
Zalta’s Elementary Object Theory

Qilei Xing
June 12, 2018

Department of Philosophy, PKU

Outline

Introduction

A Second-Order Language

Syntax

Semantics

A Second-Order Theory

The Second-Order Logic

Proper Axioms

An Application of the Theory

1

Outline

Introduction

A Second-Order Language

Syntax

Semantics

A Second-Order Theory

The Second-Order Logic

Proper Axioms

An Application of the Theory

2

Introduction

These slides are based on Abstact Objects,
D.Reidel Publishing Company, 1983

3

Introduction

Existent or non-existent, that’s the question.

4

Outline

Introduction

A Second-Order Language

Syntax

Semantics

A Second-Order Theory

The Second-Order Logic

Proper Axioms

An Application of the Theory

5

Outline

Introduction

A Second-Order Language

Syntax

Semantics

A Second-Order Theory

The Second-Order Logic

Proper Axioms

An Application of the Theory

6

Primitive Symbols

1. Primitive object terms
1.1 Constants: a1,a2,a31
1.2 Variables: x1, x2, x32

2. Primitive relation terms
2.1 Constants: Pn1 ,Pn2 ,Pn3 . . . , (n ≥ 1), 3 =E, E!.
2.2 Variables: Fn1 , Fn2 , Fn3 , . . . , (n ≥ 1).4

3. Connectives: ¬,→ .

4. Quantifier: ∀.
5. Lambda: λ.
6. Parentheses and brackets: (,), [,].

7

Formulas and Terms

We present a simultaneous inductive definition of
(propositional) formula, object term, and n-place relation
term

1. All primitive object terms are object terms and all
primitive n-place relation terms are n-place relation
terms.

2. Atomic exemplification: If ρn is any n-place relation term,
and o1, . . . ,on are any object terms, ρno1 . . .on is a
(propositional) formula.

3. Atomic encoding: If ρ1 is any one-place relation term, oρ1

is a formula.
4. Molecular: If ϕ and ψ are any (propositional) formulas,
then (¬ϕ) and (ϕ→ ψ) are (propositional) formulas.

8

Formulas and Terms (cont.)

5. Quantified: If ϕ is any (propositional) formula, and α is any
(object) variable, then (∀α)ϕ is a (propositional) formula.

6. Complex n-place relation terms: If ϕ is any propositional
formula with n-free object variables v1, . . . , vn, then
[λv1 . . . vnϕ] is an n-place relation term.

9

Some Notations and Definitions

• (A!x) x is abstract=df [λy¬E!y]x
• A formula ϕ is propositional iff ϕ has no encoding
subformulas and ϕ has no subformulas with quantifiers
binding relation variables.

• Rewrite =E o1o2 as o1 =E o2
• parentheses
• ∧,∨,↔, ∃

10

Some Notations and Definitions (cont.)

• τ is a term iff τ is an object term or there is an n such that
τ is an n-place relation term.

• All and only formulas and terms are well-formed
expressions.

• An occurrence of a variable α in a well-formed expression
is bound (free) iff it lies (does not lie) with a formula of
the form (∀α)ϕ or a term of the form [λv1 . . . α . . . vnϕ]
within the expression.

• A variable is free (bound) in an expression iff it does
(does not) have a free occurrence in the expression.

• A sentence is a formula having no free variables.

11

Some Notations and Definitions (cont.)

• A term is substitutable for a variable α in a formula ϕ iff
for every variable β free in τ , no free occurrence of α in ϕ
occurs either in a subformula of the form (∀β)ψ in ϕ or in
a term [λv1 . . . β . . . vnψ] in ϕ.

• We write ϕ(α1, . . . , αn) to designate a formula which may
or may not have α1, . . . , αn occuring free.

• We write ϕτ1,...,τnα1,...,αn to designate the formula which results
when, for each i, 1 ≤ i ≤ n, τi is substituted for each free
occurrence of αi in ϕ.

12

Outline

Introduction

A Second-Order Language

Syntax

Semantics

A Second-Order Theory

The Second-Order Logic

Proper Axioms

An Application of the Theory

13

Interpretations

An interpretation, of our language is any 6-tuple
⟨D ,R, extR ,L , extA , F⟩.

