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Abstract. Disagreeing with Williamson on vagueness, the author proposes a solution that 
he calls “three-valued plurivaluationism” to the age-old sorites paradox. In essence, it is a 
three-valued semantics for a first-order language with identity with the additional 
suggestion that a vague language has more than one correct interpretation. Unlike the 
traditional three-valued approach to a vague language, the so-called three-valued 
plurivaluationism, so the author argues, can accommodate the phenomenon of 
higher-order vagueness. And, unlike the tr`aditional three-valued approach to a vague 
language, the so-called three-valued purivaluationism, so the author argues, can also 
accommodate the phenomenon of penumbral connection when equipped with “suitable 
conditionals”. The author also shows that this three-valued purivaluationism is a natural 
consequence of a restricted form of Tolerance Principle (TR) and a few related ideas, and 
argues that (TR) is well-motivated by considerations of how we learn, teach, and use 
vague predicates. 
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1. Vague Predicates and the Sorites Paradox 

    A vague predicate is a predicate that has possible borderline cases, i.e., possible 
cases such that it is semantically indeterminate whether or not the predicate applies. 
Examples of vague predicates abound in natural languages. Here is just a short list of 
examples in English: “bald”, “heap”, “tall”, “red”, “table”, “a small portion of C” (where 
C is a class of, say, 50 students), “similar to”, “identical with”, and so on. 
    A problem about vague predicates is that they give rise to the sorites paradox. Let 
“ai” be a name of someone with i hairs. Then from the apparently plausible premises “ao 
is bald” and “if an is bald, so is an+1, for whatever number n”, one can infer the absurd 
conclusion that “a100,000 is bald”. Or, to take another example from [18], let b0 be me, and 
suppose that there are n molecules in my body. Let b0, b1, ..., bn be a sequence of objects 
each of which is obtained from its predecessor by replacing one molecule of me with a 
molecule of scrambled egg, so that bn is all scrambled egg. Let βi be the statement that 
“bi-1 = bi”. Then each βi, where 1 ≤ i ≤ n, seems to be true. Yet, by n applications of the 
rule of transitivity of identity, we reach the absurd conclusion that I am scrambled egg. 
From the fact that one can “prove” almost everything s/he wants to prove by a sorties 
argument, of course we should conclude that some of these sorites arguments must be 
unsound. However, it has been proved very difficult both to pinpoint the problem(s) of 
these arguments and to give a plausible explanation of why we are taken in. 



    In the past 40 years, philosophers have witnessed a bunch of theories aiming at 
solving the sorites paradox.1 A benefit/cost analysis of even a small portion of these 
theories will be an impossible task for a short paper like the present one. This paper 
suggests that we start from scratch to re-think about how we learn, teach, and use vague 
predicates and hopes that we will gain some insights from such an inspection. 

2. Start from Scratch 

    Before we start, however, let me give a few preliminary comments. In the very 
beginning of this paper, I defined “a vague predicate” to be a predicate “having possible 
borderline cases”, but why possible cases? Why not define a vague predicate in terms of 
its actual borderline cases? Here is the reason. If we call a predicate “vague” only when it 
actually has some borderline cases, then some predicates that are intuitively vague will 
not be “vague” in the defined sense, and this seems undesirable. For example, if we 
define an F-snail to be a snail that walks much faster than most slow turtles, then 
intuitively this notion of F-snails is a vague one so long as notions of much faster than, 
most, and slow are. Yet, surely nothing in the world is an F-snail (or, if this is not the case, 
replace the word “turtle” by “panther”), so there is no actual borderline case for this 
intuitively vague predicate. As a result, the notion of F-snails turns out not to be “vague” 
in the new, defined sense, and this seems undesirable. Here is another example. If we 
define a baldsome male to be a male who is both very bald and very handsome, then, 
again, intuitively this notion of baldsome males is a vague one so long as both the notion 
of very bald and that of very handsome are. However, it may happen that there are a few 
men that are clearly both very bald and clearly very handsome while all others are either 
clearly not-very-bald (though some of them may be vaguely very handsome) or clearly 
not-very-handsome (though some of them may be vaguely very bald), so there will be, in 
this case, no actual borderline case for this intuitively vague predicate.2 As a result, the 
notion of baldsome males turns out not to be “vague” in the new, defined sense  either, 
and this seems equally undesirable. So, if we want to characterize vague predicates as 
predicates having borderline cases, it seems better that we take into account all possible 
cases as well as all actual ones of these predicates. Or, I may even put things in this way: 
what I will call “the extension” of a vague predicate in this paper may be called by other 
philosophers its “intension”, but I don’t think that there will be anything important that 
hinges on this difference. 

    There are different kinds of vague predicates; especially, there are primitive ones as 
well as defined ones, and, among each category, there are perceptual ones as well as 
non-perceptual ones. So which ones will I be talking about in this paper? I intend the 
semantics proposed in sections 3 and 4 to be applicable to vague predicates in general, 
but I will restrict my discussion in this section to primitive ones to make my exposition 
simpler. As examples of primitive vague predicates, I take “red”, “bald”, “soft” (these are 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	   To name just a few: epistemicism proposed by [3], [2], [28], and [23], gap theories proposed by [8] and 
[13], glut theories proposed by [18] and [10], supervaluationism proposed by [6], [14], [11], [4], [19], [1], 
and [12], fuzzy theories proposed by [17] and [22], plurivaluationism proposed by [27] and [16], and 
contextualist theories proposed by [25], [20], [5], and [21].	  
2	   On the other hand, it is not clear that predicates like “bald but not self-identical”, “bald or self-identical”, 
and “tall or greater-than-or-equal-to exactly four feet in height” are vague predicates, for it is impossible for 
these predicates to have borderline cases.	  



