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This paper presents a two-dimensional modal logic for rea-
soning about the changing patterns of knowledge and social
relationships in networks organised on the basis of a sym-
metric ‘friendship’ relation, providing a precise language for
exploring ‘logic in the community’ [7]. Agents are placed in
the model, allowing us to express such indexical facts as ‘I
am your friend’ and ‘You, my friends, are in danger’.

We investigate a number of conceptual and technical is-
sues that arise when considering communication between
agents in such networks, both from one agent to another,
and broadcasts to socially-defined groups of agents, such as
the group of my friends.

The technical framework for this work is [4]. We have had
to develop that to cope with the present two-dimensional
setting, but many of the technical details have been omitted
from this abstract, to allow us to focus on the interesting
conceptual distinctions that we have encountered. A more
complete treatment will be given in the full paper.

In particular, we extend the treatment of announcements
to questions, in which agents are taken to be sincere and
cooperative interlocutors, consider network structure chang-
ing operations such as adding and deleting friends (with the
permission of other agents) and the effects of all this on the
concept of common knowledge, which is more varied and
rich in the social network setting.

This is just a starting point. The range of epistemic sub-
tleties that emerge only from consideration of two relations
(epistemic indistinguishability and symmetric friendship) sug-
gest many interest explorations into the function of belief
and preference, along the lines begun in our work [6].

1. A LANGUAGE OF SOCIAL KNOWING
We start with a language L of epistemic friendship logic
EFL based on atoms of two types: propositional variables
ρ ∈ Prop representing indexical propositions such as ‘I am
in danger’, and agent nominals n ∈ ANom which stand for
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indexical propositions asserting identity, such as ‘I am Dr.
Livingstone’. The language is then inductively defined as:

ϕ ::= ρ | n | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | Fϕ |
UAϕ | UWϕ | ↓n ϕ

We read K as ‘I know that’ and F as ‘all my friends’, UA
as ‘every agent’ and UW as ‘in every state’. The binder
↓ n provides a way of referring to ‘me’ inside the scope of
other operators. For example, ↓ n FK〈F 〉n says that all
my friends know they are friends with me. Models for this
language consist of tuples M = 〈W,A, k, f, g, V 〉, where W
is a set of states, A a set of agents, and

1. k is a family of equivalence relations ka for each agent
a ∈ A, representing the ignorance of a in distinguishing
epistemic possibilities. Note that, for each agent a, the
structureMa = 〈W,ka, Va〉 where Va(ρ) = {w | 〈w, a〉 ∈
V (ρ)} is a model for standard S5-epistemic logic.

2. f is a family of symmetric and irreflexive relations fw
for each w ∈ W , representing the friendship relation
in state w. As above, for each w, we have a struc-
ture Mw = 〈A, fw, g, Vw〉 with Vw(ρ) = {a | 〈w, a〉 ∈
V (ρ)}.

3. g is an indexed set of agents gn for each agent nominal
n ∈ ANom; in context we abbreviate this as n.

4. V is a family of valuation functions Va : Prop → PW
for each agent a ∈ A, representing the proposition ex-
pressed by p when referring to a.

Models are used to interpret L in a double-indexical way.
The salient clauses are:

M,w, a |= ρ iff (w, a) ∈ V (p), for ρ ∈ Prop ∪
ANom

M,w, a |= Kϕ iff M, v, a |= ϕ for every v ∈ W
such that 〈w, v〉 ∈ ka(w)

M,w, a |= Fϕ iff M,w, b |= ϕ for every b ∈ A
such that 〈a, b〉 ∈ fw(a)

M,w, a |= UAϕ iff M,w, b |= ϕ for every b ∈ A.

M,w, a |= UWϕ iff M, v, a |= ϕ for every v ∈W .

M,w, a |=↓n ϕ iff M [na], w, a |= ϕ.

Where M [na] = 〈W,A, k, f, g[na], V 〉 and g[na]m = a if m =

n and gm, otherwise. As is usual in modal logic, we can
define the duals of the operators, which we write inside angle
brackets: 〈K〉 = ¬K¬ ‘it is epistemically possible for me



that’, 〈F 〉 = ¬F¬ ‘I have a friend who’, EA = 〈UA〉 = ¬UA¬
‘there is someone who’, and EW = 〈UW 〉 = ¬UW¬ ‘in some
state’. The English glosses are not so exact and require some
manipulation to get proper translations, because of the way
pronouns work in English. For example, if d represents ‘I am
in danger’ then 〈F 〉Kd means ‘I have a friend who knows
that he is in danger’ rather than ‘I have a friend who I know
that I am in danger’ which is not even grammatically correct.
EW and UW are particularly difficult to translate because
they quantify over states including those that I know not
to be the case: they are states that some other agent may
consider epistemically possible.
We also use abbreviations for the universal modality U =
UAUW (equivalently, UWUA) and the hybrid logic operators
@nϕ = UA(n→ ϕ) (equivalently, EA(n ∧ ϕ)). If n is Char-
lie then the agent operator @n simply shifts the indexical
subject to Charlie, so that, for example @nd means ‘Charlie
is in danger’.
Models in which every agent has a name (i.e., g is surjective)
are called named agent models.

