Zalta's Elementary Object Theory

Qilei Xing June 12, 2018

Department of Philosophy, PKU

Introduction

- A Second-Order Language
 - Syntax
 - Semantics
- A Second-Order Theory
 - The Second-Order Logic
 - **Proper Axioms**
- An Application of the Theory

Introduction

- A Second-Order Language
 - Syntax
 - Semantics
- A Second-Order Theory
 - The Second-Order Logic
 - Proper Axioms
- An Application of the Theory

These slides are based on *Abstact Objects*, D.Reidel Publishing Company, 1983

Existent or non-existent, that's the question.

Introduction

A Second-Order Language Syntax Semantics A Second-Order Theory

A Second-Order Theory The Second-Order Logic Proper Axioms

An Application of the Theory

Introduction

- A Second-Order Language
 - Syntax
 - Semantics
- A Second-Order Theory
 - The Second-Order Logic
 - Proper Axioms
- An Application of the Theory

Primitive Symbols

- 1. Primitive object terms
 - 1.1 Constants: $a_1, a_2, a_3 \dots$ ¹
 - 1.2 Variables: $x_1, x_2, x_3 \dots^2$
- 2. Primitive relation terms
 - 2.1 Constants: $P_1^n, P_2^n, P_3^n, \dots, (n \ge 1), {}^3 =_E, E!$.
 - 2.2 Variables: $F_1^n, F_2^n, F_3^n, \dots, (n \ge 1)$.⁴
- 3. Connectives: \neg, \rightarrow .
- 4. Quantifier: \forall .
- 5. Lambda: λ .
- 6. Parentheses and brackets: (,), [,].

We present a simultaneous inductive definition of (propositional) formula, object term, and *n*-place relation term

- All primitive object terms are object terms and all primitive *n*-place relation terms are *n*-place relation terms.
- Atomic exemplification: If ρⁿ is any n-place relation term, and o₁,..., o_n are any object terms, ρⁿo₁...o_n is a (propositional) formula.
- 3. Atomic encoding: If ρ^1 is any one-place relation term, $o\rho^1$ is a formula.
- 4. Molecular: If ϕ and ψ are any (propositional) formulas, then $(\neg \phi)$ and $(\phi \rightarrow \psi)$ are (propositional) formulas.

- 5. Quantified: If ϕ is any (propositional) formula, and α is any (object) variable, then $(\forall \alpha)\phi$ is a (propositional) formula.
- Complex *n*-place relation terms: If φ is any propositional formula with *n*-free object variables v₁,..., v_n, then [λv₁..., v_nφ] is an *n*-place relation term.

Some Notations and Definitions

- (A!x) x is **abstract**= $_{df} [\lambda y \neg E!y]x$
- A formula φ is propositional iff φ has no encoding subformulas and φ has no subformulas with quantifiers binding relation variables.
- Rewrite $=_E o_1 o_2$ as $o_1 =_E o_2$
- \cdot parentheses
- $\cdot \ \land, \lor, \leftrightarrow, \exists$

Some Notations and Definitions (cont.)

- τ is a **term** iff τ is an object term or there is an *n* such that τ is an *n*-place relation term.
- All and only formulas and terms are **well-formed expressions**.
- An occurrence of a variable α in a well-formed expression is **bound (free)** iff it lies (does not lie) with a formula of the form (∀α)φ or a term of the form [λv₁...α...v_nφ] within the expression.
- A variable is **free (bound)** in an expression iff it does (does not) have a free occurrence in the expression.
- A sentence is a formula having no free variables.

Some Notations and Definitions (cont.)

- A term is **substitutable for** a variable α **in** a formula ϕ iff for every variable β free in τ , no free occurrence of α in ϕ occurs either in a subformula of the form $(\forall \beta)\psi$ in ϕ or in a term $[\lambda v_1 \dots \beta \dots v_n \psi]$ in ϕ .
- We write $\phi(\alpha_1, \ldots, \alpha_n)$ to designate a formula which may or may not have $\alpha_1, \ldots, \alpha_n$ occuring free.
- We write $\phi_{\alpha_1,...,\alpha_n}^{\tau_1,...,\tau_n}$ to designate the formula which results when, for each $i, 1 \le i \le n, \tau_i$ is substituted for each free occurrence of α_i in ϕ .

