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Introduction



Background

Johan van Benthem developed a kind of modal logic, called
Sabotage modal logic (SML) in [5]. SML expands the standard modal
language with an edge-deletion modality ♦ϕ whose intended
reading is “after the deletion of at least one edge in the frame it
holds that ϕ”. This logic is related to the sabotage game which is
discussed in [2] and [4] .
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Background

The diagram below is from [5] to give a instance for SML.
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Background

• There have been some technical results about this kind of
modal logic.

• First from Christof Löding and Philipp Rohde’s work in [3] we
know that this logic is not decidable and does not have the finite
model property. But in those proofs it seems that the language
has to be binary or ternary, which may not be essential.

• Secondly, Guillaume Aucher, Johan van Benthem, and Davide
Grossi show that SML has a complete axiomatization in [1]. But
their system is a tableau, which seems directly from the
semantics and has less intuitions than Hilbert-style systems.
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Background

Here is an instance for that SML does not have the finite model
property.
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Background

The following is a deduction example of the tableau system.
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Goals

• First we will consider an example in unary language which
shows that SML does not have finite model property.

• Another aim of our paper is to find a Hilbert-style proof system,
which may give more light on our intuition for this logic, and
discuss some problems about the completeness.

• Finally we show that the expressivity between SML and GML is
incomparable.
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Preliminaries



Syntax

• Let Σ be an index set. The sabotage modal language is defined
using proposition letters and two kinds of modal operators ♢i
and ♦i, where i ∈ Σ. The well-formed formulas of the basic
modal language are given by the rule
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ♢iϕ | ♦iϕ, where p ranges over all
proposition letters and i ∈ Σ.

• When we say our language is unary, we mean that |Σ| = 1, and
we will just use ♢ and ♦. Other Boolean connectives and the the
modal operators □i and ■i can be defined in the standard way.
We will use ♢n and ♦n for the abbreviations for n times iteration
of ♢ and ♦.
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Semantics

• The models for our language are standard Kripke models
M = ⟨W, {Ri}i∈Σ, V⟩, where each Ri is the corresponding relation
of ♢i and ♦i.

• The satisfaction relation for our language is defined as usual for
the atomic and Boolean cases, and for the standard modalities.
For the sabotage modality it is as follows:
⟨W, {Ri}i∈Σ, V⟩,w |= ♦iϕ⇐⇒
∃(w1,w2) ∈ Ri s.t. ⟨W,Ri⧹{(w1,w2)}, {Rj}j̸=i∈Σ, V⟩,w |= ϕ

• The above means ♦iϕ is satisfied at w iff there are two Ri-related
points s.t. if we remove the edge between them, then ϕ holds at
w. Other definition are defined as usual.
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Finite model property

In this section we will give a counter-example for the f.m.p. of unary
sabotage modal logic. Let p, q1, q2, q3 be different propositional
letters, where q1, q2, q3 are incompatible. (Let q1 = r1 ∧¬r2 ∧¬r3, q2 =
r2 ∧ ¬r1 ∧ ¬r3, and q3 = r3 ∧ ¬r1 ∧ ¬r2, where r1, r2, r3 are different.)
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Finite model property

• Let ϕ be the conjunction of the followings:

• ϕ1 = (q1 ∧ ♢p ∧ ♦□¬p ∧□q2)
• ϕ2 = □♢q3 ∧□♦□¬q3
• ϕ3 = □(p↔ ♦□⊥)
• ϕ4 = □(¬p→ ♦♦□⊥) ∧□(¬p→ ♢(q2 ∧ ♢q3))
• ϕ5 = ■(♢□¬q3 → ♢(♢q3 ∧ ♢(q2 ∧□¬q3)))
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Finite model property

Here ϕ1 means q1 is on the original point, say w, each w-successor
has q2, and there is just one w-successor v has p. ϕ2 means each
w-successor can see exact one q3 point. ϕ3 says that the p successor
v of w has exact one successor. ϕ4 says every other successors of w
has just two successors and one of the two has q2 and see a q3
point. Finally ϕ5 expresses that if we delete a edge which is between
one w−successor and its q3 successor, then w can see a point s such
that s can see a q3 point and a q2 point which has no q3 successor.
We can conclude from ϕ2, ϕ3 and ϕ4 that the p successor has exact
one successor which has q3 and that all other w-successor has exact
two successors: one has q3 and the other has q2 and can see q3.

