Zalta's Elementary Object Theory

Qilei Xing
June 12, 2018
Department of Philosophy, PKU

Outline

Introduction
A Second-Order Language
Syntax
Semantics
A Second-Order Theory
The Second-Order Logic
Proper Axioms
An Application of the Theory

Outline

Introduction
A Second-Order Language
Syntax
Semantics
A Second-Order Theory
The Second-Order Logic
Proper Axioms
An Application of the Theory

These slides are based on Abstact Objects, D.Reidel Publishing Company, 1983

Introduction

Existent or non-existent, that's the question.

Outline

Introduction

A Second-Order Language
Syntax
Semantics

A Second-Order Theory
 The Second-Order Logic
 Proper Axioms

An Application of the Theory

Outline

Introduction

A Second-Order Language
Syntax
Semantics

A Second-Order Theory
 The Second-Order Logic
 Proper Axioms

An Application of the Theory

Primitive Symbols

1. Primitive object terms
1.1 Constants: $a_{1}, a_{2}, a_{3} \ldots{ }^{1}$
1.2 Variables: $x_{1}, x_{2}, x_{3} \ldots{ }^{2}$
2. Primitive relation terms
2.1 Constants: $P_{1}^{n}, P_{2}^{n}, P_{3}^{n} \ldots,(n \geq 1),{ }^{3}={ }_{E}, E!$.
2.2 Variables: $F_{1}^{n}, F_{2}^{n}, F_{3}^{n}, \ldots,(n \geq 1) .{ }^{4}$
3. Connectives: \neg, \rightarrow.
4. Quantifier: \forall.
5. Lambda: λ.
6. Parentheses and brackets: (,), [,].

Formulas and Terms

We present a simultaneous inductive definition of (propositional) formula, object term, and n-place relation term

1. All primitive object terms are object terms and all primitive n-place relation terms are n-place relation terms.
2. Atomic exemplification: If ρ^{n} is any n-place relation term, and o_{1}, \ldots, o_{n} are any object terms, $\rho^{n} o_{1} \ldots o_{n}$ is a (propositional) formula.
3. Atomic encoding: If ρ^{1} is any one-place relation term, o ρ^{1} is a formula.
4. Molecular: If ϕ and ψ are any (propositional) formulas, then $(\neg \phi)$ and $(\phi \rightarrow \psi)$ are (propositional) formulas.

Formulas and Terms (cont.)

5. Quantified: If ϕ is any (propositional) formula, and α is any (object) variable, then $(\forall \alpha) \phi$ is a (propositional) formula.
6. Complex n-place relation terms: If ϕ is any propositional formula with n-free object variables v_{1}, \ldots, v_{n}, then [$\lambda v_{1} \ldots v_{n} \phi$] is an n-place relation term.

Some Notations and Definitions

- $(A!x) x$ is abstract $={ }_{d f}[\lambda y \neg E!y] x$
- A formula ϕ is propositional iff ϕ has no encoding subformulas and ϕ has no subformulas with quantifiers binding relation variables.
- Rewrite $={ }_{E} O_{1} O_{2}$ as $O_{1}=E O_{2}$
- parentheses
- $\wedge, \vee, \leftrightarrow, \exists$

Some Notations and Definitions (cont.)

- τ is a term iff τ is an object term or there is an n such that τ is an n-place relation term.
- All and only formulas and terms are well-formed expressions.
- An occurrence of a variable α in a well-formed expression is bound (free) iff it lies (does not lie) with a formula of the form $(\forall \alpha) \phi$ or a term of the form $\left[\lambda v_{1} \ldots \alpha \ldots v_{n} \phi\right]$ within the expression.
- A variable is free (bound) in an expression iff it does (does not) have a free occurrence in the expression.
- A sentence is a formula having no free variables.

Some Notations and Definitions (cont.)

- A term is substitutable for a variable α in a formula ϕ iff for every variable β free in τ, no free occurrence of α in ϕ occurs either in a subformula of the form $(\forall \beta) \psi$ in ϕ or in a term $\left[\lambda v_{1} \ldots \beta \ldots v_{n} \psi\right]$ in ϕ.
- We write $\phi\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ to designate a formula which may or may not have $\alpha_{1}, \ldots, \alpha_{n}$ occuring free.
- We write $\phi_{\alpha_{1}, \ldots, \alpha_{n}}^{\tau_{1}, \ldots, \tau_{n}}$ to designate the formula which results when, for each $i, 1 \leq i \leq n, \tau_{i}$ is substituted for each free occurrence of α_{i} in ϕ.

