
Solution Counting for Propositional Logic and
Satisfiability Modulo Theories

Feifei Ma

Institute of Software
Chinese Academy of Sciences

2017-04-11

#SAT #SMT

Outline

1 #SAT
Exact Model Counting
Approximate Model Counting

2 #SMT
Exact Approach
Approximate Approach

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Model Counting (#SAT)

Count #models of a propositional formula

E.g. (p ∧ q ∨ r) has 5 models.

has found applications in

probabilistic inference
planning
combinatorial designs

#P-complete problem, even for some polynomial-time
solvable problems like 2-SAT

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Model Counting

Outline

1 #SAT
Exact Model Counting
Approximate Model Counting

2 #SMT
Exact Approach
Approximate Approach

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Model Counting

DPLL-based Model Counting

The earliest practical approach is based on an extension of
DPLL SAT solvers.

Key techniques:

Component Analysis: If the constraint graph G of a CNF
formula F can be partitioned into disjoint components
G1,G2, . . . ,Gk , then #F = #F1 ×#F2 . . .×#Fk .
Component Caching: Store the sub-formulas and their model
counts for reutilization. Works better if more reasoning is
employed at each node of the DPLL search tree.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Model Counting

Model Counting based on Knowledge Compilation

Convert or compile the CNF formula into other logic forms
from which the count can be deduced easily.

Binary Decision Diagram (BDD):

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Model Counting

deterministic,Decomposable Negation Normal Form
(d-DNNF): An NNF satisfying the following properties

Decomposability: Var(ni) ∩ Var(ni) = φ for any two children
ni and nj of an and-node n.
Determinism:F (ni) ∧ F (ni) = is inconsistent for any two
children ni and nj of an or-node n.

New Advances in Compiling CNF to Decomposable
Negation Normal Form

Adnan Darwiche1

Abstract. We describe a new algorithm for compiling conjunctive
normal form (CNF) into Deterministic Decomposable Negation Nor-
mal (d-DNNF), which is a tractable logical form that permits model
counting in polynomial time. The new implementation is based on
latest techniques from both the SAT and OBDD literatures, and ap-
pears to be orders of magnitude more efficient than previous algo-
rithms for this purpose. We compare our compiler experimentally
to state of the art model counters, OBDD compilers, and previous
CNF2dDNNF compilers.

1 INTRODUCTION

A tractable logical form known asDeterministic, Decomposable
Negation Normal Form,d-DNNF, has been proposed recently, which
permits some generally intractable logical queries to be computed
in time polynomial in the form size [4, 5, 6]. These queries include
clausal entailment; model counting; model minimization based on
model cardinality; model enumeration; and probabilistic equivalence
testing. Most notably, d-DNNF is a strict superset of, and more suc-
cinct than, OBDDs [2], which are popular in supporting various AI
applications, including diagnosis and planning. Moreover, although
OBDDs are more tractable than d-DNNFs (support more polytime
queries), the extra tractability does not appear to be relevant to some
of these applications.

An algorithm has been presented in [4, 5] for compiling Conjunc-
tive Normal Form (CNF) into d-DNNF. The algorithm is structure–
based in two senses. First, its complexity is dictated by the connectiv-
ity of given CNF, with the complexity increasing exponentially with
increased connectivity. Second, it is insensitive to non–structural
properties of the given CNF: two CNFs with the same connectiv-
ity are equally difficult to compile by the given algorithm. However,
many CNFs of interest—including random CNFs and those that arise
in diagnosis, formal verification and planning domains—tend to have
very high connectivity and are therefore outside the scope of this
structure–based algorithm. This problem has been addressed in [6],
which presents aCNF2DDNNF compiler that is structure-based, yet
is sensitive to the non–structural properties of a CNFs. The compiler
is based on the one presented in [4] but incorporates a combination
of additional techniques, some are novel, and others are well known
in the SAT and OBDD literatures. The compiler of [6] was the first
CNF to d-DNNF compiler that practically matched some of the ex-
pectations set by theoretical results on the comparative succinctness
between d-DNNFs and OBDDs [7].

We present a third–generation compiler in this paper for convert-
ing CNF into d-DNNF, which incorporates two key new techniques:

1 Computer Science Department, University of California, Los Angeles, CA
90095, USA, email: darwiche@cs.ucla.edu

conflict-directed backtracking and a new method for caching inter-
mediate results. We show that the new compiler can be orders of
magnitude more efficient than the compiler of [6] on problems that
have been solved before. We also point to a number of CNF bench-
marks that could be compiled for the very first time using the new
compiler.

