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§1 Background




When | say "I know why he comes late.”, | must know an

explanation, a cause or a reason for why he comes late, not only the
event that he comes late. In the other words, | must know the answer to

the question "Why did he come late?”

4 /46



@ Knowledge-Why is a kind of knowledge such as 'l know why "

@ Since explanations can often be thought of as answers to
why-questions, 'l know why ¢' means 'l know the explanation of "
To study the knowledge why, we first need to know what the

explanation of ¢ is.

@ The main study about the explanation is in the field of scientific
explanation, and thus we also study the explanation on the basis of

the theory of scientific explanation.
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The types of explanations

It is the foundation of our study that explanation is an argument.
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§2 Last Presentation

@ Explanation and Scientific Explanation
@ The Logic of Justification

@ The Logic of Knowledge-Why
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Language:(single-agent)
e=Tlpl-eleAe|Ke|Kunp

Al Classical Propositional Axioms

A2 K(p = ¢) = (K = Ky)

A3 Kuny(p = ¥) = (Kwhyp — Kunyt))
A4 Kpunyp — Ko

A5 Kunyp = KK uwnyp

A6 Kp — KKy

R1 Modus Ponens

R2 by = FKyp
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Basic Epistemic Semantics

Definition (KW-model: M = (W, E,R, E,V) )

W: The set of possible worlds
E: The set of explanations

R: The accessible relation between the worlds in W, R is transitive.

E: E(t,p) C W specifies the set of possible worlds where t is
considered admissible explanation for .
An admissible explanation function &€ must satisfy the
conditions: Vr,s, If weE(r, o — ¥)NE(s, ), then there exists
t such that w €£(t,¢) and v €E(t, ) for all v such that wRv
and v €E(r, = Y)NE(s, p)

V: Atom — P(W)
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Now, we can define the satisfiable relation IF:
o wikT
o wlkpiff we V(p)
o wlik - iff wif
o wiFkp Ay iff wik e and wiF 9
@ wlk Ky iff for each v such that wRy, viF ¢

o wik Kunyp iff (1)3t,w €E(t, ), Vv, wRv,v €E(t,¢) and (2)
Vv, wRy,vIF ¢
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Soundness and Completeness

KW is sound and complete for the class of all KW-models.

Completeness:

To establish completeness, we use standard canonical model
construction. The canonical model M€ = (W<, E°, R°,E€, V) for KW is
defined as follows:

Let Form be the set of all formulas. Define
¥ = {f| f: Form ~ E° fis a partial function}. For each f€ X, f
satisfies the condition as follows: If f{p — 1) = rand f(y) = s,
then there exists t such that f{(¢)) = t.
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o We={(I,f) | (T, f) eMCSXZ, If Cunyp €T, then there exists t
such that f{p) = t}, MCS is the set of all maximal consistent sets in
KW. Following an established tradition, we denote elements of W*

as (', f), (A, g), and so forth;

o (T, HR(A, g) iff for all formulas such as Kynyp € T, flp) = g(v)
and T'# C A, where
I# = {¢ | Kuhyp € TYU {Kunyp | Kunyp € T} U {0 | Kp € T}

° E(t,p) = {(I ) | Kunyp € T, flp) = t}

o Ve(p)={(T,f)|pel}
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§3 Basic Knowledge-Why Logic

Basic Justification Logic Jy(Artemov, 2008)
@ Classical propositional axioms and rule Modus Ponens
0s5:(F5>G —(t:F—>(s-t):G) Application

@ s:F—(s+t): Ft:F—=(s+t): F Sum

Factivity Axiom (t: F — F) is not required in basic Justification Logic

systems.
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Language(single-agent)
e=Tlpl=o|(eNe)| Kunsp

Al Classical Propositional Axioms

A2 Kuny(o = ) = (Kunye = Kwnyt))
A3 Kunyp — ¢

R1 Modus ponens

KW, could be viewed as the correspondence epistemic modal logic
of Justification Logic JoT. (Lo T=J+ T).
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§4 Knowledge-Why Logic (abbr. KW)

F ;:i/m: ! =
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Language(single-agent): ¢ = T | p| =9 [ (¢ A @) | K¢ | Kunyp
Al Classical Propositional Axioms
A2 K(p = ¢) = (Ko = Ky)
A3 Ky (@ = 9) = (Kunyp = Kuny))
Ad Ko —

