
Reasoning about others’ knowledge

Yingying Cheng Yanjing Wang

4th November 2015

Abstract

The idea is to look at the proof systems of epistemic logic and discover how we reason about others’
minds syntactically. This is a joint project by Yingying Cheng and Yanjing Wang.

1 Introduction

1.1 Motivation

• There are no explicit axioms and rules in Epistemic Logic to tell us how to reason about others.

• Theory of mind in cognitive science

• Reasoning about knowledge in law

• Epistemic assumptions and reasoning in Game theory

1.2 Reasoning about others’ knowledge (and belief)

Why does it matter?

• As a basic ability: to interact with other people (strategically), e.g., game theory, theory of mind in
psychology;

• Based on the assumption about this ability we can use various tools to regulate the information
flows, e.g., design of protocols.

• Social use: e.g., to identify responsibility (in criminal law).

1.3 Epistemic logic seems to be a good tool

Propositional modal logics that reason about knowledge (and belief) [von Wright 1951, Hintikka 1962].

Language: “agent i knows that φ”:

φ ::= > | p | ¬φ | (φ ∧ φ) | Kiφ(sometimes also CGφ)

Model: possibilities with (equivalence) relations.
Semantics: you know that φ iff φ is true in all epistemic alternatives (of the current world).

p ∧ ¬Kip

•p

i

i ¬p

i
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S5 system (strongest epistemic logic)

System S5
Axioms Rules

TAUT all the instances of tautologies MP
φ, φ→ ψ

ψ

DISTK Ki(p→ q)→ (Kip→ Kiq) GENK
φ

Kiφ

T Kip→ p SUB
φ

φ[p/ψ]

4 Kip→ KiKip

5 ¬Kip→ Ki¬Kip

The logic is powerful in combination with other modalities to handle changes of knowledge, e.g., epistemic
temporal logic, dynamic epistemic logic, epistemic alternating-time temporal logic, and so on.

1.4 A simple but important question

In the aforementioned epistemic logics (and their friends), there is no single axiom or rule in the standard axiomat-
izations which can tell us explicitly how to reason about others’ knowledge (based on your own knowledge).

How do we reason about others’ knowledge using existing epistemic logics syntactically?

This small project is to find out the answer and reveal the subtleties we took for granted.

1.5 In the rest of the talk

We will use muddy children as a running example and try to show:
(1) How to reason about others’ knowledge semantically?
(2) How to reason about others’ knowledge syntactically?

(2a) How to reason about others’ knowledge using epistemic logic?
(2b) How to reason about others’ knowledge using dynamic epistemic logic?

(3) Do we really need common knowledge in the examples where common knowledge is taken for granted? If
not, how many levels on knowledge do we need?

(4) How does the syntactic approach help us to understand the initial model better?
(6) How do people reason about others’ knowledge in (serious) reality?

2 Muddy Children puzzle

Informal description

A group of n children meet their father after playing in the mud. Their father notices that k > 0 of
the children have mud on their foreheads. Each child sees everybody else’s foreheads, but not his own.
The father says:”some of you are muddy,” then says:”Do any of you know that you have mud on your
forehead? If you do, raise your hand now.” No one raises his hand. The father repeats the question, and
again no one moves. After exactly k repetitions, all children with muddy foreheads raise their hands
simultaneously.

First, consider a simple version of the above muddy children puzzle, suppose there are only 2 children in total
saying Child 1 and Child 2 who are both muddy. Then the father will ask the question twice and both children raise
their hands in the second round. After this, we will consider the case of extension to n children.
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3 Semantic reasoning

Suppose you are one of the two children. After the first announcement, you see another child muddy, so you
think perhaps he’s the only muddy one. But you note that this child did not raise his hand, and you realize you are
also muddy. So you raise your hand in the next round, and so does the other muddy child.

In a model-theoretical solution, we depict all possible situations. We determine a situation by stating for each
child if it is muddy or not muddy.

In 2 children case, there are four situations: (m1,m2) = {(0, 0), (0, 1), (1, 0), (1, 1)}

(1, 1) 1

2

(0, 1)

2

(1, 0) 1 (0, 0)

After the father publicly announces m1 ∨m2, node(0,0) is no longer possible:

(1, 1) 1

2

(0, 1)

(1, 0)

Both children realize that in (1,0) child 1 would know whether he is muddy (no other distinguishable worlds),
and in (0,1), Child 2 would know. Therefore, after both children answer ”No” to the question of whether they know
what is on their foreheads, worlds (1,0) and (0,1) are no longer possible, and each child eliminate them from the
set of possible worlds. The only remaining logical possibility here is

(1, 1)•

Now both children know that their foreheads are muddy.
When n = k = 3: (c represents ”clean”or ”not muddy”, m represents ”muddy”)

cmm 1

2

��

mmm

2cmc

3

1

2

mmc

3

2ccm 1 // mcm

ccc

3

1 mcc

3

We can also get the only node (mmm) finally by eliminating nodes with the reasoning going on.
With the number coming bigger, the semantic method may become more complex, so we have to find another

way-syntactic method.

4 Syntactic reasoning within Epistemic Logic

First, We describe a childs knowledge on the general background. These knowledge describe the environment,
and are constant for all stages of the process. We fix a Child 1 and list some basic knowledge of Child 1(In the
following formulas, m1 is short for ”Child 1 is muddy” and r1 is short for ”Child 1 raises his hand”).