Introduction

- A Second-Order Language
 - Syntax

Semantics

A Second-Order Theory The Second-Order Logic Proper Axioms

An Application of the Theory

An interpretation, of our language is any 6-tuple $\langle \mathcal{D}, \mathcal{R}, ext_{\mathcal{R}}, \mathcal{L}, ext_{\mathscr{A}}, F \rangle$.

- \mathscr{D} is an non-empty set. It is called the **domain of objects**. ($o \in \mathscr{D}$)
- \mathscr{R} is an non-empty set. It is called the **domain of** relations and it is the union of a sequence of non-empty set $\mathscr{R}_1, \mathscr{R}_2, \mathscr{R}_3, \ldots$; i.e, $\mathscr{R} = \bigcup_{n \ge 1} \mathscr{R}_n$. $(\imath^n \in \mathscr{R}_n)$
- $ext_{\mathscr{R}} : \mathscr{R}_n \to \mathcal{P}(\mathscr{D}^n)$. We call $ext_{\mathscr{R}}(\imath^n)$ the **exemplification** extension of \imath^n .

Interpretations (cont.)

- \mathscr{L} is a class of logical functions which operate on the members of \mathscr{R}^n and \mathscr{D} to produce the complex relations which serve as the denotations for the λ -expressions.
- 1. \mathcal{PLUG}_1 maps $(\mathcal{R}_2 \cup \mathcal{R}_3 \cup \ldots) \times \mathcal{D}$ into $(\mathcal{R}_1 \cup \mathcal{R}_2 \cup \ldots)$. \mathscr{PLUG}_i , for each j > 1, maps $(\mathscr{R}_i \cup \mathscr{R}_{i+1} \cup \ldots) \times \mathscr{D}$ into $(\mathcal{R}_{i-1}\cup\mathcal{R}_i\cup\ldots).$ \mathcal{PLUG}_i is subject to the following conditions: $\operatorname{ext}_{\mathscr{R}}(\mathscr{PLUG}_{i}(i^{n},\mathbf{0})) = \{ \langle \mathbf{0}_{1}, \ldots, \mathbf{0}_{i-1}, \mathbf{0}_{i+1}, \ldots, \mathbf{0}_{n} \rangle \mid$ $\langle \mathbf{0}_1, \ldots, \mathbf{0}_{i-1}, \mathbf{0}, \mathbf{0}_{i+1}, \ldots, \mathbf{0}_n \rangle \in ext_{\mathscr{R}}(i^n) \}$ 2. \mathcal{UNIV}_1 maps $(\mathcal{R}_2 \cup \mathcal{R}_3 \cup \ldots)$ into $(\mathcal{R}_1 \cup \mathcal{R}_2 \cup \ldots)$. \mathscr{UNIV}_i , for each j > 1, maps $(\mathscr{R}_i \cup \mathscr{R}_{i+1} \cup \ldots)$ into $(\mathscr{R}_{i-1} \cup \mathscr{R}_i \cup \ldots)$. \mathscr{UNIV}_i is subject to the condition: $\operatorname{ext}_{\mathscr{R}}(\mathscr{UNIV}_{i}(\mathfrak{l}^{n})) = \{ \langle \mathbf{0}_{1}, \ldots, \mathbf{0}_{i-1}, \mathbf{0}_{i+1}, \ldots, \mathbf{0}_{n} \rangle \mid$ $(\forall \mathbf{0})(\langle \mathbf{0}_1, \ldots, \mathbf{0}_{i-1}, \mathbf{0}, \mathbf{0}_{i+1}, \ldots, \mathbf{0}_n \rangle \in ext_{\mathscr{R}}(i^n))\}$

Interpretations (cont.)

