Solution Counting for Propositional Logic and Satisfiability Modulo Theories

Feifei Ma

Institute of Software Chinese Academy of Sciences

2017-04-11

(日) (四) (문) (문) (문)

Outline

1 #SAT

- Exact Model Counting
- Approximate Model Counting

2 #SMT

Feifei Ma

- Exact Approach
- Approximate Approach

Institute of Software Chinese Academy of Sciences

Model Counting (#SAT)

Count #models of a propositional formula

- E.g. $(p \land q \lor r)$ has 5 models.
- has found applications in
 - probabilistic inference
 - planning
 - combinatorial designs
- #P-complete problem, even for some polynomial-time solvable problems like 2-SAT

Institute of Software Chinese Academy of Sciences

Outline

1 #SAT

Exact Model Counting

Approximate Model Counting

Feifei Ma

- Exact Approach
- Approximate Approach

< ∃ > Institute of Software Chinese Academy of Sciences

A ►

DPLL-based Model Counting

- The earliest practical approach is based on an extension of DPLL SAT solvers.
- Key techniques:
 - Component Analysis: If the constraint graph G of a CNF formula F can be partitioned into disjoint components G_1, G_2, \ldots, G_k , then $\#F = \#F_1 \times \#F_2 \ldots \times \#F_k$.
 - Component Caching: Store the sub-formulas and their model counts for reutilization. Works better if more reasoning is employed at each node of the DPLL search tree.

Model Counting based on Knowledge Compilation

- Convert or compile the CNF formula into other logic forms from which the count can be deduced easily.
- Binary Decision Diagram (BDD):

- deterministic, Decomposable Negation Normal Form (d-DNNF): An NNF satisfying the following properties
 - Decomposability: $Var(n_i) \cap Var(n_i) = \phi$ for any two children n_i and n_i of an and-node n.
 - Determinism: $F(n_i) \wedge F(n_i) =$ is inconsistent for any two children n_i and n_i of an or-node n.

Institute of Software Chinese Academy of Sciences

Outline

#SAT Exact Model Counting

Approximate Model Counting

2 #SMT

Feifei Ma

- Exact Approach
- Approximate Approach

Institute of Software Chinese Academy of Sciences

・ 同・ ・ ヨ・ ・

Approximate Model Counters

- Guarantee-less counters: can be very efficient and provide good approximation without guarantees.
- **2** Bounding counters: provide a lower/upper bound for #F with probability at least 1δ .
- 3 (ϵ, δ) -counters: on every input formula F, $\epsilon > 0$ and $\delta > 0$, output a number \tilde{Y} such that $\Pr[(1+\epsilon)^{-1} \# F \leq \tilde{Y} \leq (1+\epsilon) \# F] \geq 1 - \delta.$

Institute of Software Chinese Academy of Sciences

□→ < □→</p>

Hash Functions

• Let \mathcal{H}_F be a family of XOR-based bit-level hash functions on the variables of a formula F. Each hash function $H \in \mathcal{H}_F$ is of the form $H(x) = a_0 \bigoplus_{i=1}^n a_i x_i$, where a_0, \ldots, a_n are Boolean constants. In the hashing procedure Hashing(F), a function $H \in \mathcal{H}_F$ is generated by independently and randomly choosing a_i s from a uniform distribution. Thus for an assignment α , it holds that $\Pr_{H \in \mathcal{H}_F}(H(\alpha) = true) = \frac{1}{2}$. Gevin a formula F, let F_i denote a hashed formula $F \wedge H_1 \wedge \cdots \wedge H_i$, where H_1, \ldots, H_i are independently generated by the hashing procedure. ¹

¹S. Chakraborty, K. S. Meel and M. Y. Vardi, A Scalable Approximate Model Counter, Proc. of CP 2013