Outline

Introduction

A Second-Order Language
Syntax
Semantics

A Second-Order Theory
 The Second-Order Logic
 Proper Axioms

An Application of the Theory

Interpretations

An interpretation, of our language is any 6-tuple $\left\langle\mathscr{D}, \mathscr{R}\right.$, ext $_{\mathscr{R}}, \mathscr{L}$, ext $\left._{\mathscr{A}}, F\right\rangle$.

- \mathscr{D} is an non-empty set. It is called the domain of objects. $(0 \in \mathscr{D})$
- \mathscr{R} is an non-empty set. It is called the domain of relations and it is the union of a sequence of non-empty set $\mathscr{R}_{1}, \mathscr{R}_{2}, \mathscr{R}_{3}, \ldots$; i.e, $\mathscr{R}=\bigcup_{n \geq 1} \mathscr{R}_{n} .\left(\imath^{n} \in \mathscr{R}_{n}\right)$
- ext $\mathscr{R}: \mathscr{R}_{n} \rightarrow \mathcal{P}\left(\mathscr{D}^{n}\right)$. We call ext $\mathscr{R}\left(\imath^{n}\right)$ the exemplification extension of \imath^{n}.

Interpretations (cont.)

- \mathscr{L} is a class of logical functions which operate on the members of \mathscr{R}^{n} and \mathscr{D} to produce the complex relations which serve as the denotations for the λ-expressions.

1. $\mathscr{P} \mathscr{L} \mathscr{U} \mathscr{G}_{1}$ maps $\left(\mathscr{R}_{2} \cup \mathscr{R}_{3} \cup \ldots\right) \times \mathscr{D}$ into $\left(\mathscr{R}_{1} \cup \mathscr{R}_{2} \cup \ldots\right)$. $\mathscr{P} \mathscr{L} \mathscr{U} \mathscr{G}_{j}$, for each $j>1$, maps $\left(\mathscr{R}_{j} \cup \mathscr{R}_{j+1} \cup \ldots\right) \times \mathscr{D}$ into $\left(\mathscr{R}_{j-1} \cup \mathscr{R}_{j} \cup \ldots\right)$.
$\mathscr{P} \mathscr{L} \mathscr{U} \mathscr{G}_{i}$ is subject to the following conditions:
$\operatorname{ext}_{\mathscr{R}}\left(\mathscr{P} \mathscr{L} \mathscr{U} \mathscr{G}_{i}\left(\imath^{n}, \mathbf{o}\right)\right)=\left\{\left\langle\mathbf{o}_{1}, \ldots, \mathbf{o}_{i-1}, \mathbf{o}_{i+1}, \ldots, \mathbf{o}_{n}\right\rangle \mid\right.$ $\left.\left\langle\mathbf{0}_{1}, \ldots, \mathbf{o}_{i-1}, \mathbf{o}, \mathbf{o}_{i+1}, \ldots, \mathbf{o}_{n}\right\rangle \in \operatorname{ext}_{\mathscr{R}}\left(\imath^{n}\right)\right\}$
2. $\mathscr{U} \mathscr{N} \mathscr{I} \mathscr{V}_{1} \operatorname{maps}\left(\mathscr{R}_{2} \cup \mathscr{R}_{3} \cup \ldots\right)$ into $\left(\mathscr{R}_{1} \cup \mathscr{R}_{2} \cup \ldots\right)$. $\mathscr{U} \mathscr{N} \mathscr{I} \mathscr{V}_{j}$, for each $j>1$, maps $\left(\mathscr{R}_{j} \cup \mathscr{R}_{j+1} \cup \ldots\right)$ into $\left(\mathscr{R}_{j-1} \cup \mathscr{R}_{j} \cup \ldots\right) . \mathscr{U} \mathscr{N} \mathscr{I}_{\mathscr{V}_{i}}$ is subject to the condition: $\operatorname{ext}_{\mathscr{R}}\left(\mathscr{U} \mathscr{N} \mathscr{I} \mathscr{V}_{i}\left(\imath^{n}\right)\right)=\left\{\left\langle\mathbf{0}_{1}, \ldots, \mathbf{o}_{i-1}, \mathbf{o}_{i+1}, \ldots, \mathbf{o}_{n}\right\rangle \mid\right.$ $\left.(\forall \mathbf{o})\left(\left\langle\mathbf{o}_{1}, \ldots, \mathbf{o}_{i-1}, \mathbf{o}, \mathbf{o}_{i+1}, \ldots, \mathbf{o}_{n}\right\rangle \in \operatorname{ext}_{\mathscr{R}}\left(\imath^{n}\right)\right)\right\}$

Interpretations (cont.)