Relations and change.
We will use the framework of general dynamic dynamic logic
(GDDL [4]) to represent actions within a social network, and
the resulting changes in what is known and by whom. We
define a class of operators D and corresponding actions on
models such that for each ∆ ∈ D and each M model for
L, there is a L model ∆M , and for each state w of M , a
state ∆w of ∆M . We then extend L to a language L(D)
of dynamic epistemic friendship logic (DEFL) by adding the
elements of D as propositional operators and defining

M,w, a |= ∆ϕ iff ∆M,∆w, a |= ϕ

The full definition of D will be given in Section 6; for now,
an informal presentation will suffice. The operators are built
out of the terms/programs of PDL, with atomic programs
k, f and eA corresponding to the modal operators K, F and
UA of L. These are interpreted as binary relations on the
product W ×A. Specifically,

1. eW is interpreted as relating 〈w, a〉 with 〈v, b〉 just in
case a = b,

2. k is interpreted as relating 〈w, a〉 with 〈v, b〉 just in
case a = b and ka(w, v) in M ,

3. eA is interpreted as relating 〈w, a〉 with 〈v, b〉 just in
case w = v, and

4. f is interpreted as relating 〈w, a〉 with 〈v, b〉 just in
case w = v and fw(a, b) in M .

Notice that each of these basic relations is a sub-relation of
either eW or eA. This is an important property that plays a
key role in the technical development in Section 6. Complex
terms, such are built up in the usual way: (π1;π2) for the
relational composition of π1 and π2, (π1∪π2) for their union,
ϕ? for the ‘test’ consisting of a link from 〈w, a〉 to itself iff
M,w, a |= ϕ, and π∗ for the reflexive, transitive closure of
π.
The simplest operators, called PDL-transformations are built
from PDL-terms using assignment statements, such as [k :=
n?; k]. The effect of this operator on a modelM is to produce
a new model [k := n?; k]M in which k is reinterpreted as re-
lating 〈w, a〉 with 〈v, b〉 iff 〈w, a〉 passes the test n? (which

holds only when n = a) and the two pairs are also related by
k in M .1 In other words, world w and v are in the kb relation
in the new model (indistinguishable for agent b) just in case
b = a and they are indistinguishable for agent a. This op-
erator gives complete knowledge to every agent other than
a.
More complicated operators can be constructed from finite
relational structures whose elements are each associated with
a PDL-transformation, and whose combined effect on the
a model is calculated by ‘integrating’ them according to a
further such transformation. These are the full GDDL op-
erators. A precise definition will be given in Section 6, but
for now an example will suffice. Consider the operator ∆
given by

d0

I

d1

k′

k := (k ∪ n?; k′)∗

This represent an action d0 (highlighted as the action that
is actual performed) whose effect on the model is given by
the PDL-transformation we considered before: [k := n?; k].
There is also an action d1 which does not change the model
at all, and this is shown by labelling it with I, the identity
transformation. Then, the relationship between d0 and d1
is labelled k′, which is a new symbol initially without inter-
pretation in the model, but which comes to represent the
ignorance of n about whether or not action d0 has occurred.
Thus, this operator represent the result of giving complete
information to all agents accept n, and furthermore, allowing
n to remain ignorant about the fact that this has happened.
The assigned statement in the lower half of the diagram
shows how ignorance about which actions has occurred is
integrated. In this case, we say simply that ignorance in
the final model is either ignorance in one of the resulting
two models (which have states W × {d0} and W × {d1},
respectively) or ignorance about which of these parts of the
composite model one is in, and this kind of ignorance is re-
stricted to the agent n. We will see specific examples of such
transformations below but the reader is invited to look at
Section 6 for precise definitions.

An Example.
For a more useful example, consider the PDL-term cutk(ϕ)
defined by

(ϕ?; k;ϕ?) ∪ (¬ϕ?; k; ¬ϕ?)

This relates 〈w, a〉 to 〈v, b〉 iff a = b, ka(w, v), and either ϕ
is true of a in both states w and v or false of a in both
states. Thus the operator [k := cutkϕ] produces a new
model [k := cutkϕ]M from M by removing the ka links
between states with conflicting values for ϕ (about a). Ef-
fectively, this ‘reveals’ to each agent whether or not ϕ holds
(for them). This operator, first introduced in [2], is very
interesting epistemologically. We will abbreviate is as [Rϕ]
in this paper.

1The application of this operator (and all PDL-
transformations) to states is just the identity, so [k :=
n?; k]w = w.)
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Figure 1: Spy Network

To take a Cold War example, suppose we are reasoning
about the effect of a spy network being exposed.

Charlie (c) is friends with Bella (b) and Erik (e),
neither of whom are friends with each other. Un-
known to the others is whether Erik is a spy (s).
The others are not spies, and Erik knows that.
Bella knows that Charlie is not a spy, but Charlie
does not know whether or not Bella is. Charlie,
however, knows that not all of his friends are
spies. After the network is exposed, all the spies
and their friends will be interrogated by the po-
lice. But just before this happens a message is re-
layed to all agents revealing whether or not they
are in danger (d), that is, whether they are a spy
(which they would know in any case) or a friend
of a spy.