Institute of Software Chinese Academy of Sciences

Algorithm 1 A hash-based (ϵ, δ)-Counter

```
function APPROXMC(F, T, pivot)
    for 1 to T do
        c \leftarrow \text{ApproxMCCore}(F, pivot)
        if (c \neq 0) then AddToList(C, c)
    end for
    return FindMedian(C)
end function
function APPROXMCCORE(F, pivot)
    F_0 \leftarrow F
    for i \leftarrow 0 to \infty do
        s \leftarrow \text{Counting}(F_i, pivot + 1)
        if (0 < s < pivot) then return 2^{i}s
        H_{i+1} \leftarrow \text{Hashing}(F)
        F_{i+1} \leftarrow F_i \wedge H_{i+1}
    end for
end function
```

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

Institute of Software Chinese Academy of Sciences

Satisfiability Modulo Theories (SMT)

- Satisfiability of logic formulas w.r.t background theories
- Theories include: linear arithmetic, arrays, bit vectors, uninterpreted functions
- E.g. $x + y > 0 \land y \le 3 \lor x y = 8$

Institute of Software Chinese Academy of Sciences

The DPLL(T) Procedure

Institute of Software Chinese Academy of Sciences

SAT

・ 日・ ・ 日・ ・ 日・ ・ 日・ うへの

Institute of Software Chinese Academy of Sciences

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ めの()

Institute of Software Chinese Academy of Sciences

Institute of Software Chinese Academy of Sciences

æ

(ロ) (回) (三) (三)

Question

What is the counting version of SMT?

Feifei Ma

∃ > Institute of Software Chinese Academy of Sciences

э

Question

What is the counting version of SMT?

Feifei Ma

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </td>

 Institute of Software
 Chinese Academy of Sciences

To compute the number of solutions of an SMT formula

Feifei Ma

Institute of Software Chinese Academy of Sciences

The Problem

#SMT

Computing the number of solutions of an SMT formula, i.e., the size/volume/density of the solution space.

- has potential applications in various areas.
 - Approximate reasoning.
 - E.g. Given a knowledge base Φ and a formula φ , where neither
 - $\Phi \models \varphi$ nor $\Phi \models \neg \varphi$, compute the likelyhood of φ being True.
 - Program analysis and verification.

path execution frequency, hot path

Institute of Software Chinese Academy of Sciences

A New Measurement for Path Execution Frequency

- [Zhang, COMPSAC 2004]
- δ(P)- the number of solutions of the path condition (or the percentage of solutions in the possible solution space).
 - We can get a feeling of how complete the testing is.
 - We may try to optimize the program by focusing on the "hot" paths.
- Related work: [Buse-Weimer, ICSE 2009]
 - syntactic v.s. semantic
 - estimation v.s. accurate calculation

Institute of Software Chinese Academy of Sciences

How to compute $\delta(P)$?

Example							
•	<pre>int i, j; if (i+j > 10) j = 2; else j = 1;</pre>						

Institute of Software Chinese Academy of Sciences

-

・ロッ ・回 ・ ・ ヨッ ・

How to compute $\delta(P)$?

Example

Institute of Software Chinese Academy of Sciences

э

・ロン ・回 と ・ ヨン・

How to compute $\delta(P)$?

Example

P1 (if-then):
$$i + j > 10$$

P2 (else): $i + j \le 10$

• If i, j : [1..10], $\delta(P1) = 55$, $\delta(P2) = 45.$

→ □→ → ≥→ → ≥ Institute of Software Chinese Academy of Sciences

э

How to compute $\delta(P)$?

Example

- If i, j :[1..10], $\delta(P1) = 55$, $\delta(P2) = 45$.
- If i, j :[1..100], $\delta(P1) = 9955$, $\delta(P2) = 45$.

Institute of Software Chinese Academy of Sciences

How to compute $\delta(P)$?

Example

- If i, j : [1..10], $\delta(P1) = 55$, $\delta(P2) = 45.$
- If i, j : [1..100], $\delta(P1) = 9955$, $\delta(P2) = 45.$

$\delta(P) = Volume(PathCond(P))$

• I > • E > • Institute of Software Chinese Academy of Sciences

Path Execution Frequency / Probability

Suppose there are *m* variables in the path condition of *P*, and the range length or domain size of the *i*th variable is *I_i*. We have

The Execution Frequency of P

$$\mathcal{XP}(P) = \frac{\delta(P)}{\prod_{1 \le i \le m} l_i} = \frac{Volume(PathCond(P))}{\prod_{1 \le i \le m} l_i}$$