3. $\mathscr{C O} \mathscr{N} \mathscr{V}_{i, j}$, for each $i, j, 1 \leq i \leq j$, is a function mapping $\left(\mathscr{R}_{j} \cup \mathscr{R}_{j+1} \cup \ldots\right)$ into $\left(\mathscr{R}_{j} \cup \mathscr{R}_{j+1} \cup \ldots\right)$ subject to the condition: $\operatorname{ext}_{\mathscr{R}}\left(\mathscr{C} \mathscr{O} \mathscr{N} \mathscr{V}_{i, j}\left(\imath^{n}\right)\right)=$
$\left\{\left\langle\mathbf{o}_{1}, \ldots, \mathbf{o}_{i-1}, \mathbf{o}_{j}, \mathbf{o}_{i+1}, \ldots, \mathbf{o}_{j-1}, \mathbf{o}_{i}, \mathbf{o}_{j+1}, \ldots, \mathbf{o}_{n}\right\rangle \mid\right.$
$\left.\left\langle\mathbf{0}_{1}, \ldots, \mathbf{o}_{i}, \ldots, \mathbf{o}_{j}, \ldots, \mathbf{o}_{n}\right\rangle \in \operatorname{ext}_{\mathscr{R}}\left(\imath^{n}\right)\right\}$.
4. $\mathscr{R} \mathscr{E} \mathscr{F} \mathscr{L}_{i, j}$ for each $i, j, 1 \leq i<j$, is a function mapping $\left(\mathscr{R}_{j} \cup \mathscr{R}_{j+1} \cup \ldots\right)$ into $\left(\mathscr{R}_{j-1} \cup \mathscr{R} \cup \ldots\right)$ subject to the condition:
$\operatorname{ext}_{\mathscr{R}}\left(\mathscr{R} \mathscr{E} \mathscr{F} \mathscr{L}_{i, j}\left(\imath^{n}\right)\right)=\left\{\left\langle\mathbf{0}_{1}, \ldots, \mathbf{o}_{i}, \ldots, \mathbf{o}_{j-1}, \mathbf{o}_{j+1}, \ldots, \mathbf{o}_{n}\right\rangle \mid\right.$
$\left\langle\mathbf{o}_{1}, \ldots, \mathbf{o}_{i}, \ldots, \mathbf{o}_{j}, \ldots, \mathbf{o}_{n}\right\rangle \in \operatorname{ext}_{\mathscr{R}}\left(\imath^{n}\right)$ and $\left.\mathbf{o}_{i}=\mathbf{o}_{j}\right\}$
5. $\mathscr{C O} \mathscr{N} \mathscr{D}$ is a function from $\left(\mathscr{R}_{1} \cup \mathscr{R}_{2} \cup \ldots\right) \times\left(\mathscr{R}_{1} \cup \mathscr{R}_{2} \cup \ldots\right)$ into $\left(\mathscr{R}_{2} \cup \mathscr{R}_{3} \cup \ldots\right)$ subject to the condition: $\operatorname{ext}_{\mathscr{R}}\left(\mathscr{C O O} \mathscr{N} \mathscr{D}\left(\imath^{n}, \jmath^{m}\right)\right)=\left\{\left\langle\mathbf{o}_{1}, \ldots, \mathbf{o}_{n}, \mathbf{o}_{1}^{\prime}, \ldots, \mathbf{o}_{m}^{\prime}\right\rangle \mid\right.$ $\left\langle\mathbf{0}_{1}, \ldots, \mathbf{o}_{m}\right\rangle \notin \operatorname{ext}_{\mathscr{R}}\left(\imath^{n}\right)$ or $\left.\left\langle\mathbf{o}_{1}^{\prime}, \ldots, \mathbf{o}_{M}^{\prime}\right\rangle \in \operatorname{ext}_{\mathscr{R}}\left(\jmath^{m}\right)\right\}$.

