Solution Counting for Propositional Logic and Satisfiability Modulo Theories

Feifei Ma
Institute of Software
Chinese Academy of Sciences

2017-04-11

Outline

1 \#SAT
■ Exact Model Counting

- Approximate Model Counting

2 \#SMT

- Exact Approach
- Approximate Approach

Model Counting (\#SAT)

■ Count \#models of a propositional formula
■ E.g. $(p \wedge q \vee r)$ has 5 models.

- has found applications in
- probabilistic inference
- planning
- combinatorial designs
- \#P-complete problem, even for some polynomial-time solvable problems like 2-SAT

Outline

1 \#SAT

■ Exact Model Counting

- Approximate Model Counting

2 \#SMT
■ Exact Approach

- Approximate Approach

DPLL-based Model Counting

- The earliest practical approach is based on an extension of DPLL SAT solvers.
- Key techniques:
- Component Analysis: If the constraint graph G of a CNF formula F can be partitioned into disjoint components $G_{1}, G_{2}, \ldots, G_{k}$, then $\# F=\# F_{1} \times \# F_{2} \ldots \times \# F_{k}$.
- Component Caching: Store the sub-formulas and their model counts for reutilization. Works better if more reasoning is employed at each node of the DPLL search tree.

Model Counting based on Knowledge Compilation

- Convert or compile the CNF formula into other logic forms from which the count can be deduced easily.
■ Binary Decision Diagram (BDD):

- deterministic,Decomposable Negation Normal Form (d-DNNF): An NNF satisfying the following properties
- Decomposability: $\operatorname{Var}\left(n_{i}\right) \cap \operatorname{Var}\left(n_{i}\right)=\phi$ for any two children n_{i} and n_{j} of an and-node n.
- Determinism: $F\left(n_{i}\right) \wedge F\left(n_{i}\right)=$ is inconsistent for any two children n_{i} and n_{j} of an or-node n.

Outline

1 \#SAT

- Exact Model Counting
- Approximate Model Counting

2 \#SMT

- Exact Approach
- Approximate Approach

Approximate Model Counters

1 Guarantee-less counters: can be very efficient and provide good approximation without guarantees.
2 Bounding counters: provide a lower/upper bound for \#F with probability at least $1-\delta$.
$3(\epsilon, \delta)$-counters: on every input formula $F, \epsilon>0$ and $\delta>0$, output a number \tilde{Y} such that

$$
\operatorname{Pr}\left[(1+\epsilon)^{-1} \# F \leq \tilde{Y} \leq(1+\epsilon) \# F\right] \geq 1-\delta .
$$

Hash Functions

■ Let \mathcal{H}_{F} be a family of XOR-based bit-level hash functions on the variables of a formula F. Each hash function $H \in \mathcal{H}_{F}$ is of the form $H(x)=a_{0} \bigoplus_{i=1}^{n} a_{i} x_{i}$, where a_{0}, \ldots, a_{n} are Boolean constants. In the hashing procedure Hashing (F), a function $H \in \mathcal{H}_{F}$ is generated by independently and randomly choosing $a_{i} s$ from a uniform distribution. Thus for an assignment α, it holds that $\operatorname{Pr}_{H \in \mathcal{H}_{F}}(H(\alpha)=$ true $)=\frac{1}{2}$. Gevin a formula F, let F_{i} denote a hashed formula $F \wedge H_{1} \wedge \cdots \wedge H_{i}$, where H_{1}, \ldots, H_{i} are independently generated by the hashing procedure. ${ }^{1}$

[^0]
Algorithm 1 A hash-based (ϵ, δ)-Counter

```
function ApproxMC \((F, T\), pivot \()\)
    for 1 to \(T\) do
        \(c \leftarrow\) ApproxMCCore \((F\), pivot \()\)
        if \((c \neq 0)\) then AddToList \((C, c)\)
    end for
    return FindMedian( \(C\) )
    end function
    function ApproxMCCore ( \(F\), pivot)
        \(F_{0} \leftarrow F\)
        for \(i \leftarrow 0\) to \(\infty\) do
        \(s \leftarrow \operatorname{Counting}\left(F_{i}\right.\), pivot +1\()\)
        if ( \(0 \leq s \leq\) pivot ) then return \(2^{i} s\)
        \(H_{i+1} \leftarrow \operatorname{Hashing}(F)\)
        \(F_{i+1} \leftarrow F_{i} \wedge H_{i+1}\)
        end for
    end function
```


SMT

■ Satisfiability Modulo Theories (SMT)

- Satisfiability of logic formulas w.r.t background theories
- Theories include: linear arithmetic, arrays, bit vectors, uninterpreted functions
■ E.g. $x+y>0 \wedge y \leq 3 \vee x-y=8$

The DPLL(T) Procedure

Question

What is the counting version of SMT?