16



Finite model property

It’s easy to see that the model below is an infinite model of ϕ, where
ϕ is true at s. We now need to show that ϕ has no finite model.
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Finite model property

Lemma

For every model M,w |= ϕ, each successor of w has a predecessor
which is a successor of w.

Proof.

Suppose that there is a successor of w, called v, has no such pre-
decessor. By ϕ2, v see a q3 point u. If we delete the relation be-
tween v and u, v would be the only successor of w which has no
q3 successor by ϕ2. By ϕ5, there must be a successor t of w satis-
fies ♢q3 ∧ ♢(q2 ∧ □¬q3), which cannot be the p point or v. But by
ϕ4, other successors of w must still see a q2 ∧ ♢q3 point since they
cannot see v, a contradiction.
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Finite model property

Proposition

For every model M,w |= ϕ, w has infinitely many successors.

Proof.

Assume thatw has only kmany successors. Then by ϕ2 and ϕ3, w has
only k − 1 many successors which can see a successor of w. Since
each successor of w can see at most one successor of w, there are
at most k − 1 many successors of w which is a two-step successor
of w. So there must be a successor v of w which is not a two-step
successor of w, that is, v has no predecessor which is a successor
of w, contradicts the above lemma.
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Graded modal logic

In this section we will compare the expressivity between SML and
Graded modal logic(GML). Here we just consider the case for unary
language.

Graded modal formulas are built up using propositional letters p, q,
. . ., the constants ⊤ and ⊥, Boolean connectives ¬, ∧, and the unary
modal operators ♢i and □i. A model for GML is a Kripke model
M = ⟨W,R, V⟩, and the satisfaction relation for the modal operators is
defined as follows: (other cases are similar as in modal logic)

M,w |= ♢iϕ iff ∃v1 . . . vi(
∧

1≤j ̸=k≤i
(vj ̸= vk) ∧

∧
1≤j≤i

Rwvj ∧
∧

1≤j≤i
M, vj |= ϕ)

and M,w |= □iϕ iff M,w |= ¬♢i¬ϕ.

The above can be read as ♢iϕ says that there are at least i
successors which satisfied ϕ.
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Expressivity

We have shown that SML can express the property that there are at
least n successors. It seems that there are some similarity between
the two language, but we will show that their expressivity are
incomparable.

From above we know that GML has the finite model property, which
means GML cannot express SML, since we have shown that SML does
not have f.m.p. above. Actually SML can express the property that
there are at most n edges in the model, by the formula ■n⊥. For any
w in a model M, M,w |= ■n⊥ iff there are at most n edges in M. If
there is a GML formula ϕ which is a translation of ■n⊥, then any
model N, which has exactly n edges, must satisfy ϕ, say N, v |= ϕ. Let
N1 be any model which has one edge, and N2 be the disjoint union of
N and N1. From the model equivalence results for GML, we know that
N2, v |= ϕ, which means N2 has at most n edges, a contradiction. So
from the above observation, GML cannot express SML, even if we
only consider finite models.
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Two infinite models

Next we will first show that SML cannot express GML by using two
infinite models.

Let M1 = ⟨W1,R1, V1⟩, where
W1 = {an | n ∈ ω}∪{bmn | m ∈ {0, 1}∧n ∈ ω}∪{cn | n ∈ {0, 1, 2}}∪{s},
R1 = {(s,an) | n ∈ ω} ∪ {(s,b0n) | n ∈ ω} ∪ {(b0n,b1n) | n ∈
ω} ∪ {(s, c0), (c0, c1), (c1, c2)}, and V1(p) = W1 for any p.