A model M of the initial situation is depicted in Figure 1,
with reflexive and transitive links omitted for readability.
Notice the crucial role of the friendship component of our
modelling in analysing this examples. An agent is in danger,
according to the story, if she is spy or is friends with a spy.
It’s for the second disjunct that our friendship operators get
full credit! A model M of the initial situation is depicted
in Figure 1, with reflexive and transitive links omitted for
readability. The reader should read the diagram in a two-
dimensional way, with propositions such as d and s assigned
to world-agent pairs. So for instance, Bella is in danger
in state 〈u2, b〉 because she is a spy there, and Charlie is in
danger in state 〈uo, c〉, because his friend Erik is a spy there.
In L we can state pertinent facts such as @c(K¬s∧¬K〈F 〉s)
‘Charlie knows that he is not a spy but doesn’t know if a
friend of his is a spy’. From the assumed equivalence of d
‘I am in danger’ with (s ∨ 〈F 〉s) ‘either I’m a spy or I have
a spy as a friend’, we also have that @c(d ∧ ¬Kd) ‘Charlie
is in danger but doesn’t know it’, whereas @bK¬d ‘Bella
knows that she is not in danger’. After the revelation [Rd],
the new model [Rd]M is as depicted in the right part of
Figure 1. Notice that that links between 〈uo, c〉 and 〈u1, c〉
and between 〈u1, c〉 and 〈u2, c〉 are removed as a result of
the announcement, but the link between 〈u0, c〉 and 〈u2, c〉
survives. Charlie now knows that he is in danger (@cKd)
and so that one of his friends is a spy (@cK〈F 〉s) but he
does not know which (@c¬(K@bs ∨K@es)).
Moreover, in the language of DEFL we can represent reason-

ing about these changes, such as the validity of

[Rd]UA(Kd ∨K¬d)

which states the valid principle that after it is revealed who is
in danger, everyone knows whether or not s/he is in danger.

2. SOCIAL ANNOUNCEMENTS
We now turn to direct communications, or ‘announcements’,
within a social network. In general, an announcement con-
sists of an agent (the sender) transmitting some information
(the message) to one or more other agents (the receivers).
Yet there are many subtleties concerning the knowledge of
different agents about what happens. We will define a ba-
sic act of communication in which a message ψ is sent to a
group of agents θ by

[k := (θ?; cutk(ψ)) ∪ (¬θ?; k)]

The action reveals the truth or falsity of ψ (which may be
different for different agents) to all agents satisfying θ, and
leaves the ka relation unchanged for agents a not satisfying
θ. The effect of making announcement depends on whether
the message is indexical with respect to the sender, e.g. ‘I
am in danger’, or with respect to the receiver, e.g., ‘you are
in danger’, although, as we will show, the first is a special
case of the second.

Announcements about the sender.
We first define [n / ψ! : θ]ϕ, the statement that ϕ holds after
agent n announces message ψ (about n) to agents satisfying
θ as

(@nKψ → [k :=(θ?; cutk(@nψ)) ∪ (¬θ?; k)]ϕ)

To make sense of this, we will look at a progression of simpler
cases. First, with θ = >, the formula [n/ψ! :>]ϕ means that
ϕ holds after agent n publicly announces that ψ, noting that
it simplifies to

(@nKψ → [k :=cutk(@nψ)]ϕ)

The presupposition that n knows that ψ is captured by the
antecedent @nKψ. This form of public announcement is
slightly different from PAL in that the announcement is
taken to be made by an (possibly less than omniscient) agent
in the community, but otherwise produces very similar re-
sults. For example, that everyone knows I am in danger
after I announce this publicly is captured by the validity of
↓n [n / d! :>]UAK@nd.
In the second case, with θ = m, the formula [n / ψ! :m]ϕ
means that ϕ holds after agent n announces tom that ψ. For
the moment, we will assume that these announcement are
only semi-private, in that other agents know conditionally,
that if the sender n knows that ψ then this is announced to
m. Fully private announcements will be considered later in
this section. Replacing θ by m in the definition gives us

(@nKψ → [k :=(m?; cutk(@nψ)) ∪ (¬m?; k)]ϕ)

in which we see the restriction of the update in knowledge
to the receiver m. For agents other that m, the km relation
is unchanged.
Finally, we consider the case of θ = 〈F 〉n, the friends of the
sender. This models the announcement of ϕ by (and about)
n to her friends, so that [n / ψ! : 〈F 〉n]ϕ is given by

(@nKψ → [k :=(〈F 〉n?; cutk(@nψ)) ∪ (¬〈F 〉n?; k)]ϕ)
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Figure 2: Roger’s Quandry

Let’s see how this works with an everyday example of infi-
delity and gossip.

Peggy (p) knows that Roger (r) is cheating (c) on
his wife, Mona (m). What’s more, Roger knows
that Peggy knows, because they met accidentally
while he was with his mistress. Mona does not
know about the affair, and both Peggy and Roger
know this. The situation (for Roger) deteriorates
when he discovers that Peggy is a terrible gossip.
She is bound to have told all her friends about
his affair. What Roger does not know is whether
Mona is a friend of Peggy (she is).