A5 Kunyp = Ko

A6 Ko — Kun /Ko Rules:
AT =Ko = Kuny~Ke R1: Modus Ponens
A8 Kunyp = KK uwnyp R2: ¢ = FKp

A9 ﬂlCWhyga — IC—JCW;,ygo

A10 K:why((p A 10) A Kwhy@ A K:whyw
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Propositions

(1) K = KKy
(2) =Ky = K-Kyp

(3) Kuny = ¢
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Basic Epistemic Semantics M = (W, E, R, €, V)

W: The set of possible worlds.

E: The set of explanations. E satisfy the closure condition: If s, t € E,
then s-t,s+ te€ E. '€, a special element in E, is called
"introspective explanation’. A possible motivation for considering
such an explanation could be that "¢’ may be well regarded as the

explanation of the formulas such as K¢ or =K.
R: The accessible relation between the worlds in W. R is an
equivalence relation. (i.e. R is reflexive, transitive and symmetry).
£: Admissible explanation function such that £(t, ) C W for any
formula t € E and formula ¢. E(t, ) C W specifies the set of
possible worlds where t is considered as admissible explanation

for .
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An admissible explanation function €& must satisfy the

conditions as follows:

(1) E(s,0 = P)NE(L, ) CE(s- t, 7). This condition states that
whenever s is an admissible explanation for ¢ — % and t is an
admissible explanation for ¢, s- t is an admissible explanation
for 2.

(2) E(t,p A) CE(L 9)NE(L, ).

(3) E(s,p)NE(L,¥) CE(s+ L0 A1)

(4) E(e, ) = W, ¢ is the formula such as K1) or =K.

[V:] The map from the set of atomic formulas to the power set of

the set of possible worlds.

19 /46



Now, we can define the satisfiable relation IF:
o wikT
o wlkpiff we V(p)
o wlik - iff wif
o wiFkp Ay iff wik e and wiF 9
@ wlk Ky iff for each v such that wRy, viF ¢

o wik Kunyp iff (1)3t,w €E(t, ), Vv, wRv,v €E(t,¢) and (2)
Vv, wRy,vIF ¢
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KW is sound and complete for the class of all KW-models.

Ab: Ko — Kun /Loy

Suppose w I K. Since R is transitive, then we have vIF Ky for all

possible worlds v such that wRv. By the condition(4) of £ , for each v
such that wRyv, there exists e € E such that v €€ (e, L¢). Hence
we conclude w I KC,p, K. ]
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A10: ICWhy(QO A ’(ﬂ) — ’CWhy(P A Kwhyu}

Proof.
Suppose w I Ky (@ A 1p). By the definition of I, we have that for all v

such that wRv: (1)vIF ¢ A, (2)there exists t such that v €E(t, o A1).
By the condition(2) of £ , we have v €E(t, p)NE(t,1). Then we
have v €€(t,¢) and v €E(t,¢). We also have viF ¢ and vIF ¢
because of (1). It follows that w ik KCyny and wik Kypy.
Similarly, suppose w ik ¢ and w ik 1), we can prove wlik @ A ¢ by
the condition(3) of £ . O
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The Canonical Model

The canonical model M€ = (W¢, E¢, R°,E€, VF)
o Ef=elplyo-pleto
o We={(T', F) | (T, F) eMCSXP(E x Form), F satisfies the
conditions as follows:
(1) If (s,0 = 4), (t,p) € F, then (s- t, ) € F;

(2) If (t, o A1) € F, then (t,) € Fand (t,9) € F;
(3) If (s,¢) € Fand (t, ) € F, then (s+ t,po A¢) € F;
(4) If ¢ €T and g is the formula such as i) or =1, then

(e,p) € F.
(5) Kuwnyp € T iff there exists t such that (t,¢) € F}.
MCS is the set of all maximal consistent sets in KW, and Form is
the set of all formulas of KW. Following an established tradition, we
denote elements of W< as (T, F), (A, G), and so forth;
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o (I', RYA, G) iff (Vt € E°, (t,p) € Fiff (t,) € G for each formula
¢ such that Kynyp € I', and T# C A, where
D% = {Kunyp | Kunyp € T} U{0 | Kp €T})

° E(t,p) ={(I’, F) [ {t,p) € F}
o Vi(p) ={(l,F) [ pel}
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€ ¢is well-defined. [ € ¢ satisfies
conditions [1}{4] in the
definition of € ©)

We is well-defined. (For any
MCS [, there exists an F such
that F satisfies conditions (1)-
(3] in the definition of W¢.)

