model to component-based complex system
modeling and design.

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• Could we apply the general approach to the development of
component-based systems?

• Key: resort to the algebra vs. coalgebra duality as a mathe-
matical explanation of the intuitive symmetry between data
and behavioral structures.

• Algebra: abstract description of data structures. The em-
phasis is on construction.

• Coalgebra: abstract description of systems’ behaviors. The
emphasis is on observation.

• A mathematical model for components and their composi-
tion.

• Applying the model to component-based complex system
modeling and design.

Introduction Components as Coalgebras UML Logic Future Directions

Motivation: Question and Approach

• Could we apply the general approach to the development of
component-based systems?

• Key: resort to the algebra vs. coalgebra duality as a mathe-
matical explanation of the intuitive symmetry between data
and behavioral structures.

• Algebra: abstract description of data structures. The em-
phasis is on construction.

• Coalgebra: abstract description of systems’ behaviors. The
emphasis is on observation.

• A mathematical model for components and their composi-
tion.

• Applying the model to component-based complex system
modeling and design.

Introduction Components as Coalgebras UML Logic Future Directions

The Basic Duality

• Algebra: abstract description of data structures.

[nil, cons] : 1 + A× A∗ → A∗

• The emphasis is on construction;
• In general:

a tool box:
eee

an assembly process:
eee

artifact
p−→ artifact

Introduction Components as Coalgebras UML Logic Future Directions

The Basic Duality

• Coalgebra: abstract description of systems’ behaviors.

〈head, tail〉 : A∞ −→ 1 + A× A∞

• The emphasis is on observation;
• In general:

lens: ©_©
an observational structure: universe

p−→ ©_© universe

Introduction Components as Coalgebras UML Logic Future Directions

Functional Components

• Question: What is the appropriate model for a component?

f : I −→ O

• The behavior of a function is captured by the output it pro-
duces, which is completely determined by the supplied in-
put.

• Reality is not so simple!

Introduction Components as Coalgebras UML Logic Future Directions

Functional Components

• Question: What is the appropriate model for a component?

f : I −→ O

• The behavior of a function is captured by the output it pro-
duces, which is completely determined by the supplied in-
put.

• Reality is not so simple!

Introduction Components as Coalgebras UML Logic Future Directions

Functional Components

• Question: What is the appropriate model for a component?

f : I −→ O

• The behavior of a function is captured by the output it pro-
duces, which is completely determined by the supplied in-
put.

• Reality is not so simple!

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• Is there any other possibilities?
• One may know how to produce output from input but not in

all cases:
f : I −→ O + 1

• One may be uncertain of the outcome of , in the sense that
the evolution of the system being observed may be nonde-
terministic:

f : I −→PO

• One may recognize that there is some environmental (or
context) information. (For example, it might be the case
that the computation will modify the environment, thus influ-
encing latter computation:

f : I −→ (O × U)U

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• Is there any other possibilities?
• One may know how to produce output from input but not in

all cases:
f : I −→ O + 1

• One may be uncertain of the outcome of , in the sense that
the evolution of the system being observed may be nonde-
terministic:

f : I −→PO

• One may recognize that there is some environmental (or
context) information. (For example, it might be the case
that the computation will modify the environment, thus influ-
encing latter computation:

f : I −→ (O × U)U

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• Is there any other possibilities?
• One may know how to produce output from input but not in

all cases:
f : I −→ O + 1

• One may be uncertain of the outcome of , in the sense that
the evolution of the system being observed may be nonde-
terministic:

f : I −→PO

• One may recognize that there is some environmental (or
context) information. (For example, it might be the case
that the computation will modify the environment, thus influ-
encing latter computation:

f : I −→ (O × U)U

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• Is there any other possibilities?
• One may know how to produce output from input but not in

all cases:
f : I −→ O + 1

• One may be uncertain of the outcome of , in the sense that
the evolution of the system being observed may be nonde-
terministic:

f : I −→PO

• One may recognize that there is some environmental (or
context) information. (For example, it might be the case
that the computation will modify the environment, thus influ-
encing latter computation:

f : I −→ (O × U)U

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• A function computed within a context is often referred to as
state-based, in the sense the word ‘state’ has in automata
theory - the internal memory of the automata which both
constraints and is constrained by the execution of actions.

• The ‘nature’ of f : I −→ (O×U)U as a ‘state-based function’
is made more explicit by rewriting it as

f : U −→ (O × U)I

• One’s focus becomes the ‘universe’ or, more pragmatically,
the state space. Input and output parameters may or may
not be relevant, depending on the particular kind of obser-
vation one may want to perform.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• A function computed within a context is often referred to as
state-based, in the sense the word ‘state’ has in automata
theory - the internal memory of the automata which both
constraints and is constrained by the execution of actions.

• The ‘nature’ of f : I −→ (O×U)U as a ‘state-based function’
is made more explicit by rewriting it as

f : U −→ (O × U)I

• One’s focus becomes the ‘universe’ or, more pragmatically,
the state space. Input and output parameters may or may
not be relevant, depending on the particular kind of obser-
vation one may want to perform.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• A function computed within a context is often referred to as
state-based, in the sense the word ‘state’ has in automata
theory - the internal memory of the automata which both
constraints and is constrained by the execution of actions.

• The ‘nature’ of f : I −→ (O×U)U as a ‘state-based function’
is made more explicit by rewriting it as

f : U −→ (O × U)I

• One’s focus becomes the ‘universe’ or, more pragmatically,
the state space. Input and output parameters may or may
not be relevant, depending on the particular kind of obser-
vation one may want to perform.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• Informal understanding of components shows that it has:
• internal state space that persists in time;
• the possibility of interaction with other components during

the overall computation;
• observable through well-defined interfaces to ensure flow of

data.

• Such components can be found “everywhere”, from sophis-
ticated plant control systems, to formal automata or domes-
tic appliances.

• To investigate components one should equip himself with an
appropriate ‘lens’©_© which necessarily entails a partic-
ular shape for observation.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• Informal understanding of components shows that it has:
• internal state space that persists in time;
• the possibility of interaction with other components during

the overall computation;
• observable through well-defined interfaces to ensure flow of

data.

• Such components can be found “everywhere”, from sophis-
ticated plant control systems, to formal automata or domes-
tic appliances.

• To investigate components one should equip himself with an
appropriate ‘lens’©_© which necessarily entails a partic-
ular shape for observation.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• Informal understanding of components shows that it has:
• internal state space that persists in time;
• the possibility of interaction with other components during

the overall computation;
• observable through well-defined interfaces to ensure flow of

data.

• Such components can be found “everywhere”, from sophis-
ticated plant control systems, to formal automata or domes-
tic appliances.

• To investigate components one should equip himself with an
appropriate ‘lens’©_© which necessarily entails a partic-
ular shape for observation.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• A lens ©_© for components is an operation mapping a
set (of states) U to a set ©_© U containing the possible
effects of an observable transition.

©_© ©_© U Component Behavior
1 1 stop
A A outputs a ∈ A once
Id U running forever

A×− A× U stream over A
A×−+ 1 A× U + 1 finite or infinite list over A

• ©_© provides an appropriate notion of interface for com-
ponents.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• A lens ©_© for components is an operation mapping a
set (of states) U to a set ©_© U containing the possible
effects of an observable transition.