We can represent the epistemic state of this network before
Peggy’s announcement with the model depicted in Figure 2.
At u, r (Roger in the actual world, represented by @ in the
picture), the statements listed in Table 1 are all true. That

p I’m cheating

↓n K(@pK@np∧
@m¬K@np)

I know that Peggy (but
not Mona) knows I am
cheating

↓n @pK@nK@pK@np Peggy knows I know she
knows I am cheating

¬K@m〈F 〉p I don’t know whether
Peggy and Mona are
friends.

↓n @pK@n¬K@m〈F 〉p Peggy knows I don’t
know whether she and
Mona are friends.

(For common knowledge, see Section 5.)

Table 1: Facts about Roger

some proposition ϕ holds after the announcement ‘Roger
is cheating!’ that Peggy makes to her friends is given by
[p /@rc! : 〈F 〉p]ϕ, which expands and simplifies to

(@pK@rc→ [k :=(〈F 〉p?; cutk(@rc)) ∪ (¬〈F 〉p?; k)]ϕ)

When evaluated at u, p (Peggy in the actual world), the
presupposition that Peggy knows that Roger is cheating is
satisfied, and so the formula ϕ is evaluated in the trans-
formed model shown in Figure 3. (Note the missing vertical
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Figure 3: After Peggy’s gossip

line in the middle.) As a result, we can compute that at
r, w (Roger in the actual world) of the original model, the
formula

↓n [p /@nc! : 〈F 〉p]@mK@nc

is true, i.e., “I don’t know that Mona will know about my
cheating after Peggy tells her friends about it.”

Announcements about the receivers.
Announcements that are indexical about the receiver such
as ‘you are in danger’ (announced to Charlie) or ‘you are
my friends’ (announced by Peggy to her friends) can be ex-
pressed with a slight change that captures the different pre-
conditions for announcements. We define [n :ψ! . θ]ϕ, the
statement that ϕ holds after agent n announces message ψ
(about θ) to agents satisfying θ as

(@nKUA(θ → ψ)→ [k :=(θ?; cutk(ψ)) ∪ (¬θ?; k)]ϕ)

Again, we first consider the simple case of public announce-
ment, represented by [n :ψ! . >]ϕ, which can be seen to be
equivalent to

(@nKUAψ → [k :=cutk(ψ)]ϕ)

Consider, for example, my announcing to everyone ‘you are
in danger’. The precondition for this is that I know that
everyone is in danger, captured by the antecedent KUAd,
and a consequence is that after the announcement everyone
knows that she is in danger, as is represented by the validity
of ↓n [n : d! .>]UAKd.
The case of agent-to-agent announcement displays a nice
symmetry between the two kinds of indexical message. Agent
n announcing ‘you are in danger’ to agent m is equivalent
to announcing (again to m) that m is in danger. More gen-
erally, the following equivalence is valid

[n :ψ! . m]ϕ ↔ [n /@mψ! :m]ϕ

For announcement to friends, an interesting new phenomenon
arises. Consider the case of my announcing ‘you are my
friend’ to my friends. That ϕ holds after such an announce-
ment is represented by [n : 〈F 〉n! . 〈F 〉n]. The message is
the same as the description of the set of receivers, so when
this is expanded, we find that the precondition for the an-
nouncement is ↓ n KUA(〈F 〉n → 〈F 〉n), which is valid, so
the announcement can always be made, by anyone. But
nonetheless, it can be informative, as can be seen from the



validity of ↓n [n : 〈F 〉n! . 〈F 〉n]FK〈F 〉n, which says that af-
ter my making this announcement, my friends all know that
they are my friends, something they may not have known
before.
Finally, we note that any sender-indexical announcement
is equivalent to a receiver-indexical announcement in the
case that there is at least one receiver (UA¬θ is false). The
trick is that the statement ψ about n (the sender) is then
equivalent to the statement @nψ about any (every) receiver.
More formally, the following is valid:2

(¬UA¬θ → [n / ψ! : θ]ϕ ↔ [n : @nψ! . θ]ϕ)

Private announcements.
Communications of the form [n / ψ! : θ] and [n : ψ! . θ] are
only semi-private. Their effect on the model ensures that
every agent will know that the announcement has occurred,
if the sender satisfies the precondition, so, for example,

↓n [n / d! :m]UAK(@nKd→ @mK@nd)

is valid: after I announce to m that I am in danger, everyone
will know that if I know I am in danger then m also knows
I am in danger. This is (typically) an unjustified violation
of the privacy of the communication between me and m.
To get more private announcements, we need to use a prod-
uct construction in the spirit initiated in [1], and within
our framework, this is done with GDDL operators. First
we define the PDL-transformation sendnθ (ψ) to be [k :=
(θ?; cutk(@nψ))∪(¬θ?; k)], so that [n/ψ! : θ]ϕ is just (@nKψ →
sendnθ (ψ)ϕ). To make this action private, the transformation
sendnθ (ψ) must be embedded in a GDDL operator, and then
given the same precondition. Thus ϕ holding after the pri-
vate announcement of ψ (about n) by n to agents θ can be
represented as

(@nKψ →

sendnθ (ψ)

d

I

e

k′

k := (k ∪ (¬θ?; k′))∗

ϕ)

Call this formula [[[n / ψ! : θ ]]]ϕ. Inside the GDDL operator,
the internal relation k′ represents ignorance about whether
the communication sendnθ (ψ) has occurred or not, the lat-
ter possibility represented by the identity transformation, I.
The integrating transformation k := (k∪(¬θ?; k′))∗ restricts
ignorance of the k′ kind to agents other than θ and factors
this in to the new epistemic relation. The ∗ is needed to
ensure that the result is an equivalence relation.
We will illustrate the application of this operator by return-
ing to Roger’s little problem.