Re is an equivalence relation.
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To prove £°€ is well-defined:

(1) Suppose (I', F) €€(s, o — )NE(t, ¢). By the definition of
€€, we have (s, — ), (t,) € F. By the condition(1) of F
in the definition of W<, we have (s- t,¢)) € F. Hence it follows
that (I', F) €€°(s - t,v).

(2) Suppose (I', F) €€¢(t, o A1). By the definition of £€¢, we
have (t, o A1) € F. By the condition(2) of F, we have
(t, ), (t, 1)) € F. Hence it follows that (', F) €€(t, ) and
(T, F) €€¢(t, 1) by the definition of £€. Therefore
(T, F) €€<(t, p)NE(t, ).

(3) Suppose (I', F) €€(s, p)NE(t, 7). By the definition of E£€,
we have (s, @), (t,1)) € F. By the condition(3) of F, we have
(s+t,o AY) € F. Hence (T', F) €E(s+ t,p A1).
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If (T, F)RY(A, G), then Kunyp € T iff Cunyp € A and Ky € T iff
Ky e A.

@ Suppose Ky € I'. By the definition of R°, we have Kynp € A.

@ Suppose Kunyp € A and Kupyp € I'. By the property of MCS, we
have =ICppnyp € I'. By = =Kypyp = K=Kupyp and properties of
MCS, we have K=Kynyp € I'. By the definition of R, we have
—Kuwnyp € A. Contradiction.

@ Suppose Kp € I'. By the axiom Ky — KKy and the property of
MCS, we have that KK € I'. By the definition of R°, we have that
Ky € A.

@ Suppose Ky € A and Ky € I'. By the property of MCS, we have

that —=/Cyp € T'. By the proposition =Ky — K=Ky and the property
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For any MCS T, there exists an F such that F satisfies conditions (1)-(5)
in the definition of WE. (thus WF is not empty.)

Proof.
Suppose I is an arbitrary maximal consistent set. We try to construct F

as follows:

o Fo={(p,0) | Kunyp €TTU{(e,) | p €T and ¢ is the formula
such as KCip or =K}

@ Fi=F U{(s-t,9) | (s, =) € Fo,(t,p) € Fo} U{(t, ) |
(o AY) € R U{(t,Y) | (Lo AY) € Fof U{{s+t o A1) |
(s, ) € Fo,(t,9) € Fo}.

Set ¥ = {F, | n€ N} and F=JX. Obviously, by the construction

of F,(n € N), we have that 3 is monotonous. Bs /46




To prove F is the set that satisfies conditions(1)-(5):

@ Suppose (s, — ), (t,p) € F. By the monotonicity of X, there exists
n € N such that (s, — ), (t,¢) € F,. Thus we have that
(s-t,9) € Foy1 by the construction of F,(n € N). Hence F satisfies
condition (1).

@ Suppose (t, A1) € F. By the monotonicity of X, there exists n € N
such that (t,o Av) € F,. Thus we have that (t, ), (t,¢) € Fpi1
by the construction of F,(n € N). Hence F satisfies condition (2).

@ Suppose (s, @), (t,1)) € F. By the monotonicity of 3, there exists n € N
such that (s, @), (t,%) € F,. Thus we have that
(s+t, o ANp) € Fpypq by the construction of F,(n € N). Hence F

satisfies condition (3).
@ The constructions of F and Fy guarantee that F satisfies condition (4).
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Suppose KCunyp € I'. Then we have that there exists ¢ such that
(¢, ) € F by the construction of Fy and F. On the other direction, we
should show that Vt € E€ and ¢ € T, if (t,) € F, then Kynyp € T'. Since
(t, ) € F, there exists n € N such that (t,¢) € F,. We just need to
show that Vn e N, if (t, ) € Fp, then Kypn,p € I'. Use induction on n.