Question

What is the counting version of SMT?

Question

What is the counting version of SMT?

To compute the number of solutions of an SMT formula

The Problem

\#SMT

Computing the number of solutions of an SMT formula, i.e., the size/volume/density of the solution space.

- has potential applications in various areas.
- Approximate reasoning.
E.g. Given a knowledge base Φ and a formula φ, where neither $\Phi \models \varphi$ nor $\Phi \models \neg \varphi$, compute the likelyhood of φ being True.
- Program analysis and verification.
path execution frequency, hot path

A New Measurement for Path Execution Frequency

- [Zhang, COMPSAC 2004]
- $\delta(P)$ - the number of solutions of the path condition (or the percentage of solutions in the possible solution space).
- We can get a feeling of how complete the testing is.
- We may try to optimize the program by focusing on the "hot" paths.
■ Related work: [Buse-Weimer, ICSE 2009]
- syntactic v.s. semantic
- estimation v.s. accurate calculation

How to compute $\delta(P)$?

Example

```
int i, j;
if (i+j > 10)
    j = 2;
else j = 1;
```


How to compute $\delta(P)$?

Example

```
- int \(i, j\);
    if ( \(\mathrm{i}+\mathrm{j}>10\) )
        j \(=2\);
    else \(\mathrm{j}=1\);
- P1 (if-then): \(i+j>10\)
    P2 (else): \(i+j \leq 10\)
```


How to compute $\delta(P)$?

Example

```
    int i, j;
    if (i+j > 10)
        \(j=2\);
    else \(j=1\);
■ P1 (if-then): \(i+j>10\)
    P 2 (else): \(i+j \leq 10\)
```


How to compute $\delta(P)$?

Example

```
    int i, j;
    if ( \(\mathrm{i}+\mathrm{j}>10\) )
        j \(=2\);
else \(\mathrm{j}=1\);
- P1 (if-then): \(i+j>10\) P2 (else): \(i+j \leq 10\)
```

- If $\mathrm{i}, \mathrm{j}:[1 . .10], \delta(P 1)=55$, $\delta(P 2)=45$.
- If $\mathrm{i}, \mathrm{j}:[1 . .100], \delta(P 1)=9955$, $\delta(P 2)=45$.

How to compute $\delta(P)$?

Example

- int i, j;
if ($\mathrm{i}+\mathrm{j}>10$)
j $=2$;
else $\mathrm{j}=1$;
■ P1 (if-then): $i+j>10$
P 2 (else): $i+j \leq 10$
- If $\mathrm{i}, \mathrm{j}:[1 . .10], \delta(P 1)=55$, $\delta(P 2)=45$.

■ If $\mathrm{i}, \mathrm{j}:[1 . .100], \delta(P 1)=9955$, $\delta(P 2)=45$.

$$
\delta(P)=\operatorname{Volume}(\text { PathCond }(P))
$$

Path Execution Frequency / Probability

- Suppose there are m variables in the path condition of P, and the range length or domain size of the i th variable is l_{i}. We have

The Execution Frequency of P

$$
\mathcal{X P}(P)=\frac{\delta(P)}{\prod_{1 \leq i \leq m} I_{i}}=\frac{\text { Volume }(\text { PathCond }(P))}{\prod_{1 \leq i \leq m} I_{i}}
$$

Outline

1 \#SAT
 - Exact Model Counting - Approximate Model Counting

2 \#SMT

■ Exact Approach

- Approximate Approach

SMT(LA)

- An SMT formula on linear arithmetic theory, denoted by SMT(LA), is composed of
- Boolean variables b_{i}, numeric variables x_{j}.
- The constraint ϕ : a Boolean formula $P S_{\phi}\left(b_{1}, \ldots, b_{n}\right)$ with definitions $b_{i} \equiv$ expr $_{i 1} \otimes$ expr $r_{i 2}$.
$P S_{\phi}$ is called the propositional skeleton of ϕ.
- Computing the volume of the solution space for SMT(LA) formulas generalizes
- Model counting in propositional logic.
- Classical volume computation problem for convex polytopes.

