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An introductory example

Learner reads more and more data about an r.e. set and
outputs hypotheses what the set is.

Data Hypotheses
2 Set of even numbers;
2,3 Set of all numbers;
2,3,5 Set of prime numbers;
2,3,5,13 Set of prime numbers;
2,3,5,13,1 Set of Fibonacci numbers;
2,3,5,13,1,8 Set of Fibonacci numbers;
2,3,5,13,1,8,21 Set of Fibonacci numbers.

Successful learning means that the conjectures converge to
one correct concept.



Language acquisition

Think about language acquisition for children:

Children can master any natural language in a few years’
time on the basis of rather casual and unsystematic
exposure to it.
Many linguists (notably, Chomsky[1975],[1986]) believe
that children are not genetically prepared to acquire any
arbitrary language.
Instead, a relatively small class H of languages may be
singled out as “humanly possible”.
While linguists fail to propose a nontrivial description of H .
The branch of linguistics known as “comparative grammar”
is the attempt to characterize the class of (biologically
possible) natural languages through formal specification of
their grammars.



A further example

Let L = {ω\{n} : n ∈ ω}.
Find an effective process to learn(indentify) every member
of L.

How about the class L ∪ {ω}?



A learning paradigm

A formal model of inductive inference should contain the
following concepts:

1 a theoretically possible reality
2 intelligible hypotheses
3 the data available about any given reality, were it actual
4 a learner
5 successful behaviour by a learner working in a given,

possible reality



Our models

1 A theoretically possible reality is a family of languages
coded by a class of computably enumerable sets.

2 Hypotheses are symbolic representations of a real or
fictitious world, for our reality we take a Gödel numbering.

3 The information about a given reality can be of different
type, mainly two. One consist of only positive instances,
the other contains negative ones as well.

4 A learner is a Turing machine converting the data he
observed to hypotheses. Usually, we require it to be a total
Turing machine. We could also have some other
requirement on him.

5 One possible successful behaviour could be that, after
many attempts, the learner’s hypotheses finally converges
to a code of the real object.



Notations

Definition

we call a computably enumerable subset of ω a language.
A text is a total function t : ω→ ω ∪ {#}.
content(t) = range(t)\{#}.
A text t is a text for the set A ⊆ ω if A = content(t).
SEQ = (ω ∪ {#})∗

A learner is a total computable function M : SEQ → ω∪ {?}.



Explanatory learning from text

Definition

The learner M TxtEx-learns the language L from the text t
for L if there is a number n0 such that

∀n ≥ n0(M(t � n) = M(t � n0) ∈ ω)&L = WM(t�n0)

The learner M TxtEx-learns the language L if M
TxtEx-learns L from all texts t for L .
The learner M TxtEx-learns the family L of languages if M
TxtEx-learns all languages in L.
A family L of languages is TxtEx-learnable if there is a
learner M which TxtEx-learns the family L. The class of all
TxtEx-learnable families is denoted by TxtEx.



Some properties of TxtEx

Proposition (Monotonicity)

If L0 ⊂ L1 and L1 ∈ TxtEx, then L0 ∈ TxtEx.

Proposition

Any finite family L of languages is in TxtEx.

Proposition

The family FIN of all finite sets is in TxtEx.



Other learning criteria

Definition (finite learning)

The learner M TxtFin-learns the language L from the text t for
L if there is a number n0 such that

∀n ≥ n0(M(t � n) = M(t � n0) ∈ ω)

&∀n < n0(M(t � n) =?)&L = WM(t�n0).

Definition (behaviourally correct learning)

The learner M TxtBC-learns the language L from the text t for
L if there is a number n0 such that

∀n ≥ n0(M(t � n) ∈ ω&L = WM(t�n0)).

Just as in the case of TxtEx-learning, we define the classes
TxtFin and TxtBC accordingly.



Properties of learning from text

Proposition (Monotonicity)

Let X ∈ {TxtFin,TxtEx,TxtBC}. If L0 ⊂ L1 and L1 ∈ X, then
L0 ∈ X.

Proposition

TxtFin ⊆ TxtEx ⊆ TxtBC

Proposition

Let L0 and L1 be languages such that L0 ⊂ L1. Then
{L0,L1} < TxtFin



Learning from informant

Definition

An informant for a language L is its characteristic
sequence L(0)L(1)L(2)....
The learner M InfEx-learns the language L if there is a
number n0 such that

∀n ≥ n0(M(L � n) = M(L � n0) ∈ ω)&L = WM(L�n0)

The learner M InfEx-learns the family L of languages if M
InfEx-learns all languages in L.
A family L of languages is InfEx-learnable if there is a
learner M which InfEx-learns the family L. The class of all
InfEx-learnable families is denoted by InfEx.

Similarly, we can define the classes InfFin and InfBC.



Properties of learning from informant

Proposition

InfFin ⊆ InfEx ⊆ InfBC

Proposition

For X = Ex ,Fin,BC,
TxtX ⊆ InfX.

Questions: What’s the relationship among these six major
classes? Are their inclusion relations strict?



Learnability Hierarchy

The answer is yes, and there is a full hierarchy of them:

InfBC

⊂

TxtBC ∪ InfEx
⊂ ⊂

TxtBC InfEx
⊂ ⊂

TxtBC ∩ InfEx

⊂
TxtEx

⊂

InfFin

⊂

TxtFin



Other variants of learning model

A learner may be not totally computable; learner(machine)
may have some time or space requirement.
The hypotheses space is not a Gödel numbering.
Oracle learning
Probabilistic learning



Computational Learning VS. Statistical Learning

Computational Learning VS. Statistical Learning

What can machines learn,
exactly, in theory?

How can machines learn,
correctly(less error and
more efficiently), in prac-
tice?

Linguist Language teacher
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