The Logic of Knowledge-Why (2) Yanjing Wang, Chao Xu Chao Xu Department of Philosophy, Peking University May 5th, 2015 # §1 Background When I say "I know why he comes late.", I must know an explanation, a cause or a reason for why he comes late, not only the event that he comes late. In the other words, I must know the answer to the question "Why did he come late?" - ullet Knowledge-Why is a kind of knowledge such as 'I know why φ '. - Since explanations can often be thought of as answers to why-questions, 'I know why φ ' means 'I know the explanation of φ '. To study the knowledge why, we first need to know what the explanation of φ is. - The main study about the explanation is in the field of scientific explanation, and thus we also study the explanation on the basis of the theory of scientific explanation. # The types of explanations It is the foundation of our study that explanation is an argument. ## §2 Last Presentation - Explanation and Scientific Explanation - The Logic of Justification - The Logic of Knowledge-Why ### Language:(single-agent) $$\varphi = \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \mathcal{K}\varphi \mid \mathcal{K}_{why}\varphi$$ - A1 Classical Propositional Axioms - A2 $\mathcal{K}(\varphi \to \psi) \to (\mathcal{K}\varphi \to \mathcal{K}\psi)$ - A3 $\mathcal{K}_{why}(\varphi \to \psi) \to (\mathcal{K}_{why}\varphi \to \mathcal{K}_{why}\psi)$ - A4 $\mathcal{K}_{why}\varphi \to \mathcal{K}\varphi$ - A5 $\mathcal{K}_{why}\varphi \to \mathcal{K}\mathcal{K}_{why}\varphi$ - A6 $\mathcal{K}\varphi \to \mathcal{K}\mathcal{K}\varphi$ - R1 Modus Ponens - $R2 \vdash \varphi \Rightarrow \vdash \mathcal{K}\varphi$ # Basic Epistemic Semantics ### Definition (KW-model: $\mathcal{M} = (W, E, R, \mathcal{E}, V)$) W: The set of possible worlds E: The set of explanations R: The accessible relation between the worlds in W, R is transitive. \mathcal{E} : $\mathcal{E}(t,\varphi)\subseteq W$ specifies the set of possible worlds where t is considered admissible explanation for φ . An admissible explanation function \mathcal{E} must satisfy the conditions: $\forall r, s$, If $w \in \mathcal{E}(r, \varphi \to \psi) \cap \mathcal{E}(s, \varphi)$, then there exists t such that $w \in \mathcal{E}(t, \psi)$ and $v \in \mathcal{E}(t, \psi)$ for all v such that wRv and $v \in \mathcal{E}(r, \varphi \to \psi) \cap \mathcal{E}(s, \varphi)$ $V: Atom \rightarrow \mathcal{P}(W)$ Now, we can define the satisfiable relation I⊢: - \bullet $w \Vdash \top$ - $w \Vdash p \text{ iff } w \in V(p)$ - $w \Vdash \neg \varphi$ iff $w \not\Vdash \varphi$ - $\bullet \ \ w \Vdash \varphi \wedge \psi \ \text{iff} \ \ w \Vdash \varphi \ \text{and} \ \ w \Vdash \psi$ - $w \Vdash \mathcal{K}\varphi$ iff for each v such that wRv, $v \Vdash \varphi$ - $w \Vdash \mathcal{K}_{why}\varphi$ iff (1) $\exists t, w \in \mathcal{E}(t, \varphi), \forall v, wRv, v \in \mathcal{E}(t, \varphi)$ and (2) $\forall v, wRv, v \vdash \varphi$ ## Soundness and Completeness #### Theorem KW is sound and complete for the class of all KW-models. #### Completeness: To establish completeness, we use standard canonical model construction. The canonical model $\mathcal{M}^c = (W^c, E^c, R^c, \mathcal{E}^c, V^c)$ for KW is defined as follows: Let Form be the set of all formulas. Define $\Sigma = \{f \mid f \colon Form \leadsto E^c, f \text{ is a partial function}\}.$ For each $f \in \Sigma$, f satisfies the condition as follows: If $f(\varphi \to \psi) = r$ and $f(\varphi) = s$, then there exists t such that $f(\psi) = t$. - $W^c = \{\langle \Gamma, f \rangle \mid \langle \Gamma, f \rangle \in \mathsf{MCS} \times \Sigma, \ \mathsf{If} \ \mathcal{K}_{\mathit{why}} \varphi \in \Gamma, \ \mathsf{then} \ \mathsf{there} \ \mathsf{exists} \ t \ \mathsf{such} \ \mathsf{that} \ f(\varphi) = t \}, \ \mathsf{MCS} \ \mathsf{is} \ \mathsf{the} \ \mathsf{set} \ \mathsf{of} \ \mathsf{all} \ \mathsf{maximal} \ \mathsf{consistent} \ \mathsf{sets} \ \mathsf{in} \ \mathsf{KW}. \ \mathsf{Following} \ \mathsf{an} \ \mathsf{established} \ \mathsf{tradition}, \ \mathsf{we} \ \mathsf{denote} \ \mathsf{elements} \ \mathsf{of} \ W^c \ \mathsf{as} \ \langle \Gamma, f \rangle, \langle \Delta, g \rangle, \ \mathsf{and} \ \mathsf{so} \ \mathsf{forth};$ - $\langle \Gamma, f \rangle R^c \langle \Delta, g \rangle$ iff for all formulas such as $\mathcal{K}_{why} \varphi \in \Gamma$, $f(\varphi) = g(\varphi)$ and $\Gamma^\# \subseteq \Delta$, where $\Gamma^\# = \{ \varphi \mid \mathcal{K}_{why} \varphi \in \Gamma \} \cup \{ \mathcal{K}_{why} \varphi \mid \mathcal{K}_{why} \varphi \in \Gamma \} \cup \{ \varphi \mid \mathcal{K} \varphi \in \Gamma \}$ - $\mathcal{E}^{c}(t,\varphi) = \{\langle \Gamma, f \rangle \mid \mathcal{K}_{\textit{why}} \varphi \in \Gamma, f(\varphi) = t \}$ - $V^c(p) = \{\langle \Gamma, f \rangle \mid p \in \Gamma \}$ # §3 Basic Knowledge-Why Logic ### Basic Justification Logic J_0 (Artemov, 2008) - Classical propositional axioms and rule Modus Ponens - $s: (F \rightarrow G) \rightarrow (t: F \rightarrow (s \cdot t): G)$ Application • $s: F \to (s+t): F, t: F \to (s+t): F$ Sum Factivity Axiom $(t: F \to F)$ is not required in basic Justification Logic systems. ### Language(single-agent) $$\varphi = \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \mathcal{K}_{why}\varphi$$ - A1 Classical Propositional Axioms - A2 $\mathcal{K}_{why}(\varphi \to \psi) \to (\mathcal{K}_{why}\varphi \to \mathcal{K}_{why}\psi)$ - A3 $\mathcal{K}_{why}\varphi \rightarrow \varphi$ - R1 Modus ponens KW_0 could be viewed as the correspondence epistemic modal logic of Justification Logic $J_0 T$. $(J_0 T = J_0 + T)$. # §4 Knowledge-Why Logic (abbr. KW) ### Language(single-agent): $\varphi = \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \mathcal{K}\varphi \mid \mathcal{K}_{why}\varphi$ ### A1 Classical Propositional Axioms A2 $$\mathcal{K}(\varphi \to \psi) \to (\mathcal{K}\varphi \to \mathcal{K}\psi)$$ A3 $$\mathcal{K}_{why}(\varphi \to \psi) \to (\mathcal{K}_{why}\varphi \to \mathcal{K}_{why}\psi)$$ A4 $$\mathcal{K}\varphi \to \varphi$$ A5 $$\mathcal{K}_{why}\varphi \to \mathcal{K}\varphi$$ A6 $$\mathcal{K}\varphi \to \mathcal{K}_{why}\mathcal{K}\varphi$$ A7 $$\neg \mathcal{K}\varphi \to \mathcal{K}_{why} \neg \mathcal{K}\varphi$$ A8 $$\mathcal{K}_{why}\varphi \to \mathcal{K}\mathcal{K}_{why}\varphi$$ A9 $$\neg \mathcal{K}_{why} \varphi \rightarrow \mathcal{K} \neg \mathcal{K}_{why} \varphi$$ A10 $$\mathcal{K}_{why}(\varphi \wedge \psi) \leftrightarrow \mathcal{K}_{why}\varphi \wedge \mathcal{K}_{why}\psi$$ R1: Modus Ponens $$R2: \vdash \varphi \Rightarrow \vdash \mathcal{K}\varphi$$ ## Propositions - (1) $\mathcal{K}\varphi \to \mathcal{K}\mathcal{K}\varphi$ (2) $\neg \mathcal{K}\varphi \to \mathcal{K}\neg \mathcal{K}\varphi$ - (3) $\mathcal{K}_{why}\varphi \to \varphi$ # Basic Epistemic Semantics $\mathcal{M} = (W, E, R, \varepsilon, v)$ - W: The set of possible worlds. - E: The set of explanations. E satisfy the closure condition: If $s, t \in E$, then $s \cdot t$, $s + t \in E$. 'e', a special element in E, is called 'introspective explanation'. A possible motivation for considering such an explanation could be that 'e' may be well regarded as the explanation of the formulas such as $\mathcal{K}\varphi$ or $\neg\mathcal{K}\varphi$. - R: The accessible relation between the worlds in W. R is an equivalence relation. (i.e. R is reflexive, transitive and symmetry). - \mathcal{E} : Admissible explanation function such that $\mathcal{E}(t,\varphi)\subseteq W$ for any formula $t \in E$ and formula φ . $\mathcal{E}(t,\varphi) \subseteq W$ specifies the set of possible worlds where t is considered as admissible explanation for φ . 4 D > 4 A > 4 B > 4 B > B An admissible explanation function $\, \mathcal{E} \,$ must satisfy the conditions as follows: - (1) $\mathcal{E}(s,\varphi \to \psi) \cap \mathcal{E}(t,\varphi) \subseteq \mathcal{E}(s\cdot t,\psi)$. This condition states that whenever s is an admissible explanation for $\varphi \to \psi$ and t is an admissible explanation for φ , $s\cdot t$ is an admissible explanation for ψ . - (2) $\mathcal{E}(t, \varphi \wedge \psi) \subseteq \mathcal{E}(t, \varphi) \cap \mathcal{E}(t, \psi)$. - (3) $\mathcal{E}(s,\varphi) \cap \mathcal{E}(t,\psi) \subseteq \mathcal{E}(s+t,\varphi \wedge \psi)$ - (4) $\mathcal{E}(e,\varphi) = W, \varphi$ is the formula