- 3. $\mathscr{CONV}_{i,j}$, for each $i, j, 1 \le i \le j$, is a function mapping $(\mathscr{R}_j \cup \mathscr{R}_{j+1} \cup ...)$ into $(\mathscr{R}_j \cup \mathscr{R}_{j+1} \cup ...)$ subject to the condition: $ext_{\mathscr{R}}(\mathscr{CONV}_{i,j}(i^n)) =$ $\{\langle \mathbf{o}_1, ..., \mathbf{o}_{i-1}, \mathbf{o}_j, \mathbf{o}_{i+1}, ..., \mathbf{o}_{j-1}, \mathbf{o}_i, \mathbf{o}_{j+1}, ..., \mathbf{o}_n \rangle \mid$ $\langle \mathbf{o}_1, ..., \mathbf{o}_i, ..., \mathbf{o}_j, ..., \mathbf{o}_n \rangle \in ext_{\mathscr{R}}(i^n)\}.$
- 4. $\mathscr{REFL}_{i,j}$ for each $i, j, 1 \le i < j$, is a function mapping $(\mathscr{R}_j \cup \mathscr{R}_{j+1} \cup \ldots)$ into $(\mathscr{R}_{j-1} \cup \mathscr{R} \cup \ldots)$ subject to the condition:

 $ext_{\mathscr{R}}(\mathscr{REFL}_{i,j}(i^n)) = \{ \langle \mathbf{o}_1, \dots, \mathbf{o}_i, \dots, \mathbf{o}_{j-1}, \mathbf{o}_{j+1}, \dots, \mathbf{o}_n \rangle \mid \\ \langle \mathbf{o}_1, \dots, \mathbf{o}_i, \dots, \mathbf{o}_j, \dots, \mathbf{o}_n \rangle \in ext_{\mathscr{R}}(i^n) \text{ and } \mathbf{o}_i = \mathbf{o}_j \}$

5. \mathscr{COND} is a function from $(\mathscr{R}_1 \cup \mathscr{R}_2 \cup ...) \times (\mathscr{R}_1 \cup \mathscr{R}_2 \cup ...)$ into $(\mathscr{R}_2 \cup \mathscr{R}_3 \cup ...)$ subject to the condition: $ext_{\mathscr{R}}(\mathscr{COND}(i^n, j^m)) = \{\langle \mathbf{o}_1, ..., \mathbf{o}_n, \mathbf{o}'_1, ..., \mathbf{o}'_m \rangle \mid \langle \mathbf{o}_1, ..., \mathbf{o}_m \rangle \notin ext_{\mathscr{R}}(i^n) \text{ or } \langle \mathbf{o}'_1, ..., \mathbf{o}'_M \rangle \in ext_{\mathscr{R}}(j^m) \}.$ 6. *N* ℰ𝔅 is a function from (𝔅₁ ∪ 𝔅₂∪) into (𝔅₁ ∪ 𝔅₂ ∪ ...) subject to the condition:

 $ext_{\mathscr{R}}(\mathscr{NEG}(i^n)) = \{ \langle \mathbf{o}_1, \dots, \mathbf{o}_n \rangle \mid \langle \mathbf{o}_1, \dots, \mathbf{o}_n \rangle \notin ext_{\mathscr{R}}(i^n) \}$

- $ext_{\mathscr{A}} : \mathscr{R} \to \mathcal{P}(\mathscr{D})$. We call $ext_{\mathscr{A}}(i^{1})$ the **encoding** extension of i^{1}
- \mathscr{F} maps the simple names of the language to elements of the appropriate domain. For each object name $\kappa, \mathscr{F}(\kappa) \in \mathscr{D}$. For each relation name $\kappa^n, \mathscr{F}(\kappa^n) \in \mathscr{R}_n$.

But, we have a problem to solve about the λ -expressions.

But, we have a problem to solve about the λ -expressions.

We use μ, ξ, ζ as metavariables ranging over λ -expressions. Suppose μ is an arbitrary λ -expression. Then $\mu = [\lambda \nu_1 \dots \nu_n \phi]$, for some $\phi, \nu_1, \dots, \nu_n$.

Partitioning the λ -expressions (cont.)

