Algebraic semantics and its application to Intuitionistic Logic

Zhicheng Chen
Department of Philosophy, Peking University

December 2018

Syntax vs Semantics

syntax : symbols, words and the rules used for constructing or transforming symbols and words; need not be given any meaning;
semantics : give the meaning of a formal language;

Syntax vs Semantics

syntax : symbols, words and the rules used for constructing or transforming symbols and words; need not be given any meaning;
semantics : give the meaning of a formal language;
question: What is semantics ?(mathematically, formally)

Example 1

Propositional Logic

$$
\text { Symbol }\{\neg, \rightarrow,(,)\} \cup(\mathbf{P}=)\left\{p_{0}, p_{1}, \ldots\right\}
$$

Formula $\phi::=p|\neg \phi|(\phi \rightarrow \phi)$, where $p \in \mathbf{P}$
classical sementics for Propositional Logic

- a set $\{0,1\}$
- \rightarrow^{*} and \neg^{*} are the ordinary truth value funtions of \rightarrow and \neg
- given an assignment (that is, a mapping from \mathbf{P} to $\{0,1\}$) $\tilde{\sigma}$, we extend its domain to Form in the following way:

$$
\begin{gathered}
\sigma(p)=\tilde{\sigma}(p) \\
\sigma(\alpha \rightarrow \beta)=\sigma(\alpha) \rightarrow^{*} \sigma(\beta) \\
\sigma(\neg \alpha)=\neg^{*} \sigma(\alpha)
\end{gathered}
$$

- α is true under $\left(\{0,1\}, \rightarrow^{*}, \neg^{*}\right)$ and $\tilde{\sigma}$ iff $\sigma(\alpha)=1$.

Example 2

Propositional Logic

Symbol $\{\neg, \rightarrow,(),\} \cup(\mathbf{P}=)\left\{p_{0}, p_{1}, \ldots\right\}$
Formula $\phi::=p|\neg \phi|(\phi \rightarrow \phi)$, where $p \in \mathbf{P}$

BA sementics for Propositional Logic

- a Boolean algebra $\mathfrak{A}=(A,+,-, 0)$
- given an assignment (i.e. a mapping from \mathbf{P} to A) $\tilde{\sigma}$, we extend its domain to Form in the following way:

$$
\begin{gathered}
\sigma(p)=\tilde{\sigma}(p) \\
\sigma(\alpha \rightarrow \beta)=(-\sigma(\alpha))+\sigma(\beta) \\
\sigma(\neg \alpha)=-\sigma(\alpha)
\end{gathered}
$$

- α is true under \mathfrak{A} and $\tilde{\sigma}$ iff $\sigma(\alpha)=1$.

Example 3

Modal Logic

Symbol $\{\neg, \vee, \diamond,(),\} \cup(\mathbf{P}=)\left\{p_{0}, p_{1}, \ldots\right\}$
Formula $\phi::=p|\neg \phi|(\phi \vee \phi) \mid \diamond \phi$, where $p \in \mathbf{P}$
Kripke sementics for Propositional Logic

- a set W, a binary relation R on W
- given an assignment (i.e. a mapping from \mathbf{P} to $\mathcal{P}(W)) \tilde{\sigma}$, let: $\mathcal{M}=(W, R, \tilde{\sigma})$ and for all $w \in W$,

$$
\begin{gathered}
\mathcal{M}, w \vDash p \text { iff } w \in \tilde{\sigma}(p) \\
\mathcal{M}, w \vDash \alpha \vee \beta \text { iff } \mathcal{M}, w \vDash \alpha \text { or } \mathcal{M}, w \vDash \beta \\
\mathcal{M}, w \vDash \diamond \alpha \text { iff there is an } u \text { s.t. } w R u \text { and } \mathcal{M}, w \vDash \alpha
\end{gathered}
$$

- α is true under \mathfrak{A} and $\tilde{\sigma}$ iff $\sigma(\alpha)=1$.