©_© ©_© U Component Behavior
1 1 stop
A A outputs a ∈ A once
Id U running forever

A×− A× U stream over A
A×−+ 1 A× U + 1 finite or infinite list over A

• ©_© provides an appropriate notion of interface for com-
ponents.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• The behavior of the sort of computational structures is de-
termined not only by an external input stimuli, but also by
some internal ‘memory’ to which there is, in general, no di-
rect access. Such systems can always be represented by
functions typed as

p : U −→©_© U
• Interpretation:

• U: the set of states;
• p: the component’s dynamics, describing the observable ef-

fects of an elementary step (transition) in the evolution of the
component;

• ©_©: the shape for the observation structure (interface);
• ©_© U: the set of all possible outcomes of taking one step

transition.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• Mealy machines (on and) were introduced as components
observed through the interface (lens)©_© = (O ×−)I .

• ©_© can be regarded as the type of a mapping which de-
composes the ‘observable universe’ U into an ‘observation
context’ (O × U)I .

• Different interfaces give rise to different classes of compo-
nents.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• Mealy machines (on and) were introduced as components
observed through the interface (lens)©_© = (O ×−)I .

• ©_© can be regarded as the type of a mapping which de-
composes the ‘observable universe’ U into an ‘observation
context’ (O × U)I .

• Different interfaces give rise to different classes of compo-
nents.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• Mealy machines (on and) were introduced as components
observed through the interface (lens)©_© = (O ×−)I .

• ©_© can be regarded as the type of a mapping which de-
composes the ‘observable universe’ U into an ‘observation
context’ (O × U)I .

• Different interfaces give rise to different classes of compo-
nents.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• Interface shapes for observations:
• ‘opaque’: ©_© U = 1
• black and white: ©_© U = 2
• colouring: ©_© U = O
• multi-attribute: ©_© U =

∏
k∈K Ok

• Interface shapes for actions:
• partiality: ©_© U = U + 1
• visible attributes (outputs): ©_© U = O × U
• external stimulus triggered evolution (inputs): ©_© U = U I

• non-determinism: ©_© U = PU
• probability: ©_© U = DU, where for a set X , DX = {ξ :

X → [0,1] |
∑

x∈X ξ(x) ≤ 1}, and ξ is called a probability
sub-distribution over X .

• The elementary ‘lens’ can be glued with set-theoretic con-
structions.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• Interface shapes for observations:
• ‘opaque’: ©_© U = 1
• black and white: ©_© U = 2
• colouring: ©_© U = O
• multi-attribute: ©_© U =

∏
k∈K Ok

• Interface shapes for actions:
• partiality: ©_© U = U + 1
• visible attributes (outputs): ©_© U = O × U
• external stimulus triggered evolution (inputs): ©_© U = U I

• non-determinism: ©_© U = PU
• probability: ©_© U = DU, where for a set X , DX = {ξ :

X → [0,1] |
∑

x∈X ξ(x) ≤ 1}, and ξ is called a probability
sub-distribution over X .

• The elementary ‘lens’ can be glued with set-theoretic con-
structions.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• Interface shapes for observations:
• ‘opaque’: ©_© U = 1
• black and white: ©_© U = 2
• colouring: ©_© U = O
• multi-attribute: ©_© U =

∏
k∈K Ok

• Interface shapes for actions:
• partiality: ©_© U = U + 1
• visible attributes (outputs): ©_© U = O × U
• external stimulus triggered evolution (inputs): ©_© U = U I

• non-determinism: ©_© U = PU
• probability: ©_© U = DU, where for a set X , DX = {ξ :

X → [0,1] |
∑

x∈X ξ(x) ≤ 1}, and ξ is called a probability
sub-distribution over X .

• The elementary ‘lens’ can be glued with set-theoretic con-
structions.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• For a universe U and observation structure p : U →©_©U,
the pair 〈U,p〉 is called a©_©-coalgebra.

• A morphism between coalgebras is a function between their
carriers which preserves the dynamics, i.e.

U
p
- ©_©U

V

h
?

q
- ©_©V

©_©h
?

Introduction Components as Coalgebras UML Logic Future Directions

Functors

• ©_© should be applicable not only to sets, but also to
functions.

• The idea of an uniform transformation of both sets and func-
tions is captured by the notion of a functor.

• A functor is a function over our working universe which pre-
serves identities and composition, i.e., the graph and monoidal
structure:

• For each function f : A→ B, Tf : TA→ TB;
• TidX = idTX ;
• T(f ◦ g) = Tf ◦ Tg.

• The functor should capture both a signature of actions and
observers, as well as a particular behavior model.

Introduction Components as Coalgebras UML Logic Future Directions

Functors

• ©_© should be applicable not only to sets, but also to
functions.

• The idea of an uniform transformation of both sets and func-
tions is captured by the notion of a functor.

• A functor is a function over our working universe which pre-
serves identities and composition, i.e., the graph and monoidal
structure:

• For each function f : A→ B, Tf : TA→ TB;
• TidX = idTX ;
• T(f ◦ g) = Tf ◦ Tg.

• The functor should capture both a signature of actions and
observers, as well as a particular behavior model.

Introduction Components as Coalgebras UML Logic Future Directions

Functors

• ©_© should be applicable not only to sets, but also to
functions.

• The idea of an uniform transformation of both sets and func-
tions is captured by the notion of a functor.

• A functor is a function over our working universe which pre-
serves identities and composition, i.e., the graph and monoidal
structure:

• For each function f : A→ B, Tf : TA→ TB;
• TidX = idTX ;
• T(f ◦ g) = Tf ◦ Tg.

• The functor should capture both a signature of actions and
observers, as well as a particular behavior model.

Introduction Components as Coalgebras UML Logic Future Directions

Functors

• ©_© should be applicable not only to sets, but also to
functions.

• The idea of an uniform transformation of both sets and func-
tions is captured by the notion of a functor.

• A functor is a function over our working universe which pre-
serves identities and composition, i.e., the graph and monoidal
structure:

• For each function f : A→ B, Tf : TA→ TB;
• TidX = idTX ;
• T(f ◦ g) = Tf ◦ Tg.

• The functor should capture both a signature of actions and
observers, as well as a particular behavior model.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• These aspects are orthogonal and should be dealt sepa-
rately.

• Therefore we consider the interface functor

TB
I,O = B(Id×O)I

where I and O are sets acting as component input and out-
put interfaces.

• For a component p with such an interface, the transition
structure of the corresponding coalgebra can be represented
as

αp : Up −→ B(Up ×O)I

where αp : Up × I → B(Up ×O) represents the state transi-
tions.

• A component p for interface TB
I,O can be represented as a

seeded coalgebra p = 〈Up, αp : Up −→ TB
I,OUp,u0〉.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• These aspects are orthogonal and should be dealt sepa-
rately.

• Therefore we consider the interface functor

TB
I,O = B(Id×O)I

where I and O are sets acting as component input and out-
put interfaces.

• For a component p with such an interface, the transition
structure of the corresponding coalgebra can be represented
as

αp : Up −→ B(Up ×O)I

where αp : Up × I → B(Up ×O) represents the state transi-
tions.

