Zalta’s Elementary Object Theory

Qilei Xing
June 12, 2018

Department of Philosophy, PKU

Introduction

A Second-Order Language
Syntax

Semantics

A Second-Order Theory
The Second-Order Logic

Proper Axioms

An Application of the Theory

Introduction

Introduction

These slides are based on Abstact Objects,
D.Reidel Publishing Company, 1983

Introduction

Existent or non-existent, that’s the question.

A Second-Order Language
Syntax

Semantics

A Second-Order Language
Syntax

Primitive Symbols

on O > W

. Primitive object terms

11 Constants: aq,a,,dsz...."
1.2 Variables: x1,x2,X3....2

Primitive relation terms

21 Constants: P{,PY, P ... (n
2.2 Variables: FJ, F5,FZ, ... (n
Connectives: —, — .
Quantifier: V.
Lambda: A.

Parentheses and brackets: (,),[,]-

Formulas and Terms

We present a simultaneous inductive definition of
(propositional) formula, object term, and n-place relation
term

1. All primitive object terms are object terms and all
primitive n-place relation terms are n-place relation

terms.
2. Atomic exemplification: If p" is any n-place relation term,
and os,...,0, are any object terms, p"01...0, 1S @

(propositional) formula.

3. Atomic encoding: If p' is any one-place relation term, op'
is a formula.

4. Molecular: If ¢ and ¢ are any (propositional) formulas,
then (—¢) and (¢ — v) are (propositional) formulas.

Formulas and Terms (cont.)

5. Quantified: If ¢ is any (propositional) formula, and « is any
(object) variable, then (Va)¢ is a (propositional) formula.

6. Complex n-place relation terms: If ¢ is any propositional
formula with n-free object variables v4,..., vy, then
[A\vy...vpel is an n-place relation term.

Some Notations and Definitions

* (Alx) x is abstract= [Ay—Ely]x

- Aformula ¢ is propositional iff ¢ has no encoding
subformulas and ¢ has no subformulas with quantifiers
binding relation variables.

- Rewrite =¢ 010, as 01 =¢ 03
- parentheses
AV, e, d

10

Some Notations and Definitions (cont.)

- 7is aterm iff 7 is an object term or there is an n such that
T is an n-place relation term.

- All and only formulas and terms are well-formed
expressions.

- An occurrence of a variable a in a well-formed expression
is bound (free) iff it lies (does not lie) with a formula of
the form (Ya)¢ or a term of the form [Avq...«...Vpd]
within the expression.

- Avariable is free (bound) in an expression iff it does
(does not) have a free occurrence in the expression.

- A sentence is a formula having no free variables.

"

Some Notations and Definitions (cont.)

- Aterm is substitutable for a variable « in a formula ¢ iff
for every variable 3 free in 7, no free occurrence of a in ¢
occurs either in a subformula of the form (V3)y in ¢ orin
aterm [Avi...0...vph] in ¢.

- We write ¢(an, ..., an) to designate a formula which may
or may not have ag, ..., a, occuring free.

- We write ¢4, to designate the formula which results

when, for each i,1 < i < n, 7 is substituted for each free
occurrence of a; in ¢.

12

A Second-Order Language

Semantics

13

Interpretations

An interpretation, of our language is any 6-tuple
(D, R, exty, L, exty, F).

- 2 is an non-empty set. It is called the domain of objects.
(o€ 92)

- Z is an non-empty set. It is called the domain of
relations and it is the union of a sequence of non-empty
set %1, %2, 3, - - 1.6, B = Up>1 %n. (" e %)

- exty Xn — P(2"). We call ext4(:") the exemplification
extension of +".

14

Interpretations (cont.)

- Zis a class of logical functions which operate on the
members of 2" and 2 to produce the complex relations
which serve as the denotations for the A\-expressions.

1. PLUYG maps (ZUH3U...) x D into (1 U%U...).
PLUY;, foreach j > 1, maps (ZUZq1U...) x Zinto
(%j_] U f@j U...).

PLUY; s subject to the following conditions:
extz(PLU%Y(+",0)) ={(01,...,0i_1,0i41,...,0n) |
(01,...,0i_1,0,0i,1,...,0n) € extep(x")}

2. UN IV ymaps (U3 U...)iInto (1 UZU...).
w7V foreachj > 1, maps (% UZj, U...)into
(ZAUZU...). %N IV is subject to the condition:
eXtOf(dZ/c/Vjﬂj//(Zn)) - {(017 °009 0,‘,1, Oi+'la 0coog 0n> ’

(Vo)({(01,...,0;_1,0,0,41,...,0n) € extz(2"))} E

Interpretations (cont.)