Example 4

Intuitionistic Logic

Symbol $\{\neg, \wedge, \vee, \rightarrow,(),\} \cup(\mathbf{P}=)\left\{p_{0}, p_{1}, \ldots\right\}$
Formula $\phi::=p|\neg \phi|(\phi \wedge \phi)|(\phi \vee \phi)|(\phi \rightarrow \phi)$, where $p \in \mathbf{P}$
relational sementics for Intuitionistic Logic

- a set W, a binary relation R on W
- given an assignment (i.e. a mapping from \mathbf{P} to $\mathcal{P}(W)) \tilde{\sigma}$, which satisfying : for any $p \in \mathbf{P}$ and for any $w, u \in W$,

$$
\text { if } w \in \tilde{\sigma}(p) \text { and } w R u \text {, then } u \in \tilde{\sigma}(p)
$$

let $\mathcal{M}=(W, R, \tilde{\sigma})$ and for all $w \in W$,

$$
\begin{gathered}
\mathcal{M}, w \vDash p \text { iff } w \in \tilde{\sigma}(p) \\
\mathcal{M}, w \vDash \alpha \vee \beta \text { iff } \mathcal{M}, w \vDash \alpha \text { or } \mathcal{M}, w \vDash \beta \\
\mathcal{M}, w \vDash \alpha \wedge \beta \text { iff } \mathcal{M}, w \vDash \alpha \text { and } \mathcal{M}, w \vDash \beta \\
\mathcal{M}, w \vDash \alpha \rightarrow \beta \text { iff for all } w R u, \mathcal{M}, u \not \vDash \alpha \text { or } \mathcal{M}, u \vDash \beta \\
\mathcal{M}, w \vDash \neg \alpha \text { iff for all } w R u, \mathcal{M}, u \not \vDash \alpha
\end{gathered}
$$

- α is true under \mathfrak{A} and $\tilde{\sigma}$ iff $\sigma(\alpha)=1$.

Relational semantics vs Algebraic semantics

relational structure $:<A, R_{1}, \ldots, R_{n}>$, where A is a nonempty set and R_{i} is a relation on A.

Relational semantics vs Algebraic semantics

relational structure $:<A, R_{1}, \ldots, R_{n}>$, where A is a nonempty set and R_{i} is a relation on A. ($<>,<>$)

Relational semantics vs Algebraic semantics

relational structure $:<A, R_{1}, \ldots, R_{n}>$, where A is a nonempty set and R_{i} is a relation on A. ($<>,<>$)
algebraic structure $:<A, f_{1}, \ldots, f_{n}, a_{1}, \ldots, a_{m}>$, where A is a nonempty set, f_{i} is a relation on $A, a_{j} \in A$.

Relational semantics vs Algebraic semantics

relational structure $:<A, R_{1}, \ldots, R_{n}>$, where A is a nonempty set and R_{i} is a relation on A. ($<>,<>$)
algebraic structure $:<A, f_{1}, \ldots, f_{n}, a_{1}, \ldots, a_{m}>$, where A is a nonempty set, f_{i} is a relation on $A, a_{j} \in A$. ($<>,<>$)

Relational semantics vs Algebraic semantics

relational structure $:<A, R_{1}, \ldots, R_{n}>$, where A is a nonempty set and R_{i} is a relation on A. ($<>,<>$)
algebraic structure $:<A, f_{1}, \ldots, f_{n}, a_{1}, \ldots, a_{m}>$, where A is a nonempty set, f_{i} is a relation on $A, a_{j} \in A$. ($<>,<>$)
relational semantics : use relational structures to give semantics (Example 3,4)