2 Deterministic DNNF

¬¬A B ¬¬ B A C ¬¬ D D ¬¬ C

and and and and and and and and

or or or or

and and

or

Figure 1. A negation normal form.

A negation normal form (NNF) is a rooted directed acyclic graph
in which each leaf node is labeled with a literal,true or false, and
each internal node is labeled with a conjunction∧ or disjunction
∨. Figure 1 depicts an example. For any noden in an NNF graph,
Vars(n) denotes all propositional variables that appear in the sub-
graph rooted atn, and∆(n) denotes the formula represented byn
and its descendants. A number of properties can be stated on NNF
graphs:

• Decomposabilityholds whenVars(ni) ∩ Vars(nj) = ∅ for any
two childrenni andnj of an and-noden. The NNF in Figure 1 is
decomposable.

• Determinismholds when∆(ni) ∧ ∆(nj) is logically inconsis-
tent for any two childrenni andnj of an or-noden. The NNF in
Figure 1 is deterministic.

• Decisionholds when the root node of the NNF graph is a decision
node. Adecision nodeis a node labeled withtrue, false, or is

an or-node having the formX ¬¬Xα β

and

or

and

, whereX is a variable,α
andβ are decision nodes. Here,X is called thedecision variable

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Approximate Model Counting

Outline

1 #SAT
Exact Model Counting
Approximate Model Counting

2 #SMT
Exact Approach
Approximate Approach

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Approximate Model Counting

Approximate Model Counters

1 Guarantee-less counters: can be very efficient and provide
good approximation without guarantees.

2 Bounding counters: provide a lower/upper bound for #F with
probability at least 1− δ.

3 (ε, δ)-counters: on every input formula F , ε > 0 and δ > 0,
output a number Ỹ such that
Pr[(1 + ε)−1#F ≤ Ỹ ≤ (1 + ε)#F] ≥ 1− δ.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Approximate Model Counting

Hash Functions

Let HF be a family of XOR-based bit-level hash functions on
the variables of a formula F . Each hash function H ∈ HF is
of the form H(x) = a0

⊕n
i=1 aixi , where a0, . . . , an are

Boolean constants. In the hashing procedure Hashing(F), a
function H ∈ HF is generated by independently and randomly
choosing ai s from a uniform distribution. Thus for an
assignment α, it holds that PrH∈HF

(H(α) = true) = 1
2 . Gevin

a formula F , let Fi denote a hashed formula F ∧H1 ∧ · · · ∧Hi ,
where H1, . . . ,Hi are independently generated by the hashing
procedure. 1

1S. Chakraborty, K. S. Meel and M. Y. Vardi, A Scalable Approximate
Model Counter, Proc. of CP 2013

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Approximate Model Counting

Algorithm 1 A hash-based (ε, δ)-Counter

function ApproxMC(F , T , pivot)
for 1 to T do

c ← ApproxMCCore(F , pivot)
if (c 6= 0) then AddToList(C , c)

end for
return FindMedian(C)

end function
function ApproxMCCore(F , pivot)

F0 ← F
for i ← 0 to ∞ do

s ← Counting(Fi , pivot + 1)
if (0 ≤ s ≤ pivot) then return 2i s
Hi+1 ← Hashing(F)
Fi+1 ← Fi ∧ Hi+1

end for
end function

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

SMT

Satisfiability Modulo Theories (SMT)
Satisfiability of logic formulas w.r.t background theories
Theories include: linear arithmetic, arrays, bit vectors,
uninterpreted functions
E.g. x + y > 0 ∧ y ≤ 3 ∨ x − y = 8

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

The DPLL(T) Procedure

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

SAT

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

SAT

SMT

��
��
��
�1

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

SAT

SMT

Model
Counting

��
��
��
�1

PPPPPPPq

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

SAT

SMT

Model
Counting

��
��
��
�1

PPPPPPPq

Question

What is the counting version of SMT?

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

SAT

SMT

Model
Counting

?
��
��
��
�1

PPPPPPPq

PPPPPPPq

��
��

��
�1

Question

What is the counting version of SMT?