vague perceptual predicates), “a small portion of C” (where C is a class of 50 students), 
and “identity” (these are non-perceptual ones). Examples of non-primitive vague 
predicates include, on the other hand, “4-tall” (exactly 4 feet in height or is tall), 
“baldsome” (very bald but very handsome), and “F-snails” (snails that walks much faster 
than most slow turtles). If you think that some of these examples are wrongly classified, 
be my guest to adjust the classification by yourself. Again, I do not think that there will 
be anything important that hinges on the choice. 
    The notion of F-relevant respects of a vague predicate F will play an important role 
in what follows, so we’d better get a good grip of it now. Let me begin with the notion of 
determination. A set of respects (properties or relations) R1, ..., Rn determines a certain 
respect R (property or relation) iff, for all possible objects (or sequences of possible 
objects) α and β, it is necessarily the case that if α and β are exactly the same with 
respect to R1, ..., Rn then they are exactly the same with respect to R (and so the two 
sentences “Ra” and “Rb” will have the same truth value (either both are true, or both are 
false, or both are neither), where “a” and “b” are names of α and β (or are sequences of 
names of objects in α and β)). It can easily be proved that if a set S of respects determines 
a respect R, so does any superset S’ of S, so the notion of determination is not a very 
useful one. For the purpose of defining “F-relevant respects” of a vague predicate F, we 
need a tighter notion than that of determination: m-determination (short for “minimal 
determination”). A set S of respects (properties or relations) R1, ..., Rn m-determines a 
certain respect R (property or relation) iff (a) S determines R, and (b) for any set T = 
{R’1

 , ..., R’m
 } that also determines R, the set T “entails” the set S in the sense that, for 

any possible object (or sequence of possible objects) α, it is necessarily true that if α has 
every respect in T then it also has every respect in S. An F-relevant respect of a vague 
predicate F is then a respect in any set S that m-determines whether something is F. 
Given this definition of a relevant respect of a vague predicate, it is easy to see that even 
a primitive vague predicate, such as “red”, may have multiple relevant respects, such as 
hue, value, and chroma. A semantically primitive vague predicate may therefore stand for 
an ontologically complex property, i.e., a property whose existence ontologically depends 
on the existence of several simpler properties. 

    With these preliminaries in mind, we are now in a position to investigate how we 
learn, teach, and use vague predicates. In general, I believe that the following story is a 
rough but faithful picture about how we learn and teach vague predicates. When learning 
or teaching how to use a primitive vague predicate F, we do so by means of ostension 
(what else can we do?), i.e., by giving or by being given examples or “paradigms”, both 
positive and negative ones, of F. Moreover, some paradigms are introduced explicitly by 
pointing to them or by showing them, while others are introduced implicitly by hints or 
by implicatures. For examples, we may point to a few heads and call them “bald”, at the 
same time implicitly implying or implicating that heads with fewer hairs or heads whose 
numbers of hairs are between those of the paradigms are also paradigms of bald heads. 
Another example: we may illustrate the use of “a small portion of C”, where C is a class 
of 50 students, by saying loud that “a subset of C with 5 or less members is a small 
portion of C”, at the same time implicitly implying or implicating that a set of C with 45 
or more members are negative paradigms of the predicate. Because we all teach and learn 
a primitive vague predicate F in this standard ostensive way, each competent speaker of F, 



i.e., one who understands how to use F correctly, will have both some positive paradigms 
and some negative paradigms of F in his or her mind. Moreover, it seems that nothing in 
the process of teaching and learning F can be both a positive and a negative paradigm of 
F on pain of confusion. 

    However, in order for the teaching and learning process of a vague predicate F to be 
successful, the difference in F-relevant respects between any positive paradigm and any 
negative paradigm of F must be “salient” to the learner. Otherwise, it is hard to imagine 
how the learner can even re-identify a positive (or negative) paradigm of F as a positive 
(or negative) paradigm of F again, let alone has an idea about how to make further 
applications of the predicate F. We say that two paradigms of F differ saliently in 
F-relevant respects to a subject S in an occasion O iff the overall dissimilarity between 
them in F-relevant respects is easily observable for S in O or is intellectually significant 
for S in O. The requirement that it is easily observable for S in O is tailored especially for 
vague perceptual predicates, such as “red”, so that, according to this requirement, the 
overall difference in red-relevant respects between a paradigm red patch and a paradigm 
not-red one must be easily observable to the learner when the predicate is learned. The 
requirement that it is intellectually significant for S in O, on the other hand, is tailored 
especially for non-perceptual vague predicates, such as “is a small portion of C”, so that, 
according to this requirement, the overall difference in a-small-portion-of-C-relevant 
respects between, say, a 5-membered subset of C and a 45-membered subset of C must be 
intellectually significant to the learner, and presumably the intellectual significance in 
this case may simply consist in the fact that the difference between the ratios of the two 
subsets to C is close to 1 or at least much greater than a half. 
    So far, there is no guarantee that two competent speakers of a vague predicate F will 
have any common positive paradigm or any common negative paradigm in their minds, 
and this seems to make the publicity of a vague language problematic. Fortunately, 
because people have roughly, though not exactly, the same perceptual and intellectual 
capacities, and also because many positive and negative paradigms of a vague predicate F 
are implicitly introduced when teaching or learning F, all competent speakers of F 
ultimately share at least some common paradigms, both positive and negative ones, of F 
in their minds. This is not to deny that the perceptual and intellectual capacities that one 
has differ from person to person and from occasion to occasion. But this fact should not 
lead us to overlook the equally important fact that our perceptual and intellectual 
capacities are very similar after all. (Another important fact about our perceptual and 
intellectual capacities is this: we are all limited creatures; our abilities of discernment and 
our intellectual swiftness and astuteness are all very limited, so that, for example, no one 
can really discriminate a large number of “border-line shades of colors” between a 
positive paradigm and a negative paradigm of redness. I will not emphasize this 
important fact here, but I will come back to it when I consider the problem of “gradual 
transition” in next section.) Thus, if it makes sense at all to assign an extension F+ and an 
anti-extension F- to a vague predicate F, at least these common positive paradigms of F 
should be included in the extension F+, and at least these common negative paradigms of 
F should be included in the anti-extension of F⎯. And, from what we have said two 
paragraphs ago, it is also reasonable to assume that these two extensions of a vague 
predicate are mutually exclusive. 