Relational semantics vs Algebraic semantics

relational structure $:<A, R_{1}, \ldots, R_{n}>$, where A is a nonempty set and R_{i} is a relation on A.
($<>,<>$)
algebraic structure $:<A, f_{1}, \ldots, f_{n}, a_{1}, \ldots, a_{m}>$, where A is a nonempty set, f_{i} is a relation on $A, a_{j} \in A$.
($<>,<>$)
relational semantics : use relational structures to give semantics (Example 3,4)
algebraic semantics: use algebraic structures to give semantics
(Example 1,2)

Example 3 again

Kripke sementics for Propositional Logic

- (W, R) . Given an assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$,

$$
\begin{gathered}
\mathcal{M}, w \vDash p \text { iff } w \in \tilde{\sigma}(p) \\
\mathcal{M}, w \vDash \neg \alpha \text { iff } \mathcal{M}, w \not \models \alpha \\
\mathcal{M}, w \vDash \alpha \vee \beta \text { iff } \mathcal{M}, w \vDash \alpha \text { or } \mathcal{M}, w \vDash \beta
\end{gathered}
$$

$$
\mathcal{M}, w \vDash \diamond \alpha \text { iff } \quad \text { there is an } u \text { s.t. } w R u \text { and } \mathcal{M}, w \vDash \alpha
$$

- $\mathfrak{A}, \tilde{\sigma} \vDash \alpha$ iff $\sigma(\alpha)=1$.

Algebraic version

Example 3 again

Kripke sementics for Propositional Logic

- (W, R). Given an assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$,

$$
\begin{gathered}
\mathcal{M}, w \vDash p \text { iff } w \in \tilde{\sigma}(p) \\
\mathcal{M}, w \vDash \neg \alpha \text { iff } \mathcal{M}, w \not \vDash \alpha \\
\mathcal{M}, w \vDash \alpha \vee \beta \text { iff } \mathcal{M}, w \vDash \alpha \text { or } \mathcal{M}, w \vDash \beta \\
\mathcal{M}, w \vDash \diamond \alpha \text { iff there is an } u \text { s.t. } w R u \text { and } \mathcal{M}, w \vDash \alpha
\end{gathered}
$$

- $\mathfrak{A}, \tilde{\sigma} \vDash \alpha$ iff $\quad \sigma(\alpha)=1$.

Algebraic version

- $\left(\mathbf{P}(W), \cup,-, m_{R}, W\right)$. Given an assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$,

$$
\begin{gathered}
\sigma(p)=\tilde{\sigma}(p) \\
\sigma(\alpha \vee \beta)=\sigma(\alpha) \cup \sigma(\beta) \\
\sigma(\neg \alpha)=-\sigma(\alpha) \\
\sigma(\diamond \alpha)=m_{R}(\sigma(\alpha))\left(m_{R}(X)=\{w \in W \mid \text { there is } u \in X, w R u\}\right)
\end{gathered}
$$

Example 3 again

Kripke sementics for Propositional Logic

- (W, R). Given an assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$,

$$
\begin{gathered}
\mathcal{M}, w \vDash p \text { iff } w \in \tilde{\sigma}(p) \\
\mathcal{M}, w \vDash \neg \alpha \text { iff } \mathcal{M}, w \not \models \alpha \\
\mathcal{M}, w \vDash \alpha \vee \beta \text { iff } \mathcal{M}, w \vDash \alpha \text { or } \mathcal{M}, w \vDash \beta \\
\mathcal{M}, w \vDash \diamond \alpha \text { iff there is an } u \text { s.t. } w R u \text { and } \mathcal{M}, w \vDash \alpha
\end{gathered}
$$

- $\mathfrak{A}, \tilde{\sigma} \vDash \alpha$ iff $\quad \sigma(\alpha)=1$.

Algebraic version

- $\left(\mathbf{P}(W), \cup,-, m_{R}, W\right)$. Given an assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$,

$$
\begin{gathered}
\sigma(p)=\tilde{\sigma}(p) \\
\sigma(\alpha \vee \beta)=\sigma(\alpha) \cup \sigma(\beta) \\
\sigma(\neg \alpha)=-\sigma(\alpha) \\
\sigma(\diamond \alpha)=m_{R}(\sigma(\alpha))\left(m_{R}(X)=\{w \in W \mid \text { there is } u \in X, w R u\}\right)
\end{gathered}
$$

σ mapping every formula to the set of possible worlds where the formula is true.