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

SAT

SMT

Model
Counting

Sol. Space Size
Computation

��
��
��
�1

PPPPPPPq

PPPPPPPq

��
��

��
�1

Question

What is the counting version of SMT?

To compute the number of solutions of an SMT formula

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

The Problem

#SMT

Computing the number of solutions of an SMT formula, i.e., the
size/volume/density of the solution space.

has potential applications in various areas.

Approximate reasoning.
E.g. Given a knowledge base Φ and a formula ϕ, where neither
Φ |= ϕ nor Φ |= ¬ϕ, compute the likelyhood of ϕ being True.
Program analysis and verification.
path execution frequency, hot path

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

A New Measurement for Path Execution Frequency

[Zhang, COMPSAC 2004]

δ(P)– the number of solutions of the path condition (or the
percentage of solutions in the possible solution space).

We can get a feeling of how complete the testing is.
We may try to optimize the program by focusing on the “hot”
paths.

Related work: [Buse-Weimer, ICSE 2009]

syntactic v.s. semantic
estimation v.s. accurate calculation

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

How to compute δ(P)?

Example

int i, j;

if (i+j > 10)

j = 2;

else j = 1;

P1 (if-then): i + j > 10
P2 (else): i + j ≤ 10

If i, j :[1..10], δ(P1) = 55,
δ(P2) = 45.

If i, j :[1..100], δ(P1) = 9955,
δ(P2) = 45.

δ(P) = Volume(PathCond(P))

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

How to compute δ(P)?

Example

int i, j;

if (i+j > 10)

j = 2;

else j = 1;

P1 (if-then): i + j > 10
P2 (else): i + j ≤ 10

If i, j :[1..10], δ(P1) = 55,
δ(P2) = 45.

If i, j :[1..100], δ(P1) = 9955,
δ(P2) = 45.

δ(P) = Volume(PathCond(P))

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

How to compute δ(P)?

Example

int i, j;

if (i+j > 10)

j = 2;

else j = 1;

P1 (if-then): i + j > 10
P2 (else): i + j ≤ 10

If i, j :[1..10], δ(P1) = 55,
δ(P2) = 45.

If i, j :[1..100], δ(P1) = 9955,
δ(P2) = 45.

δ(P) = Volume(PathCond(P))

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

How to compute δ(P)?

Example

int i, j;

if (i+j > 10)

j = 2;

else j = 1;

P1 (if-then): i + j > 10
P2 (else): i + j ≤ 10

If i, j :[1..10], δ(P1) = 55,
δ(P2) = 45.

If i, j :[1..100], δ(P1) = 9955,
δ(P2) = 45.

δ(P) = Volume(PathCond(P))

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

How to compute δ(P)?

Example

int i, j;

if (i+j > 10)

j = 2;

else j = 1;

P1 (if-then): i + j > 10
P2 (else): i + j ≤ 10

If i, j :[1..10], δ(P1) = 55,
δ(P2) = 45.

If i, j :[1..100], δ(P1) = 9955,
δ(P2) = 45.

δ(P) = Volume(PathCond(P))

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Path Execution Frequency / Probability

Suppose there are m variables in the path condition of P, and
the range length or domain size of the ith variable is li . We
have

The Execution Frequency of P

XP(P) =
δ(P)∏
1≤i≤m li

=
Volume(PathCond(P))∏

1≤i≤m li

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

Outline

1 #SAT
Exact Model Counting
Approximate Model Counting

2 #SMT
Exact Approach
Approximate Approach

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

SMT(LA)

An SMT formula on linear arithmetic theory, denoted by
SMT(LA), is composed of

Boolean variables bi , numeric variables xj .
The constraint φ: a Boolean formula PSφ(b1, . . . , bn) with
definitions bi ≡ expri1 ⊗ expri2.

PSφ is called the propositional skeleton of φ.

Computing the volume of the solution space for SMT(LA)
formulas generalizes

Model counting in propositional logic.
Classical volume computation problem for convex polytopes.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

Classical Volume Computation

A polytope is the bounded intersection of finitely many
halfspaces/inequalities. Formally {~x |A~x ≤ ~b}.
Tools are available to

compute the real solid volume of a polytope.
Ex. vinci, Qhull.
compute the number of integer points within a polytope.
Ex. azove, LattE.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

A Straightforward Method

An SMT(LA) instance φ is satisfiable if there is an assignment
α to the Boolean variables such that

1 α propositionally satisfies φ;
2 The corresponding linear inequalities are satisfiable/feasible.