Classical Volume Computation

■ A polytope is the bounded intersection of finitely many halfspaces/inequalities. Formally $\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$.

- Tools are available to
- compute the real solid volume of a polytope. Ex. vinci, Qhull.
- compute the number of integer points within a polytope. Ex. azove, LattE.

A Straightforward Method

- An $\operatorname{SMT}(\mathrm{LA})$ instance ϕ is satisfiable if there is an assignment α to the Boolean variables such that

A Straightforward Method

- An $\operatorname{SMT}(\mathrm{LA})$ instance ϕ is satisfiable if there is an assignment α to the Boolean variables such that
1α propositionally satisfies ϕ;
2 The corresponding linear inequalities are satisfiable/feasible. α is called a feasible assignment.

Feasible Assignment: an example

Example

$\phi=(((y+3 x<1) \rightarrow(30<y)) \vee(x \leq 60)) \wedge((30<y) \rightarrow$ $\neg(x>3) \wedge(x \leq 60))$, or equivalently

$$
P S_{\phi}=\left(\left(b_{1} \rightarrow b_{2}\right) \vee b_{4}\right) \wedge\left(b_{2} \rightarrow \neg b_{3} \wedge b_{4}\right)
$$

where:

$$
\left\{\begin{array}{l}
b_{1} \equiv(y+3 x<1) \\
b_{2} \equiv(30<y) \\
b_{3} \equiv(x>3) \\
b_{4} \equiv(x \leq 60)
\end{array}\right.
$$

$\alpha_{1}=\left\{\neg b_{1}, \neg b_{2}, b_{3}, \neg b_{4}\right\}$ is a feasible assignment.

A Straightforward Method

■ $\operatorname{Mod}(\phi)$: the set of all feasible assignments of ϕ.

- volume (α) : the volume of α, i.e., the volume of the polytope corresponding to α.
- The volume of a formula ϕ is denoted by Volume (ϕ).

$$
\text { Volume }(\phi)=\sum_{\alpha \in \operatorname{Mod}(\phi)} \text { volume }(\alpha)
$$

A Straightforward Method

- $\operatorname{Mod}(\phi)$: the set of all feasible assignments of ϕ.
- volume (α) : the volume of α, i.e., the volume of the polytope corresponding to α.
- The volume of a formula ϕ is denoted by Volume (ϕ).

$$
\operatorname{Volume}(\phi)=\sum_{\alpha \in \operatorname{Mod}(\phi)} \text { volume }(\alpha)
$$

Find all feasible assignments, compute the volume of each assignment and add them up.

Improvement

- Computing the volume of a polytope is \#P-hard. Need to reduce the number of calls to classical polytope volume computation routines.

Improvement

- Computing the volume of a polytope is \#P-hard. Need to reduce the number of calls to classical polytope volume computation routines.
- Given an assignment α to the Boolean variabales in ϕ, we distinguish four cases:
1α satisfies ϕ propositionally, and the corresponding linear inequalities are satisfiable. (Here α is a feasible assignment.)
2α satisfies ϕ propositionally, while the corresponding linear inequalities are unsatisfiable.
3α falsifies ϕ propositionally, while the corresponding linear inequalities are satisfiable.
4α falsifies ϕ propositionally, and the corresponding linear inequalities are unsatisfiable.