    As I see it, the most distinguished feature of any vague predicate, in contrast with a 
precise predicate, is the existence of a “sorites sequence” for the predicate: for any 
occasion O and any two paradigms a1 and an of a vague predicate F, and for any 
competent speaker S of F, there always is a sequence of possible cases <a1, ..., an> 
between a1 and an such that any two adjacent cases in the sequence are “very similar” to 
S in F-relevant respects in O in the sense that the overall dissimilarity in F-relevant 
respects between them is not observable or is intellectually insignificant for S in O.3 
Now, a vague predicate F must allow its competent users to be able to apply and re-apply 
it, not only to those positive and negative paradigms that are introduced in the learning 
process, but also to possible cases beyond these paradigms (this is also true of most 
precise predicates), otherwise, it will not be a vague predicate at all but belongs to a very 
special kind of precise predicates. (Consider Fine’s example: a number is an F if it is 
smaller than or equal to 13 and is not an F if it is greater than or equal to 15. Defined in 
this way, this predicate F will have no further possible application beyond those 
paradigms that are introduced in this definition, but it will not be regarded as a vague 
predicate by most philosophers either.) For precise predicates, the possibility of further 
applications is given by their definitions. But this is obviously not the case for primitive 
vague predicates. So, by what rule (or rules) does a competent speaker of a vague 
predicate F extend its use to cases other than those introduced in the learning process? To 
this question, I suggest4 the following answer: every competent speaker S of a vague 
predicate F tacitly accepts the following “restricted tolerance principle” (TR):  

    (TR): If it is correct for a subject S to classify x as a member of F+ (or F⎯) in an 
occasion O and y and x are “very similar” for S in O, then it is also correct for 
S to classify y as a member of F+ (or F⎯) in O, so long as, after so classified, the 
difference in F-relevant respects between any member of F+ and any member 
of F⎯ remains observationally or intellectually salient for S in O. 

    In short, I believe that the following statements 1-7 jointly constitute a roughly true 
story about how we learn, teach and use primitive vague predicates: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	   This feature does not seem to me to be owned by any precise predicate, perhaps because the F-relevant 
respects of a precise predicate F are just those respects specified in the definition of F, so everything falling 
within F differs saliently, observationally or intellectually, in F-relevant respects from everything falling 
out of F. (Consider the case of the precise predicate “is an even number”.) As a result, even if one can find 
a sequence of possible cases <a1, ..., an> between a positive paradigm a1 and a negative one an such that 
any two adjacent cases in it are very similar in some respects, there still will be two adjacent cases in the 
sequence that differ saliently in F-relevant respects.	  
4	   I do not just suggest (TR), but also think that it is supported by at least three arguments. First, not only is 
(TR) true of vague predicates, it is also true of precise predicates if we interpret “very similar” in it as 
“having or lacking the same defining properties”. So (TR) seems to be a principle for predicates in general. 
Second, (TR) is a logically weaker principle than Wright’s tolerance principle (T): If it is correct for S to 
classify x as a member of F+ (or F⎯) in O and y and x are “verysimilar” in F-relevant respects, then it is also 
correct to classify y as a member of F+ (or F⎯) in O. So evidences for (T) are automatically evidences for 
(TR), and [30] did provide a few good evidences for (T). Finally, I believe that (TR) can better explain, 
while (T) cannot, the phenomenon that is found in the “forced march sorites paradox” in [9], but I will 
leave the justification of this explanatory power of (TR) to another paper due to its complicated nature.	  



1. We learn and teach how to use a vague predicate F by ostension. Some paradigms 
of F are introduced explicitly by pointing to them or by showing them, while 
others are introduced implicitly by hints or by implicatures. 

2. Due to the way we learn and teach a vague predicate F, each competent speaker of 
F will have in mind some positive paradigms and some negative paradigms of F. 

3. For any competent speaker of F, the difference in F-relevant respects between any 
positive paradigm and any negative paradigm of F must be either perceptually or 
intellectually salient. 

4. We have roughly, though not exactly, the same perceptual and intellectual 
capacities. 

5. Due to facts 1 and 4, all competent speakers of a vague predicate F share at least 
some common positive paradigms that belong to the extension F+ of F and some 
common negative paradigms that belong to the anti-extension F⎯ of F. 

6. For any occasion O and any two paradigms a1 and an of a vague predicate F, and 
for any competent speaker S of F, there always is a sequence of possible cases 
<a1, ..., an> between a1 and an such that any two adjacent cases in the sequence 
are “very similar” to S in F-relevant respects in O in the sense that the overall 
dissimilarity in F-relevant respects between them is not observable or is 
intellectually insignificant for S in O. 

7. Every competent speaker S of a vague predicate F tacitly accepts the restricted 
tolerance principle (TR): If it is correct for a subject S to classify x as a member of 
F+ (or F⎯) in an occasion O and y and x are “very similar” for S in O, then it is 
also correct for S to classify y as a member of F+ (or F⎯) in O, so long as, after so 
classified, the difference in F-relevant respects between any member of F+ and 
any member of F⎯ remains observationally or intellectually salient for S at O. 

However, if statements 1-7 are correct, then it follows that: 

8. For any vague predicate F, F+∪F⎯ is not equal to the set of everything that the 
predicate F can meaningfully apply, for any competent speaker S of F. 

9. Due to 4 and 7, the extension F+ and the anti-extension F⎯
 of F may be different 

for different competent speakers of F, though there is a common “core” for all 
competent speakers. 

10. Although 9, so long as one’s assignment of F+ and F⎯ to F obeys (TR) and some 
other “natural restrictions”, his or her interpretation of F is correct. 

11. Due to 8, a correct interpretation of a vague language L must be a three-valued 
interpretation and there seems to be no reason for having more than three values. 
Due to 10, there can be more than one correct interpretation of a vague language 
L. 

3. Let’s Get a Bit Formal 
    Let L be a first-order language with identity sign, vague predicates, and connectives 
“¬”, “∧” and “∨”. A model M=<DM, VIM, vM> for L is a triple that satisfies the following 
conditions: 

1. DM is a non-empty set. 



2. VIM is a subset of DM
2, where (i) for any <α, β> that belongs to VIM, α is  not the 

same as β, (ii) if <α, β> belongs to VIM, so does <β, α>, and (iii) if <α1, ..., αi-1, α, 
αi+1, ..., αn> ∈ FM

+ while <α1, ..., αi-1, β, αi+1, ..., αn> ∉ FM⎯ for some n-place 
predicate F, <α, β> ∉ VIM. 

3. vM assigns to each individual constant of L a member of DM to be its value and 
assigns to each n-place predicate F a pair of sets <FM

+, FM⎯> of n-tuples of 
members of DM such that FM

+∩FM⎯ = ∅. 
Intuitively, VIM specifies a relation of “vague identity” that is both irreflexive and 
symmetric on the domain DM and never invalidates Leibiz’s Law. Given a model M, we 
define the concept of true-in-M (vM(A) = 1 in symbol), that of false-in-M (vM(A) = 0 in 
symbol), and that of neither-true-nor-false-in-M (vM(A) = n in symbol) in the usual way: 

1. vM(Fc1 ... cn) = 1 if <vM(c1), ..., vM(cn)> belongs to FM
+. vM(Fc1 ... cn) = 0 if <vM(c1), ..., 

vM(cn)> belongs to FM⎯. Otherwise, vM(Fc1 ... cn) = n. 
2. vM(c1 = c2) = 1 if vM(c1) = vM(c2). vM(c1 = c2) = n if <vM(c1), vM(c2)> belongs to VIM. 