3. 0NV, foreachi,j,1<i<j isafunction mapping
(% UZj 1 U...)iInto (% UZj41U...) subject to the
condition: extx(€ONV;;(2")) =
{{01,...,0;_1,04,0i11,...,0j_1,0;,0/41,...,0n) |
(01,...,0},...,0j,...,0n) € extz(2")}.

4. #EF L, foreach i,j,1 < i<, is afunction mapping
(%, U %1 U...)into (%1 UZU...)subject to the
condition:
extap(#EF L ;(1")) = {(01,...,0i,...,0j_1,0j11,...,0n) |
(01,...,0j,...,0j,...,0p) € extz(2")and 0; = o;}

5. €04 2 is afunction from (Z U %, U..)x (% U%U...)
into (%, U%; U ...) subject to the condition:
extzg(€ON 2(2", ™)) = {(01,...,0pn,0,...,00,) |
(01,...,0m) & extep(x") or (0),...,0)) € extez(y™)}

Interpretations (cont.)

6. A &Y is afunction from (% U %,U) into (%1 U %, U . ..)
subject to the condition:
extyp(AN EG(")) = {(01,...,0n) | (01,...,0pn) & extzp(s")}

© exty : # — P(2). We call ext,,(:') the encoding
extension of 4

- # maps the simple names of the language to elements of
the appropriate domain. For each object name
k, F(Kk) € 9. For each relation name ", #(r") € %;.

Partitioning the \-expressions (cont.)

But, we have a problem to solve about the A-expressions.

Partitioning the \-expressions (cont.)

But, we have a problem to solve about the A-expressions.

We use u, &, ¢ as metavariables ranging over A-expressions.
Suppose p is an arbitrary A-expression. Then u = [Avy...vpd),
for some ¢, v1,...,vp.

Partitioning the \-expressions (cont.)

1. If(31)(1 < i < nand y; is not the /™" free object variable in
¢ and i ixs the least such number), then where y; is the jth
free object variable in ¢, u is the i,j"-conversin of

B2 Z301 71 7S V1 71 7 SRR et o)

2. If pis not the i, j!"-conversation of any A-expression, then:

21 if ¢ = (=), u is the negation of [Av ... vy

22 if ¢ = (¢ — x), and ¥ and x have no free object variable in
common, then where v4,. .., v, are the variables in ¢ and
Vp41,...,Vy are the variables in x, v is the
conditionalization of [Avy...vp¢] and [Avpyq ... vpx]

23 if ¢ = (W)y, and v is the i™" free object variable in ¢, then
1 is the i"-universalization of A . oviwwvivi . ovpdd).

19

Partitioning the \-expressions (cont.)

3. If pwis none of the above, then if (3/)(1 <1< nandy
occurs free in more than one place in ¢ and i is the least
such number), then where:

31 Risthe number of free object variables between the first

and second occurrences of v;,
3.2 ¢’ is the result of replacing the second occurrences of y;

with a new variable v, and
33 j=i4+k+1,
pis the i,j""-reflection of v ... vy ... vnd/]

20

Partitioning the \-expressions (cont.)

4. If i is none of the above, then if o is the left most object
term occurring in ¢, then where:
41 jis the number of free variables occurring before o.
4.2 ¢ is the result of replacing the first occurrence of o by a
new variable v, and
43 i=j+41,
1 is the i"-plugging of [Av; ... VivVigq...pd'l by 0

5. If pis none of the above, then
51 ¢ is atomic
52 11,...,vy IS the order in which these variables first occur in

¢

53 p=[\...vpp vy ... vp], for some relation term p”,
and u is called elementary

21

If given an interpretation .# of our language, an
#-assignment, f, will be any function defined on the primitive
variables of the language which satisfies the following two

conditions:

1. where v is any object variable, f(v) € 2
2. where «" is any relation variable, f(z") € %,

22

If given an interpretation .# of our language, and an

& -assignment f, we recursively define the denotation of term
7 with respect to interpretation .# and .#-assignment

f(“ds ¢(m)") as follows:

1. where & is any primitive name, d s ¢(x) = Z (k)
2. where v is any object variable, d 4 ¢(v) = f(v)

3.