Interpretations (cont.)

6. $\mathscr{N} \mathscr{E} \mathscr{G}$ is a function from $\left(\mathscr{R}_{1} \cup \mathscr{R}_{2} \cup\right)$ into $\left(\mathscr{R}_{1} \cup \mathscr{R}_{2} \cup \ldots\right)$ subject to the condition:
$\operatorname{ext}_{\mathscr{R}}\left(\mathscr{N} \mathscr{E} \mathscr{G}\left(\imath^{n}\right)\right)=\left\{\left\langle\mathbf{0}_{1}, \ldots, \mathbf{o}_{n}\right\rangle \mid\left\langle\mathbf{0}_{1}, \ldots, \mathbf{o}_{n}\right\rangle \notin \operatorname{ext}_{\mathscr{R}}\left(\imath^{n}\right)\right\}$

- ext $_{\mathscr{A}}: \mathscr{R} \rightarrow \mathcal{P}(\mathscr{D})$. We call $\operatorname{ext}_{\mathscr{A}}\left(\imath^{1}\right)$ the encoding extension of \imath^{1}
- \mathscr{F} maps the simple names of the language to elements of the appropriate domain. For each object name $\kappa, \mathscr{F}(\kappa) \in \mathscr{D}$. For each relation name $\kappa^{n}, \mathscr{F}\left(\kappa^{n}\right) \in \mathscr{R}_{n}$.

Partitioning the λ-expressions (cont.)

But, we have a problem to solve about the λ-expressions.

Partitioning the λ-expressions (cont.)

But, we have a problem to solve about the λ-expressions.

We use μ, ξ, ζ as metavariables ranging over λ-expressions.
Suppose μ is an arbitrary λ-expression. Then $\mu=\left[\lambda \nu_{1} \ldots \nu_{n} \phi\right]$, for some $\phi, \nu_{1}, \ldots, \nu_{n}$.

Partitioning the λ-expressions (cont.)

1. If $(\exists i)\left(1 \leq i \leq n\right.$ and ν_{i} is not the $i i^{\text {th }}$ free object variable in ϕ and i ixs the least such number), then where ν_{j} is the $i^{\text {th }}$ free object variable in ϕ, μ is the $\mathrm{i}, \mathrm{j}^{\text {th }}$-conversin of

$$
\left[\lambda \nu_{1} \ldots \nu_{i-1} \nu_{j} \nu_{i+1} \ldots \nu_{j-1} \nu_{i} \nu_{j+1} \ldots \nu_{n} \phi\right]
$$

2. If μ is not the $i, j^{\text {th }}$-conversation of any λ-expression, then:
2.1 if $\phi=(\neg \psi), \mu$ is the negation of [$\lambda \nu_{1} \ldots \nu_{n} \phi$]
2.2 if $\phi=(\psi \rightarrow \chi)$, and ψ and χ have no free object variable in common, then where ν_{1}, \ldots, ν_{p} are the variables in ψ and $\nu_{p+1}, \ldots, \nu_{n}$ are the variables in χ, ν is the conditionalization of $\left[\lambda \nu_{1} \ldots \nu_{p} \psi\right.$] and $\left[\lambda \nu_{p+1} \ldots \nu_{n} \chi\right]$
2.3 if $\phi=(\forall \nu) \psi$, and ν is the $i^{\text {th }}$ free object variable in ϕ, then μ is the $\mathrm{i}^{\text {th }}$-universalization of $\left[\lambda \nu_{1} \ldots \nu_{i-1} \nu \nu_{i} \nu_{i+1} \ldots \nu_{n} \psi\right]$.

Partitioning the λ-expressions (cont.)

3. If μ is none of the above, then if $(\exists i)\left(1 \leq i \leq n\right.$ and ν_{i} occurs free in more than one place in ϕ and i is the least such number), then where:
$3.1 k$ is the number of free object variables between the first and second occurrences of ν_{i},
$3.2 \phi^{\prime}$ is the result of replacing the second occurrences of ν_{i} with a new variable ν, and
$3.3 j=i+k+1$,
μ is the $\mathrm{i},{ }^{\text {th }}$-reflection of $\left[\lambda \nu_{1} \ldots \nu_{i+k} \nu \nu_{j} \ldots \nu_{n} \phi^{\prime}\right]$

Partitioning the λ-expressions (cont.)