Before returning home to face Mona, Roger is
uneasy. He would really like to know whether or
not she knows about his affair. He already knows
that she knows if and only if she is friends with
Peggy. So if Peggy told him that they are friends,

2The key observation here is that the precondition for the
sender-indexical announcement is @nKψ, which is equiva-
lent to the precondition @nKUA(θ → @nψ) when UA¬θ is
false.

Figure 4: Peggy to Roger, privately.

he would be prepared for Mona’s fury. But for
his planned excuses to be convincing, Mona must
not know that he knows she knows (about the
affair). It is therefore very important that Peggy
tells him in private.

Now let us suppose that the ever-loquacious Peggy announces
to Richard privately that Mona is her friend. This can be
represented as [[[ p / 〈F 〉m! : r ]]]. Since Peggy does know that
she and Mona are friends (as we might expect), whether the
crucial proposition ϕ

(@rK@mK@rc ∧ ¬@mK@rK@mK@rc)

(that Roger knows Mona knows he has been cheating but
Mona doesn’t know that he knows) holds must be deter-
mined by evaluating it in the model obtained by transform-
ing the one in Figure 3 using the GDDL operator

sendpr(〈F 〉m)

d

I

e

k′

k := (k ∪ (¬r?; k′))∗

The result is shown in Figure 4. In this diagram, the points
on the front face represent states 〈w, d〉 (for w ∈ W ), in
which action d occurs, as described by sendpr(〈F 〉m), whereas
those on the back face represent states 〈w, e〉 (for w ∈W ) in
which action e occurs, as described by I, the identity. The
back face is just a copy of the model in Figure 3, whereas
in the front face is missing two kr links, which are cut when
Roger learns that Mona is Peggy’s friend. In this model ϕ
holds of r in state u and Roger can meet Mona prepared.3

3Even the additional level of privacy offered here is still not
perfect, as it involves some change in Mona’s knowledge.
She goes from knowing that Roger doesn’t know that she is
friends with Peggy to not knowing this. However, one may
just think that privacy is a matter of degree.



3. ASKING QUESTIONS
As well as making announcements, agents in a social network
can ask questions. Our approach to modelling questions
will assume that agents are cooperative to the extent that
they answer those questions to which they know the answer.
A more elaborate model would consider the preferences of
agents, but that is beyond the scope of the current paper.
With this assumption, the effect of asking whether ψ of an
agent a who knows that ψ is the same as an announcement
by a that ψ. Likewise, the effect of asking whether ψ of an
agent a who knows that ¬ψ is the same as an announcement
by a that ¬ψ. In the case that a does not know whether ψ,
we assume that this also is communicated (possibly by the
mere absence of an expected reply). With this in mind, we
define [n :ψ?:m]ϕ, the proposition that ϕ holds after agent
n asks agent m whether ψ as

([m / ψ! :n]ϕ ∧ [m / ¬ψ! :n]ϕ ∧ [m / ¬(Kψ ∨K¬ψ)! :n]ϕ

In other words, ϕ holds after n asks m whether ψ just in
case ϕ holds after in all three cases: (1) m answers ‘yes’,
so announcing ψ to n (2) m answers ‘no’, so announcing
¬ψ to n and (3) m answers ‘I don’t know’, so announcing
¬(Kψ∨K¬ψ) to n. This ensures that the following are valid:

(@mK@np→ [n : p?:m]@nKp)
(@mK@n¬p→ [n : p?:m]@nK¬p)
(@m¬(K@np ∨K@n¬p)
→ [n : p?:m]@nK@m¬(K@np ∨K@n¬p))

So, for example, after Charlie c asks Erik e whether he
(Charlie) is in danger, d, he will either know that he is in
danger Kd or know that he is not in danger K¬d, or know
that Erik doesn’t know whether or not he (Charlie) is in
danger, ↓n K@e¬(K@nd ∨K@n¬d).
As with announcements, this model of questions assumes
that the answers are only semi-private. For example, after
Charlie asks Erik whether he is in danger, a third-party will
know that Charlie either knows whether he is in danger or
knows that Erik doesn’t know the answer. To make ques-
tioning more private, we need private announcements too.
Here we will give one simple example.

Roger approaches Peggy in private and asks her
directly whether or not she and Mona are friends.
Being sincere and cooperative, Peggy answers that
they are. Mona, of course, knows nothing of their
conversation.

This private question [[[ r : 〈F 〉m?: p ]]] is defined by direct anal-
ogy with the semi-private question [r : 〈F 〉m?: p] so that ϕ
holds after the question is asked just in case

([[[ p/〈F 〉m! : r ]]]ϕ∧[[[ p/¬〈F 〉m! : r ]]]ϕ∧[[[ p/¬(K〈F 〉m∨K¬〈F 〉m)! : r ]]]ϕ

In this case, only the precondition of [[[ p / 〈F 〉m! : r ]]] is satis-
fied, and so the results are just as depicted in Firgure 4.