Improvement

- Computing the volume of a polytope is \#P-hard. Need to reduce the number of calls to classical polytope volume computation routines.
- Given an assignment α to the Boolean variabales in ϕ, we distinguish four cases:
1α satisfies ϕ propositionally, and the corresponding linear inequalities are satisfiable. (Here α is a feasible assignment.)
2α satisfies ϕ propositionally, while the corresponding linear inequalities are unsatisfiable.
3α falsifies ϕ propositionally, while the corresponding linear inequalities are satisfiable.
4α falsifies ϕ propositionally, and the corresponding linear inequalities are unsatisfiable.
■ In cases (2) and (4), α is inconsistent, volume $(\alpha)=0$, safe to be

An Example

$$
P S_{\phi}=\left(\left(b_{1} \rightarrow b_{2}\right) \vee b_{4}\right) \wedge\left(b_{2} \rightarrow \neg b_{3} \wedge b_{4}\right)
$$

where:

$$
\left\{\begin{array}{l}
b_{1} \equiv(y+3 x<1) \\
b_{2} \equiv(30<y) \\
b_{3} \equiv(x>3) \\
b_{4} \equiv(x \leq 60)
\end{array}\right.
$$

■ There are 7 feasible assignments, 3 of which are

$$
\begin{aligned}
& \alpha_{1}=\left\{\neg b_{1}, \neg b_{2}, b_{3}, \neg b_{4}\right\} \\
& \alpha_{2}=\left\{\neg b_{1}, \neg b_{2}, \neg b_{3}, b_{4}\right\} \\
& \alpha_{3}=\left\{\neg b_{1}, \neg b_{2}, b_{3}, b_{4}\right\}
\end{aligned}
$$

An Example

$$
P S_{\phi}=\left(\left(b_{1} \rightarrow b_{2}\right) \vee b_{4}\right) \wedge\left(b_{2} \rightarrow \neg b_{3} \wedge b_{4}\right)
$$

where:

$$
\left\{\begin{array}{l}
b_{1} \equiv(y+3 x<1) \\
b_{2} \equiv(30<y) \\
b_{3} \equiv(x>3) \\
b_{4} \equiv(x \leq 60)
\end{array}\right.
$$

■ There are 7 feasible assignments, 3 of which are

$$
\begin{aligned}
& \alpha_{1}=\left\{\neg b_{1}, \neg b_{2}, b_{3}, \neg b_{4}\right\} \\
& \alpha_{2}=\left\{\neg b_{1}, \neg b_{2}, \neg b_{3}, b_{4}\right\} \\
& \alpha_{3}=\left\{\neg b_{1}, \neg b_{2}, b_{3}, b_{4}\right\}
\end{aligned}
$$

■ Volume computation for 3 Polytopes.

An Example: continued

Consider $\alpha_{4}=\left\{\neg b_{1}, \neg b_{2}, \neg b_{3}, \neg b_{4}\right\} . \alpha_{4} \models P S_{\phi}$, but the linear inequalities corresponding to α_{4} are unsatisfiable, volume $\left(\alpha_{4}\right)=0$.

$$
\begin{aligned}
& \alpha_{1}=\left\{\neg b_{1}, \neg b_{2}, b_{3}, \neg b_{4}\right\} \\
& \alpha_{2}=\left\{\neg b_{1}, \neg b_{2}, \neg b_{3}, b_{4}\right\} \\
& \alpha_{3}=\left\{\neg b_{1}, \neg b_{2}, b_{3}, b_{4}\right\} \\
& \alpha_{4}=\left\{\neg b_{1}, \neg b_{2}, \neg b_{3}, \neg b_{4}\right\}
\end{aligned}
$$

Form a bunch with the cube $\left\{\neg b_{1}, \neg b_{2}\right\}$

$$
\begin{aligned}
& \text { volume }\left(\alpha_{1}\right)+\text { volume }\left(\alpha_{2}\right)+\text { volume }\left(\alpha_{3}\right) \\
= & \text { volume }\left(\alpha_{1}\right)+\operatorname{volume}\left(\alpha_{2}\right)+\text { volume }\left(\alpha_{3}\right)+\operatorname{volume}\left(\alpha_{4}\right) \\
= & \text { volume }\left(\left\{\neg b_{1}, \neg b_{2}\right\}\right)
\end{aligned}
$$

An Example: continued

Consider $\alpha_{4}=\left\{\neg b_{1}, \neg b_{2}, \neg b_{3}, \neg b_{4}\right\} . \alpha_{4} \models P S_{\phi}$, but the linear inequalities corresponding to α_{4} are unsatisfiable, volume $\left(\alpha_{4}\right)=0$.