4. If μ is none of the above, then if o is the left most object term occurring in ϕ, then where:
$4.1 j$ is the number of free variables occurring before 0 .
$4.2 \phi^{\prime}$ is the result of replacing the first occurrence of o by a new variable ν, and
$4.3 i=j+1$,
μ is the $\mathbf{i}^{\text {th }}$-plugging of $\left[\lambda \nu_{1} \ldots \nu_{j} \nu \nu_{j+1} \ldots \nu_{n} \phi^{\prime}\right]$ by 0
5. If μ is none of the above, then
5.1ϕ is atomic
$5.2 \nu_{1}, \ldots, \nu_{n}$ is the order in which these variables first occur in ϕ
$5.3 \mu=\left[\lambda \nu_{1} \ldots \nu_{n} \rho^{n} \nu_{1} \ldots \nu_{n}\right]$, for some relation term ρ^{n}, and μ is called elementary

Assignments

If given an interpretation \mathscr{I} of our language, an
\mathscr{I}-assignment, f, will be any function defined on the primitive variables of the language which satisfies the following two conditions:

1. where ν is any object variable, $\mathrm{f}(\nu) \in \mathscr{D}$
2. where π^{n} is any relation variable, $\mathrm{f}\left(\pi^{n}\right) \in \mathscr{R}_{n}$

Denotations

If given an interpretation \mathscr{I} of our language, and an
\mathscr{I}-assignment f , we recursively define the denotation of term
π with respect to interpretation \mathscr{I} and \mathscr{I}-assignment $\mathrm{f}\left({ }^{\prime} \mathrm{d}_{\mathscr{f}, \mathrm{f}}(\pi)^{\prime}\right)$ as follows:

1. where κ is any primitive name, $\mathrm{d}_{\mathscr{f}, \mathrm{f}}(\kappa)=\mathscr{F}_{\mathscr{\mathscr { L }}}(\kappa)$
2. where ν is any object variable, $\mathrm{d}_{\mathscr{\ell}, \mathrm{f}}(\nu)=\mathrm{f}(\nu)$
3. where π^{n} is any relation variable, $\mathrm{d}_{\mathscr{\ell}, \mathrm{f}}\left(\pi^{n}\right)=\mathrm{f}\left(\pi^{n}\right)$
4. where $\left[\lambda \nu_{1} \ldots \nu_{n} \rho^{n} \nu_{1} \ldots \nu_{n}\right]$ is any elementary λ-expression, $\mathrm{d}_{\mathscr{\mathscr { f }}, \mathrm{f}}\left(\left[\lambda \nu_{1} \ldots \nu_{n} \rho^{n} \nu_{1} \ldots \nu_{n}\right]\right)=\mathrm{d}_{\mathscr{f}, \mathrm{f}}\left(\rho^{n}\right)$
5. where μ is the $i^{\text {th }}$-plugging of ξ by o,

$$
\mathrm{d}_{\mathscr{\mathscr { L } , \mathrm { f }}}(\mu)=\mathscr{P} \mathscr{L} \mathscr{U} \mathscr{G}_{i}\left(\mathrm{~d}_{\mathscr{I}, \mathrm{f}}(\xi), \mathrm{d}_{\mathscr{I}, \mathrm{f}}(o)\right)
$$

6. where μ is the $i^{\text {th }}$-universalization of ξ,

$$
\mathrm{d}_{\mathscr{I}, \mathrm{f}}(\mu)=\mathscr{U} \mathscr{N} \mathscr{I} \mathscr{V}_{i}\left(\mathrm{~d}_{\mathscr{\mathscr { L }}, \mathrm{f}}(\xi)\right)
$$

Denotations (cont.)