such as $\mathcal{K}\psi$ or $\neg \mathcal{K}\psi$. - [V:] The map from the set of atomic formulas to the power set of the set of possible worlds. Now, we can define the satisfiable relation \Vdash : - \bullet $w \Vdash \top$ - $w \Vdash p \text{ iff } w \in V(p)$ - $\bullet \ \ w \Vdash \neg \varphi \ \text{iff} \ w \not\Vdash \varphi$ - $\bullet \ \ w \Vdash \varphi \wedge \psi \ \text{iff} \ \ w \Vdash \varphi \ \text{and} \ \ w \Vdash \psi$ - $w \Vdash \mathcal{K}\varphi$ iff for each v such that wRv, $v \Vdash \varphi$ - $w \Vdash \mathcal{K}_{why}\varphi$ iff (1) $\exists t, w \in \mathcal{E}(t, \varphi), \forall v, wRv, v \in \mathcal{E}(t, \varphi)$ and (2) $\forall v, wRv, v \vdash \varphi$ #### Theorem KW is sound and complete for the class of all KW-models. A6: $\mathcal{K}\varphi \to \mathcal{K}_{why}\mathcal{K}\varphi$ #### Proof. Suppose $w \Vdash \mathcal{K}\varphi$. Since R is transitive, then we have $v \Vdash \mathcal{K}\varphi$ for all possible worlds v such that wRv. By the condition(4) of \mathcal{E} , for each v such that wRv, there exists $e \in E$ such that $v \in \mathcal{E}(e, \mathcal{K}\varphi)$. Hence we conclude $w \Vdash \mathcal{K}_{why}\mathcal{K}\varphi$. A10: $\mathcal{K}_{\textit{why}}(\varphi \wedge \psi) \leftrightarrow \mathcal{K}_{\textit{why}}\varphi \wedge \mathcal{K}_{\textit{why}}\psi$ #### Proof. Suppose $w \Vdash \mathcal{K}_{why}(\varphi \land \psi)$. By the definition of \Vdash , we have that for all v such that wRv: $(1)v \Vdash \varphi \land \psi$. (2)there exists t such that $v \in \mathcal{E}(t, \varphi \land \psi)$. By the condition(2) of \mathcal{E} , we have $v \in \mathcal{E}(t, \varphi) \cap \mathcal{E}(t, \psi)$. Then we have $v \in \mathcal{E}(t, \varphi)$ and $v \in \mathcal{E}(t, \psi)$. We also have $v \Vdash \varphi$ and $v \Vdash \psi$ because of (1). It follows that $w \Vdash \mathcal{K}_{why}\varphi$ and $w \Vdash \mathcal{K}_{why}\psi$. Similarly, suppose $w \Vdash \varphi$ and $w \Vdash \psi$, we can prove $w \Vdash \varphi \land \psi$ by the condition(3) of \mathcal{E} . The canonical model $\mathcal{M}^c = (W^c, E^c, R^c, \mathcal{E}^c, V^c)$ - $E^c = e | \varphi | \varphi \cdot \varphi | \varphi + \varphi$. - $W^c = \{\langle \Gamma, F \rangle \mid \langle \Gamma, F \rangle \in MCS \times \mathcal{P}(E^c \times Form), F \text{ satisfies the conditions as follows:}$ - (1) If $\langle s, \varphi \to \psi \rangle$, $\langle t, \varphi \rangle \in F$, then $\langle s \cdot t, \varphi \rangle \in F$; - (2) If $\langle t, \varphi \wedge \psi \rangle \in F$, then $\langle t, \varphi \rangle \in F$ and $\langle t, \psi \rangle \in F$; - (3) If $\langle s, \varphi \rangle \in F$ and $\langle t, \psi \rangle \in F$, then $\langle s + t, \varphi \wedge \psi \rangle \in F$; - (4) If $\varphi \in \Gamma$ and φ is the formula such as $\mathcal{K}\psi$ or $\neg \mathcal{K}\psi$, then $\langle e, \varphi \rangle \in \mathcal{F}$. - (5) $\mathcal{K}_{why}\varphi \in \Gamma$ iff there exists t such that $\langle t, \varphi \rangle \in F$. MCS is the set of all maximal consistent sets in KW, and *Form* is the set of all formulas of KW. Following an established tradition, we denote elements of W^c as $\langle \Gamma, F \rangle$, $\langle \Delta, G \rangle$, and so forth; - $\langle \Gamma, F \rangle R^c \langle \Delta, G \rangle$ iff $(\forall t \in E^c, \langle t, \varphi \rangle \in F \text{ iff } \langle t, \varphi \rangle \in G \text{ for each formula}$ φ such that $\mathcal{K}_{why} \varphi \in \Gamma$, and $\Gamma^\# \subseteq \Delta$, where $\Gamma^\# = \{\mathcal{K}_{why} \varphi \mid \mathcal{K}_{why} \varphi \in \Gamma\} \cup \{\varphi \mid \mathcal{K} \varphi \in \Gamma\})$ - $\mathcal{E}^{c}(t,\varphi) = \{\langle \Gamma, F \rangle \mid \langle t, \varphi \rangle \in F \}$ - $V^c(p) = \{\langle \Gamma, F \rangle \mid p \in \Gamma \}$ ε ° is well-defined. (ε ° satisfies conditions (1)-(4) in the definition of ε °.) W^{c} is well-defined. (For any MCS Γ , there exists an F such that F satisfies conditions [1]-[5] in the definition of W^{c} .) R° is an equivalence relation. To prove \mathcal{E}^c is well-defined: - (1) Suppose $\langle \Gamma, F \rangle \in \mathcal{E}^c(s, \varphi \to \psi) \cap \mathcal{E}^c(t, \varphi)$. By the definition of \mathcal{E}^c , we have $\langle s, \varphi \to \psi \rangle, \langle t, \varphi \rangle \in F$. By the condition(1) of F in the definition of W^c , we have $\langle s \cdot t, \psi \rangle \in F$. Hence it follows that $\langle \Gamma, F \rangle \in \mathcal{E}^c(s \cdot t, \psi)$. - (2) Suppose $\langle \Gamma, F \rangle \in \mathcal{E}^c(t, \varphi \wedge \psi)$. By the definition of \mathcal{E}^c , we have $\langle t, \varphi \wedge \psi \rangle \in F$. By the condition(2) of F, we have $\langle t, \varphi \rangle, \langle t, \psi \rangle \in F$. Hence it follows that $\langle \Gamma, F \rangle \in \mathcal{E}^c \langle t, \varphi \rangle$ and $\langle \Gamma, F \rangle \in \mathcal{E}^c(t, \psi)$ by the definition of \mathcal{E}^c . Therefore $\langle \Gamma, F \rangle \in \mathcal{E}^c(t, \varphi) \cap \mathcal{E}^c(t, \psi)$. - (3) Suppose $\langle \Gamma, F \rangle \in \mathcal{E}^c(s, \varphi) \cap \mathcal{E}^c(t, \psi)$. By the definition of \mathcal{E}^c , we have $\langle s, \varphi \rangle, \langle t, \psi \rangle \in F$. By the condition(3) of F, we have $\langle s + t, \varphi \wedge \psi \rangle \in F$. Hence $\langle \Gamma, F \rangle \in \mathcal{E}^c(s + t, \varphi \wedge \psi)$. #### Proposition If $\langle \Gamma, F \rangle R^c \langle \Delta, G \rangle$, then $\mathcal{K}_{why} \varphi \in \Gamma$ iff $\mathcal{K}_{why} \varphi \in \Delta$ and $\mathcal{K} \varphi \in \Gamma$ iff $\mathcal{K} \varphi \in \Delta$. ### Proof. - Suppose $\mathcal{K}_{why}\varphi \in \Gamma$. By the definition of R^c , we have $\mathcal{K}_{why}\varphi \in \Delta$. - Suppose $\mathcal{K}_{why}\varphi \in \Delta$ and $\mathcal{K}_{why}\varphi \notin \Gamma$. By the property of MCS, we have $\neg \mathcal{K}_{why}\varphi \in \Gamma$. By $\vdash \neg \mathcal{K}_{why}\varphi \to \mathcal{K} \neg \mathcal{K}_{why}\varphi$ and properties of MCS, we have $\mathcal{K} \neg \mathcal{K}_{why}\varphi \in \Gamma$. By the definition of R^c , we have $\neg \mathcal{K}_{why}\varphi \in \Delta$. Contradiction. - Suppose $\mathcal{K}\varphi\in\Gamma$. By the axiom $\mathcal{K}\varphi\to\mathcal{K}\mathcal{K}\varphi$ and the property of MCS, we have that $\mathcal{K}\mathcal{K}\varphi\in\Gamma$. By the definition of R^c , we have that $\mathcal{K}\varphi\in\Delta$. - Suppose $\mathcal{K}\varphi \in \Delta$ and $\mathcal{K}\varphi \notin \Gamma$. By the property of MCS, we have that $\neg \mathcal{K}\varphi \in \Gamma$. By the proposition $\neg \mathcal{K}\varphi \to \mathcal{K}\neg \mathcal{K}\varphi$ and the property #### **Proposition** For any MCS Γ , there exists an F such that F satisfies conditions (1)-(5) in the definition of W^c . (thus W^c is not empty.) ### Proof. Suppose Γ is an arbitrary maximal consistent set. We try to construct ${\it F}$ as follows: - $F_0 = \{ \langle \varphi, \varphi \rangle \mid \mathcal{K}_{why} \varphi \in \Gamma \} \cup \{ \langle e, \varphi \rangle \mid \varphi \in \Gamma \text{ and } \varphi \text{ is the formula }$ such as $\mathcal{K} \psi$ or $\neg \mathcal{K} \psi \}$. - $F_1 = F_0 \cup \{\langle s \cdot t, \psi \rangle \mid \langle s, \varphi \to \psi \rangle \in F_0, \langle t, \varphi \rangle \in F_0\} \cup \{\langle t, \varphi \rangle \mid \langle t, \varphi \wedge \psi \rangle \in F_0\} \cup \{\langle t, \psi \rangle \mid \langle t, \varphi \wedge \psi \rangle \in F_0\} \cup \{\langle s + t, \varphi \wedge \psi \rangle \mid \langle s, \varphi \rangle \in F_0, \langle t, \psi \rangle \in F_0\}.