- 1. If $(\exists i)(1 \le i \le n \text{ and } \nu_i \text{ is not the } i^{\text{th}} \text{ free object variable in } \phi \text{ and } i \text{ iss the least such number}), then where <math>\nu_j$ is the i^{th} free object variable in ϕ , μ is the **i**, j^{th} -conversin of $[\lambda \nu_1 \dots \nu_{i-1} \nu_j \nu_{i+1} \dots \nu_{j-1} \nu_i \nu_{j+1} \dots \nu_n \phi]$
- If μ is not the *i*, *j*th-conversation of any λ-expression, then:
 if φ = (¬ψ), μ is the negation of [λν₁...ν_nφ]
 if φ = (ψ → χ), and ψ and χ have no free object variable in common, then where ν₁,..., ν_p are the variables in ψ and ν_{p+1},..., ν_n are the variables in χ, ν is the conditionalization of [λν₁...ν_pψ] and [λν_{p+1}...ν_nχ]
 if φ = (∀ν)ψ, and ν is the *i*th free object variable in φ, then μ is the *i*th-universalization of [λν₁...ν_i-ν_i-ν_iν_iν_{i+1}...ν_nψ].

- 3. If μ is none of the above, then if $(\exists i)(1 \le i \le n \text{ and } \nu_i \circ ccurs free in more than one place in <math>\phi$ and i is the least such number), then where:
 - 3.1 k is the number of free object variables between the first and second occurrences of ν_i ,
 - 3.2 ϕ' is the result of replacing the second occurrences of ν_i with a new variable ν , and
 - 3.3 j = i + k + 1,

 μ is the **i**,**j**th-reflection of $[\lambda \nu_1 \dots \nu_{i+k} \nu \nu_j \dots \nu_n \phi']$

Partitioning the λ -expressions (cont.)

- If μ is none of the above, then if o is the left most object term occurring in φ, then where:
 - 4.1 *j* is the number of free variables occurring before *o*.
 - 4.2 ϕ' is the result of replacing the first occurrence of o by a new variable ν , and

4.3
$$i = j + 1$$
,

 μ is the **i**th-plugging of $[\lambda \nu_1 \dots \nu_j \nu \nu_{j+1} \dots \nu_n \phi']$ by o

- 5. If μ is none of the above, then
 - 5.1 ϕ is atomic
 - 5.2 ν_1, \ldots, ν_n is the order in which these variables first occur in ϕ

5.3 $\mu = [\lambda \nu_1 \dots \nu_n \rho^n \nu_1 \dots \nu_n]$, for some relation term ρ^n , and μ is called **elementary**

If given an interpretation \mathscr{I} of our language, an \mathscr{I} -assignment, f, will be any function defined on the primitive variables of the language which satisfies the following two conditions:

- 1. where ν is any object variable, $\mathbf{f}(\nu) \in \mathscr{D}$
- 2. where π^n is any relation variable, $\mathbf{f}(\pi^n) \in \mathscr{R}_n$

Denotations

If given an interpretation \mathscr{I} of our language, and an \mathscr{I} -assignment **f**, we recursively define **the denotation of** term π with respect to interpretation \mathscr{I} and \mathscr{I} -assignment $f(\text{``d}_{\mathscr{I},f}(\pi))$ as follows:

1. where κ is any primitive name, $\mathsf{d}_{\mathscr{I},\mathsf{f}}(\kappa) = \mathscr{F}_{\mathscr{I}}(\kappa)$

- 2. where ν is any object variable, $\mathbf{d}_{\mathscr{I},\mathbf{f}}(\nu) = \mathbf{f}(\nu)$
- 3. where π^n is any relation variable, $\mathbf{d}_{\mathscr{I},\mathbf{f}}(\pi^n) = \mathbf{f}(\pi^n)$
- 4. where $[\lambda \nu_1 \dots \nu_n \rho^n \nu_1 \dots \nu_n]$ is any elementary