Example 4 again

 relational sementics for Intuitionistic Logic- (W, R). Given an assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$, satisfying : for any $p \in \mathbf{P} w, u \in W$, if $w \in \tilde{\sigma}(p)$ and $w R u$, then $u \in \tilde{\sigma}(p)$

$$
\begin{gathered}
\mathcal{M}, w \vDash \alpha \rightarrow \beta \text { iff for all } w R u, \mathcal{M}, u \not \models \alpha \text { or } \mathcal{M}, u \vDash \beta \\
\mathcal{M}, w \vDash \neg \alpha \text { iff for all } w R u, \mathcal{M}, u \not \models \alpha
\end{gathered}
$$

Algebraic version (the same idea)

Example 4 again

 relational sementics for Intuitionistic Logic- (W, R). Given an assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$, satisfying : for any $p \in \mathbf{P} w, u \in W$, if $w \in \tilde{\sigma}(p)$ and $w R u$, then $u \in \tilde{\sigma}(p)$

$$
\begin{gathered}
\mathcal{M}, w \vDash \alpha \rightarrow \beta \text { iff for all } w R u, \mathcal{M}, u \not \models \alpha \text { or } \mathcal{M}, u \vDash \beta \\
\mathcal{M}, w \vDash \neg \alpha \text { iff for all } w R u, \mathcal{M}, u \not \models \alpha
\end{gathered}
$$

Algebraic version (the same idea)

- ($\left.\mathbf{P}(W), \cup, \cap, f_{R}, g_{R}, W\right)$. Given assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$, satisfying : for any $p \in \mathbf{P}, w, u \in W$, if $w \in \tilde{\sigma}(p)$ and $w R u$, then $u \in \tilde{\sigma}(p)$

$$
\begin{gathered}
\sigma(\alpha \rightarrow \beta)=f_{R}(\sigma(\alpha), \sigma(\beta)) \\
\sigma(\neg \alpha)=g_{R}(\sigma(\alpha))
\end{gathered}
$$

Example 4 again

 relational sementics for Intuitionistic Logic- (W, R). Given an assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$, satisfying : for any $p \in \mathbf{P} w, u \in W$, if $w \in \tilde{\sigma}(p)$ and $w R u$, then $u \in \tilde{\sigma}(p)$

$$
\begin{gathered}
\mathcal{M}, w \vDash \alpha \rightarrow \beta \text { iff for all } w R u, \mathcal{M}, u \not \models \alpha \text { or } \mathcal{M}, u \vDash \beta \\
\mathcal{M}, w \vDash \neg \alpha \text { iff for all } w R u, \mathcal{M}, u \not \models \alpha
\end{gathered}
$$

Algebraic version (the same idea)

- ($\left.\mathbf{P}(W), \cup, \cap, f_{R}, g_{R}, W\right)$. Given assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$, satisfying : for any $p \in \mathbf{P}, w, u \in W$,
if $w \in \tilde{\sigma}(p)$ and $w R u$, then $u \in \tilde{\sigma}(p)$

$$
\begin{gathered}
\sigma(\alpha \rightarrow \beta)=f_{R}(\sigma(\alpha), \sigma(\beta)) \\
\sigma(\neg \alpha)=g_{R}(\sigma(\alpha))
\end{gathered}
$$

$f_{R}(X, Y)=\{w \in W \mid h(w) \cap X \subseteq Y\}$, where $h(w)=\{u \in W \mid w R u\}$