Let M2 = ⟨W2,R2, V2⟩, where W2 = {wn | n ∈ ω} ∪ {vmn | m ∈
{0, 1} ∧ n ∈ ω} ∪ {un | n ∈ {0, 1, 2, 3}} ∪ {s

′},
R2 = {(s

′
,wn) | n ∈ ω} ∪ {(s

′
, v0n) | n ∈ ω} ∪ {(v0n, v1n) | n ∈

ω} ∪ {(s′ ,u0), (s
′
,u1), (u0,u2), (u1,u2), (u2,u3)}, and V2(p) = W2.

we will use l to mark our edges: let l0 = (s, c0), l1 = (c0, c1),
l2 = (c1, c2), l3 = (s′ ,u0), l4 = (s′ ,u1), l5 = (u0,u2), l6 = (u1,u2),
l7 = (u2,u3).

The two models’ diagrams are as follows:
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M2
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Expressivity over infinite models

Obviously, M1, s |= ¬♢2♢♢⊤ and M2, s
′ |= ♢2♢♢⊤. So if we show that

M1, s and M2, s
′ are model equivalent in SML, we will know that SML

cannot express GML. From [1] we know that if M1, s and M2, s
′ are

s-bisimular, then they are model equivalent, so we will give the
s-bisimulation relation Z as follows:

Let Z0 = {(an,wn), (bmn , vmn ) | m ∈ {0, 1} ∧ n ∈
ω} ∪ {(s, s′), (c0,u0), (c0,u1), (c1,u2), (c2,u3)} and Z1 = (Z0)−. We
choose Z to be the union of Z0 and Z1. Here we define a relation
between models: M = ⟨W,R, V⟩ ♦n→ M′

= ⟨W′
,R′

, V′⟩ iff W′
= W, V′

= V
and R′

= R\A where |A| = n ∧ A ⊆ R.
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Expressivity over infinite models

Lemma

Z is a s-bisimulation.

Proof

We only check the conditions between s and s′ , since it’s easy to
verify that other Z−related points satisfy the s-bisimulation condi-
tions. Obviously s and s′ are modal bisimular. So we need to show
that for each n ∈ ω and t ∈ {1, 2}, if Mt

♦n→ M′

t then there is a M
′

3−t

s.t. M3−t
♦n→ M′

3−t and M
′

t, s←→ M′

3−t, s
′ . If in M1 we delete one edge

from the ω part, we only need to delete an arbitrary edge inM2 from
the ω part and Vice Versa. The non-trivial cases are deletions of cn
in M1 and un in M2. We will use the strategy as follows:
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Expressivity over infinite models

Proof.

When we delete li, i ≤ 2 in M1, we will delete l7 in M2 when l7 is still
alive, otherwise we just delete an arbitrary edge in M2 from the ω
part.

When we delete li, 3 ≤ i ≤ 6 in M2, there are two cases:

1. After the deletion, there is still a path from s′ to u3: Just delete
an edge from the ω part in M1.

2. Otherwise: if l0 is alive, delete l0; if not, Just delete an edge from
the ω part in M1.

When we deltete l7, if l0 is alive, delete l0 and if not, Just delete an
edge from the ω part in M1.

One can easily verify that our strategy will preserve themodal bisim-
ulation in any finite times deletions.
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Expressivity over classes of finite models

From the above instance it’s still open whether SML can express GML
among finite models. So now we give an instance to show that even
in finite models, SML cannot express GML. Our idea is to split the two
infinite models into two classes of finite models. But first we need to
give a definition for n-bisimulation as in modal logic, which is
related to the s-bisimulation in [1].

29



m− n−s-bisimulation

Here we just define m− n–s-bisimulations for unary language. Let M
and N be models, and let w and v be states of M and N, We define
w↔m

n v by induction on m + n.

m+ n = 0: M,w↔m
n N, v iff VM(w) = VN(v);

m+ n = k+ 1: M,w↔m
n N, v if the followings hold:

1. Whenever m > 0:

M,w↔m−1
n N, v;

If wRw′ , then there is a v′ s.t. vRv′ and M,w′ ↔m−1
n N, v′ ;

If vRv′ , then there is a w′ s.t. wRw′ and M,w′ ↔m−1
n N, v′ .