7. where μ is the $i, j^{\text {th }}$-conversion of ξ,

$$
\mathrm{d}_{\mathscr{I}, \mathrm{f}}(\mu)=\mathscr{C} \mathscr{O} \mathscr{N} \mathscr{V}_{i, j}\left(\mathrm{~d}_{\mathscr{I}, \mathrm{f}}(\xi)\right)
$$

8. where μ is the $i, j^{\text {th }}$-reflection of ξ,

$$
\mathrm{d}_{\mathscr{I}, \mathrm{f}}(\mu)=\mathscr{R} \mathscr{E} \mathscr{F} \mathscr{L}_{i, j}\left(\mathrm{~d}_{\mathscr{I}, \mathrm{f}}(\xi)\right)
$$

9. where μ is the conditionalization of ξ and ζ,

$$
\mathrm{d}_{\mathscr{I}, \mathrm{f}}(\mu)=\mathscr{C} \mathscr{O} \mathscr{N} \mathscr{D}_{\mathrm{i}, \mathrm{j}}\left(\mathrm{~d}_{\mathscr{I}, \mathrm{f}}(\xi), \mathrm{d}_{\mathscr{I}, \mathrm{f}}(\zeta)\right)
$$

10. where μ is the negation of $\xi, \mathrm{d}_{\mathscr{I}, \mathrm{f}}(\mu)=\mathscr{N} \mathscr{E} \mathscr{G}\left(\mathrm{d}_{\mathscr{F}, \mathrm{f}}(\xi)\right)$

Satisfaction

We define f satisfies ϕ, recursively, as follows:

1. If $\phi=\rho^{n} o_{1} \ldots o_{n}$, f satisfies ϕ iff $\left\langle\mathrm{d}_{\mathscr{I}, \mathrm{f}}\left(0_{1}\right), \ldots, \mathrm{d}_{\mathscr{I}, \mathrm{f}}\left(o_{n}\right)\right\rangle \in \operatorname{ext}_{\mathscr{R}}\left(\mathrm{d}_{\mathscr{I}, \mathrm{f}}\left(\rho^{n}\right)\right)$
2. If $\phi=0 \rho^{1}, \mathrm{f}$ satisfies ϕ iff $\mathrm{d}_{\mathscr{I}, \mathrm{f}}(0) \in \operatorname{ext}_{\mathscr{A}}\left(\mathrm{d}_{\mathscr{I}, \mathrm{f}}\left(\rho^{1}\right)\right)$
3. if $\phi=(\neg \psi)$, f satisfies ϕ iff f fails to satisfy ϕ
4. If $\phi=(\psi \rightarrow \chi)$, \mathbf{f} satisfies ϕ iff f fails to satisfy ψ or \mathbf{f} satisfies χ
5. If $\phi=(\forall \alpha) \psi, \mathrm{f}$ satisfies ϕ iff $\left(\forall \mathrm{f}^{\prime}\right)\left(\mathrm{f}_{\bar{\alpha}}^{\prime} \mathrm{f} \rightarrow \mathrm{f}^{\prime}\right)$ satisfies $\left.\phi\right)$, where: $\mathrm{f}_{\bar{\alpha}}^{\prime} \mathrm{f}={ }_{d f} \mathrm{f}^{\prime}$ is an \mathscr{I}-assignment just like f except perhaps for what is assigns to α.

Truth under an Interpretation

ϕ is true under interpretation \mathscr{I} iff every \mathscr{I}-assignment f satisfies $\phi . \phi$ is false under \mathscr{I} iff no \mathscr{I}-assignment f satisfies $\phi . \phi$ is valid iff ϕ is true under all interpretations.

Outline

Introduction

A Second-Order Language Syntax
 Semantics

A Second-Order Theory
The Second-Order Logic
Proper Axioms
An Application of the Theory

Outline

Introduction
 A Second-Order Language Syntax Semantics

A Second-Order Theory
The Second-Order Logic
Proper Axioms
An Application of the Theory

The Second-Order Logic

The Logical Axioms

1. $\phi \rightarrow(\psi \rightarrow \phi)$
2. $(\phi \rightarrow(\psi \rightarrow \rightarrow)) \rightarrow((\phi \rightarrow \psi) \rightarrow(\phi \rightarrow \chi))$
3. $(\neg \phi \rightarrow \neg \psi) \rightarrow((\neg \phi \rightarrow \psi) \rightarrow \phi)$
4. $(\forall \alpha) \phi \rightarrow \phi_{\alpha}^{\tau}$, where τ is substitutable for α
5. $(\forall \alpha)(\phi \rightarrow \psi) \rightarrow(\phi \rightarrow(\forall \alpha) \psi)$, provided α is not free in ϕ
6. $\left(\forall x_{1}\right) \ldots\left(\forall x_{n}\right)\left(\left[\lambda \nu_{1} \ldots \nu_{n} \phi\right] x_{1} \ldots x_{n} \leftrightarrow \phi_{\nu_{1} \ldots, \nu_{n}}^{x_{1}, \ldots, x_{n}}\right)$
7. $\left[\lambda \nu_{1} \ldots \nu_{n} \rho^{n} \nu_{1} \ldots \nu_{n}\right]=\rho^{n}$