Example 4 again

 relational sementics for Intuitionistic Logic- (W, R). Given an assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$, satisfying : for any $p \in \mathbf{P} w, u \in W$, if $w \in \tilde{\sigma}(p)$ and $w R u$, then $u \in \tilde{\sigma}(p)$

$$
\begin{gathered}
\mathcal{M}, w \vDash \alpha \rightarrow \beta \text { iff for all } w R u, \mathcal{M}, u \not \models \alpha \text { or } \mathcal{M}, u \vDash \beta \\
\mathcal{M}, w \vDash \neg \alpha \text { iff for all } w R u, \mathcal{M}, u \not \models \alpha
\end{gathered}
$$

Algebraic version (the same idea)

- ($\left.\mathbf{P}(W), \cup, \cap, f_{R}, g_{R}, W\right)$. Given assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$, satisfying : for any $p \in \mathbf{P}, w, u \in W$,
if $w \in \tilde{\sigma}(p)$ and $w R u$, then $u \in \tilde{\sigma}(p)$

$$
\begin{gathered}
\sigma(\alpha \rightarrow \beta)=f_{R}(\sigma(\alpha), \sigma(\beta)) \\
\sigma(\neg \alpha)=g_{R}(\sigma(\alpha))
\end{gathered}
$$

$$
f_{R}(X, Y)=\{w \in W \mid h(w) \cap X \subseteq Y\}, \text { where }
$$

$$
h(w)=\{u \in W \mid w R u\}
$$

$$
g_{R}=f_{R}(X, \emptyset)
$$

the discussion above shows :

- Relational semantics is essentially Algebraic semantics
- question: What is semantics ?(mathematically, formally)
the discussion above shows :
- Relational semantics is essentially Algebraic semantics
- question: What is semantics ?(mathematically, formally) answer: a mapping
the discussion above shows :
- Relational semantics is essentially Algebraic semantics
- question: What is semantics ?(mathematically, formally) answer: a mapping from a formal language (the formulas)
the discussion above shows :
- Relational semantics is essentially Algebraic semantics
- question: What is semantics ?(mathematically, formally) answer: a mapping from a formal language (the formulas) to a set (the 'interpretation')
the discussion above shows :
- Relational semantics is essentially Algebraic semantics
- question: What is semantics ?(mathematically, formally) answer: a mapping from a formal language (the formulas) to a set (the 'interpretation') and
the discussion above shows :
- Relational semantics is essentially Algebraic semantics
- question: What is semantics ?(mathematically, formally) answer: a mapping from a formal language (the formulas) to a set (the 'interpretation') and a fixed monadic predicate on the set (the 'truth predicate').

Intuitionistic Logic

Symbol $\{\neg, \wedge, \vee, \rightarrow,(),\} \cup(\mathbf{P}=)\left\{p_{0}, p_{1}, \ldots\right\}$
Formula $\phi::=p|\neg \phi|(\phi \wedge \phi)|(\phi \vee \phi)|(\phi \rightarrow \phi)$, where $p \in \mathbf{P}$
algebra sementics for Intuitionistic Logic

- a algebraic structure $\mathfrak{A}=(A,+, \cdot, f, g, 1)$, where $+, \cdot, f$ are binary functions on A, g is a unitary function on $\mathrm{A}, 1 \in A$.
- given an assignment (i.e. a mapping from \mathbf{P} to A) $\tilde{\sigma}$, we extend its domain to Form in the following way:

$$
\begin{gathered}
\sigma(p)=\tilde{\sigma}(p) \\
\sigma(\alpha \vee \beta)=\sigma(\alpha)+\sigma(\beta) \\
\sigma(\alpha \wedge \beta)=\sigma(\alpha) \cdot \sigma(\beta) \\
\sigma(\alpha \rightarrow \beta)=f(\sigma(\alpha), \sigma(\beta)) \\
\sigma(\neg \alpha)=g(\sigma(\alpha))
\end{gathered}
$$

- α is true under \mathfrak{A} and $\tilde{\sigma}$ (denoted by $\mathfrak{A}, \tilde{\sigma} \vDash \alpha$) iff $\sigma(\alpha)=1$. α is valid under \mathfrak{A} (denoted by $\mathfrak{A} \vDash \alpha$) iff for any assignment $\tilde{\sigma}, \sigma(\alpha)=1$.