30



m− n−s-bisimulation

2. Whenever n > 0:

M,w↔m
n−1 N, v;

If there is M′ s.t. M,w→♦ M
′
,w, then there is N′ s.t. N, v→♦ N

′
, v and

M′
,w↔m

n−1 N
′
, v;

If there is N′ s.t. N, v→♦ N
′
, v, then there is M′ s.t. M, v→♦ M

′
, v and

M′
,w↔m

n−1 N
′
, v.

Here m correspond to the modal degree, and n correspond to the
sabotage degree, as we define below.
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Expressivity over classes of finite models

s-depth

Like the modal degree, we define the sabotage degree as follows:

degs(⊤) = degs(p) = 0;

degs(¬ϕ) = degs(ϕ); degs(ϕ ∧ ψ) = MAX(degs(ϕ),degs(ψ));

degs(♢ϕ) = degs(ϕ); degs(♦ϕ) = degs(ϕ) + 1.

Additional, we need to complete the modal degree on SML:

deg(♦ϕ) = deg(ϕ).
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Expressivity over classes of finite models

proposition

[for finite many propositional letters]M,w ↔m
n N, v ⇐⇒ M,w ≡SMLmn

N, v, where M,w ≡SMLmn N, vmeans for each formula ϕ, if deg(ϕ) ≤ m
and degs(ϕ) ≤ n, then M,w |= ϕ iff N, v |= ϕ.

Proof.

Similar to the modal version.
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Expressivity over classes of finite models

Here we give two classes of finite models.

Let Mn = ⟨Wn,Rn, Vn⟩, where
Wn = {ai | i ≤ n}∪{bmi | m ∈ {0, 1}∧i ≤ n+1}∪{ci | i ∈ {0, 1, 2}}∪{s},
Rn = {(s,ai) | i ≤ n} ∪ {(s,b0i ) | i ≤ n} ∪ {(b0i ,b1i ) | i ≤
n} ∪ {(s, c0), (c0, c1), (c1, c2)}, and Vn(p) = Wn for any p.

Let Nn = ⟨W
′

n,R
′

n, V
′

n⟩, where
W′

n = {wi | i ≤ n}∪{vmi | m ∈ {0, 1}∧i ≤ n}∪{ui | i ∈ {0, 1, 2, 3}}∪{s
′},

R′

n = {(s
′
,wn) | i ≤ n} ∪ {(s

′
, v0n) | i ≤ n} ∪ {(v0n, v1n) | i ≤

n} ∪ {(s′ ,u0), (s
′
,u1), (u0,u2), (u1,u2), (u2,u3)}, and Vn(p) = Wn.
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Expressivity over classes of finite models

One can check that Mn, s↔m
n Nn, s

′ for any m ∈ ω, which follows that
the two pointed models are equivalent w.r.t. formulas with sabotage
depth ≤ n. The proof is similar to the infinite version.

Let C ={Mn | n ∈ w} and B = {Nn | n ∈ w}. Like the case in the two
infinite models, if we choose s and s′ to be the original state, C and
B can be distinguished by GML formula ϕ = ♢2♢♢⊤. Actually for all
n ∈ ω, Mn, s |= ¬♢2♢♢⊤ and Nn, s

′ |= ♢2♢♢⊤. Hence if there is some
SML formula ψ express ϕ over finite models, then for each n, Mn, s |=
¬ψ and Nn, s

′ |= ψ. But if ψ has sabotage depth m, it must be the
case that Mm, s |= ψ iff Nm, s

′ |= ψ, which is a contradiction.
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Axiomatization

In this section we will try to find a sound and complete Hilbert-style
proof system. Our intended system includes the normal modal logic
K and the followings1:

Axioms:

■(ϕ→ ψ)→ (■ϕ→ ■ψ)