Feifei Ma

Institute of Software Chinese Academy of Sciences

Exact Approach

Outline

Exact Model Counting

Approximate Model Counting

2 #SMT

Feifei Ma

Exact Approach

Approximate Approach

-∢ ≣ ▶ Institute of Software Chinese Academy of Sciences

< 17 ▶

SMT(LA)

Exact Approach

Feifei Ma

- An SMT formula on linear arithmetic theory, denoted by SMT(LA), is composed of
 - Boolean variables b_i , numeric variables x_j .
 - The constraint ϕ : a Boolean formula $PS_{\phi}(b_1, \ldots, b_n)$ with definitions $b_i \equiv expr_{i1} \otimes expr_{i2}$.

 PS_{ϕ} is called the propositional skeleton of ϕ .

- Computing the volume of the solution space for SMT(LA) formulas generalizes
 - Model counting in propositional logic.
 - Classical volume computation problem for convex polytopes.

Institute of Software Chinese Academy of Sciences

▲ 同 ▶ → 三 ▶

Exact Approach

Classical Volume Computation

- A polytope is the bounded intersection of finitely many halfspaces/inequalities. Formally $\{\vec{x} | A\vec{x} \leq \vec{b}\}$.
- Tools are available to
 - compute the real solid volume of a polytope. Ex. **vinci, Qhull**.
 - compute the number of integer points within a polytope.
 Ex. azove, LattE.

Institute of Software Chinese Academy of Sciences

A Straightforward Method

 An SMT(LA) instance φ is satisfiable if there is an assignment α to the Boolean variables such that

Institute of Software Chinese Academy of Sciences

Exact Approach

A Straightforward Method

- An SMT(LA) instance φ is satisfiable if there is an assignment α to the Boolean variables such that
 - **1** α propositionally satisfies ϕ ;
 - 2 The corresponding linear inequalities are satisfiable/feasible.

 α is called a **feasible assignment**.

Institute of Software Chinese Academy of Sciences

Feasible Assignment: an example

Example

$$\begin{aligned} \phi &= (((y + 3x < 1) \rightarrow (30 < y)) \lor (x \le 60)) \land ((30 < y) \rightarrow \\ \neg(x > 3) \land (x \le 60)), \text{ or equivalently} \end{aligned}$$

$$\mathsf{PS}_\phi = ((b_1 o b_2) \lor b_4) \land (b_2 o
eg b_3 \land b_4)$$

where:

Feifei Ma

$$\begin{cases} b_1 \equiv (y + 3x < 1); \\ b_2 \equiv (30 < y); \\ b_3 \equiv (x > 3); \\ b_4 \equiv (x \le 60); \end{cases}$$

 $\alpha_1 = \{\neg b_1, \neg b_2, b_3, \neg b_4\}$ is a feasible assignment.

Institute of Software Chinese Academy of Sciences

A B > A B >

A Straightforward Method

- $Mod(\phi)$: the set of all feasible assignments of ϕ .
- *volume*(α): the volume of α, i.e., the volume of the polytope corresponding to α.
- The volume of a formula ϕ is denoted by $Volume(\phi)$.

$$Volume(\phi) = \sum_{\alpha \in Mod(\phi)} volume(\alpha)$$

Institute of Software Chinese Academy of Sciences

□→ < □→</p>

A Straightforward Method

- $Mod(\phi)$: the set of all feasible assignments of ϕ .
- *volume*(α): the volume of α, i.e., the volume of the polytope corresponding to α.
- The volume of a formula ϕ is denoted by $Volume(\phi)$.

$$\mathsf{Volume}(\phi) = \sum_{lpha \in \mathsf{Mod}(\phi)} \mathsf{volume}(lpha)$$

Find all feasible assignments, compute the volume of each assignment and add them up.

Institute of Software Chinese Academy of Sciences

Improvement

 Computing the volume of a polytope is #P-hard. Need to reduce the number of calls to classical polytope volume computation routines.