Rules of Inference

1. From ϕ and $\phi \rightarrow \psi$, we may infer ψ
2. (UI) from ϕ, we may infer $(\forall \alpha) \phi$

Outline

Introduction
 A Second-Order Language Syntax
 Semantics

A Second-Order Theory
The Second-Order Logic
Proper Axioms
An Application of the Theory

Proper Axioms

1. $(E-I D E N T I T Y) x=E y \leftrightarrow E!x \wedge E!y \wedge(\forall F)(F x \leftrightarrow F y)$
2. $(N O-C O D E R) E!x \rightarrow \neg(\exists F) x F$
3. (IDENITITY) $\alpha=\beta \rightarrow(\phi(\alpha, \alpha) \leftrightarrow \phi(\alpha, \beta))$, where $\phi(\alpha, \beta)$ is the result of replacing some, but not necessarily all, free occurences of α by β in $\phi(\alpha, \alpha)$, provided β is substitutable for α in the occurences of α it replaces.
4. $(A-O B J E C T S)(\exists x)(A!x \wedge(\forall F)(x F \leftrightarrow \phi))$, for any formula ϕ where x is not free

Two Theorems

Definition

1. $x=y={ }_{d f} x=y \vee(A!x \wedge A!y \wedge(\forall F)(x F \leftrightarrow y F))$
2. $F^{1}=G^{1}={ }_{d f}(\forall x)\left(x F^{1} \leftrightarrow x G^{1}\right)$
3. $F^{n}=G^{n}={ }_{d f}\left(\forall x_{1} \ldots x_{n-1}\right)\left(\left[\lambda y F^{n} y x_{1} \ldots x_{n-1}\right]=\right.$
$\left[\lambda y G^{n} y x_{1} \ldots x_{n-1}\right] \wedge\left[\lambda y F^{n} x_{1} y x_{2} \ldots x_{n-1}\right]=\left[\lambda y G^{n} x_{1} y x_{2} \ldots x_{n-1}\right] \wedge$
$\left.\ldots \wedge\left[\lambda y F^{n} x_{1} \ldots x_{n-1} y\right]=\left[\lambda y G^{n} x_{1} \ldots x_{n-1} y\right]\right)($ where $n>1)$
Theorem (IDENTITY INTRODUCTION, =I)
$\alpha=\alpha$, where α is any variable.
Proof.
(sketch) If α is an object variable x and $E!x$, then since we have $(\forall F)(F x \leftrightarrow F x)$ from propositional logic and UI, we may use (E-IDENTITY) to prove $x={ }_{E} x$. So $x=x$, by Definition 1. If $\neg E!x \ldots$ If α is $F^{1} \ldots$ If α is $F^{n} \ldots$

Two Theorems (cont.)

Let us use the standard notation $(\exists!x) \psi$ (there is a unique x such that $\psi)$ to abbreviate $(\exists x)\left(\psi \wedge(\forall y)\left(\psi_{x}^{y} \rightarrow y=x\right)\right)$.

Theorem (UNIQUENESS)
$(\exists!x)(A!x \wedge(\forall F)(x F \leftrightarrow \phi))$ for any formula ϕ where x is not free.

Proof.

Firstly, we prove the existence by the A-OBJECTS. And then we prove the uniqueness by contradiction. There could not be distinct such objects since we cannot give a formula ϕ which give us two different conditions about properties.

Outline

Introduction

A Second-Order Language Syntax Semantics

A Second-Order Theory

 The Second-Order Logic Proper AxiomsAn Application of the Theory

An Expansion of the Theory

- Let us stipulate that where ϕ is any formula with one free x-variable, $(\iota x) \phi$ ("the object x such that ϕ ") is to be a complex object term of our language. Semantically, we interpret descriptions $(\iota x) \phi$ as denoting the unique object which satisfies ϕ, if there is one, and as not denoting anything if there is not one.
- Axiom(DESCRIPTIONS)

$$
\psi_{v}^{(\iota x) \phi} \leftrightarrow(\exists!y) \phi_{x}^{y} \wedge(\exists y)\left(\phi_{x}^{y} \wedge \psi_{v}^{y}\right)
$$

where ψ is any atomic formula or defined object identity formula with one free variable v.