• D is an non-empty set. It is called the domain of objects.
(o ∈ D)

• R is an non-empty set. It is called the domain of
relations and it is the union of a sequence of non-empty
set R1,R2,R3, . . .; i.e, R =

∪
n≥1 Rn. (ın ∈ Rn)

• extR : Rn → P(Dn). We call extR(ın) the exemplification
extension of ın.

14

Interpretations (cont.)

• L is a class of logical functions which operate on the
members of Rn and D to produce the complex relations
which serve as the denotations for the λ-expressions.

1. PL U G 1 maps (R2 ∪R3 ∪ . . .)×D into (R1 ∪R2 ∪ . . .).
PL U G j, for each j > 1, maps (Rj ∪Rj+1 ∪ . . .)×D into
(Rj−1 ∪Rj ∪ . . .).
PL U G i is subject to the following conditions:
extR(PL U G i(ı

n,o)) = {⟨o1, . . . ,oi−1,oi+1, . . . ,on⟩ |
⟨o1, . . . ,oi−1,o,oi+1, . . . ,on⟩ ∈ extR(ın)}

2. U N I V 1 maps (R2 ∪R3 ∪ . . .) into (R1 ∪R2 ∪ . . .).
U N I V j, for each j > 1, maps (Rj ∪Rj+1 ∪ . . .) into
(Rj−1 ∪Rj ∪ . . .). U N I V i is subject to the condition:
extR(U N I V i(ı

n)) = {⟨o1, . . . ,oi−1,oi+1, . . . ,on⟩ |
(∀o)(⟨o1, . . . ,oi−1,o,oi+1, . . . ,on⟩ ∈ extR(ın))} 15

Interpretations (cont.)

3. C ON V i,j, for each i, j, 1 ≤ i ≤ j, is a function mapping
(Rj ∪Rj+1 ∪ . . .) into (Rj ∪Rj+1 ∪ . . .) subject to the
condition: extR(C ON V i,j(ı

n)) =

{⟨o1, . . . ,oi−1,oj,oi+1, . . . ,oj−1,oi,oj+1, . . . ,on⟩ |
⟨o1, . . . ,oi, . . . ,oj, . . . ,on⟩ ∈ extR(ın)}.

4. RE FL i,j for each i, j, 1 ≤ i < j, is a function mapping
(Rj ∪Rj+1 ∪ . . .) into (Rj−1 ∪R ∪ . . .) subject to the
condition:
extR(RE FL i,j(ı

n)) = {⟨o1, . . . ,oi, . . . ,oj−1,oj+1, . . . ,on⟩ |
⟨o1, . . . ,oi, . . . ,oj, . . . ,on⟩ ∈ extR(ın)and oi = oj}

5. C ON D is a function from (R1 ∪R2 ∪ . . .)× (R1 ∪R2 ∪ . . .)
into (R2 ∪R3 ∪ . . .) subject to the condition:
extR(C ON D(ın, ȷm)) = {⟨o1, . . . ,on,o′

1, . . . ,o′
m⟩ |

⟨o1, . . . ,om⟩ /∈ extR(ın) or ⟨o′
1, . . . ,o′

M⟩ ∈ extR(ȷm)}.
16

Interpretations (cont.)

6. N E G is a function from (R1 ∪R2∪) into (R1 ∪R2 ∪ . . .)
subject to the condition:
extR(N E G (ın)) = {⟨o1, . . . ,on⟩ | ⟨o1, . . . ,on⟩ /∈ extR(ın)}

• extA : R → P(D). We call extA (ı1) the encoding
extension of ı1

• F maps the simple names of the language to elements of
the appropriate domain. For each object name
κ,F (κ) ∈ D . For each relation name κn,F (κn) ∈ Rn.

17

Partitioning the λ-expressions (cont.)

But, we have a problem to solve about the λ-expressions.

We use µ, ξ, ζ as metavariables ranging over λ-expressions.
Suppose µ is an arbitrary λ-expression. Then µ = [λν1 . . . νnϕ],
for some ϕ, ν1, . . . , νn.

18

Partitioning the λ-expressions (cont.)

But, we have a problem to solve about the λ-expressions.

We use µ, ξ, ζ as metavariables ranging over λ-expressions.
Suppose µ is an arbitrary λ-expression. Then µ = [λν1 . . . νnϕ],
for some ϕ, ν1, . . . , νn.