■p↔ p

■¬p↔ ¬p

♢⊤ → ♦⊤

♦♢ϕ→ ♢♦ϕ

1The first idea of these axioms is given by Prof. Wang.
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Axiomatization

ψn → ♦ψn−1 for n− 1 ∈ ω

♦n⊤ ∧ ¬♦n+1⊤ → ■(¬♦n⊤ ∧ ♦n−1⊤), for n− 1 ∈ ω

(♦n⊤ ∧ ¬♦n+1⊤)→ □(♦n⊤ ∧ ¬♦n+1⊤), for n ∈ ω

♢■ϕ→ (ψn → ■(ψn → ♢ϕ), for n ∈ ω

where ψn = ♦n□⊥ ∧■n−1♢⊤

Rules:

■−generalization
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Axiomatization

Although we seem to find a recursive set of axioms, we need to show
that the axioms are sound and complete. One can easily check that
the axioms and rules are sound w.r.t. our semantics. But the
completeness seems to be more complicated.

A standard strategy in [6] is as follows:

1. Define an auxiliary semantics ⊩ of SML on Kripke models with
♦−transitions.

2. Find a class C of binary Kripke models such that for any SML
formula ϕ : M |= ϕ =⇒ C ⊩ ϕ.

3. Show that our axioms completely axiomatizes the valid SML
formulas on C w.r.t. ⊩.

In sum, we proceed as follows (from left to right):

M |= ϕ =⇒ C ⊩ ϕ =⇒⊢ ϕ.
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Problem of the axiomatization

Here the supposed new semantics is defined as follows:

A binary Kripke modelM is a tuple: ⟨W,R,R♦, V⟩, where R♦ is a
binary relation over W and ⟨W,R, V⟩ are just a standard Kripke model.

We will call ⟨W,R, V⟩ the kernel of ⟨W,R,R♦, V⟩.

The new satisfaction relation ⊩ is defined by(others are the same as
for |=) :

M,w ⊩ ♦ϕ iff ∃v : wR♦v and M, v ⊩ ϕ

Here If we want to showM |= ϕ =⇒ C ⊩ ϕ, we need to transform a ⊩
model into a |= model. But we cannot just use the kernel of our
binary model, which will be showed in the following instance.
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Problem of the axiomatization

Consider the following model and the formula ϕ =
♦4⊤∧¬♦5⊤∧♦2□⊥∧■♢⊤∧□(♦□⊥∧♢⊤∧□□⊥) If ϕ is true at the
point s w.r.t. the deletion semantics, then the model need to be as
the following diagram, where r and t are dead ends.

• // r

s

""E
EE

EE
EE

EE

<<xxxxxxxxx

• // t
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Problem of the axiomatization

But if we use the binary semantics, the model will be like:

s //

♦
���
�
� • //

♦
���
�
� •

• //

♦
���
�
� •

•
♦
���
�
�

•
♦
���
�
�

•
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Problem of the axiomatization

It follows that the kernel of our binary model cannot be enough to
make all the SML formulas true. Especially when we consider the
canonical model of the binary semantics, there must be some
similar problem like here.

The above show that the relation between a ⊩ model and a |= model
seems to be complicated, and we need more careful investigation on
this. So we will leave the problem here and I hope one can solve it
soon.
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Further works

Clearly we need to find a proof for the completeness, and we have
two ways to go:

1. Use the original strategy and find a appropriate way to transport
|= to ⊩.

2. Consider another strategy for completeness, like defining a
canonical model for SML language.
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Further works

However, it’s a natural idea to consider some restricted version of
completeness.

1. Assume that models are all point-generated, which will restrict the
arbitrary deletion to a related deletion.

2. Assume that models are all finite, which will be helpful to using
our axioms.

Obviously we can just consider finite generated models, which may
bring another conjecture: SML can characterize frames w.r.t.
isomorphism, which means:

For any finite generated frame F, there is a formula ϕ s.t. F |= ϕ and
if any finite generated model G |= ϕ, F ∼= G.
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