Otherwise, vM(c1 = c2) = 0. 
3. Truth-values of compound sentences are determined by the usual strong K3 charts. 
4. vM(∀xiφ) = 1 if vM(φ(ci)) = 1 for every constant ci. vM(∀xiφ) = 0 if vM(φ(ci)) = 0 for 

some constant ci. Otherwise vM(∀xiφ) = n. (For simplicity, we assume that everything 
in the domain has a name.) 

Again, the notion of validity is defined in the usual way: an argument is valid iff it 
preserves truth-in-M for every model M. 

    However, the present approach differs from most semantic theories of vagueness in 
that it proposes that there is more than one correct (or intended) interpretation of a vague 
language L, all of which differ only in how vague predicates are to be interpreted. (Since 
they differ only in how vague predicates are to be interpreted, I will assume in what 
follows that all of them share the same domain, assign the same objects to individual 
constants, and assign the same extensions and anti-extensions to non-vague predicates.) 
According to what we have said in the previous section, while these intended 
interpretations may differ in assigning different pairs <FM

+, FM⎯> to a vague predicate F, 
these different pairs nevertheless share a “common core”, i.e., ∩{vM(FM

+) | M ∈ S} ≠ ∅ 
and ∩{vM(FM⎯) | M ∈ S} ≠ ∅, where S is the set of all correct interpretations of a vague 
language L. 

    I think that the following intuition about the set of all correct interpretations of a 
vague language L is quite plausible: if it is correct to interpret an atomic sentence p as a 
borderline sentence and it is also correct to interpret another atomic sentence q as a 
borderline sentence, then it is, ceteris paribus, correct to interpret both p and q together as 
borderline sentences. The reason why this intuition is plausible is, I think, that the third 
interpretation mentioned in it is intuitively “weaker” or “vaguer”, therefore less likely to 
make mistake, than first two interpretations. It is, however, desirable to make this 
intuitive idea more general and more precise. As a first approximation, I think that it is 
plausible to assume that the set S of all correct interpretation of a vague language L is 
closed under the following relation (call this assumption (A1)): 



Assumption (A1): Let p and q be any atomic sentences of L. If vM(A) = n and vM’(B) 
= n for some models M, M’ ∈ S, then there is a model M* ∈ S such that M* is both 
“weaker than” M’ and M and vM*(A) = vM*(B) = n. 

How are we to cash out the idea of “weaker than”? Define a relation ≤ between models as 
such: M1 ≤ M2 iff FM1

+ ⊆ FM2
+ and FM1

⎯ ⊆ FM2
⎯ for every predicate Fn of L. Then the sense 

of “weaker than” that I have in mind in Assumption (A1) is simply the relation ≤. With 
this identification, Assumption (A1) now becomes: 

Assumption (A): Let p and q be any atomic sentences of L. If vM(p) = n and vM’(q) = 
n for some models M, M’∈S, then there is a model M* ∈ S such that M* ≤ M, M* ≤ 
M’, and vM*(p) = vM*(q) = n. 

In words: if it is correct to classify an atomic sentence p as a borderline sentence and it is 
also correct to classify an atomic sentence q as a borderline sentence, then it is correct to 
classify both atomic sentences p and q as borderline sentences in an interpretation that 
does not assign classical truth-values, i.e., truth and falsity, to more sentences than the 
previous two do. I think that Assumption (A) is intuitively plausible and will assume it in 
what follows. If we further assume that every object in the common domain of S has a 
name in the language L, Assumption (A) can also be put in a slightly different but 
equivalent way as (A*):5 

Assumption (A*): Let Fn and Gm be any n-place and m-place predicates of L. If there 
are models M, M’ ∈ S and sequences of objects <a1, …, an> and <b1, …, bm> such 
that <a1, …, an> ∉ Fn

M
+∪Fn

M⎯ and <b1, …, bm> ∉ Gm
M’

+∪Gm
M’⎯, then there is a 

model M* ∈ S such that M* ≤ M, M* ≤ M’, <a1, …, an> ∉ Fn
M*

+∪Fn
M*⎯, and <b1, …, 

bm> ∉ Gm
M*

+∪Gm
M*⎯. 

    For the record, I also state below one more assumption that I will make about the set 
S of all correct interpretations of a vague language L: 

Assumption (B): For any atomic sentence p, if there is a model M ∈ S such that vM(p) 
≠ 1 and there is a model M’ ∈ S such that vM’(p) ≠ 0, then there is a model M* ∈ S 
such that vM*(p) = n. 

Assumption (B) says that, in terms of the terminologies that I am about to introduce, if an 
atomic sentence is neither true simpliciter nor false simpliciter, then it is correct to 
interpret it as having no truth value. With the assumption that every object in the common 
domain of S has a name in the language L, Assumption (B) can also be put in a slightly 
different but equivalent way as (B*):6 

Assumption (B*): For any n-place predicate F, if some sequence of objects <a1, …, 
an> is such that there is a model M ∈ S such that <a1, …, an> ∉ FM

+ and there is also 
a model M’ ∈ S such that <a1, …, an> ∉ FM’⎯, then there is a model M* ∈ S such 
that <a1, …, an> ∉ Fn

M*
+∪Fn

M*⎯. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	   That	  Assumption	  (A)	  and	  Assumption	  (A*)	  are	  equivalent,	  giving	  that	  every	  object	  in	  the	  common	  
domain	  has	  a	  name,	  is	  not	  difficult	  to	  prove	  and	  is	  left	  as	  an	  exercise	  for	  readers.	  
6	   Again,	  the	  equivalence	  between	  Assumption	  (B)	  and	  Assumption	  (B*),	  giving	  that	  every	  object	  in	  
the	  common	  domain	  has	  a	  name,	  is	  not	  difficult	  to	  prove	  and	  is	  left	  as	  an	  exercise	  for	  readers.	  