 λ -expression, $\mathbf{d}_{\mathscr{I},\mathbf{f}}([\lambda\nu_1\dots\nu_n\rho^n\nu_1\dots\nu_n]) = \mathbf{d}_{\mathscr{I},\mathbf{f}}(\rho^n)$

5. where μ is the *i*th-plugging of ξ by *o*,

 $\mathsf{d}_{\mathscr{I},\mathsf{f}}(\mu) = \mathscr{PLWG}_i(\mathsf{d}_{\mathscr{I},\mathsf{f}}(\xi),\mathsf{d}_{\mathscr{I},\mathsf{f}}(o))$

6. where μ is the $i^{\rm th}\text{-universalization of }\xi$,

 $\mathsf{d}_{\mathscr{I},\mathsf{f}}(\mu) = \mathscr{UNIV}_{i}(\mathsf{d}_{\mathscr{I},\mathsf{f}}(\xi))$

- 7. where μ is the i, j^{th} -conversion of ξ , $\mathbf{d}_{\mathscr{I},\mathbf{f}}(\mu) = \mathscr{CONV}_{i,j}(\mathbf{d}_{\mathscr{I},\mathbf{f}}(\xi))$
- 8. where μ is the *i*, *j*th-reflection of ξ ,

 $\mathsf{d}_{\mathscr{I},\mathsf{f}}(\mu) = \mathscr{REFL}_{i,j}(\mathsf{d}_{\mathscr{I},\mathsf{f}}(\xi))$

9. where μ is the conditionalization of ξ and ζ , $\mathbf{d}_{\mathscr{I},\mathbf{f}}(\mu) = \mathscr{COND}_{i,j}(\mathbf{d}_{\mathscr{I},\mathbf{f}}(\xi), \mathbf{d}_{\mathscr{I},\mathbf{f}}(\zeta))$

10. where μ is the negation of ξ , $d_{\mathscr{I},f}(\mu) = \mathscr{NEG}(d_{\mathscr{I},f}(\xi))$

We define **f** satisfies ϕ , recursively, as follows:

1. If
$$\phi = \rho^n o_1 \dots o_n$$
, **f** satisfies ϕ iff
 $\langle \mathbf{d}_{\mathscr{I},\mathbf{f}}(o_1), \dots, \mathbf{d}_{\mathscr{I},\mathbf{f}}(o_n) \rangle \in ext_{\mathscr{R}}(\mathbf{d}_{\mathscr{I},\mathbf{f}}(\rho^n))$
2. If $\phi = o\rho^1$, **f** satisfies ϕ iff $\mathbf{d}_{\mathscr{I},\mathbf{f}}(o) \in ext_{\mathscr{A}}(\mathbf{d}_{\mathscr{I},\mathbf{f}}(\rho^1))$
3. if $\phi = (\neg \psi)$, **f** satisfies ϕ iff **f** fails to satisfy ϕ
4. If $\phi = (\psi \to \chi)$, **f** satisfies ϕ iff **f** fails to satisfy ψ or ∇

- satisfies χ
- 5. If $\phi = (\forall \alpha)\psi$, **f** satisfies ϕ iff $(\forall \mathbf{f}')(\mathbf{f}'_{\bar{\alpha}}\mathbf{f} \to \mathbf{f}')$ satisfies ϕ), where: $\mathbf{f}'_{\bar{\alpha}}\mathbf{f} =_{df}\mathbf{f}'$ is an \mathscr{I} -assignment just like **f** except perhaps for what is assigns to α .

 ϕ is **true under** interpretation \mathscr{I} iff every \mathscr{I} -assignment **f** satisfies ϕ . ϕ is **false under** \mathscr{I} iff no \mathscr{I} -assignment **f** satisfies ϕ . ϕ is **valid** iff ϕ is true under all interpretations.