18

Partitioning the λ-expressions (cont.)

1. If(∃i)(1 ≤ i ≤ n and νi is not the ith free object variable in
ϕ and i ixs the least such number), then where νj is the ith

free object variable in ϕ, µ is the i,jth-conversin of
[λν1 . . . νi−1νjνi+1 . . . νj−1νiνj+1 . . . νnϕ]

2. If µ is not the i, jth-conversation of any λ-expression, then:
2.1 if ϕ = (¬ψ), µ is the negation of [λν1 . . . νnϕ]
2.2 if ϕ = (ψ → χ), and ψ and χ have no free object variable in

common, then where ν1, . . . , νp are the variables in ψ and
νp+1, . . . , νn are the variables in χ, ν is the
conditionalization of [λν1 . . . νpψ] and [λνp+1 . . . νnχ]

2.3 if ϕ = (∀ν)ψ, and ν is the ith free object variable in ϕ, then
µ is the ith-universalization of [λν1 . . . νi−1ννiνi+1 . . . νnψ].

19

Partitioning the λ-expressions (cont.)

3. If µ is none of the above, then if (∃i)(1 ≤ i ≤ n and νi
occurs free in more than one place in ϕ and i is the least
such number), then where:
3.1 k is the number of free object variables between the first

and second occurrences of νi,
3.2 ϕ′ is the result of replacing the second occurrences of νi

with a new variable ν , and
3.3 j = i+ k+ 1,

µ is the i,jth-reflection of [λν1 . . . νi+kννj . . . νnϕ′]

20

Partitioning the λ-expressions (cont.)

4. If µ is none of the above, then if o is the left most object
term occurring in ϕ, then where:
4.1 j is the number of free variables occurring before o.
4.2 ϕ′ is the result of replacing the first occurrence of o by a

new variable ν , and
4.3 i = j+ 1,
µ is the ith-plugging of [λν1 . . . νjννj+1 . . . νnϕ′] by o

5. If µ is none of the above, then
5.1 ϕ is atomic
5.2 ν1, . . . , νn is the order in which these variables first occur in

ϕ

5.3 µ = [λν1 . . . νnρ
nν1 . . . νn], for some relation term ρn,

and µ is called elementary

21

Assignments

If given an interpretation I of our language, an
I -assignment, f, will be any function defined on the primitive
variables of the language which satisfies the following two
conditions:

1. where ν is any object variable, f(ν) ∈ D

2. where πn is any relation variable, f(πn) ∈ Rn

22

Denotations

If given an interpretation I of our language, and an
I -assignment f, we recursively define the denotation of term
π with respect to interpretation I and I -assignment
f(“dI ,f(π)”) as follows:

1. where κ is any primitive name, dI ,f(κ) = FI (κ)

2. where ν is any object variable, dI ,f(ν) = f(ν)
3. where πn is any relation variable, dI ,f(π

n) = f(πn)
4. where [λν1 . . . νnρ

nν1 . . . νn] is any elementary
λ-expression, dI ,f([λν1 . . . νnρ

nν1 . . . νn]) = dI ,f(ρ
n)

5. where µ is the ith-plugging of ξ by o,
dI ,f(µ) = PL U G i(dI ,f(ξ),dI ,f(o))

6. where µ is the ith-universalization of ξ ,
dI ,f(µ) = U N I V i(dI ,f(ξ))

23

Denotations (cont.)

7. where µ is the i, jth-conversion of ξ,
dI ,f(µ) = C ON V i,j(dI ,f(ξ))

8. where µ is the i, jth-reflection of ξ,
dI ,f(µ) = RE FL i,j(dI ,f(ξ))

9. where µ is the conditionalization of ξ and ζ ,
dI ,f(µ) = C ON D i,j(dI ,f(ξ),dI ,f(ζ))

10. where µ is the negation of ξ, dI ,f(µ) = N E G (dI ,f(ξ))

24

Satisfaction

We define f satisfies ϕ, recursively, as follows:

1. If ϕ = ρno1 . . .on, f satisfies ϕ iff
⟨dI ,f(o1), . . . ,dI ,f(on)⟩ ∈ extR(dI ,f(ρ

n))

2. If ϕ = oρ1, f satisfies ϕ iff dI ,f(o) ∈ extA (dI ,f(ρ
1))

3. if ϕ = (¬ψ), f satisfies ϕ iff f fails to satisfy ϕ
4. If ϕ = (ψ → χ), f satisfies ϕ iff f fails to satisfy ψ or f
satisfies χ

5. If ϕ = (∀α)ψ, f satisfies ϕ iff (∀f′)(f′ᾱf→ f′) satisfies ϕ),
where: f′ᾱf =df f′ is an I -assignment just like f except
perhaps for what is assigns to α.