I think that Assumption (B) (or (B*)) is self-evident if we take the predicate F in it to be a 
vague predicate, but I also think that it is justifiable by what we have said in the previous 
section. In Appendix, I will appeal to both Assumption (A) and Assumption (B) to prove 
that the current approach preserves a very important advantage of the traditional 
three-valued approach to vague predicates. 
    Given a vague language L and the set S of all its correct interpretations, we can now 
define the important notions of “true simpliciter” and “false simpliciter” as follows: 

A sentence is true simpliciter iff it is true-in-M for every M in S. 
A sentence is false simpliciter iff it is false-in-M for every M in S. 

Borderline sentences are then sentences that are neither true simpliciter nor false 
simpliciter. (For a further classification of borderline sentences, see below.) 
    Notice that, even though the definition of the notion of truth simpliciter (or falsity 
simpliciter) is superficially similar to that of the notion of supertruth (or superfalsity) of 
supervaluationism, these two notions differ significantly in at least two respects. First, the 
former does not, while the latter does, appeal to the notion of a classical precisification of 
a three-valued model for its definition. Second and more importantly, with assumptions 
(A) and (B), we can prove that all operators that we have met so far are truth-functional 
in the sense that, e.g., a disjunction is true simpliciter iff one of its disjunct is true 
simpliciter. (The proof of this claim is given in the appendix.) As a further result, the 
definition of truth (or falsity) simpliciter given here does not, while the notion of 
supertruth (and superfalsity) does, suffer from the problem of missing witness. For 
example, with assumptions (A) and (B) in hands, we can show that an existential 
statement is true simpliciter iff one of its instance is true simpliciter and that a 
conjunction is false simpliciter iff one of its conjunct is false simpliciter. In short, the 
current approach enjoys a very important advantage of the traditional three-valued 
approach to vague predicates, i.e., truth-simpliciter-functionality. 

    We can, if we want to, make a further distinction among borderline sentences. It 
may or may not happen that a borderline sentence is neither-true-in-M-nor-false-in-M for 
every M of S. When it happens in this way, we call such a sentence “a pure borderline 
sentence” and the object it mentions “a pure borderline case” of the vague predicate. We 
say that the kind of vagueness that these sentences and cases have is first-order. However, 
it may also happen that a borderline sentence is true-in-M for some but not all M of S, or 
false-in-M for some but not all M of S, or both. When a sentence is true-in-M for some 
but not all M of S, or false-in-M for some but not all M of S, or both, we call such a 
sentence “an impure borderline sentence” and the object it mentions “an impure 
borderline case”. We also say that the kind of vagueness that these sentences and cases 
have is higher-order. Of course, we can make a further distinction among sentences of 
higher-order vagueness according to their fate in the set S, but there is no need to pursue 
this line of thought here. 
    The following, then, is my formal “solution” to the sorites paradox, and I suggest the 
name “three-valued plurivaluationism” for it. In short, three-valued plurivaluationism 
asserts that a vague language L has more than one correct three-valued interpretation, and 
it diagnoses the fallacy of a paradoxical sorites argument as follows: in each correct 
interpretation M of L, there is a premise in the sorites argument that is 



neither-true-nor-false-in-M; so one of the premises of the sorites argument is not true 
simpliciter. The argument is still valid, as one can easily verify, but it is unsound. Why 
are we taken in by a paradoxical sorites argument? Traditionally, the reply to this 
question from a three-valued theorist is mainly this: even though one of its premises is 
not true simpliciter, none of its premises are false simpliciter either. Because none of the 
premises of a paradoxical sorites argument is false simpliciter, we are thereby led to think 
that all of them are true simpliciter, and this is how we are taken in. A three-valued 
plurivaluationist would agree with this reply, but s/he would also add to it: we are led to 
take the premises of a paradoxical sorites argument to be true simpliciter, not only 
because none of them is false simpliciter, but also because they are often true in some, 
perhaps even in many or most though not in all, correct interpretations of the language L. 

4. Objections and Replies 

    There are two main objections to a three-valued solution to the sorites paradox. First, 
it may be argued that a three-valued solution overlooks what [6] called the phenomenon 
of “penumbral connection”: logical relations exist between borderline sentences, as 
illustrated by the following “intuitively true sentences”: “Every head is either bald or not 
bald”, “No head is both bald and not bald”, “Every head is such that if it is bald then it is 
bald, and if it is bald then it is either bald or shining”. But this penumbral connection, 
says the objector, is missing or cannot be asserted in a standard three-valued semantics. 
Second, it may be said that a three-valued solution faces what [22] called “the jolt 
problem” or what [29] called “the notorious problem of higher-order vagueness”: vague 
predicates force a “gradual transition” from truth to falsity or have borderline cases of 
borderline cases, but such a gradual transition cannot be accommodated in a three-valued 
semantics and such higher-order borderline cases “have never received an adequate 
treatment”. I’ll begin with the second objection first. 
    It is implausible to say that a three-valued semantics cannot accommodate a gradual 
transition from truth to falsity. After all, there are different orders, i.e., first-order and 
higher-order, of vagueness between truth simpliciter and falsity simpliciter as we have 
seen, so that one cannot directly jump from truth simpliciter to falsity simpliciter without 
passing by all these intermediate borderline sentences. But a three-valued 
plurivaluationist can actually do better than just having a few intermediaries between 
truth simpliciter and falsity simpliciter. Let S be the set of all correct interpretations of a 
vague language L, and let SA+ (SA-) be the subset of S containing all and only those 
models such that A is true (false) in them. We can then define the degree of closeness to 
truth (or to falsity) simpliciter c+(A) (or c⎯(A)) of a sentence A simply as 
|SA+|/|S|(or|SA-|/|S|). By these definitions, every sentence A will receive a pair of rational 
numbers <c+(A), c⎯(A)> between 0 and 1 that measure its degree of closeness to truth 
simpliciter and its degree of closeness to falsity simpliciter separately. A first-order vague 
sentence A will then be one such that c+(A) = c⎯(A) = 0, while a higher-order vague 
sentence may receive any rational number between 0 and 1 as its degree of closeness to 
truth (or to falsity) simpliciter. This already gives us both a gradual transition from truth 
simpliciter to pure borderline cases and a gradual transition from the latter to falsity 
simpliciter. However, if one insists that we should have a unique number for “the degree 
of truth” of a sentence, we may define the degree of truth* of a sentence A to be 