4. CHANGING THE NETWORK
What makes networking intriguing is the dynamics of net-
work changes. You can be friends with someone one day on
Facebook, but you may drop him as a friend the following
day or add someone else. Those acts, though simple, have
a direct impact on information flow in communities. Let us
consider the following:

Roger, scared of the possibility that Mona will
find out about his affair from Peggy, does all that
he can to distance them. His smear campaign is
designed to break their friendship and so protect
his information.

To define the operation of deleting a friendship link, we first
define the result of cutting the friendship link between agent
n and m in one direction

cutf (n,m) = (¬n?; f) ∪ (f ; ¬m?)

Then, to deleting the link between n and m we need to cut
in both directions:4

[−fn,m] = [f := cutf (n,m)][f := cutf (m,n)]

It is then fairly easy to show that [[f ]][−fnm]M= [[f ]]M \
{〈n,m〉, 〈m,n〉}, as required.5

Now how is this going to help Roger? Well, after the applica-
tion of [−fmp] to the model of Figure ??, Peggy’s announce-
ment to her friends that Roger is cheating has no effect; in
fact, she has no friends to receive the message. So the model
is unchanged. In other words, in this original model, it is
true for Roger that

[−fmp] ↓n [p /@nc! : 〈F 〉p]@m¬K@nc

‘after Peggy loses Mona as a friend, even after she tells her
friends that I am cheating, Mona won’t know.’
Next we consider adding a friend. In the basic case, we can
define the operation [+fn,m] by analogy with deletion, but
more simply, as

[f =: f ∪ (n?; eA;m?)]

But a more interesting model of adding friends follows the
protocol of Facebook and other online social networks, whereby
one must first request friendship. To capture this aspect of
network change, we need to represent whether or not an
agent wants to be friends with another agent. In a fuller
account, this could be done with a preference order, show-
ing that the agent prefers states in which they are friends
to those in which they are not. But for now, suppose that
there is some additional indexical relation dw in our models,
with dw(a, b) interpreted to mean that in state w, agent a
wants to become friends with agent b.
The question ‘do you want to be my friend?’ from n to
m is thus represented by [n : 〈d〉n?:m], but as a request we
interpret this as involving an action: if the answer is ‘yes’
then we become friends; otherwise, there is no change to
the social network, thought there are consequent epistemic
changes, such as my learning that you don’t want to be my
friend. That ϕ holds after this ‘friend request’ is therefore
represented by

[add(m)]ϕ = ↓n [n : 〈d〉n?:m]((K@m〈d〉n ∧ [+fn,m]ϕ)
∨(¬K@m〈d〉n ∧ ϕ))

A private version of this operation can be obtained by re-
placing the announcement and network change by a GDDL-
based version.

4It is also interesting to consider asymmetric relationships
such as “following” on Twitter or “subscribing” on Facebook,
as studied in [5].
5This follows from the fact that a[[f ]][f :=cutf (n,m)]Mb iff
a[[f ]]Mb and 〈a, b〉 6= 〈n,m〉.



The following validity shows some of the epistemic conse-
quence of friend requests:

↓n ((¬〈F 〉m ∧ ¬K@m〈d〉n)→ [add(m)]((K@mK〈d〉n ∧ 〈F 〉m)
∨(K@m¬K〈d〉n ∧ ¬〈F 〉m))

5. COMMON KNOWLEDGE
In the context of social networks or communities, common
knowledge is clearly an important notion. One can easily
imagine the situations in which we want to reason about
whether or not something is commonly known in some com-
munity or among my friends. There are at least two sub-
tleties involved in making this precise. The first has to do
with identifying the group of agents who are said to have
common knowledge. This may be by means of a specific
list (‘Charlie, Bella, and Erik’), or a description (‘Charlie’s
friends’) or even an indexical description (‘friends of mine’).
Secondly, the information that is shared may be rigid ( ‘it is
common knowledge that Charlie is not a spy’) or indexical
(e.g. ‘it is common knowledge among Charlie’s friends that I
am in danger’ or ‘it is common knowledge among my friends
that they are in danger.’)
To capture all these cases, first define ka to be (eA; a?; k).
Then [ka]ϕ means that agent a knows that ϕ, as justified by
the following equivalence:

M,u, b |= [ka]ϕ iff M, v, a |= ϕ for all v ∈W such
that ka(u, v).

Here ϕ could be an indexical proposition, so, for example,
‘Charlie knows that he is not a spy’ would be represented
by [kc]¬s, whereas ‘Bella knows that Charlie is not a spy’
would have to be represented as [kb]@c¬s. Now, for common
knowledge, define

cθ = (eA; θ?; k)∗; eA; θ?

and interpret [cθ]ϕ to mean, roughly, that there is common
knowledge among θ-agents that ϕ. So this enables us to
talk, in our formal language, about the common knowledge
of some group.This definition seems more general than the
standard notion of common knowledge (see e.g. [3]) . It is
justified by the following applications, each of which can be
suitably generalised.