Improvement

- Computing the volume of a polytope is #P-hard. Need to reduce the number of calls to classical polytope volume computation routines.
- Given an assignment α to the Boolean variabales in ϕ , we distinguish four cases:
 - **1** α satisfies ϕ propositionally, and the corresponding linear inequalities are satisfiable. (Here α is a feasible assignment.)
 - 2 α satisfies ϕ propositionally, while the corresponding linear inequalities are unsatisfiable.
 - 3 α falsifies ϕ propositionally, while the corresponding linear inequalities are satisfiable.
 - 4 α falsifies ϕ propositionally, and the corresponding linear inequalities are unsatisfiable.

Improvement

- Computing the volume of a polytope is #P-hard. Need to reduce the number of calls to classical polytope volume computation routines.
- Given an assignment α to the Boolean variabales in ϕ , we distinguish four cases:
 - **1** α satisfies ϕ propositionally, and the corresponding linear inequalities are satisfiable. (Here α is a feasible assignment.)
 - 2 α satisfies ϕ propositionally, while the corresponding linear inequalities are unsatisfiable.
 - 3 α falsifies ϕ propositionally, while the corresponding linear inequalities are satisfiable.
 - 4 α falsifies ϕ propositionally, and the corresponding linear inequalities are unsatisfiable.
- In cases (2) and (4), α is inconsistent, $volume(\alpha) = 0$, safe to be

Feifei Ma

Institute of Software Chinese Academy of Sciences

#SAT 0000 0000 Exact Approach

Feifei Ma

An Example

$$PS_{\phi} = ((b_1
ightarrow b_2) \lor b_4) \land (b_2
ightarrow \neg b_3 \land b_4)$$

where:

$$\begin{cases} b_1 \equiv (y + 3x < 1); \\ b_2 \equiv (30 < y); \\ b_3 \equiv (x > 3); \\ b_4 \equiv (x \le 60); \end{cases}$$

There are 7 feasible assignments, 3 of which are

$$\begin{aligned} \alpha_1 &= \{\neg b_1, \neg b_2, b_3, \neg b_4\} \\ \alpha_2 &= \{\neg b_1, \neg b_2, \neg b_3, b_4\} \\ \alpha_3 &= \{\neg b_1, \neg b_2, b_3, b_4\} \end{aligned}$$

Institute of Software Chinese Academy of Sciences

э

イロト イヨト イヨト イ

Exact Approach

Feifei Ma

An Example

$$PS_{\phi} = ((b_1
ightarrow b_2) \lor b_4) \land (b_2
ightarrow \neg b_3 \land b_4)$$

where:

$$\begin{cases} b_1 \equiv (y + 3x < 1); \\ b_2 \equiv (30 < y); \\ b_3 \equiv (x > 3); \\ b_4 \equiv (x \le 60); \end{cases}$$

There are 7 feasible assignments, 3 of which are

$$\begin{aligned} \alpha_1 &= \{\neg b_1, \neg b_2, b_3, \neg b_4\} \\ \alpha_2 &= \{\neg b_1, \neg b_2, \neg b_3, b_4\} \\ \alpha_3 &= \{\neg b_1, \neg b_2, b_3, b_4\} \end{aligned}$$

Volume computation for 3 Polytopes.

-∢ ≣ ▶ Institute of Software Chinese Academy of Sciences

< 🗇 🕨

An Example: continued

Consider $\alpha_4 = \{\neg b_1, \neg b_2, \neg b_3, \neg b_4\}$. $\alpha_4 \models PS_{\phi}$, but the linear inequalities corresponding to α_4 are unsatisfiable, $volume(\alpha_4) = 0$.

$$\alpha_{1} = \{ \neg b_{1}, \neg b_{2}, b_{3}, \neg b_{4} \}$$

$$\alpha_{2} = \{ \neg b_{1}, \neg b_{2}, \neg b_{3}, b_{4} \}$$

$$\alpha_{3} = \{ \neg b_{1}, \neg b_{2}, b_{3}, b_{4} \}$$

$$\alpha_{4} = \{ \neg b_{1}, \neg b_{2}, \neg b_{3}, \neg b_{4} \}$$

Form a bunch with the cube $\{\neg b_1, \neg b_2\}$

$$volume(\alpha_1) + volume(\alpha_2) + volume(\alpha_3)$$

= $volume(\alpha_1) + volume(\alpha_2) + volume(\alpha_3) + volume(\alpha_4)$
= $volume(\{\neg b_1, \neg b_2\})$