Intuitionistic Logic

Axiom • A1 $\beta \rightarrow(\alpha \rightarrow \beta)$

- A2 $(\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)$
- A3 $\alpha \wedge \beta \rightarrow \alpha$
- A4 $\alpha \wedge \beta \rightarrow \beta$
- A5 $(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma) \rightarrow(\alpha \rightarrow \beta \wedge \gamma)$
- A6 $\alpha \rightarrow \alpha \vee \beta$
- A7 $\beta \rightarrow \alpha \vee \beta$
- A8 $(\alpha \rightarrow \gamma) \rightarrow(\beta \rightarrow \gamma) \rightarrow(\alpha \vee \beta \rightarrow \gamma)$
- A9 $(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \neg \beta) \rightarrow \neg \alpha$
- A10 $\neg \alpha \rightarrow(\alpha \rightarrow \beta)$

Inference Rule MP: α and $\alpha \rightarrow \beta \Rightarrow \beta$

algebra sementics for Intuitionistic Logic

- a algebraic structure $\mathfrak{A}=(A,+, \cdot, f, g, 1)$, where $+, \cdot, f$ are binary functions on A, g is a unitary function on $\mathrm{A}, 1 \in A$.
- given an assignment (i.e. a mapping from \mathbf{P} to A) $\tilde{\sigma}$, we extend its domain to Form using $+, \cdot f, g$
- $\mathfrak{A}, \tilde{\sigma} \vDash \alpha$ iff $\sigma(\alpha)=1$.
$\mathfrak{A} \vDash \alpha$ iff for any assignment $\tilde{\sigma}, \sigma(\alpha)=1$.

Theorem (Soundness Theorem(in the algebraic semantics for IL))

Let $\mathfrak{A}=(A,+, \cdot, f, g, 1)$. If there is an $0 \in A$ s.t. $\mathfrak{A}^{\prime}=(A,+, \cdot, 0,1)$ is a bounded distributive lattice , $g(x)=f(x, 0)$,
and f satisfying:

- if $x \leq y$ then $f(x, y)=1$
- $f(x, f(y, z)) \leq f(x \cdot y, z)$
- $f(x, y) \cdot x \leq y$
(where \leq is the partial order of the lattice), then $I L$ is sound w.r.t \mathfrak{A}, i.e. $\vdash \alpha \Rightarrow \mathfrak{A} \vDash \alpha$.

Intuitionistic Logic again

Some results :

$$
\begin{aligned}
& \vdash \alpha \rightarrow \alpha \\
\text { deduction th } & \ulcorner\cup\{\alpha\} \vdash \beta \Rightarrow \Gamma \vdash \alpha \rightarrow \beta \\
\text { syl } & \{\alpha \rightarrow \beta, \beta \rightarrow \gamma\} \vdash \alpha \rightarrow \gamma \\
\wedge^{-} & \{\alpha \wedge \beta\} \vdash \alpha,\{\alpha \wedge \beta\} \vdash \beta \\
\wedge^{+} & \{\alpha, \beta\} \vdash \alpha \wedge \beta \\
\vee^{+} & \{\alpha\} \vdash \alpha \vee \beta,\{\beta\} \vdash \alpha \vee \beta \\
\vee^{-} & \{\alpha \rightarrow \gamma, \beta \rightarrow \gamma\} \vdash \alpha \vee \beta \rightarrow \gamma
\end{aligned}
$$

Lindenbaum-Tarski algebra for IL

We define a binary relation \sim on Form:

$$
\alpha \sim \beta \Longleftrightarrow(\vdash \alpha \rightarrow \beta \text { and } \vdash \beta \rightarrow \alpha)
$$