4. where [Avq...vpp"17 ... vy] IS any elementary

where 7" is any relation variable, d s (") = f(7")

A-expression, d g ¢([Avr ... vpp"vr .. vn]) = d g £(p")
where p is the i™-plugging of € by o,

dss(n) = PLUY(ds5(§),ds5(0))

where p is the i-universalization of ¢,

dysi(p) =% N IVi(ds5(8))

23

Denotations (cont.)

10.

where is the i, jt"-conversion of ¢,
dyf(p) =CONYi(ds5(8))
where is the i, jt"-reflection of ¢,
dsi(n) = 267 L ;(d s (E))

. where p is the conditionalization of £ and ¢,

dyss(n) =COND;j(dss(€),ds5(C))
where p is the negation of &, d s (1) = A EY(d » £(£))

2%

Satisfaction

We define f satisfies ¢, recursively, as follows:

1. If¢p=p"0q...0p, fsatisfies ¢ iff
(ds£(01),...,ds5(0n)) € extz(dss(p"))

2. If ¢ = op', f satisfies ¢ iff d s ¢(0) € ext(d s ¢(p"))

3. if ¢ = (), f satisfies ¢ iff f fails to satisfy ¢

4 1f ¢ = (v — x), f satisfies ¢ iff f fails to satisfy ¢ or f
satisfies x

5. If ¢ = (Va)o, f satisfies ¢ iff (VF)(f5f — f') satisfies @),
where: fof =4 f is an #-assignment just like f except
perhaps for what is assigns to a.

25

Truth under an Interpretation

¢ is true under interpretation .# iff every .#-assignment f
satisfies ¢. ¢ is false under .# iff no .#-assignment f satisfies
¢. ¢ is valid iff ¢ is true under all interpretations.

26

A Second-Order Theory
The Second-Order Logic

Proper Axioms

27

A Second-Order Theory
The Second-Order Logic

28

The Second-Order Logic

The Logical Axioms

¢ = (¥ = ¢)

(0= (¥ —==x)) = (& —=9¢) = (6= X))

(=¢ = =) = ((=¢ = ¢) = ¢)

(Vo) — ¢F, where 7 is substitutable for «

(Va)(¢p — ¢) — (¢ — (Va)y), provided « is not free in ¢
(V1) - (W) (M1 - - - vn@)Xa .« X < duioom)

[

Aviccovpp vy = p"

~N O R W N

Rules of Inference

1. From ¢ and ¢ — 1, we may infer v
2. (Ul) from ¢, we may infer (Va)¢

29

A Second-Order Theory

Proper Axioms

30

1. (E—IDENTITY) X =¢ y <> EIX A Ely A (VF)(Fx <5 FY)

2. (NO—CODER) Elx — —(3F)xF

3. (IDENITITY) a = 8 — (¢(a, @) > ¢(a, B)), where ¢(a, 8) is
the result of replacing some, but not necessarily all, free

occurences of a by 5 in ¢(«, «), provided S is
substitutable for « in the occurences of « it replaces.

4. (A—OBJECTS) (3x)(Alx A (YF)(XF <> ¢)), for any formula ¢
where x is not free

31

Definition

T.x=y =g x=yV (AXAAly A (VF)(XF <> yF))

2. F' = G" =g (VX)(XF' > xG")

3.F1 =G" =df (VX1 5o .Xn_1)([)\yFnyX1 oc .Xn_1] =

[AYG"yX71 ... Xn_a] A [AVF™X1yXa . .. Xn—1] = [AVG"X1¥X2 . .. Xn—1] A
AN YFTX L Xn—y] = [WGTX L Xn—1y])(where no > 1)
Theorem (IDENTITY INTRODUCTION, =I)

o = «, where « is any variable.

Proof.

(sketch) If a is an object variable x and Elx, then since we have
(VF)(Fx <> Fx) from propositional logic and Ul, we may use
(E—IDENTITY) to prove x = x. So x = x, by Definition 1. If

—Elx... IfaisF'.. IfaisF"... O 5

Two Theorems (cont.)