$ - • Set $\Sigma = \{F_n \mid n \in N\}$ and $F = \bigcup \Sigma$. Obviously, by the construction of $F_n(n \in N)$, we have that Σ is monotonous. To prove F is the set that satisfies conditions(1)-(5): - Suppose $\langle s, \varphi \to \psi \rangle$, $\langle t, \varphi \rangle \in F$. By the monotonicity of Σ , there exists $n \in \mathbb{N}$ such that $\langle s, \varphi \to \psi \rangle$, $\langle t, \varphi \rangle \in F_n$. Thus we have that $\langle s \cdot t, \psi \rangle \in F_{n+1}$ by the construction of $F_n(n \in \mathbb{N})$. Hence F satisfies condition (1). - Suppose $\langle t, \varphi \wedge \psi \rangle \in F$. By the monotonicity of Σ , there exists $n \in N$ such that $\langle t, \varphi \wedge \psi \rangle \in F_n$. Thus we have that $\langle t, \varphi \rangle, \langle t, \psi \rangle \in F_{n+1}$ by the construction of $F_n(n \in N)$. Hence F satisfies condition (2). - Suppose $\langle s, \varphi \rangle$, $\langle t, \psi \rangle \in F$. By the monotonicity of Σ , there exists $n \in N$ such that $\langle s, \varphi \rangle$, $\langle t, \psi \rangle \in F_n$. Thus we have that $\langle s + t, \varphi \wedge \psi \rangle \in F_{n+1}$ by the construction of $F_n(n \in N)$. Hence F satisfies condition (3). - The constructions of F and F_0 guarantee that F satisfies condition (4). Suppose $\mathcal{K}_{why}\varphi\in\Gamma$. Then we have that there exists φ such that $\langle \varphi,\varphi\rangle\in F$ by the construction of F_0 and F. On the other direction, we should show that $\forall t\in E^c$ and $\varphi\in\Gamma$, if $\langle t,\varphi\rangle\in F$, then $\mathcal{K}_{why}\varphi\in\Gamma$. Since $\langle t,\varphi\rangle\in F$, there exists $n\in N$ such that $\langle t,\varphi\rangle\in F_n$. We just need to show that $\forall n\in N$, if $\langle t,\varphi\rangle\in F_n$, then $\mathcal{K}_{why}\varphi\in\Gamma$. Use induction on n. - Suppose $\langle t, \varphi \rangle \in F_0$. If $\langle t, \varphi \rangle \in \{ \langle \varphi, \varphi \rangle \mid \mathcal{K}_{why}\varphi \in \Gamma \}$, obviously, we have $\mathcal{K}_{why}\varphi \in \Gamma$. If $\langle t, \varphi \rangle \in \{ \langle e, \varphi \rangle \mid \varphi \in \Gamma \text{ and } \varphi \text{ is the formula}$ such as $\mathcal{K}\psi$ or $\neg \mathcal{K}\psi \}$, then we have $\varphi \in \Gamma$. By the properties of MCS and axioms $\mathcal{K}\varphi \to \mathcal{K}_{why}\mathcal{K}\varphi$ and $\neg \mathcal{K}\varphi \to \mathcal{K}_{why}\neg \mathcal{K}\varphi$, we have that $\mathcal{K}_{why}\varphi \in \Gamma$. - Induction Hypothesis: $\forall t \in E^c$, if $\langle t, \varphi \rangle \in F_k$, then $\mathcal{K}_{why}\varphi \in \Gamma$. To prove that if $\langle t, \varphi \rangle \in F_{k+1}$, then $\mathcal{K}_{why}\varphi \in \Gamma$. Suppose $\langle t, \varphi \rangle \in F_{k+1}$. - If $\langle t, \varphi \rangle \in F_k$, by IH, it can be proven. - If $\langle t, \varphi \rangle \in \{ \langle s \cdot t, \psi \rangle \mid \langle s, \varphi \to \psi \rangle \in F_k, \langle t, \varphi \rangle \in F_k \}$, then there exists ψ such that $\langle s, \psi \to \varphi \rangle \in F_k, \langle t, \psi \rangle \in F_k$. By IH, we have that $\mathcal{K}_{\textit{why}}(\psi \to \varphi) \in \Gamma$ and $\mathcal{K}_{\textit{why}}\psi \in \Gamma$. It follows that $\mathcal{K}_{\textit{why}}\varphi \in \Gamma$ by the axiom $\mathcal{K}_{\textit{why}}(\varphi \to \psi) \to (\mathcal{K}_{\textit{why}}\varphi \to \mathcal{K}_{\textit{why}}\psi)$ and the properties of MCS. - If $\langle t, \varphi \rangle \in \{ \langle t, \varphi \rangle \mid \langle t, \varphi \wedge \psi \rangle \in F_k \}$, then there exists ψ such that $\langle t, \varphi \wedge \psi \rangle \in F_k$. By IH, we have that $\mathcal{K}_{why}(\varphi \wedge \psi) \in \Gamma$. It follows that $\mathcal{K}_{why}\varphi \in \Gamma$ by the axiom $\mathcal{K}_{why}(\varphi \wedge \psi) \leftrightarrow \mathcal{K}_{why}\varphi \wedge \mathcal{K}_{why}\psi$ and the properties of MCS. - If $\langle t, \varphi \rangle \in \{ \langle t, \psi \rangle \mid \langle t, \varphi \wedge \psi \rangle \in F_k \}$. This situation is same as above. - If $\langle t, \varphi \rangle \in \{ \langle s+t, \varphi \wedge \psi \rangle \mid \langle s, \varphi \rangle \in F_k, \langle t, \psi \rangle \in F_k \}$, then there exists r, s, ψ and χ such that t = r + s, $\varphi = \psi \wedge \chi, \langle r, \psi \rangle \in F_k$ and $\langle s, \chi \rangle \in F_k$. By IH, we have that $\mathcal{K}_{why}\psi \in \Gamma$ and $\mathcal{K}_{why}\chi \in \Gamma$. Hence we have $\mathcal{K}_{whv}(\psi \wedge \chi) \in \Gamma$ (i.e. $\mathcal{K}_{whv}\varphi \in \Gamma$) by the axiom ### Proposition R^c is an equivalence relation. #### Proof. $\langle \Gamma, F \rangle R^c \langle \Delta, G \rangle$ iff (1) $\forall t \in E^c, \langle t, \varphi \rangle \in F$ iff $\langle t, \varphi \rangle \in G$ for each formula φ such that $\mathcal{K}_{why} \varphi \in \Gamma$, (2) $\Gamma^\# \subseteq \Delta$, where $$\Gamma^{\#} = \{\mathcal{K}_{\textit{why}}\varphi \mid \mathcal{K}_{\textit{why}}\varphi \in \Gamma\} \cup \{\varphi \mid \mathcal{K}\varphi \in \Gamma\})$$ - Reflexivity: $\vdash \mathcal{K}\varphi \to \varphi$ - Transitivity: $\Vdash \mathcal{K}\psi \to \mathcal{K}\mathcal{K}\psi$ - Symmetry: ### Lemma (Existence Lemma) For the logic KW and any state $\langle \Gamma, F \rangle \in W^c$. If $\widehat{\mathcal{K}}\varphi \in \Gamma$ then there is a state $\langle \Delta, G \rangle \in W^c$ such that $\langle \Gamma, F \rangle R^c \langle \Delta, G \rangle$ and $\varphi \in \Delta$. - Let Δ^- be $\{\varphi\} \cup \{\phi \mid \mathcal{K}\phi \in \Gamma\} \cup \{\mathcal{K}_{\textit{why}}\psi \mid \mathcal{K}_{\textit{why}}\psi \in \Gamma\}.$ - Δ^- is consistent. Suppose not. $\vdash_{\mathit{KW}} \phi_1 \wedge \cdots \wedge \phi_m \wedge \mathcal{K}_{\mathit{why}} \psi_1 \wedge \cdots \wedge \mathcal{K}_{\mathit{why}} \psi_n \rightarrow \neg \varphi$. - $\bullet \vdash_{\mathit{KW}} \mathcal{K}(\phi_1 \land \cdots \land \phi_m \land \mathcal{K}_{\mathit{why}} \psi_1 \land \cdots \land \mathcal{K}_{\mathit{why}} \psi_n) \rightarrow \mathcal{K} \neg \varphi$ - $\vdash_{\mathit{KW}} (\mathcal{K}\phi_1 \land \cdots \land \mathcal{K}\phi_m \land \mathcal{K}\mathcal{K}_{\mathsf{why}}\psi_1 \land \cdots \land \mathcal{K}\mathcal{K}_{\mathsf{why}}\psi_n) \to \mathcal{K} \neg \varphi$. It follows that $\mathcal{K} \neg \varphi \in \Gamma$. Using Dual, it follows that $\neg \widehat{\mathcal{K}} \varphi \in \Gamma$. But this is impossible: Γ is an MCS containing $\widehat{\mathcal{K}} \varphi$. We conclude that Δ^- is consistent. Let Δ be any MCS containing Δ^- , such extensions exist by the Lindenbaum's Lemma. Let G=F. Obviously, $\langle \Delta, G \rangle$ satisfies conditions (1)-(3). We just need to check that $\langle \Delta, G \rangle$ satisfies conditions (4) and (5). Suppose $\varphi \in \Delta$ and φ is the formula such as $\mathcal{K}\psi$ or $\neg \mathcal{K}\psi$. We have two cases as follows: - $\varphi = \mathcal{K}\psi$: Suppose $\mathcal{K}\psi \not\in \Gamma$. By the property of MCS, we have that $\neg \mathcal{K}\psi \in \Gamma$. By the axiom $\neg \mathcal{K}\psi \to \mathcal{K}\neg \mathcal{K}\psi$ and the property of MCS, we have that $\mathcal{K}\neg \mathcal{K}\psi \in \Gamma$. Hence it follows that $\neg \mathcal{K}\psi \in \Delta$ by the construction of Δ . Contradiction. - $\varphi = \neg \mathcal{K}\psi$: Suppose $\neg \mathcal{K}\psi \not\in \Gamma$. By the property of MCS, we have that $\mathcal{K}\psi \in \Gamma$. By the axiom $\mathcal{K}\psi \to \mathcal{K}\mathcal{K}\psi$ and the property of MCS, we have that $\mathcal{K}\mathcal{K}\psi \in \Gamma$. Hence it follows that $\mathcal{K}\psi \in \Delta$ by the construction of Δ . Contradiction. Hence we have that $\varphi \in \Gamma$. Since G = F, there exists $t \in E^c$, $\langle t, \varphi \rangle \in G$. We conclude that G satisfies condition (4). For arbitrary $\mathcal{K}_{whv}\varphi \in \Delta$ $\iff \mathcal{K}_{\textit{why}} \varphi \in \Gamma \text{ (by the construction of } \Delta \text{)}$ \iff There exists t such that $\langle t, \varphi \rangle \in F(\langle \Gamma, F \rangle)$ satisfies condition (5) \iff There exists t such that $\langle t, \varphi \rangle \in G$ (G=F) By construction of Δ and G, we have that $\varphi \in \Delta$ and $\langle \Gamma, F \rangle R^c \langle \Delta, G \rangle$. #### Lemma (Truth Lemma) For all φ' s, $\langle \Gamma, F \rangle \Vdash \varphi$ if and only if $\varphi \in \Gamma$ ### Proof. This is established by standard induction on the complexity of φ . The atomic cases are covered by the definition of $' \Vdash'$. The Boolean induction steps are standard. Consider the case when φ is $\mathcal{K}_{whv}\psi$ for some ψ . \Leftarrow If $\mathcal{K}_{why}\psi \in \Gamma$, for all $\langle \Delta, G \rangle$ such that $\langle \Gamma, F \rangle R^c \langle \Delta, G \rangle$, we have then $\mathcal{K}_{why}\psi \in \Delta$ by the definition of R^c . Since $\vdash \mathcal{K}_{why}\psi \to \psi$, we have $\psi \in \Delta$. By the Induction Hypothesis, $\langle \Delta, G \rangle \Vdash \psi$. By the condition(5) of F in the definition of W^c , we have that there exists $t \in E^c$ such that $\langle t, \psi \rangle \in F$. By the definition of R^c , we have that $\langle t, \psi \rangle \in G$. Hence $\langle \Delta, G \rangle \in \mathcal{E}^c(t, \psi)$ by the definition of \mathcal{E}^c . Therefore $\langle \Gamma, F \rangle \Vdash \mathcal{K}_{whv}\psi$. \Rightarrow If $K_{min} \neq \Gamma$ then by the condition (5) of W^c we have # §5 Conditional Knowledge-Why Logic (abbr. CKW) ### Language and Axioms Language(single-agent): $\varphi = \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \mathcal{K}\varphi \mid \mathcal{K}_{why}(\varphi, \psi)$ - A1 Classical Propositional Axioms - A2 $\mathcal{K}(\varphi \to \psi) \to (\mathcal{K}\varphi \to \mathcal{K}\psi)$ - A3 $\mathcal{K}_{\textit{why}}(\alpha, \varphi \to \psi) \to (\mathcal{K}_{\textit{why}}(\beta, \varphi) \to \mathcal{K}_{\textit{why}}(\alpha \land \beta, \psi))$ - A4 $\mathcal{K}\varphi \to \varphi$ - A5 $\mathcal{K}_{why}(\alpha, \varphi) \to (\alpha \to \varphi)$ - A6 $\mathcal{K}\varphi \to \mathcal{K}\mathcal{K}\varphi$ - A7 $\neg \mathcal{K}\varphi \to \mathcal{K}\neg \mathcal{K}\varphi$ - A8 $\mathcal{K}\varphi \to \mathcal{K}_{why}(\top, \mathcal{K}\varphi)$ - A9 $\neg \mathcal{K}\varphi \to \mathcal{K}_{whv}(\top, \neg \mathcal{K}\varphi)$ - A10 $\mathcal{K}_{why}(\alpha, \varphi) \to \mathcal{K}\mathcal{K}_{why}(\alpha, \varphi)$ ## Language and Axioms A11 $$\neg \mathcal{K}_{why}(\alpha, \varphi) \to \mathcal{K} \neg \mathcal{K}_{why}(\alpha, \varphi)$$ A12 $$\mathcal{K}_{why}(\alpha, \varphi \wedge \psi) \to \mathcal{K}_{why}(\alpha, \varphi) \wedge \mathcal{K}_{why}(\alpha, \psi)$$ A13 $$\mathcal{K}_{why}(\alpha, \varphi) \wedge \mathcal{K}_{why}(\beta, \psi) \rightarrow \mathcal{K}_{why}(\alpha \wedge \beta, \varphi \wedge \psi)$$ A14 $$\mathcal{K}_{why}(\perp, \varphi)$$ A15 $$\mathcal{K}(\alpha \to \beta) \to (\mathcal{K}_{\textit{why}}(\beta, \varphi) \to \mathcal{K}_{\textit{why}}(\alpha, \varphi))$$ R1 Modus Ponens $$R2 \vdash \varphi \Rightarrow \vdash \mathcal{K}\varphi$$ #### **Semantics** item $w \Vdash \mathcal{K}_{why}(\alpha, \varphi)$ iff $(1)\exists t \in E, \forall v \in W, wRv, \text{ if } v \Vdash \alpha, \text{ then } v \in \mathcal{E}(t, \varphi).$ $(2)\forall v \in W, wRv, \text{ if } v \Vdash \alpha, \text{ then } v \vdash \varphi.$ #### Soundness A15: $$\mathcal{K}(\alpha \to \beta) \to (\mathcal{K}_{why}(\beta, \varphi) \to \mathcal{K}_{why}(\alpha, \varphi))$$ #### Proof. Suppose $w \Vdash_c \mathcal{K}(\varphi \to \psi)$, $w \Vdash_c \mathcal{K}_{why}(\psi, \chi)$ and $v \Vdash_c \varphi$ for all v such that wRv. Since $w \Vdash_c \mathcal{K}(\varphi \to \psi)$, we have that $v \Vdash_c \varphi \to \psi$ for all v such that wRv. Then we have that $v \Vdash_c \psi$ for all v such that wRv. Since $w \Vdash_c \mathcal{K}_{why}(\psi, \chi)$, by the definition of \Vdash_c , we therefore have that there exists t such that $v \in \mathcal{E}(t, \chi)$ for all v such that wRv. Hence we have $w \Vdash_c \mathcal{K}_{whv}(\varphi, \chi)$. ### Completeness $W^c = \{\langle \Gamma, F \rangle \mid \langle \Gamma, F \rangle \in MCS \times \mathcal{P}(E^c \times Form), F \text{ satisfies the conditions as follows:}$ - (1) If $\langle \alpha, s, \varphi \to \psi \rangle$, $\langle \beta, t, \varphi \rangle \in F$, then $\langle \alpha \land \beta, s \cdot t, \varphi \rangle \in F$; - (2) If $\langle \alpha, t, \varphi \wedge \psi \rangle \in F$, then $\langle \alpha, t, \varphi \rangle \in F$ and $\langle \alpha, t, \psi \rangle \in F$; - (3) If $\langle \alpha, s, \varphi \rangle \in F$ and $\langle \alpha, t, \psi \rangle \in F$, then $\langle \alpha \wedge \beta, s + t, \varphi \wedge \psi \rangle \in F$; - (4) If α is an arbitrary formula, $\varphi \in \Gamma$ and φ is the formula such as $\mathcal{K}\psi$ or $\neg \mathcal{K}\psi$, then $\langle \alpha, \mathbf{e}, \varphi \rangle \in \mathcal{F}$. - (5) $\mathcal{K}_{why}(\alpha, \varphi) \in \Gamma$ iff there exists t such that $\langle \alpha, t, \varphi \rangle \in F$. $$\begin{array}{l} \mathcal{R}^{c} \ \left\langle \Gamma, \mathit{F} \right\rangle \mathit{R}^{c} \left\langle \Delta, \mathit{G} \right\rangle \ \mathrm{iff} \ (1) \ \mathrm{If} \ \mathcal{K}_{\mathit{why}}(\alpha, \varphi) \in \Gamma, \ \mathrm{then} \ \left\langle \alpha, t, \varphi \right\rangle \in \mathit{F} \ \mathrm{iff} \\ \left\langle \alpha, t, \varphi \right\rangle \in \mathit{G}. \ (2) \ \Gamma^{\#} \subseteq \Delta, \ \mathrm{where} \\ \Gamma^{\#} = \left\{ \mathcal{K}_{\mathit{why}}(\alpha, \varphi) \mid \mathcal{K}_{\mathit{why}}(\alpha, \varphi) \in \Gamma \right\} \cup \left\{ \varphi \mid \mathcal{K}\varphi \in \Gamma \right\} \right). \end{array}$$ $$\mathcal{E} \quad \mathcal{E}^{c}(t,\varphi) = \{ \langle \Gamma, F \rangle \mid \langle \alpha, t, \varphi \rangle \in F, \alpha \in \Gamma \}$$ ε ° is well-defined. (ε ° satisfies conditions (1)-(4) in the definition of ε °.) W^c is well-defined. (For any MCS Γ , there exists an F such that F satisfies conditions [1]-[5] in the definition of W^c .) R° is an equivalence relation. ### §6 Future Work $[1]\ [2]\ [3]\ [4]\ [5]\ [6]\ [7]\ [8]\ [9]\ [10]\ [11]\ [12]\ [13]\ [15]\ [16]\ [14]\ [17]\ [18]\ [19]\ [20]\ [21]\ [22]\ [23]\ [24]$ ### Reference I - Artemov, S. (2008). The logic of justification. The Review of Symbolic Logic, 1(04):477–513. - [2] Balashov, Y. and Rosenberg, A. (2002). *Philosophy of science:* contemporary readings. Psychology Press. - [3] Bromberger, S. (1966). Questions. *The Journal of Philosophy*, pages 597–606. - [4] Colwell, G. (1996). Why-questions, determinism and circular reasoning. *Argumentation*, 10(1):1–24. - [5] Crawford, D. D. (1980). The cosmological argument, sufficient reason, and why-questions. *International Journal for Philosophy of Religion*, 11(2):111–122. ### Reference II - [6] Cross, C. B. (1991). Explanation and the theory of questions. *Erkenntnis*, 34(2):237–260. - [7] Faye, J. (1999). Explanation explained. Synthese, 120(1):61–75. - [8] Fitting, M. (2005). The logic of proofs, semantically. *Annals of Pure and Applied Logic*, 132(1):1–25. - [9] Gabbay, D. M., Guenthner, F., and Guenthner, F. (2002). Handbook of philosophical logic. - [10] Gardenfors, P. (1980). A pragmatic approach to explanations. Philosophy of science, pages 404–423. - [11] Halonen, I. and Hintikka, J. (2005). Toward a theory of the process of explanation. *Synthese*, 143(1):5–61. #### Reference III - [12] Hempel, C. G. and Oppenheim, P. (1948). Studies in the logic of explanation. *Philosophy of science*, pages 135–175. - [13] Hintikka, J. and Halonen, I. (1995). Semantics and pragmatics for why-questions. The Journal of Philosophy, pages 636–657. - [14] Jaworski, W. (2009). The logic of how-questions. Synthese, 166(1):133–155. - [15] Kitcher, P. (1989). Explanatory unification and the causal structure of the world. Scientific explanation, 13:410–505. - [16] Koura, A. (1988). An approach to why-questions. *Synthese*, 74(2):191–206. ### Reference IV - [17] Laland, K. N., Odling-Smee, J., Hoppitt, W., and Uller, T. (2013). More on how and why: cause and effect in biology revisited. *Biology & Philosophy*, 28(5):719–745. - [18] Lange, M. (2013). What makes a scientific explanation distinctively mathematical? The British Journal for the Philosophy of Science, 64(3):485–511. - [19] Markwick, P. (1999). Interrogatives and contrasts in explanation theory. *Philosophical studies*, 96(2):183–204. - [20] Nogina, E. (2014). On logic of formal provability and explicit proofs. arXiv preprint arXiv:1405.2559. ### Reference V - [21] Sandborg, D. (1998). Mathematical explanation and the theory of why-questions. The British Journal for the Philosophy of Science, 49(4):603–624. - [22] Sintonen, M. (1984). On the logic of why-questions. In PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, pages 168–176. JSTOR. - [23] Székely, G. (2011). On why-questions in physics. Springer. - [24] Weber, E., Van Bouwel, J., and De Vreese, L. (2013). *Scientific explanation*. Springer.