• A component p for interface TB
I,O can be represented as a

seeded coalgebra p = 〈Up, αp : Up −→ TB
I,OUp,u0〉.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• These aspects are orthogonal and should be dealt sepa-
rately.

• Therefore we consider the interface functor

TB
I,O = B(Id×O)I

where I and O are sets acting as component input and out-
put interfaces.

• For a component p with such an interface, the transition
structure of the corresponding coalgebra can be represented
as

αp : Up −→ B(Up ×O)I

where αp : Up × I → B(Up ×O) represents the state transi-
tions.

• A component p for interface TB
I,O can be represented as a

seeded coalgebra p = 〈Up, αp : Up −→ TB
I,OUp,u0〉.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• These aspects are orthogonal and should be dealt sepa-
rately.

• Therefore we consider the interface functor

TB
I,O = B(Id×O)I

where I and O are sets acting as component input and out-
put interfaces.

• For a component p with such an interface, the transition
structure of the corresponding coalgebra can be represented
as

αp : Up −→ B(Up ×O)I

where αp : Up × I → B(Up ×O) represents the state transi-
tions.

• A component p for interface TB
I,O can be represented as a

seeded coalgebra p = 〈Up, αp : Up −→ TB
I,OUp,u0〉.

Introduction Components as Coalgebras UML Logic Future Directions

Component Behavior

• Successive observations of a component p reveal its al-
lowed behavioral patterns.

• For each state value u ∈ Up, the behavior of p at u (more
precisely, from u onwards) organize itself into a tree-like
structure, because it depends on the sequences of input
items processed.

• Such trees, whose arcs are labelled with I values and nodes
with O values, can be represented by functions from non
empty sequence of I to B-structures of output items.

• In other words, the space of behaviors of a component with
input I and output O is the set (BO)I+

, which is in fact the
carrier νT of the final T-coalgebra (νT, ωT : νT → TνT).

Introduction Components as Coalgebras UML Logic Future Directions

Component Behavior

• Successive observations of a component p reveal its al-
lowed behavioral patterns.

• For each state value u ∈ Up, the behavior of p at u (more
precisely, from u onwards) organize itself into a tree-like
structure, because it depends on the sequences of input
items processed.

• Such trees, whose arcs are labelled with I values and nodes
with O values, can be represented by functions from non
empty sequence of I to B-structures of output items.

• In other words, the space of behaviors of a component with
input I and output O is the set (BO)I+

, which is in fact the
carrier νT of the final T-coalgebra (νT, ωT : νT → TνT).

Introduction Components as Coalgebras UML Logic Future Directions

Component Behavior

• Successive observations of a component p reveal its al-
lowed behavioral patterns.

• For each state value u ∈ Up, the behavior of p at u (more
precisely, from u onwards) organize itself into a tree-like
structure, because it depends on the sequences of input
items processed.

• Such trees, whose arcs are labelled with I values and nodes
with O values, can be represented by functions from non
empty sequence of I to B-structures of output items.

• In other words, the space of behaviors of a component with
input I and output O is the set (BO)I+

, which is in fact the
carrier νT of the final T-coalgebra (νT, ωT : νT → TνT).

Introduction Components as Coalgebras UML Logic Future Directions

Component Behavior

• Successive observations of a component p reveal its al-
lowed behavioral patterns.

• For each state value u ∈ Up, the behavior of p at u (more
precisely, from u onwards) organize itself into a tree-like
structure, because it depends on the sequences of input
items processed.

• Such trees, whose arcs are labelled with I values and nodes
with O values, can be represented by functions from non
empty sequence of I to B-structures of output items.

• In other words, the space of behaviors of a component with
input I and output O is the set (BO)I+

, which is in fact the
carrier νT of the final T-coalgebra (νT, ωT : νT → TνT).

Introduction Components as Coalgebras UML Logic Future Directions

Component Behavior

• By finality, from any other T-coalgebra p, there is a unique
morphism [(p)] making the following diagram to commute:

νT
ωT- B(νT ×O)I

Up

[(p)]
6

αp- B(Up ×O)I

B([(p)]×O)I6

• Applying morphism [(p)] to a state value u ∈ Up gives the
observable behavior of a sequence of p transitions starting
at u.

Introduction Components as Coalgebras UML Logic Future Directions

Bisimulation

Bisimulation for two T-coalgebras (U, α) and (V , β) is a relation
R ⊆ U × V such that there is a T-coalgebra (R, γ) satisfying

T(π1) ◦ γ = α ◦ π1

T(π2) ◦ γ = β ◦ π2

The following diagram is the corresponding instantiation for the
functor T underlying our model of components.

U �
π1 R

π2 - V

B(U ×O)I

α
?

�
B(π1 ×O)I

B(R ×O)I

γ
?

B(π2 ×O)I
- B(V ×O)I

β
?

Introduction Components as Coalgebras UML Logic Future Directions

Bisimulation

• Provides a ‘relational’ view of coalgebra morphisms, as the
graph of a T-coalgebra morphism is a T-bisimulation.

• Has a large theory (e.g. closed under converse and com-
position).

• Entails a local proof theory for observational equivalence:
the coinductive proof principle being widely used in the coal-
gebra literature is the explicit construction of a bisimulation
containing the pair of states one want to prove equivalent.

• Parametric on system’s interface T.

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

• For every functor T, the T-coalgebras together with the ho-
momorphisms between them form a category.

• A new category Co is defined as a “total category” which
contains the seeded coalgebras for different functors.

• For two components p = 〈Up, αp : Up −→ TBp
Ip,Op

Up,up〉 and

q = 〈Uq, αq : Uq −→ TBq
Iq ,Oq

Uq,uq〉 in Co, the morphism be-

tween them is 〈k , τψf ,g〉 where f : Ip −→ Iq, g : Op −→ Oq,

ψ : Bp ⇒ Bq, τψf ,g = ψ(id × g)f : TBp
Ip,Op

⇒ TBq
Iq ,Oq

is a natural
transformation, and k : Up −→ Uq is the coalgebra mor-
phism under natural transformation τψf ,g , such that k up = uq

and the following diagram commutes:

Introduction Components as Coalgebras UML Logic Future Directions

Components as Coalgebras

Up
k

- Uq

TBp
Ip,Op

Up

p
? (τψf ,g)Up

- TBq
Iq ,Oq

Up

TBq
Iq ,Oq

k
- TBq

Iq ,Oq
Uq

q
?

Introduction Components as Coalgebras UML Logic Future Directions

Bisimulation of Components

Definition
Two T-components p = 〈Up, αp : Up −→ T Up,up〉 and
q = 〈Uq, αq : Uq −→ T Uq,uq〉 are bisimilar iff there is a
T-bisimulation containing the pair 〈up,uq〉.

Definition
Let p = 〈Up, αp : Up −→ TBp

Ip,Op
Up,up〉 and

q = 〈Uq, αq : Uq −→ TBq
Iq ,Oq

Uq,uq〉 be two components, and

τψf ,g = ψ(id× g)f is a natural transformation, where f : Ip −→ Iq,

g : Op −→ Oq, ψ : Bp ⇒ Bq, if p′ = 〈Up, (τ
ψ
f ,g)Up · αp,up〉 and q

are bisimilar, then p and q are bisimilar under the natural
transformation τψf ,g , denoted by p ≈

τψf ,g
q.