α is called a feasible assignment.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

A Straightforward Method

An SMT(LA) instance φ is satisfiable if there is an assignment
α to the Boolean variables such that

1 α propositionally satisfies φ;
2 The corresponding linear inequalities are satisfiable/feasible.

α is called a feasible assignment.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

Feasible Assignment: an example

Example

φ = (((y + 3x < 1)→ (30 < y)) ∨ (x ≤ 60)) ∧ ((30 < y)→
¬(x > 3) ∧ (x ≤ 60)), or equivalently

PSφ = ((b1 → b2) ∨ b4) ∧ (b2 → ¬b3 ∧ b4)

where:
b1 ≡ (y + 3x < 1);
b2 ≡ (30 < y);
b3 ≡ (x > 3);
b4 ≡ (x ≤ 60);

α1 = {¬b1,¬b2, b3,¬b4} is a feasible assignment.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

A Straightforward Method

Mod(φ): the set of all feasible assignments of φ.

volume(α): the volume of α, i.e., the volume of the polytope
corresponding to α.

The volume of a formula φ is denoted by Volume(φ).

Volume(φ) =
∑

α∈Mod(φ)

volume(α)

Find all feasible assignments, compute the volume of each
assignment and add them up.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

A Straightforward Method

Mod(φ): the set of all feasible assignments of φ.

volume(α): the volume of α, i.e., the volume of the polytope
corresponding to α.

The volume of a formula φ is denoted by Volume(φ).

Volume(φ) =
∑

α∈Mod(φ)

volume(α)

Find all feasible assignments, compute the volume of each
assignment and add them up.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

Improvement

Computing the volume of a polytope is #P-hard. Need to reduce
the number of calls to classical polytope volume computation
routines.

Given an assignment α to the Boolean variabales in φ, we
distinguish four cases:

1 α satisfies φ propositionally, and the corresponding linear
inequalities are satisfiable. (Here α is a feasible assignment.)

2 α satisfies φ propositionally, while the corresponding linear
inequalities are unsatisfiable.

3 α falsifies φ propositionally, while the corresponding linear
inequalities are satisfiable.

4 α falsifies φ propositionally, and the corresponding linear
inequalities are unsatisfiable.

In cases (2) and (4), α is inconsistent, volume(α) = 0, safe to be
counted in.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

Improvement

Computing the volume of a polytope is #P-hard. Need to reduce
the number of calls to classical polytope volume computation
routines.

Given an assignment α to the Boolean variabales in φ, we
distinguish four cases:

1 α satisfies φ propositionally, and the corresponding linear
inequalities are satisfiable. (Here α is a feasible assignment.)

2 α satisfies φ propositionally, while the corresponding linear
inequalities are unsatisfiable.

3 α falsifies φ propositionally, while the corresponding linear
inequalities are satisfiable.

4 α falsifies φ propositionally, and the corresponding linear
inequalities are unsatisfiable.

In cases (2) and (4), α is inconsistent, volume(α) = 0, safe to be
counted in.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

Improvement

Computing the volume of a polytope is #P-hard. Need to reduce
the number of calls to classical polytope volume computation
routines.

Given an assignment α to the Boolean variabales in φ, we
distinguish four cases:

1 α satisfies φ propositionally, and the corresponding linear
inequalities are satisfiable. (Here α is a feasible assignment.)

2 α satisfies φ propositionally, while the corresponding linear
inequalities are unsatisfiable.

3 α falsifies φ propositionally, while the corresponding linear
inequalities are satisfiable.

4 α falsifies φ propositionally, and the corresponding linear
inequalities are unsatisfiable.