Let us use the standard notation (3!x)y (there is a unique x
such that +) to abbreviate (3x)(¥ A (W) (g — ¥ = x)).

Theorem (UNIQUENESS)
(3X)(AlX A (YF)(XF <> ¢)) for any formula ¢ where x is not free.

Proof.

Firstly, we prove the existence by the A—OBJECTS. And then we
prove the uniqueness by contradiction. There could not be
distinct such objects since we cannot give a formula ¢ which
give us two different conditions about properties. O

33

An Application of the Theory

34

An Expansion of the Theory

- Let us stipulate that where ¢ is any formula with one free
x-variable, (:x)é(“the object x such that ¢") is to be a
complex object term of our language. Semantically, we
interpret descriptions (tx)¢ as denoting the unique object
which satisfies ¢, if there is one, and as not denoting
anything if there is not one.

- Axiom(DESCRIPTIONS)

% &5 ()b A (By)(Bh A)

where ¢ is any atomic formula or defined object identity
formula with one free variable v.

35

Plato’s Forms

Definition (Form(x, G))
xis a Form of G =4 Alx A (VF)(xF < F = G)

Theorem (1)
(VG)(3x)Form(x, G)

Proof.
By A-OBJECTS and UL O]

Theorem (2)
(VG)(3'x)Form(x, G)

Proof.
By UNIQUENESS and Ul. O]

36

Plato’s Forms (cont.)

So now we know that the description
(tx)(Alx A (VF)(XF <+ F = G))(the Form of G) always has a
denotation. For convenience, let us use “®s" to abbreviate it.

Theorem (3)

d;G(the Form of G encodes G)

Proof.

By DESCRIPTIONS, &G <+ (3ly)(Aly A (YF)(YF ¢ F =

G)) A (3y)(Aly A (VF)(yF < F = G) A yG). The right side of this
biconditional is easily obtainable from Theorem(2). O

37

Plato’s Forms (cont.)

Definition (Part(y, x))
y participates in x =g5 (3F)(xF A Fy)

Theorem (&)
X # Y AFXAFy — (3u)(u = OF A Part(x, u) A Part(y, u))

Proof.

Assume a # b, Pa, and Pb, where a, b are arbitrary objects and
P is an arbitrary property. By =I, we have ®p = ®p. By
Theorem(3) and the above assumptions, we have ®pP A Pa. So
(3G)(®pG A Gg), i.e., Part(a, ®p). Similarly, Part(b, ®p). So

®p = &p A Part(a, ®p) A Part(b, dp). So

(Ju)(u = ®p A Part(a, u) A Part(b, u)) O

38

Plato’s Forms (cont.)

Theorem (5)
Fx <> Part(x, ®f)

Proof.
(—) Assume Fx. By Theorem (3), Part(x, ®f).
(«) Assume Part (x, ®f). Call the property ¢ encodes G and x

exemplified G. Since ®f encodes just F, it must be that G = F.
So Fx.]

39

Plato’s Forms (cont.)

Definition
We call the property [Ax—E!x] Platonic existence and the
notation is E!

Theorem (6)
(VX)(3F)(x = dF) — Elx).

Proof.
By the definition of Forms, We have known that ®f is abstract,
and by the definition of the abstracts we get the theorem. [

We can call @z Platonic Being, or Reality. From Theorem(5)
and (6) it follows that:

Theorem (7)

(VX)((3F)(x = ®F) — Part(x, dz))

40

References

[§ Reicher, Maria
Nonexistent Objects
The Stanford Encyclopedia of
Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.), URL =
<https:/ /plato.stanford.edu/archives/win2016/entries/nonexiste
objects/>.
[3 Alan McMichael & Edward N. Zalta
An Alternative Theory of Nonexistent Objects
Journal of Philosophical Logic, Vol. 9, No. 3 (Aug., 1980), pp.
297-313
¥ Fdward N. Zalta
Abstract Objects
D.Reidel Publishing Company, 1983
41

ThanRs!

42

	Introduction
	A Second-Order Language
	Syntax
	Semantics

	A Second-Order Theory
	The Second-Order Logic
	Proper Axioms

	An Application of the Theory