1. Common knowledge among an enumerated set of agents
about a non-indexical proposition. For example, that
there is common knowledge between Bella (b) and Char-
lie (c) that Charlie is not a spy (s) can be repre-
sented by [c(b∨c)]@c¬s.

6 To justify this claim, first note
the standard way of defining common knowledge for a
group of agents G is to introduce a new operator CG
such that

M,w, a |= CGϕ iff M, v, a |= ϕ for all 〈u, v〉 ∈
(
⋃
a′∈G ka′)

∗

We can then prove that, for example, [c(b∨c)]@c¬s is

equivalent to C{b,c}@c¬s.
7

6Another concrete and interesting area of application is our
ordinary email exchange, see an interesting analysis in [8].
7The argument is simple. First note that (eA; (b∨ c)?; k)∗ is

equivalent to (kb ∪ kc)∗. Also, since @c¬s is non-indexical,

2. Common knowledge among a non-indexically described
group of agents about a non-indexical proposition. For
example, that it is common knowledge among Peggy’s
(p) friends that Roger (r) is cheating (c) can be repre-
sented as [c〈F 〉p]@rc. This implies that every friend of
Peggy knows that Roger is cheating (@pFK@rc), but
also that each of them knows that all of Peggy’s friends
know this (@pFK@pFK@rc), and that each of them
knows they all know that (@pFK@pFK@pFK@rc),
and so on. As such, it is not equivalent to any state-
ment of the form CGϕ. In particular, if, say, Peggy’s
only friends are Mona (m) and Nancy (n), it may
not have the same truth value as C{m,n}@rc, which is
compatible with Mona’s and Nancy’s ignorance about
what Peggy’s friends (in general) know.

3. Common knowledge among a non-indexically described
group of agents about a proposition that is indexical
with respect to each member of the group. This is
the subtlest case. As an example, after the spy net-
work has been exposed, that it is common knowledge
among Erik’s (e) friends that they are in danger (d)
is represented by [c〈F 〉e]d. This implies that every
friend of Erik (the spy) knows that s/he is in danger
(@eFKd), that each of them knows they all know this
(@eFK@eFKd), and so on. Again, this is compati-
ble with their ignorance about the friendship relation,
so long as all epistemically indistinguishable state are
ones in which the friends of Erik (whoever they may
be) are still in danger. The reason to have the final
part eA; θ? in the above definition of cθ is this: when
ϕ is indexical, we need to ensure that it is about the
members of θ. But when ϕ is not indexical, this part
is basically redundant.

4. Common knowledge among an indexically described
group of agents about a non-indexical proposition. For
example, that it is common knowledge among my friends
that Roger is cheating is represented by ↓n [c〈F 〉n]@rc.
This is a straightforward generalisation of the previ-
ous case to an indexically specified description, with
the 〈F 〉n using the nominal n, which is bound to the
speaker by ↓n .

5. Common knowledge among an indexically described
group of agents about a proposition that is indexical
with respect to the speaker. For example, that there
is common knowledge among my friends that I am not
a spy is represented by ↓n [c〈F 〉n]@n¬s. This is really
no more complicated than the last case. Again, the in-
dexical work is all done by ↓n in creating a temporary
name ‘n’ for the speaker. Within that context, both
the description of group (〈F 〉n) and the content of the
common knowledge @n¬s are both non-indexical.

6. Common knowledge among an indexically described
group of agents about a proposition that is indexical
with respect to each member of the group. For exam-
ple, that it is common knowledge among my friends
that they are in danger represented by ↓ n [c〈F 〉n]d.

[eA; (b∨c)?]@c¬s is equivalent to @c¬s. Thus [c(b∨c)]@c¬s is

equivalent to [(kb ∪kc)∗]@c¬s, which is obviously equivalent
to C{b,c}@c¬s.



[[ρ]]M = V (ρ), for ρ ∈ P
[[(ϕ ∧ ψ)]]M = [[ϕ]]M ∩ [[ψ]]M

[[¬ϕ]]M = W \ [[ϕ]]M

[[〈π〉ϕ]]M = {w ∈ W | u[[π]]Mv and v ∈ [[ϕ]]M

for some v ∈W }
[[τ ]]M = V (τ), for τ ∈ R
[[ϕ?]]M = {〈u, u〉 | u ∈ [[ϕ]]M}
[[π1;π2]]M = {〈u, v〉 | u[[π1]]Mw and w[[π2]]Mv

for some w ∈W}
[[π1 ∪ π2]]M = [[π1]]M ∪ [[π2]]M

[[π∗]]M = {〈u, v〉|u = v or ui[[π]]Mui+1 for
some n ≥ 0, u0, . . . , un ∈W , u0 = u
and un = v}

Table 2: Semantics of PDL

Again, this is an obvious generalisation of the previ-
ous cases.

Other useful specifications of groups of agents as the sub-
jects of common knowledge include ‘common knowledge of
ϕ in my community’ (↓ n [c〈f∗〉n]ϕ), ‘common knowledge
of ϕ among those who know they are in danger’ ([cKd]ϕ),
‘common knowledge of ϕ among those who know they are
my friends’ (↓n [cK〈F 〉n]ϕ).