Institute of Software Chinese Academy of Sciences

An Example: continued

Consider $\alpha_4 = \{\neg b_1, \neg b_2, \neg b_3, \neg b_4\}$. $\alpha_4 \models PS_{\phi}$, but the linear inequalities corresponding to α_4 are unsatisfiable, $volume(\alpha_4) = 0$.

$$\alpha_{1} = \{ \neg b_{1}, \neg b_{2}, b_{3}, \neg b_{4} \}$$

$$\alpha_{2} = \{ \neg b_{1}, \neg b_{2}, \neg b_{3}, b_{4} \}$$

$$\alpha_{3} = \{ \neg b_{1}, \neg b_{2}, b_{3}, b_{4} \}$$

$$\alpha_{4} = \{ \neg b_{1}, \neg b_{2}, \neg b_{3}, \neg b_{4} \}$$

Form a bunch with the cube $\{\neg b_1, \neg b_2\}$

$$volume(\alpha_1) + volume(\alpha_2) + volume(\alpha_3)$$

= $volume(\alpha_1) + volume(\alpha_2) + volume(\alpha_3) + volume(\alpha_4)$
= $volume(\{\neg b_1, \neg b_2\})$

Volume computation for 1 Polytope

Feifei Ma

Institute of Software Chinese Academy of Sciences

Volume Computation in Bunches

Implement the idea within the deduction procedure of the SMT(LA) solver².

• When a feasible assignment α is found, try to obtain a smaller one α_c , such that $\alpha_c \models PS_{\phi}$.

Feifei Ma

Institute of Software Chinese Academy of Sciences

Volume Computation in Bunches

Implement the idea within the deduction procedure of the SMT(LA) solver².

- When a feasible assignment α is found, try to obtain a smaller one α_c , such that $\alpha_c \models PS_{\phi}$.
- α_c contains α, and possibly other feasible assignments and inconsistent assignments, thus is called a **bunch**.

Feifei Ma

Institute of Software Chinese Academy of Sciences

Exact Approach

Volume Computation in Bunches

Implement the idea within the deduction procedure of the SMT(LA) solver².

- When a feasible assignment α is found, try to obtain a smaller one α_c , such that $\alpha_c \models PS_{\phi}$.
- α_c contains α, and possibly other feasible assignments and inconsistent assignments, thus is called a **bunch**.
- Add $volume(\alpha_c)$ to the total volume.

Feifei Ma

Institute of Software Chinese Academy of Sciences

#SAT 0000 0000

Exact Approach

Table: Comparision of Algorithms

				Volume Co	omputation in Bunches	Straightforward Method	
Instance	P	cls	V	Time (s)	#calls	Time (s)	#calls
Ran1	8	50	4	0.02	19	0.03	41
Ran2	10	40	5	0.06	50	0.14	182
Ran3	15	40	5	2.36	47	11.12	188
Ran4	20	40	5	116.72	259	431.15	17158
Ran5	10	20	6	1.04	41	7.81	212
Ran6	10	50	6	2.08	74	5.32	247
Ran7	15	50	6	2.15	57	10.97	257
Ran8	7	40	7	1.01	16	2.77	39
Ran9	12	40	7	50.29	250	502.75	1224
Ran10	15	50	7	303.14	856	3872.70	5224
Ran11	20	50	7	143.11	140	1889.36	807
Ran12	10	20	8	12.04	37	150.92	235
Ran13	10	40	8	51.10	91	398.02	379
Ran14	16	80	8	1074.48	669	4 hours	4273

P: number of linear constraints. cls: number of clauses.

V: number of numerical variables. #calls: number of calls to VINCI.