Plato's Forms

Definition $(\operatorname{Form}(x, G))$
x is a Form of $G={ }_{d f} A!x \wedge(\forall F)(x F \leftrightarrow F=G)$
Theorem (1)
$(\forall G)(\exists x) \operatorname{Form}(x, G)$
Proof.
By A-OBJECTS and UI.
Theorem (2)
$(\forall G)(\exists!x) \operatorname{Form}(x, G)$
Proof.
By UNIQUENESS and UI.

Plato's Forms (cont.)

So now we know that the description
$(\iota x)(A!x \wedge(\forall F)(x F \leftrightarrow F=G))$ (the Form of $G)$ always has a denotation. For convenience, let us use " Φ_{G} " to abbreviate it.

Theorem (3)
$\Phi_{G} G($ the Form of G encodes G)

Proof.

By DESCRIPTIONS, $\Phi_{G} G \leftrightarrow(\exists!y)(A!y \wedge(\forall F)(y F \leftrightarrow F=$
$G)) \wedge(\exists y)(A!y \wedge(\forall F)(y F \leftrightarrow F=G) \wedge y G)$. The right side of this biconditional is easily obtainable from Theorem(2).

Plato's Forms (cont.)

Definition $(\operatorname{Part}(y, x))$
y participates in $x=d f(\exists F)(x F \wedge F y)$
Theorem (4)
$x \neq y \wedge F x \wedge F y \rightarrow(\exists u)\left(u=\Phi_{F} \wedge \operatorname{Part}(x, u) \wedge \operatorname{Part}(y, u)\right)$

Proof.

Assume $a \neq b, P a$, and $P b$, where a, b are arbitrary objects and P is an arbitrary property. By $=1$, we have $\Phi_{P}=\Phi_{P}$. By
Theorem(3) and the above assumptions, we have $\Phi_{P} P \wedge P a$. So
$(\exists G)\left(\Phi_{P} G \wedge G_{a}\right)$, i.e., Part $\left(a, \Phi_{P}\right)$. Similarly, Part $\left(b, \Phi_{P}\right)$. So
$\Phi_{P}=\Phi_{P} \wedge \operatorname{Part}\left(a, \Phi_{P}\right) \wedge \operatorname{Part}\left(b, \Phi_{P}\right)$. So
$(\exists u)\left(u=\Phi_{P} \wedge \operatorname{Part}(a, u) \wedge \operatorname{Part}(b, u)\right)$

Plato's Forms (cont.)

Theorem (5)
$F x \leftrightarrow \operatorname{Part}\left(x, \Phi_{F}\right)$

Proof.

(\rightarrow) Assume Fx. By Theorem (3), Part($\left.x, \Phi_{F}\right)$.
(\leftarrow) Assume Part $\left(x, \Phi_{F}\right)$. Call the property Φ_{F} encodes G and x exemplified G. Since Φ_{F} encodes just F, it must be that $G=F$. So Fx.

Plato's Forms (cont.)

Definition
We call the property $[\lambda x \neg E!x]$ Platonic existence and the notation is \bar{E} !

Theorem (6)
$\left.(\forall x)(\exists F)\left(x=\Phi_{F}\right) \rightarrow \bar{E}!x\right)$.
Proof.
By the definition of Forms, We have known that Φ_{F} is abstract, and by the definition of the abstracts we get the theorem.

We can call $\Phi_{\bar{E}}$ Platonic Being, or Reality. From Theorem(5) and (6) it follows that:

Theorem (7)
$(\forall x)\left((\exists F)\left(x=\Phi_{F}\right) \rightarrow \operatorname{Part}\left(x, \Phi_{\bar{E}}\right)\right)$

References

Reicher, Maria
Nonexistent Objects
The Stanford Encyclopedia of
Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.), URL =
<https:/ / plato.stanford.edu/archives/win2016/entries/nonexiste
objects/>.
Alan McMichael \& Edward N. Zalta
An Alternative Theory of Nonexistent Objects
Journal of Philosophical Logic, Vol. 9, No. 3 (Aug., 1980), pp.
297-313
Edward N. Zalta
Abstract Objects
D.Reidel Publishing Company, 1983

Thanks!