25

Truth under an Interpretation

ϕ is true under interpretation I iff every I -assignment f
satisfies ϕ. ϕ is false under I iff no I -assignment f satisfies
ϕ. ϕ is valid iff ϕ is true under all interpretations.

26

Outline

Introduction

A Second-Order Language

Syntax

Semantics

A Second-Order Theory

The Second-Order Logic

Proper Axioms

An Application of the Theory

27

Outline

Introduction

A Second-Order Language

Syntax

Semantics

A Second-Order Theory

The Second-Order Logic

Proper Axioms

An Application of the Theory

28

The Second-Order Logic

The Logical Axioms

1. ϕ→ (ψ → ϕ)

2. (ϕ→ (ψ →→ χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

3. (¬ϕ→ ¬ψ)→ ((¬ϕ→ ψ)→ ϕ)

4. (∀α)ϕ→ ϕτα, where τ is substitutable for α
5. (∀α)(ϕ→ ψ)→ (ϕ→ (∀α)ψ), provided α is not free in ϕ
6. (∀x1) . . . (∀xn)([λν1 . . . νnϕ]x1 . . . xn ↔ ϕx1,...,xnν1...,νn)

7. [λν1 . . . νnρnν1 . . . νn] = ρn

Rules of Inference

1. From ϕ and ϕ→ ψ, we may infer ψ
2. (UI) from ϕ, we may infer (∀α)ϕ

29

Outline

Introduction

A Second-Order Language

Syntax

Semantics

A Second-Order Theory

The Second-Order Logic

Proper Axioms

An Application of the Theory

30

Proper Axioms

1. (E−IDENTITY) x =E y↔ E!x ∧ E!y ∧ (∀F)(Fx↔ Fy)
2. (NO−CODER) E!x→ ¬(∃F)xF
3. (IDENITITY) α = β → (ϕ(α, α)↔ ϕ(α, β)), where ϕ(α, β) is
the result of replacing some, but not necessarily all, free
occurences of α by β in ϕ(α, α), provided β is
substitutable for α in the occurences of α it replaces.

4. (A−OBJECTS) (∃x)(A!x ∧ (∀F)(xF↔ ϕ)), for any formula ϕ
where x is not free

31

Two Theorems

Definition
1. x = y =df x = y ∨ (A!x ∧ A!y ∧ (∀F)(xF↔ yF))

2. F1 = G1 =df (∀x)(xF1 ↔ xG1)

3. Fn = Gn =df (∀x1 . . . xn−1)([λyFnyx1 . . . xn−1] =
[λyGnyx1 . . . xn−1] ∧ [λyFnx1yx2 . . . xn−1] = [λyGnx1yx2 . . . xn−1] ∧
. . . ∧ [λyFnx1 . . . xn−1y] = [λyGnx1 . . . xn−1y])(where n > 1)

Theorem (IDENTITY INTRODUCTION, =I)
α = α, where α is any variable.

Proof.
(sketch) If α is an object variable x and E!x, then since we have
(∀F)(Fx↔ Fx) from propositional logic and UI, we may use
(E−IDENTITY) to prove x =E x. So x = x, by Definition 1. If
¬E!x . . . If α is F1 . . . If α is Fn . . . 32

Two Theorems (cont.)

Let us use the standard notation (∃!x)ψ (there is a unique x
such that ψ) to abbreviate (∃x)(ψ ∧ (∀y)(ψyx → y = x)).

Theorem (UNIQUENESS)
(∃!x)(A!x∧ (∀F)(xF↔ ϕ)) for any formula ϕ where x is not free.

Proof.
Firstly, we prove the existence by the A−OBJECTS. And then we
prove the uniqueness by contradiction. There could not be
distinct such objects since we cannot give a formula ϕ which
give us two different conditions about properties.