Introduction Components as Coalgebras UML Logic Future Directions

Bisimulation of Components

Definition
Two T-components p = 〈Up, αp : Up −→ T Up,up〉 and
q = 〈Uq, αq : Uq −→ T Uq,uq〉 are bisimilar iff there is a
T-bisimulation containing the pair 〈up,uq〉.

Definition
Let p = 〈Up, αp : Up −→ TBp

Ip,Op
Up,up〉 and

q = 〈Uq, αq : Uq −→ TBq
Iq ,Oq

Uq,uq〉 be two components, and

τψf ,g = ψ(id× g)f is a natural transformation, where f : Ip −→ Iq,

g : Op −→ Oq, ψ : Bp ⇒ Bq, if p′ = 〈Up, (τ
ψ
f ,g)Up · αp,up〉 and q

are bisimilar, then p and q are bisimilar under the natural
transformation τψf ,g , denoted by p ≈

τψf ,g
q.

Introduction Components as Coalgebras UML Logic Future Directions

The Calculus of Components

Definition
For two components p = 〈Up, αp : Up −→ TBp

I,K Up,up〉 and

q = 〈Uq, αq : Uq −→ TBq
K ,O Uq,uq〉, the sequential composition

of p and q is defined as

p ; q = 〈U, αp;q : U −→ TB
I,O U,up;q〉

where U = Up × Uq, B = Bp Bq, up;q = 〈up,uq〉 and

αp;q = Up × Uq × I xr−−−−→ Up × I × Uq
αp×id
−−−−→ Bp(Up × K)× Uq

τr−−−−→ Bp(Up × K × Uq)
Bp(a·xr)
−−−−−→ Bp(Up × (Uq × K))

Bp(id×αq)
−−−−−−→ Bp(Up × Bq(Uq ×O))

Bpτl−−−−→ Bp Bq(Up × (Uq ×O))

Bp Bqa◦
−−−−−→ Bp Bq(Up × Uq ×O) = B(U ×O)

Introduction Components as Coalgebras UML Logic Future Directions

The Calculus of Components

Definition
For two components p = 〈Up, αp : Up −→ TBp

Ip,Op
Up,up〉 and

q = 〈Uq, αq : Uq −→ TBq
Iq ,Oq

Uq,uq〉, their external choice is

defined as p � q = 〈U, αp�q : U −→ TBp�q
I,O U,up�q〉, where

U = Up × Uq, I = Ip + Iq, O = Op + Oq, Bp�q = Bp + Bq,
up�q = 〈up,uq〉, and

αp�q = U × (Ip + Iq)
dr−−−−→ (U × Ip) + (U × Iq)

xr+a−−−−→ (Up × Ip)× Uq + Up × (Uq × Iq)

αp×id+id×αq−−−−−−−−→ Bp (Up ×Op)× Uq + Up × Bq (Uq ×Oq)
τr +τl−−−−→ Bp ((Up ×Op)× Uq) + Bq (Up × (Uq ×Oq))

Bp xr+Bq a◦
−−−−−−−→ Bp (U ×Op) + Bq (U ×Oq)

[Bp ι1,Bq ι2]
−−−−−−−→ Bp�q (U ×O)

Introduction Components as Coalgebras UML Logic Future Directions

The Calculus of Components

Definition
For two components p = 〈Up, αp : Up −→ TBp

Ip,Op
Up,up〉 and

q = 〈Uq, αq : Uq −→ TBq
Iq ,Oq

Uq,uq〉, their parallel composition

p � q = 〈U, αp�q : U −→ TBp�q
I,O U,up�q〉 where U = Up × Uq,

I = Ip × Iq, O = Op ×Oq, Bp�q = Bp Bq, up�q = 〈up,uq〉 and

αp�q = Up × Uq × (Ip × Iq)
m−−−−→ (Up × Ip)× (Uq × Iq)

αp×αq−−−−→ Bp (Up ×Op)× Bq (Uq ×Oq)
τr−−−−→ Bp (Up ×Op × Bq (Uq ×Oq))

Bp τl−−−−→ Bp Bq (Up ×Op × (Uq ×Oq))

Bp Bqm
−−−−→ Bp Bq (Up × Uq × (Op ×Oq)) = Bp�q (U ×O)

Introduction Components as Coalgebras UML Logic Future Directions

The Calculus of Components

For a component p = 〈U, αp : U −→ TB
I,O U,u0〉 and functions

f : I′ −→ I, g : O −→ O′, the wrapping

p[f ,g] = 〈U, αp[f ,g] : U −→ TB
I′,O′ U,u0〉

where

αp[f ,g] = U × I′ id×f−−−−→ U × I
αp−−−−→

B(U ×O)
B (id×g)−−−−−→ B (U ×O′)

Introduction Components as Coalgebras UML Logic Future Directions

The Calculus of Components

(p ; q) ; r ≈ p ; (q ; r) (1)
(p � q)� r ≈ (p � (q � r))[a,a◦] (2)

q � p ≈τγs,s p � q (3)

idle� p ≈τγid,id p[r, r◦] (4)

nil� p ≈τγid,id nil[zl, zl◦] (5)

(p � q)� r ≈ (p � (q � r))[a+,a◦] (6)
p � q ≈

τ
s+
s+,s

q � p (7)

nil� p ≈τγid,π2
p[r+, r◦] (8)

p � nil ≈τγid,π1
p[l+, l◦] (9)

Introduction Components as Coalgebras UML Logic Future Directions

The Calculus of Components

((Up × Uq)× Ur)× I
a × id - (Up × (Uq × Ur))× I

Bp (Up × (Uq × K))× Ur

φp
? Bp a · τr - Bp (Up × ((Uq × Ur)× K))

ψp
?

BpBq ((Up × Uq)× (Ur × L))

φq
?

�BpBq a◦ · Bp τl Bp (Up × Bq (Uq × (Ur × L)))

ψq
?

BpBqBr (((Up × Uq)× Ur)× O)

φr
? BpBqBr (a × id)- BpBqBr ((Up × (Uq × Ur))× O)

ψr
?

Introduction Components as Coalgebras UML Logic Future Directions

What does refinement mean?

• Refinement: A transformation of an “abstract" into a more
“concrete" design, entailing a notion of substitution.

• Data refinement, being traced back to Hoare’s work, retrieve
function from the concrete into the abstract model is de-
fined.

• Object-orientation, substitution is expressed in terms of be-
havior typing.

• Process algebra, reduction of nondeterminism.
• Semantic characterization of refinement for state-based

components.

Introduction Components as Coalgebras UML Logic Future Directions

What does refinement mean?

• Refinement: A transformation of an “abstract" into a more
“concrete" design, entailing a notion of substitution.

• Data refinement, being traced back to Hoare’s work, retrieve
function from the concrete into the abstract model is de-
fined.

• Object-orientation, substitution is expressed in terms of be-
havior typing.

• Process algebra, reduction of nondeterminism.
• Semantic characterization of refinement for state-based

components.