(1+c+(A)-c⎯(A))/2. By this last definition (or any other equally plausible definition), 
three-valued plurivaluationism will then allow sentences to have a gradual transition from 
truth* of degree 1 (positive cases) to truth* of degree 0, i.e., falisity* (negative cases). 
Either way, we will have an explanation of why some people, such as N. Smith, think that 
vague predicates force a gradual transition from truth to falsity.  
    It is true that the above definitions assumes that the set S has only finite members; 
when |S| is some infinite cardinal number, the above definitions may not give the desired 
results. But the assumption that the set S is finite is actually unimportant for a 
three-valued plurivaluationist, for the whole point of the above definitions is not to define 
an exact degree of truth (or truth*) for each sentence of L, but to show that there is in 
some sense a gradual transition from truth simpliciter to falsity simpliciter. Even if |S| is 
an infinite cardinal number and the above definition will not work properly, it is still 
possible to find a sequence of sentences A1, …, An, … such that |SA1+| ⊆ … ⊆ |SAn+| … 
(or that |SA1-| ⊆ … ⊆ |SAn-| …). The existence of such a sequence (or sequences) is enough 
to show that there is in some sense a gradual transition from truth simpliciter to falsity 
simpliciter. 
    T. Williamson [29, p. 121] complains that “the problem [of higher-order vagueness] 
has never received an adequate treatment within the framework of three-valued … logic.” 
He imagines that the three-valued theorist defines an operator “Δ”, read as “it is definitely 
that”, in the following way: ΔA is true iff A is true and is false if otherwise. He then 
shows that, while the three-valued theorist can successfully assert of a borderline 
sentence P that ¬ΔP ∧ ¬Δ¬P (it is neither definitely so nor definitely not so), the 
three-valued theorist nevertheless has to agree that “ΔΔP ∨ Δ¬ΔP” (it is definite whether 
it is definitely so) is also true. But this last assertion, says Williamson, “does not fit the 
intended interpretation of Δ”, because P may be a higher-order borderline sentence and, if 
so, whether or not it is definitely so will not be definite. I have to admit that I don’t quite 
understand what Williamson’s complaint is here. A three-valued theorist is tasked with 
providing a semantics for vague predicates; he is not tasked with providing a semantics 
for the operator “it is definitely that”. So long as a three-valued theorist accomplishes 
his/her task, his/her job is done. Whether or not s/he can provide a further semantics, 
perhaps by appealing to more complicated structures, for the operator “it is definitely that” 
is a separate issue, and the failure of the further task cannot diminish a bit of his previous 
achievement. At any rate, if a semantics for the operator “it is definitely that’ is indeed 
desired, the three-valued plurivaluationist does not have to define the operator in the 
truth-functional way as Williamson does. He can “modalize” it by stipulating that a 
sentence vM(ΔA) = 1 in a correct interpretation M if vM’(A) = 1 for every correct 
interpretation M’ of S, vM(ΔA) = 0 in a correct interpretation M if either vM’(A) = 0 for 
every correct interpretation M’ of S or vM’(A) = n for every correct interpretation M’ of S, 
and vM(ΔA) = n in a correct interpretation M if otherwise. Defined in this way, we can 
show that “¬ΔP ∧ ¬Δ¬P” is still true simpliciter if “P” is a first-order, i.e., pure 
borderline sentence,7 while “ΔΔP ∨ Δ¬ΔP” is not true simpliciter if “P” is a higher-order, 
i.e., impure borderline sentence.8 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7	   This	  is	  a	  satisfactory	  result,	  for	  it	  is	  unreasonable	  to	  assert	  of	  a	  higher-‐order	  borderline	  sentence	  
that	  it	  is	  neither	  definitely	  so	  nor	  definitely	  not	  so;	  after	  all,	  its	  being	  a	  borderline	  sentence	  is	  



    Turning now to the problem of penumbral connection, the first thing to notice is that 
what seems to be a datum for penumbral connection to K. Fine may not seem so to other 
philosophers. As Smith points out in [21] p.86:9 

...Consider ‘red’. If one indicates a point on a rainbow midway between clear red 
and clear orange and asks an ordinary speaker the following questions, then in my 
experience the responses are along the lines indicated: 

         –  “Is the point red?” Umm, well, sort of. 
    –  “Is the point orange?” Umm, well, sort of. 
         –  “But it’s certainly not red and orange, right?” Well, no, it sort of is red and 

orange. 
         –  “OK, well it’s definitely red or orange, right?” No, that’s what I’ve been saying, 

it’s a bit of both, the colours blend into one another.   
       These reactions fit with the recursive assignments of truth values, not the 

supervaluationist assignments. 

The right thing to conclude from these remarks, I think, is that some of the claimed data 
for penumbral connection, especially those involving truth-functional connectives “and” 
and “or”, are not genuine data at all. But this is not to deny that some data are still 
genuine, especially those involving conditionals, such as “Every head is such that if it is 
bald then it is bald” and “Every head is such that if it is bald then it is either bald or 
shining”. However, the fact that these conditionals are indeed true shows only that the 
connective “if ... then ...” in them should, as many philosophers think that it should, be 
construed as a non-truth-functional connective for a theorist who prefers a three-valued 
treatment of a vague language. 
    There are several well-known theories of conditionals in this direction. For example, 
[24] and [15] have proposed a very popular way of treating the connective “if ... then ...” 
as a modal operator. According to this line of treatment, a conditional “if A then B” 
asserts that, to simplify a bit, every closest A-world is also a B-worlds. Following this 
line of thought, we can define a model for a vague language L to be a 5-tuple <WM, DM, 
fM, VIM, vM>, where WM is a non-empty set of possible worlds and fM is a selection 
function from a world and a sentence (or a proposition) to a set of worlds satisfying a few 
conditions. What kind of logic we will have for conditionals will then depend on the 
formal properties we impose upon the selection function fM. In all semantic systems that I 
have known, sentences of the forms “If A then A” and “If A then A or B” are valid, as 
desired. However, the three-valued plurivaluationist may offer another simpler 
suggestion: we may take a conditional to be a claim not about the closest A-worlds but 
about all correct A-models. According to this suggestion, a claim “if A then B” (“A → B” 
in symbol) is true in a correct interpretation M of S if SA+ is a subset of SB+ and is false in 
M if SA+ is a subset of SB-. Otherwise, “A → B” is neither true nor false in M. Either way, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
indeterminate.	  
8	   “ΔΔP ∨ Δ¬ΔP” is actually false simpliciter. Therefore, its negation, i.e., “¬ΔΔP ∧ ¬Δ¬ΔP” is true 
simpliciter. So, even though we cannot assert of a higher-order borderline sentence that it is neither 
definitely so nor definitely not so, we can assert of it that it is neither definitely definitely so nor definitely 
not definitely so.	  
9	   I also found such a reaction in [26].	  