$$
\begin{aligned}
& \alpha_{1}=\left\{\neg b_{1}, \neg b_{2}, b_{3}, \neg b_{4}\right\} \\
& \alpha_{2}=\left\{\neg b_{1}, \neg b_{2}, \neg b_{3}, b_{4}\right\} \\
& \alpha_{3}=\left\{\neg b_{1}, \neg b_{2}, b_{3}, b_{4}\right\} \\
& \alpha_{4}=\left\{\neg b_{1}, \neg b_{2}, \neg b_{3}, \neg b_{4}\right\}
\end{aligned}
$$

Form a bunch with the cube $\left\{\neg b_{1}, \neg b_{2}\right\}$

$$
\begin{aligned}
& \text { volume }\left(\alpha_{1}\right)+\text { volume }\left(\alpha_{2}\right)+\text { volume }\left(\alpha_{3}\right) \\
= & \text { volume }\left(\alpha_{1}\right)+\operatorname{volume}\left(\alpha_{2}\right)+\operatorname{volume}\left(\alpha_{3}\right)+\operatorname{volume}\left(\alpha_{4}\right) \\
= & \text { volume }\left(\left\{\neg b_{1}, \neg b_{2}\right\}\right)
\end{aligned}
$$

Volume computation for 1 Polvtone

Volume Computation in Bunches

Implement the idea within the deduction procedure of the SMT(LA) solver ${ }^{2}$.

- When a feasible assignment α is found, try to obtain a smaller one α_{c}, such that $\alpha_{c} \models P S_{\phi}$.

[^1]
Volume Computation in Bunches

Implement the idea within the deduction procedure of the SMT(LA) solver ${ }^{2}$.

- When a feasible assignment α is found, try to obtain a smaller one α_{c}, such that $\alpha_{c} \models P S_{\phi}$.
- α_{c} contains α, and possibly other feasible assignments and inconsistent assignments, thus is called a bunch.

[^2]
Volume Computation in Bunches

Implement the idea within the deduction procedure of the SMT(LA) solver ${ }^{2}$.

■ When a feasible assignment α is found, try to obtain a smaller one α_{c}, such that $\alpha_{c} \models P S_{\phi}$.

- α_{c} contains α, and possibly other feasible assignments and inconsistent assignments, thus is called a bunch.
■ Add volume $\left(\alpha_{c}\right)$ to the total volume.

[^3]
Table: Comparision of Algorithms

				Volume Computation in Bunches		Straightforward Method	
Instance	P	cls	V	Time (s)	\#calls	Time (s)	\#calls
Ran1	8	50	4	0.02	19	0.03	41
Ran2	10	40	5	0.06	50	0.14	182
Ran3	15	40	5	2.36	47	11.12	188
Ran4	20	40	5	116.72	259	431.15	17158
Ran5	10	20	6	1.04	41	7.81	212
Ran6	10	50	6	2.08	74	5.32	247
Ran7	15	50	6	2.15	57	10.97	257
Ran8	7	40	7	1.01	16	2.77	39
Ran9	12	40	7	50.29	250	502.75	1224
Ran10	15	50	7	303.14	856	3872.70	5224
Ran11	20	50	7	143.11	140	1889.36	807
Ran12	10	20	8	12.04	37	150.92	235
Ran13	10	40	8	51.10	91	398.02	379
Ran14	16	80	8	1074.48	669	4 hours	4273

P: number of linear constraints. cls: number of clauses.
V: number of numerical variables. \#calls: number of calls to VINCI.

Outline

1 \#SAT
 - Exact Model Counting - Approximate Model Counting

2 \#SMT

- Exact Approach

■ Approximate Approach

Volume Estimation for Convex Polytopes

- Computing the volume of a polytope is \#P-hard and is the bottleneck of volume computation for SMT(LA).
- To estimate the volume of a convex polytope:
- The Monte-Carlo method suffers from the curse of dimensionality. The sample size has to grow exponentially to achieve a reasonable estimation.
- The Multiphase Monte-Carlo Algorithm ${ }^{3}$ is a polynomial time randomized approximation algorithm. But there lacks practical implementation.

[^4]
The Multiphase Monte-Carlo Algorithm (1)

Suppose a convex polytope P is defined by $P=\{A x \leq b\}$. A sphere with radius R and center $x \in \mathbb{R}^{n}$ is denoted by $B(x, R)$.