Introduction

- A Second-Order Language
 - Syntax
 - Semantics
- A Second-Order Theory
 - The Second-Order Logic
 - Proper Axioms

An Application of the Theory

Introduction

- A Second-Order Language
 - Syntax
 - Semantics
- A Second-Order Theory
 - The Second-Order Logic
 - Proper Axioms
- An Application of the Theory

The Second-Order Logic

The Logical Axioms

1.
$$\phi \to (\psi \to \phi)$$

2. $(\phi \to (\psi \to \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi))$
3. $(\neg \phi \to \neg \psi) \to ((\neg \phi \to \psi) \to \phi)$
4. $(\forall \alpha) \phi \to \phi_{\alpha}^{\tau}$, where τ is substitutable for α
5. $(\forall \alpha)(\phi \to \psi) \to (\phi \to (\forall \alpha)\psi)$, provided α is not free in ϕ
6. $(\forall x_1) \dots (\forall x_n)([\lambda \nu_1 \dots \nu_n \phi] x_1 \dots x_n \leftrightarrow \phi_{\nu_1 \dots \nu_n}^{x_1, \dots, x_n})$
7. $[\lambda \nu_1 \dots \nu_n \rho^n \nu_1 \dots \nu_n] = \rho^n$

Rules of Inference

- 1. From ϕ and $\phi \rightarrow \psi \text{, we may infer } \psi$
- 2. (*UI*) from ϕ , we may infer $(\forall \alpha)\phi$

Introduction

- A Second-Order Language
 - Syntax
 - Semantics

A Second-Order Theory

- The Second-Order Logic
- Proper Axioms
- An Application of the Theory

- 1. $(E-IDENTITY) =_E y \leftrightarrow E!x \land E!y \land (\forall F)(Fx \leftrightarrow Fy)$
- 2. (NO-CODER) $E!x \rightarrow \neg(\exists F)xF$
- (IDENITITY) α = β → (φ(α, α) ↔ φ(α, β)), where φ(α, β) is the result of replacing some, but not necessarily all, free occurences of α by β in φ(α, α), provided β is substitutable for α in the occurences of α it replaces.
- 4. (A-OBJECTS) $(\exists x)(A!x \land (\forall F)(xF \leftrightarrow \phi))$, for any formula ϕ where x is not free

Two Theorems

Definition

1.
$$x = y =_{df} x = y \lor (A!x \land A!y \land (\forall F)(xF \leftrightarrow yF))$$

2. $F^1 = G^1 =_{df} (\forall x)(xF^1 \leftrightarrow xG^1)$
3. $F^n = G^n =_{df} (\forall x_1 \dots x_{n-1})([\lambda yF^n yx_1 \dots x_{n-1}] = [\lambda yG^n yx_1 \dots x_{n-1}] \land [\lambda yF^n x_1 yx_2 \dots x_{n-1}] = [\lambda yG^n x_1 yx_2 \dots x_{n-1}] \land \dots \land [\lambda yF^n x_1 \dots x_{n-1}y] = [\lambda yG^n x_1 \dots x_{n-1}y])$ (where $n > 1$)

Theorem (IDENTITY INTRODUCTION, =I) $\alpha = \alpha$, where α is any variable.

Proof.

(sketch) If α is an object variable x and E!x, then since we have ($\forall F$)(Fx \leftrightarrow Fx) from propositional logic and UI, we may use (E-IDENTITY) to prove $x =_E x$. So x = x, by Definition 1. If $\neg E!x \dots$ If α is $F^1 \dots$ If α is $F^n \dots$ Let us use the standard notation $(\exists !x)\psi$ (there is a unique x such that ψ) to abbreviate $(\exists x)(\psi \land (\forall y)(\psi_x^y \rightarrow y = x))$.

Theorem (UNIQUENESS)

 $(\exists !x)(A!x \land (\forall F)(xF \leftrightarrow \phi))$ for any formula ϕ where x is not free.

Proof.

Firstly, we prove the existence by the A-OBJECTS. And then we prove the uniqueness by contradiction. There could not be distinct such objects since we cannot give a formula ϕ which give us two different conditions about properties.