In IL $, \wedge, \vee, \rightarrow, \neg$ can be viewed as functions on Form
e.g. $\wedge(\alpha, \beta)=(\alpha \wedge \beta), \rightarrow(\alpha, \beta)=(\alpha \rightarrow \beta)$ thus,
(Form , $\vee, \wedge, \rightarrow, \neg$) is a algebraic structure, called the formula algebra.
It's easy to check that,

Proposition

\sim is a congruence on the formula algebra.
which induces a quotient algebra (Form/ $\sim, \vee^{\prime}, \wedge^{\prime}, \rightarrow \rightarrow^{\prime}, \neg^{\prime}$), where Form $/ \sim$ is the set of equivalence classes, $[\alpha] \vee^{\prime}[\beta]=[\alpha \vee \beta]$,etc.

Lindenbaum-Tarski algebra for IL

We denote the formula $p_{1} \rightarrow\left(p_{2} \rightarrow p_{1}\right)$ by α_{1}. Algebra
(Form/ $\sim, \vee^{\prime}, \wedge^{\prime}, \rightarrow^{\prime}, \neg^{\prime},\left[\alpha_{1}\right]$) is called the Lindenbaum - Tarski algebra for IL.
We can show that,

Theorem (soundness w.r.t. LT algebra)

Intuitionistic Logic is sound w.r.t. $L T$ algebra.

Recall the Soundness Theorem. Let $\alpha_{0}=\neg \alpha_{1}$. It suffices to check that,

- (Form/ $\left.\sim, \vee^{\prime}, \wedge^{\prime}, \rightarrow^{\prime},\left[\alpha_{0}\right],\left[\alpha_{1}\right]\right)$ is a bounded distributive lattice ,
- $\neg^{\prime}(x)=\rightarrow^{\prime}\left(x,\left[\alpha_{0}\right]\right)$
- if $x \leq y$ then $\rightarrow^{\prime}(x, y)=\left[\alpha_{1}\right]$
- $\rightarrow^{\prime}\left(x, \rightarrow^{\prime}(y, z)\right) \leq \rightarrow^{\prime}\left(x \wedge^{\prime} y, z\right)$
- $\rightarrow^{\prime}(x, y) \wedge^{\prime} x \leq y$

Lindenbaum-Tarski algebra for IL

but what is more important is that,
Theorem (completeness w.r.t. LT algebra)
Intuitionistic Logic is complete w.r.t. LT algebra.

Given a formula α, if $L T \vDash \alpha$, then by definition , for all assignment $\tilde{\sigma}$, $\sigma(\alpha)=\left[\alpha_{1}\right]$. Consider this assignment : $\tilde{\sigma}(p)=[p]$, we can show that $\sigma(\alpha)=[\alpha]$ for any formula α, then $[\alpha]=\left[\alpha_{1}\right]$, then $\vdash \alpha$.

Example 4 again ${ }^{2}$

relational sementics for Intuitionistic Logic

- (W, R). Given an assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$, satisfying : for any $p \in \mathbf{P} w, u \in W$, if $w \in \tilde{\sigma}(p)$ and $w R u$, then $u \in \tilde{\sigma}(p)$

$$
\begin{gathered}
\mathcal{M}, w \vDash \alpha \rightarrow \beta \text { iff for all } w R u, \mathcal{M}, u \not \vDash \alpha \text { or } \mathcal{M}, u \vDash \beta \\
\mathcal{M}, w \vDash \neg \alpha \text { iff for all } w R u, \mathcal{M}, u \not \models \alpha
\end{gathered}
$$

Algebraic version (the same idea)