@ Suppose (t,p) € Fo. If (t,0) € {{¢,¢) | Kunyp € T'}, obviously, we
have KCunyp € T If (t, ) € {{e,¢) | ¢ €T and ¢ is the formula
such as KCyp or =K1}, then we have ¢ € I'. By the properties of
MCS and axioms K¢ — Kun /Cp and Ky — Ky, =Ky, we have
that Kynyp €T

@ Induction Hypothesis: Vt € E€, if (t, ) € F, then Kunp € I'. To
prove that if (t, ) € Fi1, then Ky € I'. Suppose (t, ) € Fiqa.
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o If (t, ) € Fi, by IH, it can be proven.

o If (t,p) € {(s-t,¥) | (5,0 = V) € Fi, (t, ) € F}, then there exists
¥ such that (s, — ¢) € Fg, (t,1)) € Fx. By IH, we have that
Kuny(p = ) € T and Kunyyp € T. It follows that Kunyp € T by
the axiom KCuny (¢ = ¢) = (Kuwhyp = Kunyt0) and the properties of
MCS.

o If (t,) € {(t,p) | (t, o A1) € Fi}, then there exists ¢ such that
(t,o A1) € Fr. By IH, we have that Kyupy (¢ A ) € T It follows
that Kypyp € T' by the axiom Kyny (@ A ¢) <3 Kunyo A Kwnytp and
the properties of MCS.

o If (t,p) € {(t,¥) | (t, o A) € Fi}. This situation is same as above.

o If (t,p) € {(s+t,pAY) | (s,¢) € Fi, (t,¢) € Fi}, then there exists
r,s,7p and x such that t=r+s, o = ¢ A x, (r,)) € Fx and
(s,x) € Fr. By IH, we have that K10 € T' and Kypyx € T'. Hence
we have Kon (b AY) €T (ie. Korowo €T) by the axiom 31/46



Proposition

R< is an equivalence relation.

Proof.

(T, AR(A, G) iff (1) Yt € EC, (t, ) € Fiff (t,) € G for each formula ¢
such that Ky € T, (2) I'# C A, where

I# = {’thy@ | K:Why(P € F} U {90 | IC@ € F})

@ Reflexivity: - Kp — ¢
@ Transitivity: IF Ky — KKCq

@ Symmetry:
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Lemma (Existence Lemma)

For the logic KW and any state (T', F) € WE. If K € T then there is a
state (A, G) € WE such that (T', F)R(A, G) and ¢ € A.

Let A~be {p}U{¢ | Ko e T U{Kun¥ | Kunyyp € T'}.

@ A~ is consistent. Suppose not.
Fow @1 A - A dm ARyt A+ A Kyt — —p.

° |_KW IC(¢1 ARRRA (bm A ’thydjl ARERWA K:Whyd)n) — IC_‘SO
@ Fuw (IC¢1 AN ANKdm A ’C]CWhdel A=A IC’CWhy’g/Jn) — IC—K,O.
It follows that —¢ € I'. Using Dual, it follows that —JEQD € I'. But this

is impossible: T" is an MCS containing l&p. We conclude that A~ is

consistent.
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Let A be any MCS containing A™, such extensions exist by the
Lindenbaum’s Lemma. Let G = F. Obviously, (A, G) satisfies conditions
(1)-(3). We just need to check that (A, G) satisfies conditions (4) and
(5). Suppose ¢ € A and ¢ is the formula such as K1 or =K. We have

two cases as follows:

@ ¢ = Kv: Suppose K € I'. By the property of MCS, we have that
Ky € I'. By the axiom =Ky — K-/t and the property of MCS,
we have that K1y € T'. Hence it follows that =/ € A by the

construction of A. Contradiction.

@ ¢ = —K: Suppose =K1 ¢ I'. By the property of MCS, we have
that Ky € T'. By the axiom K¢ — KK and the property of MCS,
we have that Ky € T'. Hence it follows that ¢ € A by the

construction of A. Contradiction.

Hence we have that ¢ € I. Since G = F, there exists t € EX, (t,¢) € G.

We conclude that G satisfies condition (4).
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For arbitrary Kunp € A
<= Kunyp €T (by the construction of A)
<= There exists t such that (t,¢) € F ((I', F) satisfies condition (5))
<= There exists t such that (t,¢) € G (G=F)

By construction of A and G, we have that ¢ € A and (T, F)R(A, G).