Introduction Components as Coalgebras UML Logic Future Directions

What does refinement mean?

• Refinement: A transformation of an “abstract" into a more
“concrete" design, entailing a notion of substitution.

• Data refinement, being traced back to Hoare’s work, retrieve
function from the concrete into the abstract model is de-
fined.

• Object-orientation, substitution is expressed in terms of be-
havior typing.

• Process algebra, reduction of nondeterminism.
• Semantic characterization of refinement for state-based

components.

Introduction Components as Coalgebras UML Logic Future Directions

What does refinement mean?

• Refinement: A transformation of an “abstract" into a more
“concrete" design, entailing a notion of substitution.

• Data refinement, being traced back to Hoare’s work, retrieve
function from the concrete into the abstract model is de-
fined.

• Object-orientation, substitution is expressed in terms of be-
havior typing.

• Process algebra, reduction of nondeterminism.
• Semantic characterization of refinement for state-based

components.

Introduction Components as Coalgebras UML Logic Future Directions

What does refinement mean?

• Refinement: A transformation of an “abstract" into a more
“concrete" design, entailing a notion of substitution.

• Data refinement, being traced back to Hoare’s work, retrieve
function from the concrete into the abstract model is de-
fined.

• Object-orientation, substitution is expressed in terms of be-
havior typing.

• Process algebra, reduction of nondeterminism.
• Semantic characterization of refinement for state-based

components.

Introduction Components as Coalgebras UML Logic Future Directions

Refinement

• Based on the coalgebraic framework, three kinds of refine-
ment relations can be defined for state-based systems:

• Behavioral Refinement: typically relates systems of the same
interface, where the refinement is based on a simulation
preorder between the two systems.

• Interface Refinement: relates systems of different interfaces,
and the question is whether a system can be transformed,
by suitable wiring, to replace another system with a different
interface.

• Architectural Refinement: being used for decomposing a
system with a specified behavior into a distributed system
architecture, i.e., a family of systems (components) com-
bined in parallel.

Introduction Components as Coalgebras UML Logic Future Directions

Refinement

• Based on the coalgebraic framework, three kinds of refine-
ment relations can be defined for state-based systems:

• Behavioral Refinement: typically relates systems of the same
interface, where the refinement is based on a simulation
preorder between the two systems.

• Interface Refinement: relates systems of different interfaces,
and the question is whether a system can be transformed,
by suitable wiring, to replace another system with a different
interface.

• Architectural Refinement: being used for decomposing a
system with a specified behavior into a distributed system
architecture, i.e., a family of systems (components) com-
bined in parallel.

Introduction Components as Coalgebras UML Logic Future Directions

Refinement

• Based on the coalgebraic framework, three kinds of refine-
ment relations can be defined for state-based systems:

• Behavioral Refinement: typically relates systems of the same
interface, where the refinement is based on a simulation
preorder between the two systems.

• Interface Refinement: relates systems of different interfaces,
and the question is whether a system can be transformed,
by suitable wiring, to replace another system with a different
interface.

• Architectural Refinement: being used for decomposing a
system with a specified behavior into a distributed system
architecture, i.e., a family of systems (components) com-
bined in parallel.

Introduction Components as Coalgebras UML Logic Future Directions

Refinement

• Based on the coalgebraic framework, three kinds of refine-
ment relations can be defined for state-based systems:

• Behavioral Refinement: typically relates systems of the same
interface, where the refinement is based on a simulation
preorder between the two systems.

• Interface Refinement: relates systems of different interfaces,
and the question is whether a system can be transformed,
by suitable wiring, to replace another system with a different
interface.

• Architectural Refinement: being used for decomposing a
system with a specified behavior into a distributed system
architecture, i.e., a family of systems (components) com-
bined in parallel.

Introduction Components as Coalgebras UML Logic Future Directions

Behavioral Refinement

• Behavior refinement affects the internal dynamics of a sys-
tem while leaving unchanged its external interface.

• p behaviorally refines q if the behavior patterns observed for
p are a structural restriction, with respect to the behavioral
model captured by monad B, of those of q.

• Any coalgebra 〈U,p : U → TU〉 specifies a transition struc-
ture over U.

• For extended polynomial functors such a structure may be
expressed as a relation −→p⊆ U × U, defined in terms of
the structural membership relation ∈T⊆ U × T U, i.e.,

u −→p u′ iff u′ ∈T p u

Introduction Components as Coalgebras UML Logic Future Directions

Behavioral Refinement

• Behavior refinement affects the internal dynamics of a sys-
tem while leaving unchanged its external interface.

• p behaviorally refines q if the behavior patterns observed for
p are a structural restriction, with respect to the behavioral
model captured by monad B, of those of q.

• Any coalgebra 〈U,p : U → TU〉 specifies a transition struc-
ture over U.

• For extended polynomial functors such a structure may be
expressed as a relation −→p⊆ U × U, defined in terms of
the structural membership relation ∈T⊆ U × T U, i.e.,

u −→p u′ iff u′ ∈T p u

Introduction Components as Coalgebras UML Logic Future Directions

Behavioral Refinement

• Behavior refinement affects the internal dynamics of a sys-
tem while leaving unchanged its external interface.

• p behaviorally refines q if the behavior patterns observed for
p are a structural restriction, with respect to the behavioral
model captured by monad B, of those of q.

• Any coalgebra 〈U,p : U → TU〉 specifies a transition struc-
ture over U.

• For extended polynomial functors such a structure may be
expressed as a relation −→p⊆ U × U, defined in terms of
the structural membership relation ∈T⊆ U × T U, i.e.,

u −→p u′ iff u′ ∈T p u

Introduction Components as Coalgebras UML Logic Future Directions

Behavioral Refinement

• Structural Membership Relation for extended polynomial func-
tors:

x ∈Id y iff x = y
x ∈K y iff false

x ∈T1×T2 y iff x ∈T1 π1 y ∨ x ∈T2 π2 y

x ∈T1+T2 y iff

{
y = ι1 y ′ ⇒ x ∈T1 y ′

y = ι2 y ′ ⇒ x ∈T2 y ′

x ∈TK y iff ∃k∈K . x ∈T y k
x ∈PT y iff ∃y ′∈y . x ∈T y ′

Introduction Components as Coalgebras UML Logic Future Directions

Behavioral Refinement

• In data refinement, there is a ‘recipe’ to identify a refinement
situation: look for a retrieve function to witness it. I.e., a
morphism in the relevant category, from the ‘concrete’ to the
‘abstract’ model such that the latter can be recovered from
the former up to a suitable notion of equivalence, though,
typically, not in a unique way.

• In the coalgebraic framework, however, things do not work
this way. The reason is obvious: initial states preserving
coalgebra morphisms are known to entail bisimilarity. There-
fore we have to look for some weaker notion of morphism
between coalgebras.

Introduction Components as Coalgebras UML Logic Future Directions

Behavioral Refinement

• In data refinement, there is a ‘recipe’ to identify a refinement
situation: look for a retrieve function to witness it. I.e., a
morphism in the relevant category, from the ‘concrete’ to the
‘abstract’ model such that the latter can be recovered from
the former up to a suitable notion of equivalence, though,
typically, not in a unique way.