- ($\left.\mathbf{P}(W), \cup, \cap, f_{R}, g_{R}, W\right)$. Given assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$, satisfying : for any $p \in \mathbf{P}, w, u \in W$, if $w \in \tilde{\sigma}(p)$ and $w R u$, then $u \in \tilde{\sigma}(p)$

$$
\begin{gathered}
\sigma(\alpha \rightarrow \beta)=f_{R}(\sigma(\alpha), \sigma(\beta)) \\
\sigma(\neg \alpha)=g_{R}(\sigma(\alpha))
\end{gathered}
$$

$$
f_{R}(X, Y)=\{w \in W \mid h(w) \cap X \subseteq Y\}, \text { where }
$$

$$
h(w)=\{u \in W \mid w R u\}
$$

$$
g_{R}=f_{R}(X, \emptyset)
$$

Example 4 again 2

Algebraic version of the relational sementics for Intuitionistic Logic

- $\left(\mathbf{P}(W), \cup, \cap, f_{R}, \emptyset, W\right)$. Given assignment $\tilde{\sigma}: \mathbf{P} \rightarrow \mathcal{P}(W)$, satisfying : for any $p \in \mathbf{P}, w, u \in W$, if $w \in \tilde{\sigma}(p)$ and $w R u$, then $u \in \tilde{\sigma}(p)$

$$
\begin{gathered}
\sigma(\alpha \vee \beta)=\sigma(\alpha) \cup \sigma(\beta) \\
\sigma(\alpha \wedge \beta)=\sigma(\alpha) \cap \sigma(\beta) \\
\sigma(\alpha \rightarrow \beta)=f_{R}(\sigma(\alpha), \sigma(\beta))
\end{gathered}
$$

$$
f_{R}(X, Y)=\{w \in W \mid h(w) \cap X \subseteq Y\}, \text { where } h(w)=\{u \in W \mid w R u\}
$$

$$
\sigma(\neg \alpha)=g_{R}(\sigma(\alpha))
$$

$g_{R}=f_{R}(X, \emptyset)$.

- To eliminate the restriction on assignment, we replace the algebraic structure $\left(\mathbf{P}(W), \cup, \cap, f_{R}, \emptyset, W\right)$ with its subalgebra .

Example 4 again 2

Algebraic version of the relational sementics for Intuitionistic Logic
To eliminate the restriction on assignment, we replace the algebraic structure $\left(\mathbf{P}(W), \cup, \cap, f_{R}, \emptyset, W\right)$ with its subalgebra .
Let $\left(\mathbf{P}(W), \cup, \cap, f_{R}, \emptyset, W\right)$ be a algebraic structure where
$f_{R}(X, Y)=\{w \in W \mid h(w) \cap X \subseteq Y\}, h(w)=\{u \in W \mid w R u\}$.
$\Omega=\{X \in \mathbf{P}(W) \mid$ for any $w, u \in W$,
if $w \in \tilde{\sigma}(p)$ and $w R u$, then $u \in \tilde{\sigma}(p)\}$

Proposition

If R is transitive , then $\left(\mathbf{P}(W), \cup, \cap, f_{R}, \emptyset, W\right)$ has a subalgebra struture above Ω.

Given a transitive frame $F=(W, R)$, we call $\left(\Omega, \cup, \cap, f_{R}, \emptyset, W\right)$ the generated algebra of F, denoted by F^{+}.

Representation Theorem

Theorem
Let $\mathfrak{A}=(A,+, \cdot, f, 0,1)$. If there is an $0 \in A$ s.t. $\mathfrak{A}^{\prime}=(A,+, \cdot, 0,1)$ is a bounded distributive lattice, and f satisfying:

- if $x \leq y$ then $f(x, y)=1$
- if $z \cdot x \leq y$ then $z \leq f(x, y)$
- $f(x, y) \cdot x \leq y$
(where \leq is the partial order of the lattice), then there is a set U, \mathfrak{A} can be embedded into $(U, \leq)^{+}$

Soundness and Completeness via algebraic semantics

Theorem

1. Given (W, R), if R is reflexive and transitve, then IL is sound w.r.t (W, R)
2.IL is complete w.r.t the class of partial order frames.