sentences of the forms “If A then A” and “If A then A or B” turn out to be true 
simpliciter and we have the desired penumbral connection. 
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Appendix 
 
    Our goal in this appendix is to prove Theorem 1, i.e., that a disjunction is true 
simpliciter iff at least one of its disjuncts is true simpliciter. I first re-list here two 
assumptions that I made in section 3: 

Assumption (A): ∀M∈S∀M’∈S(if vM(p) = n and vM’(q) = n, then ∃M*∈S(M* ≤ M ∧ 
M* ≤ M’ ∧ vM*(p) = vM*(q) = n)), for any atomic sentences p and q. 
Assumption (B): If ∃M∈S(vM(p) ≠ 1) and ∃M’∈S(vM’(p) ≠ 0), then ∃M*∈S(vM*(p) = 
n), for any atomic sentence p. 

With these two assumptions, we will prove, as lemmas to Theorem 1, that Assumption (A) 
and Assumption (B) are not only true of atomic sentences but also true of complex ones. 
Before giving the proofs, however, we state, without giving the proof, a very famous 
result about strong K3 and many other three-valued semantics, i.e., Proposition 1. In 
Proposition 1, the relation ≤ between truth-values is defined as: n ≤ n, 0 ≤ 0, 1 ≤ 1, n ≤ 0, 
and n ≤ 1. 

Proposition 1. If M1 ≤ M2, then vM1(A) ≤ vM2(A), for every sentence of L. 
    We now set out our task. We prove first that Assumption (A) can be generalized to 
all sentences, i.e., Lemma 2. As a mid-way to Lemma 2, we prove Lemma 1 first. 

Lemma 1. Let p be any atomic sentence and B be any sentence. Then ∀M∈S∀M’∈S(if 
vM(p) = n and vM’(B) = n, then ∃M*∈S(M* ≤ M ∧ M* ≤ M’ ∧ vM*(p) = vM*(B) = n)). 
Proof. We prove Lemma 1 by induction on the number of connectives in B. For 
simplicity, we assume that “∧” is defined in terms of “¬” and “∨” and we omit the 
quantificational case. 
Base case. This is automatically true by Assumption (A). 
Inductive step. Assume that Lemma 1 is true of sentences C and D whose numbers of 
connectives are less than that in B. Two cases: 

Cases 1: B is “¬C” 
Assume that vM(p) = n and vM’(B) = vM’(¬C) = n for some M, M’ ∈ S . Then vM’(C) = n. 
By inductive hypothesis, ∃M*∈S(M* ≤ M ∧ M* ≤ M’ ∧ vM*(p) = vM*(C) = n). But then 
∃M*∈S(M* ≤ M ∧ M* ≤ M’ ∧ vM*(p) = vM*(¬C) = vM*(B) = n). 
Case 2: B is “C ∨ D” 
Assume that vM(p) = n and vM’(B) = vM’(C ∨ D) = n for some M, M’ ∈ S. There are 
three sub-cases. In each sub-case, we prove that ∃M*∈S(M* ≤ M ∧ M* ≤ M’ ∧ vM*(p) 
= vM*(C ∨ D) = vM*(B) = n). 

Sub-case 2a: vM’(C) = n but vM’(D) = 0. 
In this case, vM(p) = n and vM’(C) = n. So, by inductive hypothesis, ∃M*∈S(M* ≤ M 
∧ M* ≤ M’ ∧ vM*(p) = vM*(C) = n). Since M* ≤ M’, it follows that vM*(D) ≤ vM’(D) 
by Proposition 1. Since vM’(D) = 0 and vM*(D) ≤ vM’(D), it further follows that vM*(D) 
= 0 or vM*(D) = n. Either way, ∃M*∈S(M* ≤ M ∧ M* ≤ M’ ∧ vM*(p) = vM*(C ∨ D) = 
vM*(B) = n). 
Sub-case 2b: vM’(C) = 0 but vM’(D) = n. 
The proof of sub-case 2b is similar to that of sub-case 2a. 
Sub-case 2c: vM’(C) = n but vM’(D) = n. 



The proof of sub-case 2c is similar to that of sub-case 2a.                    o 

Lemma 2. ∀M∈S∀M’∈S(if vM(A) = n and vM’(B) = n, then ∃M*∈S(M* ≤ M ∧ M* ≤ M’ ∧ 
vM*(p) = vM*(B) = n)), for any sentences A and B. 
Proof. We prove Lemma 2 by induction on the number of connectives in A. Again for 
simplicity, we assume that “∧” is defined in terms of “¬” and “∨” and we omit the 
quantificational case. 
Base case. This is automatically true by Lemma 1. 
Inductive step. Assume that Lemma 2 is true of sentences C and D whose numbers of 
connectives are less than that in A. Two cases: 

Cases 1: A is “¬C” 
Assume that vM(A) = vM(¬C) = n and vM’(B) = n for some M, M’ ∈ S. Then vM(C) = n. 
By inductive hypothesis, ∃M*∈S(M* ≤ M ∧ M* ≤ M’ ∧ vM*(C) = vM*(B) = n). But then 
∃M*∈S(M* ≤ M ∧ M* ≤ M’ ∧ vM*(A) = vM*(¬C) = vM*(B) = n). 
Case 2: A is “C ∨ D” 
Assume that vM(A) = vM(C ∨ D) = n and vM’(B) = n for some M, M’ ∈ S. There are 
three sub-cases. In each sub-case, we prove that ∃M*∈S(M* ≤ M ∧ M* ≤ M’ ∧ vM*(A) 
= vM*(C ∨ D) = vM*(B) = n). 