35
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Lemma (Truth Lemma)

For all ¢'s, (T, F) IF ¢ if and only if p € T

Proof.
This is established by standard induction on the complexity of ¢. The

atomic cases are covered by the definition of / I-'. The Boolean induction

steps are standard. Consider the case when ¢ is Kkt for some 9.

<= If Kunyp €T, for all (A, G) such that (I', F)R°(A, G), we have then
Kwhytp € A by the definition of R°. Since = Kypytp — 1, we have
1 € A. By the Induction Hypothesis, (A, G) IF ¢. By the
condition(5) of F in the definition of W*, we have that there exists
t € E° such that (t,7) € F. By the definition of R°, we have that
(t,1)) € G. Hence (A, G) €E€(t, 1)) by the definition of £°€.
Therefore (I', F) IF ICyynya).

—~ K . 2T then bv the condition(8) of W€ we have B6 / 46



§5 Conditional Knowledge-Why Logic (abbr. CKW)

F ;:i/m: ! =
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Language and Axioms

Language(single-agent): ¢ =T | p| —¢ | (¢ A @) | K | Kuny(p, 1)
A1l Classical Propositional Axioms
A2 K(p = 1¢) = (Ko = K)
A3 Kuwny(a, o = 1) = (Kwny(B, 0) = Kwny(a A B,9))
Ad Ko — @
AL Kuny(a, ) = (0 = )
A6 Ko — KKy
A7 =Ky = K-Kyp
A8 I — Ky (T, Ke)
A9 =Ky = Kuny(T, = Ky)
AL0 Kuny(cv, ) = Ky (e, )
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Language and Axioms

All
Al2
Al3
Al4
Alb5

R1

R2

“Kny (@, 0) = KoKy, ¢)

Runy(c, 0 AN) = Ky (@, 0) A Kway(ar, 1)
Kowny(ct; 0) N Kuny(B,1) = Kuny(a A B, 0 A)
Kny(L, ¢)

Ko = B8) = (Kuny(B, ) = Kwny(a, ¢))
Modus Ponens

Fe = FKp
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Semantics

item wlk Kyny(a, ) iff  (1)3t € E,Yv e W, wRy, if vIF a, then v €E(L, ).
(2)Vv e W, wRy, if viF- «, then vIF .
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Soundness

Al5: ’C(Ol — ﬂ) — (Kwhy(ﬁv @) — Kwhy(o‘v 90))

Proof.
Suppose w i K(¢ = ), wikc Kyny (1, x) and viFc ¢ for all v such that

wRv. Since w k. (¢ — 1), we have that vi-c ¢ — ¢ for all v such
that wRv. Then we have that v I, ¢ for all v such that wRv. Since

w ke Ky (¥, ), by the definition of I-c, we therefore have that there
exists t such that v €E(t, x) for all v such that wRv. Hence we have
w ke Kuny (@, X). O

v
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Completeness

We = {(I, F) | (T, F} eMCSxP(E* x Form), F satisfies the conditions as

follows:

(1) If {a,s,0 = 1Y), (B, t, ) € F, then (a A B,s-t, @) € F;

(2) If {a,t,o Ap) € F, then (o, t,0) € Fand (o, t, ) € F;

(3) If {a,s,0) € Fand {(«a, t,9) € F, then (e« A B, s+ t,o A1) € F;
)

(4) If o is an arbitrary formula, ¢ € T and ¢ is the formula such as K

or =K, then (o, e,¢) € F.

(5) Kuny(c, @) € T iff there exists t such that (a, t, ) € F}.
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R (D, HR(A, G iff (1) If Kony(a, ) € T, then (a, t, ) € Fiff
(o, t,p) € G. (2) T# C A, where
T# = {Kuny(0, @) | Kuny(a, ) €T}U{p | Ko €T}).

E Et,p) ={{T,F) | {a,t,p) € FFaeT}
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€ ¢is well-defined. [ € ¢ satisfies
conditions [1}{4] in the
definition of € ©)

We is well-defined. (For any
MCS [, there exists an F such
that F satisfies conditions (1)-
(3] in the definition of W¢.)

Re is an equivalence relation.
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§6 Future Work
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