Approximate Approach

Outline

1 #SAT

Exact Model Counting

Approximate Model Counting

2 #SMT

Feifei Ma

- Exact Approach
- Approximate Approach

Institute of Software Chinese Academy of Sciences

A (1) > (1) > (1)

Volume Estimation for Convex Polytopes

- Computing the volume of a polytope is #P-hard and is the bottleneck of volume computation for SMT(LA).
- To estimate the volume of a convex polytope:
 - The Monte-Carlo method suffers from the curse of dimensionality. The sample size has to grow exponentially to achieve a reasonable estimation.
 - The Multiphase Monte-Carlo Algorithm³ is a polynomial time randomized approximation algorithm. But there lacks practical implementation.

³M. E. Dyer, A. M. Frieze and R. Kannan, A Random Polynomial Time Algorithm for Approximating the Volume of Convex Bodies, Proceedings of the 21st Annual ACM Symposium on Theory of Computing, 1989 • (=) (=) #SAT 0000 0000 Approximate App<u>roach</u>

Feifei Ma

The Multiphase Monte-Carlo Algorithm (1)

Suppose a convex polytope *P* is defined by $P = \{Ax \le b\}$. A sphere with radius *R* and center $x \in \mathbb{R}^n$ is denoted by B(x, R).

- Find an affine transformation T, $B(0,1) \subseteq T(P) \subseteq B(0,n)$
- Place $I = \lceil n \log_2 n \rceil$ concentric balls
 - $\{B_i = B(0, 2^{i/n}), i = 0, \dots, l\}.$

Institute of Software Chinese Academy of Sciences

#SAT 0000 0000 Approximate Approach

Feifei Ma

The Multiphase Monte-Carlo Algorithm (2)

• Set
$$K_i = B_i \cap P$$
, then $K_0 = B(0,1)$, $K_l = P$ and
 $vol(P) = vol(B(0,1)) \prod_{i=0}^{l-1} \frac{vol(K_{i+1})}{vol(K_i)}$ (1)

Institute of Software Chinese Academy of Sciences

The Multiphase Monte-Carlo Algorithm (3)

So we only have to estimates the ratio α_i = vol(K_{i+1})/vol(K_i), i = 0,..., l − 1. Note that 1 ≤ α_i ≤ 2. It is sufficient to estimate α_i with Monte-Carlo algorithm with polynomial number of random points.

Approximate Approach

Reutilization of Random Points

At the *i*-th phase, $\alpha_i = \frac{k_{i+1}}{k_i}$ is estimated.

- The original method: estimate α_i in natural order $(\alpha_0 \rightarrow \alpha_{l-1})$
- Our method: estimate α_i in reverse order $(\alpha_{l-1} \rightarrow \alpha_0)$. Random points are generated from K_l to K_0 .

Feifei Ma

Approximate Approach

Reutilization of Random Points

Approximation of α_i s in reverse order:

- fully exploits the random points generated in previous phases.
- saves 70% random points.
- has no side-effect on the error⁴.

⁴Cunjing Ge, Feifei Ma, Peng Zhang, Jian Zhang. Computing and estimating the volume of the solution space of SMT(LA) constraints, Theoretical Computer Science, Available online 15 November 2016

Experiments

Comparison between Polyvest and Vinci

			Polyve	st	Vinci	
Instance	п	т	Result	Time(s)	Result	Time(s)
cube_10	10	20	1038.18	0.952	1024	0.004
cube_14	14	28	16811.1	3.020	16384	0.160
cube_20	20	40	1.01008e+6	10.869		—
cube_30	30	60	1.08628e+9	54.257		—
cube_40	40	80	1.06866e+12	174.059		—
rh_8_25	8	25	766.744	0.628	785.989	0.884
rh_10_20	10	20	13711.1	1.164	13882.7	0.284
rh_10_25	10	25	5737.29	1.120	5729.52	5.100
rh_10_30	10	30	2051.68	1.154		—
cross_7	7	128	0.0250643	0.968	0.0253968	0.088
fm_6	15	59	296501	5.988		—
cc_8_10	8	70	153128	1.068	156816	6.764
cc_8_11	8	88	1.42154e+6	1.284	1.39181e+6	34.430

Feifei Ma

Institute of Software Chinese Academy of Sciences

#SAT	
0000	

Approximate Approach

Thanks

Feifei Ma

Institute of Software Chinese Academy of Sciences

·≣ ► < ≣ ►