In cases (2) and (4), α is inconsistent, volume(α) = 0, safe to be
counted in.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

An Example

PSφ = ((b1 → b2) ∨ b4) ∧ (b2 → ¬b3 ∧ b4)

where:
b1 ≡ (y + 3x < 1);
b2 ≡ (30 < y);
b3 ≡ (x > 3);
b4 ≡ (x ≤ 60);

There are 7 feasible assignments, 3 of which are

α1 = {¬b1,¬b2, b3,¬b4}
α2 = {¬b1,¬b2,¬b3, b4}
α3 = {¬b1,¬b2, b3, b4}

Volume computation for 3 Polytopes.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

An Example

PSφ = ((b1 → b2) ∨ b4) ∧ (b2 → ¬b3 ∧ b4)

where:
b1 ≡ (y + 3x < 1);
b2 ≡ (30 < y);
b3 ≡ (x > 3);
b4 ≡ (x ≤ 60);

There are 7 feasible assignments, 3 of which are

α1 = {¬b1,¬b2, b3,¬b4}
α2 = {¬b1,¬b2,¬b3, b4}
α3 = {¬b1,¬b2, b3, b4}

Volume computation for 3 Polytopes.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

An Example: continued

Consider α4 = {¬b1,¬b2,¬b3,¬b4}. α4 |= PSφ, but the linear
inequalities corresponding to α4 are unsatisfiable, volume(α4) = 0.

α1 = {¬b1,¬b2, b3,¬b4}
α2 = {¬b1,¬b2,¬b3, b4}
α3 = {¬b1,¬b2, b3, b4}
α4 = {¬b1,¬b2,¬b3,¬b4}

Form a bunch with the cube {¬b1,¬b2}
volume(α1) + volume(α2) + volume(α3)

= volume(α1) + volume(α2) + volume(α3) + volume(α4)

= volume({¬b1,¬b2})

Volume computation for 1 Polytope.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

An Example: continued

Consider α4 = {¬b1,¬b2,¬b3,¬b4}. α4 |= PSφ, but the linear
inequalities corresponding to α4 are unsatisfiable, volume(α4) = 0.

α1 = {¬b1,¬b2, b3,¬b4}
α2 = {¬b1,¬b2,¬b3, b4}
α3 = {¬b1,¬b2, b3, b4}
α4 = {¬b1,¬b2,¬b3,¬b4}

Form a bunch with the cube {¬b1,¬b2}
volume(α1) + volume(α2) + volume(α3)

= volume(α1) + volume(α2) + volume(α3) + volume(α4)

= volume({¬b1,¬b2})

Volume computation for 1 Polytope.
Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

Volume Computation in Bunches

Implement the idea within the deduction procedure of the
SMT(LA) solver2.

When a feasible assignment α is found, try to obtain a smaller
one αc , such that αc |= PSφ.

αc contains α, and possibly other feasible assignments and
inconsistent assignments, thus is called a bunch.

Add volume(αc) to the total volume.

2Feifei Ma, Sheng Liu, Jian Zhang: Volume Computation for Boolean
Combination of Linear Arithmetic Constraints. CADE 2009.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

Volume Computation in Bunches

Implement the idea within the deduction procedure of the
SMT(LA) solver2.

When a feasible assignment α is found, try to obtain a smaller
one αc , such that αc |= PSφ.

αc contains α, and possibly other feasible assignments and
inconsistent assignments, thus is called a bunch.

Add volume(αc) to the total volume.

2Feifei Ma, Sheng Liu, Jian Zhang: Volume Computation for Boolean
Combination of Linear Arithmetic Constraints. CADE 2009.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

Volume Computation in Bunches

Implement the idea within the deduction procedure of the
SMT(LA) solver2.

When a feasible assignment α is found, try to obtain a smaller
one αc , such that αc |= PSφ.

αc contains α, and possibly other feasible assignments and
inconsistent assignments, thus is called a bunch.

Add volume(αc) to the total volume.

2Feifei Ma, Sheng Liu, Jian Zhang: Volume Computation for Boolean
Combination of Linear Arithmetic Constraints. CADE 2009.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Exact Approach

Table: Comparision of Algorithms

Volume Computation in Bunches Straightforward Method
Instance P cls V Time (s) #calls Time (s) #calls

Ran1 8 50 4 0.02 19 0.03 41
Ran2 10 40 5 0.06 50 0.14 182
Ran3 15 40 5 2.36 47 11.12 188
Ran4 20 40 5 116.72 259 431.15 17158
Ran5 10 20 6 1.04 41 7.81 212
Ran6 10 50 6 2.08 74 5.32 247
Ran7 15 50 6 2.15 57 10.97 257
Ran8 7 40 7 1.01 16 2.77 39
Ran9 12 40 7 50.29 250 502.75 1224

Ran10 15 50 7 303.14 856 3872.70 5224
Ran11 20 50 7 143.11 140 1889.36 807
Ran12 10 20 8 12.04 37 150.92 235
Ran13 10 40 8 51.10 91 398.02 379
Ran14 16 80 8 1074.48 669 4 hours 4273
P: number of linear constraints. cls: number of clauses.
V: number of numerical variables. #calls: number of calls to VINCI.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Approximate Approach

Outline

1 #SAT
Exact Model Counting
Approximate Model Counting

2 #SMT
Exact Approach
Approximate Approach

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Approximate Approach

Volume Estimation for Convex Polytopes

Computing the volume of a polytope is #P-hard and is the
bottleneck of volume computation for SMT(LA).