33

Outline

Introduction

A Second-Order Language

Syntax

Semantics

A Second-Order Theory

The Second-Order Logic

Proper Axioms

An Application of the Theory

34

An Expansion of the Theory

• Let us stipulate that where ϕ is any formula with one free
x-variable, (ιx)ϕ(“the object x such that ϕ”) is to be a
complex object term of our language. Semantically, we
interpret descriptions (ιx)ϕ as denoting the unique object
which satisfies ϕ, if there is one, and as not denoting
anything if there is not one.

• Axiom(DESCRIPTIONS)

ψ(ιx)ϕ
υ ↔ (∃!y)ϕyx ∧ (∃y)(ϕyx ∧ ψyv)

where ψ is any atomic formula or defined object identity
formula with one free variable υ.

35

Plato’s Forms

Definition (Form(x,G))
x is a Form of G =df A!x ∧ (∀F)(xF↔ F = G)

Theorem (1)
(∀G)(∃x)Form(x,G)

Proof.
By A-OBJECTS and UI.

Theorem (2)
(∀G)(∃!x)Form(x,G)

Proof.
By UNIQUENESS and UI.

36

Plato’s Forms (cont.)

So now we know that the description
(ιx)(A!x ∧ (∀F)(xF↔ F = G))(the Form of G) always has a
denotation. For convenience, let us use “ΦG” to abbreviate it.

Theorem (3)
ΦGG(the Form of G encodes G)

Proof.
By DESCRIPTIONS, ΦGG↔ (∃!y)(A!y ∧ (∀F)(yF↔ F =
G)) ∧ (∃y)(A!y ∧ (∀F)(yF↔ F = G) ∧ yG). The right side of this
biconditional is easily obtainable from Theorem(2).

37

Plato’s Forms (cont.)

Definition (Part(y, x))
y participates in x =df (∃F)(xF ∧ Fy)

Theorem (4)
x ̸= y ∧ Fx ∧ Fy→ (∃u)(u = ΦF ∧ Part(x,u) ∧ Part(y,u))

Proof.
Assume a ̸= b,Pa, and Pb, where a,b are arbitrary objects and
P is an arbitrary property. By =I, we have ΦP = ΦP. By
Theorem(3) and the above assumptions, we have ΦPP ∧ Pa. So
(∃G)(ΦPG ∧ Ga), i.e., Part(a,ΦP). Similarly, Part(b,ΦP). So
ΦP = ΦP ∧ Part(a,ΦP) ∧ Part(b,ΦP). So
(∃u)(u = ΦP ∧ Part(a,u) ∧ Part(b,u))

38

Plato’s Forms (cont.)

Theorem (5)
Fx↔ Part(x,ΦF)

Proof.
(→) Assume Fx. By Theorem (3), Part(x,ΦF).
(←) Assume Part (x,ΦF). Call the property ΦF encodes G and x
exemplified G. Since ΦF encodes just F, it must be that G = F.
So Fx.

39

Plato’s Forms (cont.)

Definition
We call the property [λx¬E!x] Platonic existence and the
notation is Ē!

Theorem (6)
(∀x)(∃F)(x = ΦF)→ Ē!x).

Proof.
By the definition of Forms, We have known that ΦF is abstract,
and by the definition of the abstracts we get the theorem.

We can call ΦĒ Platonic Being, or Reality. From Theorem(5)
and (6) it follows that:

Theorem (7)
(∀x)((∃F)(x = ΦF)→ Part(x,ΦĒ))

40

References

Reicher, Maria
Nonexistent Objects
The Stanford Encyclopedia of
Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.), URL =
<https://plato.stanford.edu/archives/win2016/entries/nonexistent-
objects/>.

Alan McMichael & Edward N. Zalta
An Alternative Theory of Nonexistent Objects
Journal of Philosophical Logic, Vol. 9, No. 3 (Aug., 1980), pp.
297-313
Edward N. Zalta
Abstract Objects
D.Reidel Publishing Company, 1983

41

Thanks!

42

	Introduction
	A Second-Order Language
	Syntax
	Semantics

	A Second-Order Theory
	The Second-Order Logic
	Proper Axioms

	An Application of the Theory