• In the coalgebraic framework, however, things do not work
this way. The reason is obvious: initial states preserving
coalgebra morphisms are known to entail bisimilarity. There-
fore we have to look for some weaker notion of morphism
between coalgebras.

Introduction Components as Coalgebras UML Logic Future Directions

Behavioral Refinement

• Coalgebra morphism from p to q:
B(h × id) ◦ αp = αq ◦ (h × id)

• In terms of transitions, the equation can be translated into
the requirements:

u
〈i,o〉−→p u′ ⇒ h u

〈i,o〉−→q h u′

h u
〈i,o〉−→q v ′ ⇒ ∃u′∈U . u

〈i,o〉−→p u′ ∧ u′ = h v ′

which jointly state that, not only p dynamics is preserved by
h, but also q dynamics is reflected back over the same h.

Introduction Components as Coalgebras UML Logic Future Directions

Behavioral Refinement

• Coalgebra morphism from p to q:
B(h × id) ◦ αp = αq ◦ (h × id)

• In terms of transitions, the equation can be translated into
the requirements:

u
〈i,o〉−→p u′ ⇒ h u

〈i,o〉−→q h u′

h u
〈i,o〉−→q v ′ ⇒ ∃u′∈U . u

〈i,o〉−→p u′ ∧ u′ = h v ′

which jointly state that, not only p dynamics is preserved by
h, but also q dynamics is reflected back over the same h.

Introduction Components as Coalgebras UML Logic Future Directions

Behavioral Refinement

Given a Set endofunctor T, an order ≤ on T is defined as a
functor ≤ from Set to PreOrder (concretely, mapping every set
U into a collection of preorders ≤T(U)) making the following
diagram to commute:

(T(U),≤T(U))

U
T

-

≤ -

T(U)

G
?

where G is the forgetful functor which forgets the preorder
structure for every preordered set and gives its underlying set.

Introduction Components as Coalgebras UML Logic Future Directions

Behavioral Refinement

• Let T be an extended polynomial functor on Set and con-
sider two T-coalgebras c = (U, α : U → TU) and a =
(V , β : V → TV). A forward morphism h : c → a with re-
spect to a refinement preorder ≤, is a function from U to V
such that

Th ◦ α ≤ β ◦ h

• Dually, h is called a backward morphism if β ◦ h ≤ Th ◦ α.
• For coalgebras c and a, c is a behavior refinement of a,

written c vB a, if there exist coalgebras p and q such that
c ∼ p, a ∼ q and there exists a (initial state preserving)
forward morphism from p to q.

Introduction Components as Coalgebras UML Logic Future Directions

Behavioral Refinement

• Let T be an extended polynomial functor on Set and con-
sider two T-coalgebras c = (U, α : U → TU) and a =
(V , β : V → TV). A forward morphism h : c → a with re-
spect to a refinement preorder ≤, is a function from U to V
such that

Th ◦ α ≤ β ◦ h

• Dually, h is called a backward morphism if β ◦ h ≤ Th ◦ α.
• For coalgebras c and a, c is a behavior refinement of a,

written c vB a, if there exist coalgebras p and q such that
c ∼ p, a ∼ q and there exists a (initial state preserving)
forward morphism from p to q.

Introduction Components as Coalgebras UML Logic Future Directions

Behavioral Refinement

The exact meaning of a refinement assertion c vB a depends
on the refinement preorder ≤ adopted. For example, we can
define the preorder for extended polynomial functor T by
induction as follows:

x ⊆Id y iff x = y
x ⊆K y iff x =K y

x ⊆T1×T2 y iff π1x ⊆T1 π1y ∧ π2x ⊆T2 π2y

x ⊆T1+T2 y iff

{
x = ι1x ′ ∧ y = ι1y ′ ⇒ x ′ ⊆T1 y ′

x = ι2x ′ ∧ y = ι2y ′ ⇒ x ′ ⊆T2 y ′

x ⊆TK y iff ∀k ∈ K . x(k) ⊆T y(k)

x ⊆PT y iff ∀e ∈ x . ∃e′ ∈ y . e ⊆T e′

Introduction Components as Coalgebras UML Logic Future Directions

A Coalgebraic Semantics of UML

• UML is “a graphical language for visualizing, specifying,
constructing, and documenting the artifacts of a software-
intensive system”.

• In practice, it stands for a collection of inter-related, semi-
formal design notations for software development, providing
a unified notation, expressive and widely adopted.

• It lacks a rigourous and consensual semantic definition lead-
ing, therefore, to weak effective support to the design of
complex systems and, often, to conflicting support tools.

Introduction Components as Coalgebras UML Logic Future Directions

A Coalgebraic Semantics of UML

• UML is “a graphical language for visualizing, specifying,
constructing, and documenting the artifacts of a software-
intensive system”.

• In practice, it stands for a collection of inter-related, semi-
formal design notations for software development, providing
a unified notation, expressive and widely adopted.

• It lacks a rigourous and consensual semantic definition lead-
ing, therefore, to weak effective support to the design of
complex systems and, often, to conflicting support tools.

Introduction Components as Coalgebras UML Logic Future Directions

A Coalgebraic Semantics of UML

• UML is “a graphical language for visualizing, specifying,
constructing, and documenting the artifacts of a software-
intensive system”.

• In practice, it stands for a collection of inter-related, semi-
formal design notations for software development, providing
a unified notation, expressive and widely adopted.

• It lacks a rigourous and consensual semantic definition lead-
ing, therefore, to weak effective support to the design of
complex systems and, often, to conflicting support tools.

Introduction Components as Coalgebras UML Logic Future Directions

A Coalgebraic Semantics of UML

• We introduced a generic coalgebraic semantic framework
for different models in UML, including class diagrams, use
cases, statecharts and sequence diagrams, where the se-
mantics of different kinds of models are given as coalge-
bras.

• Notions of bisimulation and refinement capture observational
equivalence and simulation preorders, respectively, and form
the basis of a whole discipline of reasoning and transform-
ing UML designs.

Introduction Components as Coalgebras UML Logic Future Directions

A Coalgebraic Semantics of UML

• We introduced a generic coalgebraic semantic framework
for different models in UML, including class diagrams, use
cases, statecharts and sequence diagrams, where the se-
mantics of different kinds of models are given as coalge-
bras.

• Notions of bisimulation and refinement capture observational
equivalence and simulation preorders, respectively, and form
the basis of a whole discipline of reasoning and transform-
ing UML designs.

Introduction Components as Coalgebras UML Logic Future Directions

Class Diagrams

• In UML a class diagram captures the static structure of a
system, as a set of classes and relationships, called asso-
ciations, between them.

• Classes may be further annotated with constraints, i.e., prop-
erties that must hold for every object in the class along its
lifetime.

• We concentrate here in class declarations. The aim of a
class declaration is introduce a signature of attributes and
methods.

Introduction Components as Coalgebras UML Logic Future Directions

Class Diagrams

• Consider the simplified model of a video renting e-business:

Introduction Components as Coalgebras UML Logic Future Directions

Class Diagrams

• Consider class Membership in the previous example. It in-
troduces two attributes and a method over a state space,
identified by variable U below, which is made observable
exactly (and uniquely) by the attributes and methods it de-
clares:

joined : U −→ Date
lastHire : U −→ Date
pay : U × R −→ U

These three declarations can be grouped in one through a
split construction

〈joined, lastHire,pay〉 : U −→ Date × Date × UR

which is a coalgebra for functor T X = Date × Date × XR.