To estimate the volume of a convex polytope:

The Monte-Carlo method suffers from the curse of
dimensionality. The sample size has to grow exponentially to
achieve a reasonable estimation.
The Multiphase Monte-Carlo Algorithm3 is a polynomial
time randomized approximation algorithm. But there lacks
practical implementation.

3M. E. Dyer, A. M. Frieze and R. Kannan, A Random Polynomial Time
Algorithm for Approximating the Volume of Convex Bodies, Proceedings of the
21st Annual ACM Symposium on Theory of Computing, 1989

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Approximate Approach

The Multiphase Monte-Carlo Algorithm (1)

Suppose a convex polytope P is defined by P = {Ax ≤ b}. A
sphere with radius R and center x ∈ Rn is denoted by B(x ,R).

Find an affine transformation T , B(0, 1) ⊆ T (P) ⊆ B(0, n)
Place l = dn log2 ne concentric balls
{Bi = B(0, 2i/n), i = 0, . . . , l}.

[htbp]Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Approximate Approach

The Multiphase Monte-Carlo Algorithm (2)

Set Ki = Bi ∩ P, then K0 = B(0, 1), Kl = P and

vol(P) = vol(B(0, 1))
l−1∏
i=0

vol(Ki+1)

vol(Ki)
(1)

[htbp]Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Approximate Approach

The Multiphase Monte-Carlo Algorithm (3)

So we only have to estimates the ratio
αi = vol(Ki+1)/vol(Ki), i = 0, . . . , l − 1. Note that
1 ≤ αi ≤ 2. It is sufficient to estimate αi with Monte-Carlo
algorithm with polynomial number of random points.

[htbp]Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Approximate Approach

Reutilization of Random Points

Ki + 1

Ki + 2

Ki

At the i-th phase, αi = ki+1

ki
is estimated.

The original method: estimate αi in natural order
(α0 → αl−1)

Our method: estimate αi in reverse order (αl−1 → α0).
Random points are generated from Kl to K0.

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Approximate Approach

Reutilization of Random Points

Approximation of αi s in reverse order:

fully exploits the random points generated in previous phases.

saves 70% random points.

has no side-effect on the error4.

4Cunjing Ge, Feifei Ma, Peng Zhang, Jian Zhang. Computing and
estimating the volume of the solution space of SMT(LA) constraints,
Theoretical Computer Science, Available online 15 November 2016

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Approximate Approach

Experiments

Comparison between Polyvest and Vinci

Polyvest Vinci

Instance n m Result Time(s) Result Time(s)

cube 10 10 20 1038.18 0.952 1024 0.004
cube 14 14 28 16811.1 3.020 16384 0.160
cube 20 20 40 1.01008e+6 10.869 — —
cube 30 30 60 1.08628e+9 54.257 — —
cube 40 40 80 1.06866e+12 174.059 — —
rh 8 25 8 25 766.744 0.628 785.989 0.884
rh 10 20 10 20 13711.1 1.164 13882.7 0.284
rh 10 25 10 25 5737.29 1.120 5729.52 5.100
rh 10 30 10 30 2051.68 1.154 — —
cross 7 7 128 0.0250643 0.968 0.0253968 0.088
fm 6 15 59 296501 5.988 — —

cc 8 10 8 70 153128 1.068 156816 6.764
cc 8 11 8 88 1.42154e+6 1.284 1.39181e+6 34.430

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

#SAT #SMT

Approximate Approach

Thanks

Feifei Ma Institute of Software Chinese Academy of Sciences

Solution Counting for Propositional Logic and Satisfiability Modulo Theories

	#SAT
	Exact Model Counting
	Approximate Model Counting

	#SMT
	Exact Approach
	Approximate Approach