Sub-case 2a: vM(C) = n but vM(D) = 0. 
In this case, vM(C) = n and vM’(B) = n. So, by inductive hypothesis, ∃M*∈S(M* ≤ M 
∧ M* ≤ M ∧ vM*(C) = vM*(B) = n). Since M* ≤ M, it follows that vM*(D) ≤ vM(D) by 
Proposition 1. Since vM(D) = 0 and vM*(D) ≤ vM(D), it further follows that vM*(D) = 0 
or vM*(D) = n. Either way, ∃M*∈S(M* ≤ M ∧ M* ≤ M’ ∧ vM*(A) = vM*(C ∨ D) = 
vM*(B) = n). 
Sub-case 2b: vM(C) = 0 but vM(D) = n. 
The proof of sub-case 2b is similar to that of sub-case 2a. 
Sub-case 2c: vM(C) = n but vM(D) = n. 
The proof of sub-case 2c is similar to that of sub-case 2a.                    o 

Lemma 3. If ∃M∈S(vM(A) ≠ 1) and ∃M’∈S(vM’(A) ≠ 0), then ∃M*∈S(vM*(A) = n), for any 
sentence A. 
Proof. We prove Lemma 3 by induction on the number of connectives in A. Again for 
simplicity, we assume that “∧” is defined in terms of “¬” and “∨” and we omit the 
quantificational case. 
Base case. This is automatically true by Assumption (B). 
Inductive step. Assume that Lemma 3 is true of sentences B and C whose numbers of 
connectives are less than that in A. Two cases: 

Cases 1: A is “¬B” 
Assume that ∃M∈S(vM(A) = vM(¬B) ≠ 1) and ∃M’∈S(vM’(A) = vM’(¬B) ≠ 0). Then 
∃M∈S(vM(B) ≠ 0) and ∃M’∈S(vM’(B) ≠ 1). So ∃M*∈S(vM*(B) = n) by inductive 
hypothesis. So ∃M*∈S(vM*(A) = vM*(¬B) = n). 
Case 2: A is “B ∨ C” 
Assume that ∃M∈S(vM(A) = vM(B ∨ C) ≠ 1) and ∃M’∈S(vM’(A) = vM’(B ∨ C) ≠ 0). By 
the fact that ∃M∈S(vM(A) = vM(B ∨ C) ≠ 1), it follows that ∃M∈S(vM(B) ≠ 1) and 
∃M∈S(vM(C) ≠ 1). And, by the fact that ∃M’∈S(vM’(A) = vM’(B ∨ C) ≠ 0), it follows 
that either ∃M∈S(vM(B) ≠ 0) or ∃M∈S(vM(C) ≠ 0). We prove by cases in what follows 



that either case leads to the conclusion that ∃M*∈S(vM*(A) = vM*(B ∨ C) = n). 
Case 2a: ∃M∈S(vM(B) ≠ 0) 
In this case, ∃M∈S(vM(B) ≠ 1) and ∃M∈S(vM(B) ≠ 0). So, by the inductive 
hypothesis, ∃M*∈S(vM*(B) = n). Now, ∃M∈S(vM(C) ≠ 1). So, either ∀M∈S(vM(C) = 
0) or ∃M∈S(vM(C) = n), otherwise it will contradict with the inductive hypothesis 
that the lemma holds for C. If ∀M∈S(vM(C) = 0), then the model M*∈S s.t. vM*(B) = 
n will also be a model in which vM*(A) = vM*(B ∨ C) = n. And if ∃M∈S(vM(C) = n), 
then, since ∃M*∈S(vM*(B) = n), there will be a model M’ s.t. vM’(B) = vM’(C) = n by 
Lemma 2 and therefore vM’(A) = vM’(B ∨ C) = n. So, if ∃M∈S(vM(B) ≠ 0), then 
∃M*∈S(vM*(A) = vM*(B ∨ C) = n). 
Case 2b: ∃M∈S(vM(C) ≠ 0) 
The proof of Case 2b is similar to that of Case 2a.                          o 

    Now we prove the main theorem: if a disjunction is true simpliciter, then at least one 
of its disjuncts is true simpliciter, i.e.: 

Theorem 1. If ∀M∈S(vM(A ∨ B) = 1), then ∀M∈S(vM(A) = 1) or ∀M∈S(vM(B) = 1). 
Proof: Assuming that ∀M∈S(vM(A ∨ B) = 1), we prove the consequent of the theorem by 
reductio. Suppose that it is neither the case that ∀M∈S(vM(A) = 1) nor the case that 
∀M∈S(vM(B) = 1). So, ∃M∈S(vM(A) ≠ 1) and ∃M∈S(vM(B) ≠ 1). Four possibilities: 

(a) ∀M∈S(vM(A) = 0) and ∀M∈S(vM(B) = 0). In this case, ∀M∈S(vM(A ∨ B) = 0), 
which contradicts with our initial assumption. 
(b) ∀M∈S(vM(A) = 0) but ¬∀M∈S(vM(B) = 0). In this case, ∃M∈S(vM(B) ≠ 0). Since 
∃M∈S(vM(B) ≠ 1) and ∃M∈S(vM(B) ≠ 0), it follows by Lemma 3 that ∃M∈S(vM(B) = n). 
So, ∃M∈S(vM(B) = n and vM(A) =0). Therefore, ∃M∈S(vM(A ∨ B) = n), which 
contradicts with our initial assumption. 
(c) ∀M∈S(vM(B) = 0) but not ¬∀M∈S(vM(A) = 0). In this case, ∃M∈S(vM(A) ≠ 0). 
Since ∃M∈S(vM(A) ≠ 1) and ∃M∈S(vM(A) ≠ 0), it follows by Lemma 3 that 
∃M∈S(vM(A) = n). So, ∃M∈S(vM(A) = n and vM(B) =0). Therefore, ∃M∈S(vM(A ∨ B) = 
n), which contradicts with our initial assumption. 
(d) Neither ∀M∈S(vM(A) = 0) nor ∀M∈S(vM(B) = 0). So ∃M∈S(vM(A) ≠ 0) and 
∃M∈S(vM(B) ≠ 0). It follows from the facts that ∃M∈S(vM(A) ≠ 1) and ∃M∈S(vM(A) ≠ 
0), by Lemma 3, that ∃M∈S(vM(A) = n). Similarly, it follows from the facts that 
∃M∈S(vM(B) ≠ 1) and ∃M∈S(vM(B) ≠ 0), again by Lemma 3, that ∃M∈S(vM(B) = n). 
So, ∃M∈S(vM(A) = n) and ∃M∈S(vM(B) = n). By Lemma2, it follows that 
∃M*∈S(vM*(A) = vM*(B) = n = vM*(A ∨ B)), which contradicts with our initial 
assumption.                                                          o 

 