Introduction Components as Coalgebras UML Logic Future Directions

Class Diagrams

• In general, the semantics [[c]] of a class c is given by a spec-
ification of a coalgebra

〈at,md〉 : U −→ A× (O × U)I

where A is the attribute domain, and each method accepts
a parameter, of type I, and delivers both a state change and
an output value, of type O. I.e., a coalgebra for functor

T : X −→ A× (O × X)I

Typically, I and O are sum types, aggregating the input-
output parameters of each declared method. On its turn,
A is usually a product type joining all attribute outputs in
a way which emphasises that each of them is available in-
dependent of the others, and therefore always able to be
accessed in parallel.

Introduction Components as Coalgebras UML Logic Future Directions

Class Diagrams

• More generally, as methods are typically implemented by
partial functions or even by arbitrary relations, this definition
should be generalized to

〈at,md〉 : U −→ A× B(O × U)I

where B is a strong monad capturing some sort of behav-
ioral effect.

Introduction Components as Coalgebras UML Logic Future Directions

Class Diagrams

• A UML class diagram introduces a number of class spec-
ifications which types the object population of any corre-
sponding model implementation. Typically, different ways of
putting classes together in a class diagram correspond to
different operators between the T-coalgebras.

• In particular, one may consider a form of parallel aggrega-
tion, denoted by �, in which methods in both classes can
be called simultaneously (as they always act upon disjoint
state spaces), and a form of interleaving, denoted by �,
which offers a choice of which class to call.

• Note that in both cases, attributes are always available to
be observed, and therefore are composed in a multiplicative
context. Initial conditions are joined by logical conjunction.

Introduction Components as Coalgebras UML Logic Future Directions

Class Diagrams

• Constraints are typically attached to class specifications and
their semantic effect is to constraint what coalgebras count
as valid implementation for the class. Such is the case, for
example, of constraint

balance > 0

attached to class Membership in our example.

Introduction Components as Coalgebras UML Logic Future Directions

Class Diagrams

• Associations can also be interpreted as constraints, with re-
spect to a fragment of the diagram containing the two asso-
ciated classes.

• For this, one has to assume that the state space of each
class has a component recording the collection of live in-
stances.

• An association becomes a constraint over such components
of the (joint) state space.

• For example a ’one-to-one’ association corresponds to a
predicate asserting the existence of an injective function re-
lating the collection of instances of each class.

• Similarly, a ’one-to-many’ association corresponds to a re-
lation whose kernel is the identity, i.e., a total relation whose
converse is simple.

Introduction Components as Coalgebras UML Logic Future Directions

Class Diagrams

• In general, constraints and associations are predicates which
are supposed to be preserved along the system life-time.

• Formally, they are incorporated in the semantics as invari-
ants. Such predicates, once encoded as coreflexives, i.e.,
fragments of the identity, according to

y ΦP x ≡ y = x ∧ P x

can be specified as c · ΦP ⊆ T ΦP · c.
• When reasoning about diagram transformations, such as

refactoring, constraints entail for proof obligations. For ex-
ample,

[[balance > 0]] =

[[Membership]] · Φbalance>0 ⊆ T Φbalance>0 · [[Membership]]

needs to be discarded whenever justifying a refactoring in-
volving class Membership.

Introduction Components as Coalgebras UML Logic Future Directions

Class Diagrams
• Consider the Inline Class Refactoring pattern: Inline class

refactoring allows two classes to be merged together pro-
vided one of them has no methods available.

• The previous example can be transformed into the following
diagram:

Introduction Components as Coalgebras UML Logic Future Directions

Class Diagrams

• classes Membership and Account are replaced by a new
class Membership′ whose semantics is a new coalgebra
over the state space of [[Membership]] to which a new at-
tribute balance is added.

[[Membership′]] = 〈〈atMembership,atAccount〉,mdMembership〉

• Assuming the remaining part of the diagram remains un-
changed, clearly the new class [[Membership′]] and the rel-
evant fragment of the original class diagram, i.e.,

[[Membership]]� [[Account]]

are not bisimilar.
• But we can prove that the inline refactoring is acturally a

refinement between the two diagrams.

Introduction Components as Coalgebras UML Logic Future Directions

Beyond Class Diagrams ...

• Sun Meng, Zhang Naixiao and Luis Barbosa. On Semantics
and Refinement of UML Statecharts: A Coalgebraic View.
In Proceedings of SEFM’04, pages 164-173, IEEE Com-
puter Society, 2004.

• Sun Meng and Luis Barbosa. A Coalgebraic Semantic Frame-
work for Reasoning about UML Sequence Diagrams. In
Proceedings of QSIC’08. IEEE Computer Society, 2008.

• Sun Meng and Luis Barbosa. A Coalgebraic Semantic Frame-
work for Reasoning about Interaction Designs. In Kevin
Lano eds. UML Semantics and its Applications. pages 249-
280, Wiley, 2009.

Introduction Components as Coalgebras UML Logic Future Directions

Coalgebra and Logic ...

• Coalgebra offers tools that apply uniformly to a large class
of systems.

• An obvious question from this perspective is whether we
can deal with logics for coalgebras in a uniform way.

• This question is of interest from a computer science point of
view because coalgebras are systems and logics are spec-
ification languages.

Introduction Components as Coalgebras UML Logic Future Directions

Coalgebra and Logic ...

• As an example, consider the coalgebraic logic invented by
Lawrence Moss, for which the syntax and semantics work-
ing in a uniform way for all signatures Σ : Set→ Set.

• Formulas of the logic are invariants under behavioral equiv-
alence and the logic is reasonably expressive.

• Here “reasonably expressive” means by requiring that ad-
mitting infinite conjunctions, the logic should be able to char-
acterize processes (elements of coalgebras) up to behav-
ioral equivalence.

• The aim is to find a language LΣ and for each Σ-coalgebra
(X , ψ) a relation |=Σ⊂ X × LΣ satisfying the above require-
ments.

Introduction Components as Coalgebras UML Logic Future Directions

Coalgebra and Logic ...

• The starting point is that signatures are functors on Set and
may hence also be applied to sets of formulas LΣ and rela-
tions |=Σ.

• Functors Σ on Set are extended to functors on the category
of classes SET via ΣK =

⋃
{ΣX : X ⊂ K ,X a set} for

classes K . Moreover, Σ is assumed to weakly preserve
pullbacks.

• The syntax of coalgebraic logic:

Definition
LΣ is defined to be the least class satisfying:

Φ ⊂ LΣ,Φ a set ⇒ ∧Φ ∈ LΣ

φ ∈ Σ(LΣ) ⇒ φ ∈ LΣ

That is, LΣ is the initial algebra wrt the functor P + Σ.

Introduction Components as Coalgebras UML Logic Future Directions

Coalgebra and Logic ...

• The starting point is that signatures are functors on Set and
may hence also be applied to sets of formulas LΣ and rela-
tions |=Σ.