6. TECHNICAL DETAILS
Technical details in this extended abstract will be confined to
a basic outline, which will be expanded in the final paper.

General Dynamic Dynamic Logic.
Our starting point is the framework GDDL of [4], in which
the language of propositional dynamic logic (PDL) is ex-
tended with model-changing operators. As indicted in the
previous sections, we augment the language L with opera-
tors defined in GDDL. First, we need to define the basics
of GDDL in a more general setting.
Given a signature 〈P,R〉 of propositional symbols P and re-
lation symbols R, we define the set L(P,R) of PDL-formulas
and the set T (P,R) of PDL-terms in the usual way and in-
terpret these over Kripke models M = 〈W,V 〉, in which
V (ρ) is a subset of W for each ρ ∈ P and V (r) is a binary
relation on W for each r ∈ R. The semantics clauses as as
usual. (Shown in Table 2.)
We are particularly interested in the signature 〈PEFL, REFL〉
given by PEFL = Prop ∪ ANom and R = {f, k, eA, eW }.
For now, we refer the reader to [4] for the definition of PDL-
transformation and GDDL-operator.
We extend the set of formula L(P,R) by adding the GDDL
operators to get G(P,R)

Theorem 1. There is an algorithm for computing a for-
mula ϕ† in L(P,R) from each formula ϕ in G(P,R) such
that

(ϕ↔ ϕ)†

is valid.

Proof. Refer to [4]

Separable expressions and models.

In this part, we introduce the concept of separability, which
characterises those models of our PDLlanguage L(PEFL, REFL)
which are equivalent to models for L and over which our dy-
namic operators must be well-behaved.
Given a model M of the form 〈W0 ×W1, V 〉 whose domain
of states is a product W0×W1, we classify program as ‘left’
or ‘right’ or ‘mixed’ as follows:
π is left in M iff 〈u0, u1〉[[π]]M 〈v0, v1〉 implies u1 = v1
π is right in M iff 〈u0, u1〉[[π]]M 〈v0, v1〉 implies u0 = v0
π is mixed in M iff π is neither left nor right in M

A model M is separable iff no basic program r in R is mixed.
More specifically, given a subset S ⊆ R, M is S-separable if
the programs in S are all right in M and those in R \ S are
left. To extend this division to complex programs, we define
subsets T0(P,R) and T1(P,R) of programs T (P,R) and a
subset FS(P,R) of formulas F (P,R) as follows:

TS0(P,R) π0::=τ | ϕ? | (π0;π0) | (π0 ∪ π0) | π0∗

(for τ ∈ R \ S)
TS1(P,R) π1::=τ | ϕ? | (π1;π1) | (π1 ∪ π1) | π1∗

(for τ ∈ S)
FS(P,R) ϕ ::=ρ | ¬ϕ | (ϕ ∨ ϕ) | 〈π〉0ϕ | 〈π〉1ϕ

(for ρ ∈ P )

Lemma 1. If M is S-separable then every program in TS0(P,R)
is left in M and every program in TS1(P,R) is right in M

In our case, we will be especially interested in the case of
{f, eA}-separability.

Theorem 2. The problem of whether a given formula of
LS(P,R) is satisfiable in an S-separable model is decidable.

Proof. We give a full proof in the main paper. The idea
is that separable formulas can be translated into into an
expanded language (with ‘witnessing’ constants for the ele-
ments of W2) such that any model of the translated formula
can be used to construct a separable model for the original
formula.

Dynamic epistemic friendship logic.
Not all GDDL operators are fit for including in the set D
of operators we add to L to get our language of dynamic
epistemic friendship logic, L(D). Say that an operator ∆
is suitable if ∆M is {f, eA}-separable whenever M is, and
moreover, that ∆M does not change the value of g in M .

Lemma 2. If ∆ is suitable then M,w, a |=↓ n ∆ϕ iff
M,w, a |= ∆ ↓n ϕ

This lemma allows us to pull all downarrows outside the
scope of dynamic operators, when we are restricting our at-
tention to named-agent models. Otherwise, our results will
be restricted to those formula that do not contain downar-
rows inside the scope of dynamic operators.

Lemma 3. For each formula ϕ of L(D) that does not con-
tain downarrows in the scope of dynamic operators, there
is an {f, eA}-separable formula ϕ′ of L(PEFL, REFL) and for
each model M of L, there is a model M ′ of signature 〈PEFL, REFL〉
such that

M,w, a |= ϕ iff M ′, 〈w, a〉 |= ϕ′



The Main Result.
Combining the above lemmas, we show, by a sequence of
translations:

Theorem 3. The problems of satisfiability for formulas
of L(D) is decidable.

7. CONCLUDING REMARKS
What has emerged from this study is an appreciation of the
diversity of subtle logic distinctions when combining epis-
temic and social relations, especially when we allow index-
ical propositions, as are very common in the social setting.
Although Facebook was an inspiration for this work, we have
only scratched the surface. The real Facebook offers many
interesting features that would be good to model, such as
the wall, subscriptions, commenting, liking. Real world net-
works, such as the spy networks and gossips networks of
the running examples in this paper, are also worthy of fur-
ther study, especially when diluting knowledge to belief and
adding preference.
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