■ Find an affine transformation $T, B(0,1) \subseteq T(P) \subseteq B(0, n)$

- Place $I=\left\lceil n \log _{2} n\right\rceil$ concentric balls

$$
\left\{B_{i}=B\left(0,2^{i / n}\right), \quad i=0, \ldots, l\right\} .
$$

The Multiphase Monte-Carlo Algorithm (2)

- Set $K_{i}=B_{i} \cap P$, then $K_{0}=B(0,1), K_{l}=P$ and

$$
\begin{equation*}
\operatorname{vol}(P)=\operatorname{vol}(B(0,1)) \prod_{i=0}^{I-1} \frac{\operatorname{vol}\left(K_{i+1}\right)}{\operatorname{vol}\left(K_{i}\right)} \tag{1}
\end{equation*}
$$

The Multiphase Monte-Carlo Algorithm (3)

■ So we only have to estimates the ratio $\alpha_{i}=\operatorname{vol}\left(K_{i+1}\right) / \operatorname{vol}\left(K_{i}\right), i=0, \ldots, I-1$. Note that $1 \leq \alpha_{i} \leq 2$. It is sufficient to estimate α_{i} with Monte-Carlo algorithm with polynomial number of random points.

Reutilization of Random Points

At the i-th phase, $\alpha_{i}=\frac{k_{i+1}}{k_{i}}$ is estimated.
■ The original method: estimate α_{i} in natural order $\left(\alpha_{0} \rightarrow \alpha_{I-1}\right)$
■ Our method: estimate α_{i} in reverse order $\left(\alpha_{I-1} \rightarrow \alpha_{0}\right)$. Random points are generated from K_{l} to K_{0}.

Reutilization of Random Points

Approximation of $\alpha_{i} \mathrm{~s}$ in reverse order:

- fully exploits the random points generated in previous phases.
- saves 70% random points.
- has no side-effect on the error ${ }^{4}$.
> ${ }^{4}$ Cunjing Ge, Feifei Ma, Peng Zhang, Jian Zhang. Computing and estimating the volume of the solution space of SMT(LA) constraints, Theoretical Computer Science, Available online 15 November 2016

Experiments

Comparison between Polyvest and Vinci

			Polyvest		Vinci	
Instance	n	m	Result	Time(s)	Result	Time(s)
cube_10	10	20	1038.18	0.952	1024	0.004
cube_14	14	28	16811.1	3.020	16384	0.160
cube_20	20	40	$1.01008 \mathrm{e}+6$	10.869	-	-
cube_30	30	60	$1.08628 \mathrm{e}+9$	54.257	-	-
cube_40	40	80	$1.06866 \mathrm{e}+12$	174.059	-	-
rh_8_25	8	25	766.744	0.628	785.989	0.884
rh_10_20	10	20	13711.1	1.164	13882.7	0.284
rh_10_25	10	25	5737.29	1.120	5729.52	5.100
rh_10_30	10	30	2051.68	1.154	-	-
cross_7	7	128	0.0250643	0.968	0.0253968	0.088
fm_6	15	59	296501	5.988	-	-
cc_8_10	8	70	153128	1.068	156816	6.764
cc_8_11	8	88	$1.42154 \mathrm{e}+6$	1.284	$1.39181 \mathrm{e}+6$	34.430

Thanks

[^0]: ${ }^{1}$ S. Chakraborty, K. S. Meel and M. Y. Vardi, A Scalable Approximate Model Counter, Proc. of CP 2013

[^1]: ${ }^{2}$ Feifei Ma, Sheng Liu, Jian Zhang: Volume Computation for Boolean Combination of Linear Arithmetic Constraints. CADE 2009.

[^2]: ${ }^{2}$ Feifei Ma, Sheng Liu, Jian Zhang: Volume Computation for Boolean Combination of Linear Arithmetic Constraints. CADE 2009.

[^3]: ${ }^{2}$ Feifei Ma, Sheng Liu, Jian Zhang: Volume Computation for Boolean Combination of Linear Arithmetic Constraints. CADE 2009.

[^4]: ${ }^{3}$ M. E. Dyer, A. M. Frieze and R. Kannan, A Random Polynomial Time Algorithm for Approximating the Volume of Convex Bodies, Proceedings of the 21st Annual ACM Symposium on Theory of Computing, 1989