Introduction

- A Second-Order Language
 - Syntax
 - Semantics
- A Second-Order Theory
 - The Second-Order Logic
 - Proper Axioms
- An Application of the Theory

An Expansion of the Theory

- Let us stipulate that where ϕ is any formula with one free *x*-variable, $(\iota x)\phi($ "the object *x* such that ϕ ") is to be a complex object term of our language. Semantically, we interpret descriptions $(\iota x)\phi$ as denoting the unique object which satisfies ϕ , if there is one, and as not denoting anything if there is not one.
- Axiom(DESCRIPTIONS)

$$\psi_{\upsilon}^{(\iota X)\phi} \leftrightarrow (\exists ! y) \phi_{X}^{y} \wedge (\exists y) (\phi_{X}^{y} \wedge \psi_{V}^{y})$$

where ψ is any atomic formula or defined object identity formula with one free variable v.

Plato's Forms

Definition (Form(x, G)) x is a Form of $G =_{df} A! x \land (\forall F)(xF \leftrightarrow F = G)$ Theorem (1) $(\forall G)(\exists x)$ Form(x, G)Proof. By A-OBJECTS and UI. Theorem (2) $(\forall G)(\exists !x)$ Form(x, G)Proof.

By UNIQUENESS and UI.

So now we know that the description $(\iota x)(A!x \land (\forall F)(xF \leftrightarrow F = G))$ (the Form of G) always has a denotation. For convenience, let us use " Φ_G " to abbreviate it.

Theorem (3)

 $\Phi_G G$ (the Form of G encodes G)

Proof.

By DESCRIPTIONS, $\Phi_G G \leftrightarrow (\exists !y)(A!y \land (\forall F)(yF \leftrightarrow F = G)) \land (\exists y)(A!y \land (\forall F)(yF \leftrightarrow F = G) \land yG)$. The right side of this biconditional is easily obtainable from Theorem(2).

Definition (Part(y, x)**)** y participates in $x =_{df} (\exists F)(xF \land Fy)$

Theorem (4)

 $x \neq y \land Fx \land Fy \rightarrow (\exists u)(u = \Phi_F \land Part(x, u) \land Part(y, u))$

Proof.

Assume $a \neq b$, Pa, and Pb, where a, b are arbitrary objects and P is an arbitrary property. By =I, we have $\Phi_P = \Phi_P$. By Theorem(3) and the above assumptions, we have $\Phi_P P \wedge Pa$. So $(\exists G)(\Phi_P G \wedge G_a)$, i.e., $Part(a, \Phi_P)$. Similarly, $Part(b, \Phi_P)$. So $\Phi_P = \Phi_P \wedge Part(a, \Phi_P) \wedge Part(b, \Phi_P)$. So $(\exists u)(u = \Phi_P \wedge Part(a, u) \wedge Part(b, u))$ **Theorem (5)** $Fx \leftrightarrow Part(x, \Phi_F)$

Proof.

 (\rightarrow) Assume *Fx*. By Theorem (3), Part (x, Φ_F) .

(\leftarrow) Assume Part (x, Φ_F). Call the property Φ_F encodes G and x exemplified G. Since Φ_F encodes just F, it must be that G = F. So Fx.

Plato's Forms (cont.)

Definition

We call the property $[\lambda x \neg E!x]$ **Platonic existence** and the notation is $\overline{E}!$

Theorem (6)

 $(\forall x)(\exists F)(x = \Phi_F) \rightarrow \overline{E}!x).$

Proof.

By the definition of Forms, We have known that Φ_F is abstract, and by the definition of the abstracts we get the theorem.

We can call $\Phi_{\overline{E}}$ **Platonic Being**, or **Reality**. From Theorem(5) and (6) it follows that:

Theorem (7) $(\forall x)((\exists F)(x = \Phi_F) \rightarrow Part(x, \Phi_{\overline{E}}))$

References

Reicher, Maria

Nonexistent Objects

The Stanford Encyclopedia of Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/win2016/entries/nonexister objects/>.

Alan McMichael & Edward N. Zalta
 An Alternative Theory of Nonexistent Objects
 Journal of Philosophical Logic, Vol. 9, No. 3 (Aug., 1980), pp. 297-313

Edward N. Zalta

Abstract Objects

D.Reidel Publishing Company, 1983

Thanks!