• Functors Σ on Set are extended to functors on the category
of classes SET via ΣK =

⋃
{ΣX : X ⊂ K ,X a set} for

classes K . Moreover, Σ is assumed to weakly preserve
pullbacks.

• The syntax of coalgebraic logic:

Definition
LΣ is defined to be the least class satisfying:

Φ ⊂ LΣ,Φ a set ⇒ ∧Φ ∈ LΣ

φ ∈ Σ(LΣ) ⇒ φ ∈ LΣ

That is, LΣ is the initial algebra wrt the functor P + Σ.

Introduction Components as Coalgebras UML Logic Future Directions

Coalgebra and Logic ...

• The semantics of coalgebraic logic goes as follows:

Definition
Given a coalgebra (X , ψ) define |=Σ⊂ X × LΣ as the least
relation such that (let x ∈ X):

x |=Σ φ for all φ ∈ Φ,Φ ⊂ LΣ,Φ a set ⇒ x |=Σ

∧
Φ

∃ w ∈ Σ(|=Σ) s.t .Σπ1(w) = ψ(x),Σπ2(w) = φ ⇒ x |=Σ φ

where π1, π2 denotes the projections from the product X × LΣ

to its components.

Introduction Components as Coalgebras UML Logic Future Directions

Coalgebra and Logic ...

• The following theorem shows that coalgebraic logic reflects
precisely the notion of behavioral equivalence:

Theorem
Let Σ be a functor on Set which weakly preserving pullbacks.
Then

1. Formulas of LΣ are invariant under behavioral equivalence
and

2. For each coalgebra (X , ψ) and each x ∈ X there is a formula
φx ∈ LΣ such that for all coalgebras (X ′, ψ′) and all x ′ ∈ X ′,

x ′ |=Σ φx iff x , x ′ behaviorally equivalent

For more details about the coalgebraic logic:

Lawrence Moss. Coalgebraic logic. Annals of Pure and Applied
Logic. 96: 277-317, 1999.

Introduction Components as Coalgebras UML Logic Future Directions

Coalgebra and Logic ...

In fact, I am not an expert in this area ...

But there are many references:
• Yde Venema. Algebras and coalgebras. In Handbook of

Modal Logic, pages 331-426, Elsevier, 2006.
• Alexander Kurz. Coalgebras and their Logics. SIGACT

News, vol. 37, pages 57-77, 2006.
• Bart Jacobs. The temporal logic of coalgebras via Galois

algebras. Mathematical Structures in Computer Science,
vol. 12(6), pages 875-903, 2002.

• ...

Introduction Components as Coalgebras UML Logic Future Directions

Coalgebra and Logic ...

In fact, I am not an expert in this area ...

But there are many references:
• Yde Venema. Algebras and coalgebras. In Handbook of

Modal Logic, pages 331-426, Elsevier, 2006.
• Alexander Kurz. Coalgebras and their Logics. SIGACT

News, vol. 37, pages 57-77, 2006.
• Bart Jacobs. The temporal logic of coalgebras via Galois

algebras. Mathematical Structures in Computer Science,
vol. 12(6), pages 875-903, 2002.

• ...

Introduction Components as Coalgebras UML Logic Future Directions

Why Coalgebra for Logic?

• A coalgebraic perspective on evolving state-based systems
is of interest to logicians, because ...

• Uniform treatment of different types of systems. For exam-
ple, one can establish that satisfiability of coalgebraic logic is
in PSPACE and that complete coalgebraic logics have the fi-
nite model property. The uniformity of the metatheory might
well translate into software tools that are easier to design,
maintain, and to implement.

• Modularity. Different functors can be combined using com-
position of functors, product, coproduct, etc. Theorems and
algorithms for basic types can then be lifted to arbitrarily
complex combinations.

• One-step analysis. Coalgebraic analysis of dynamic sys-
tems is particularly successful where the class of all com-
plete behaviors is determined by the possible one-step be-
haviors. This is the basis of coinduction. It also plays an
important role in applications to automata theory.

• ...

Introduction Components as Coalgebras UML Logic Future Directions

Why Coalgebra for Logic?

• A coalgebraic perspective on evolving state-based systems
is of interest to logicians, because ...

• Uniform treatment of different types of systems. For exam-
ple, one can establish that satisfiability of coalgebraic logic is
in PSPACE and that complete coalgebraic logics have the fi-
nite model property. The uniformity of the metatheory might
well translate into software tools that are easier to design,
maintain, and to implement.

• Modularity. Different functors can be combined using com-
position of functors, product, coproduct, etc. Theorems and
algorithms for basic types can then be lifted to arbitrarily
complex combinations.

• One-step analysis. Coalgebraic analysis of dynamic sys-
tems is particularly successful where the class of all com-
plete behaviors is determined by the possible one-step be-
haviors. This is the basis of coinduction. It also plays an
important role in applications to automata theory.

• ...

Introduction Components as Coalgebras UML Logic Future Directions

Why Coalgebra for Logic?

• A coalgebraic perspective on evolving state-based systems
is of interest to logicians, because ...

• Uniform treatment of different types of systems. For exam-
ple, one can establish that satisfiability of coalgebraic logic is
in PSPACE and that complete coalgebraic logics have the fi-
nite model property. The uniformity of the metatheory might
well translate into software tools that are easier to design,
maintain, and to implement.

• Modularity. Different functors can be combined using com-
position of functors, product, coproduct, etc. Theorems and
algorithms for basic types can then be lifted to arbitrarily
complex combinations.

• One-step analysis. Coalgebraic analysis of dynamic sys-
tems is particularly successful where the class of all com-
plete behaviors is determined by the possible one-step be-
haviors. This is the basis of coinduction. It also plays an
important role in applications to automata theory.

• ...

Introduction Components as Coalgebras UML Logic Future Directions

Why Coalgebra for Logic?

• A coalgebraic perspective on evolving state-based systems
is of interest to logicians, because ...

• Uniform treatment of different types of systems. For exam-
ple, one can establish that satisfiability of coalgebraic logic is
in PSPACE and that complete coalgebraic logics have the fi-
nite model property. The uniformity of the metatheory might
well translate into software tools that are easier to design,
maintain, and to implement.

• Modularity. Different functors can be combined using com-
position of functors, product, coproduct, etc. Theorems and
algorithms for basic types can then be lifted to arbitrarily
complex combinations.

• One-step analysis. Coalgebraic analysis of dynamic sys-
tems is particularly successful where the class of all com-
plete behaviors is determined by the possible one-step be-
haviors. This is the basis of coinduction. It also plays an
important role in applications to automata theory.

• ...

Introduction Components as Coalgebras UML Logic Future Directions

Future Directions

• Coalgebras have been successfully applied to many areas
in computer science.

• Applications in mathematics and logic have been developed
much less than applications to computer science, but coal-
gebra as an area naturally overlaps with Universal Algebra,
Modal Logic, Domain Theory and Category Theory.

• We believe that this presents many opportunities for exciting
future research in different areas.

Introduction Components as Coalgebras UML Logic Future Directions

Thank you!

	Introduction
	Components as Coalgebras
	UML
	Logic
	Future Directions