(Announcement by the teacher) Child 1 has knowledge of the announcement at two epistemic levels:
(a1)K1(m1 ∨m2);
(a2)K1K2(m1 ∨m2).
(Observational ability) Child 1knows the following observational abilities:
(b1)K1(m1 ↔ K2m1);
(b2)K1(m2 ↔ K1m2);
(b3)K1(¬m1 ↔ K2¬m1);
(b4)K1(¬m2 ↔ K1¬m2);
(b5)K1K2(m1 ↔ K2m1);

3



(b6)K1K2(m2 ↔ K1m2);
(b7)K1K2(¬m1 ↔ K2¬m1);
(b8)K1K2(¬m2 ↔ K1¬m2);
(b9)K1(K2m1 ∨K2¬m1).
(Action rule) Child 1 has knowledge of the action rules at two epistemic levels:
(c1)K1(K2m2 → r2);
(c2)K1(K1m1 → r1);
(c3)K1K2(K2m2 → r2);
(c4)K1K2(K1m1 → r1).
After the observation of another child’s inaction in the first round, both children add new knowledge into their

knowledge base:
(d1)K1(¬r2);
(d2)K1K2(¬r1).

Now we shall prove K1m1 in the S5 epistemic logic system syntactically.
(1)K1(K2m2 → r2) c1
(2)(K2m2 → r2)→ (¬r2 → ¬K2m2) TAUT
(3) K1((K2m2 → r2)→ (¬r2 → ¬K2m2)) (2) GENK
(4)K1((K2m2 → r2)→ (¬r2 → ¬K2m2))→ (K1(K2m2 → r2)→ K1(¬r2 → ¬K2m2)) (3)DISTK
(5) K1(K2m2 → r2)→ K1(¬r2 → ¬K2m2) (3)(4)MP
(6) K1(¬r2 → ¬K2m2) (1)(5)MP
(7)K1(¬r2 → ¬K2m2)→ (K1¬r2 → K1¬K2m2) (6)DISTK
(8)K1¬r2 → K1¬K2m2 (6)(7)MP
(9)K1¬r2 d1
(10)K1¬K2m2 (8)(9)MP
(11)K1K2(m1 ∨m2) a2
(12))m1 ∨m2 → (¬m1 → m2) TAUT
(13)K1K2(m1 ∨m2 → (¬m1 → m2)) (12)NECK
(14)K1K2(m1 ∨m2 → (¬m1 → m2))→ (K1K2(m1 ∨m2)→ K1K2(¬m1 → m2)) DISTK
(15)K1K2(m1 ∨m2)→ K1K2(¬m1 → m2) (13)(14)MP
(16)K1K2(¬m1 → m2) (11)(15)MP
(17)K2(¬m1 → m2)→ (K2¬m1 → K2m2) DISTK
(18)K1(K2(¬m1 → m2)→ (K2¬m1 → K2m2)) (17)GENK
(19)K1(K2(¬m1 → m2)→ (K2¬m1 → K2m2))→ (K1K2(¬m1 → m2)→ K1(K2¬m1 → K2m2)) DISTK
(20)K1K2(¬m1 → m2)→ K1(K2¬m1 → K2m2) (18)(19)MP
(21)K1(K2¬m1 → K2m2) (16)(20)MP
(22)(K2¬m1 → K2m2)→ (¬K2m2 → ¬K2¬m1) TAUT
(23)K1(K2¬m1 → K2m2)→ (¬K2m2 → ¬K2¬m1)) (22)GENK
(24)K1(K2¬m1 → K2m2) → (¬K2m2 → ¬K2¬m1)) → (K1(K2¬m1 → K2m2) → K1(¬K2m2 → ¬K2¬m1))

DISTK
(25)K1(K2¬m1 → K2m2)→ K1(¬K2m2 → ¬K2¬m1) (23)(24)MP
(26)K1(¬K2m2 → ¬K2¬m1) (21)(25)MP
(27)K1(¬K2m2 → ¬K2¬m1)→ (K1¬K2m2 → K1¬K2¬m1) DISTK
(28)K1¬K2m2 → K1¬K2¬m1 (26)(27)MP
(29)K1¬K2¬m1 (10)(28)MP
(30)K1(¬m1 → K2¬m1) b3
(31)(¬m1 → K2¬m1)→ (¬K2¬m1 → m1) T
(32)K1((¬m1 → K2¬m1)→ (¬K2¬m1 → m1)) (31)GENK
(33)K1((¬m1 → K2¬m1)→ (¬K2¬m1 → m1))→ (K1(¬m1 → K2¬m1)→ K1(¬K2¬m1 → m1)) DISTK
(34)K1(¬m1 → K2¬m1)→ K1(¬K2¬m1 → m1) (32)(33)MP
(35)K1(¬K2¬m1 → m1) (30)(34)MP
(36)K1(¬K2¬m1 → m1)→ (K1¬K2¬m1 → K1m1) DISTK
(37)K1¬K2¬m1 → K1m1 (35)(36)MP
(38)K1m1 (29)(37) MP
(39)K1(m1 ↔ K2m1) b1
(40)K1(m1 → K2m1)→ (K1m1 → K1K2m1) DISTK
(41)K1m1 → K1K2m1 (39)(40)MP
(42)K1K2m1 (38)(41)MP
We can also prove K1m1 after we get K1K2m1.
The front 29 steps remain, from the eleventh step, we prove in another way:
(29)K1¬K2¬m1

4



(30’)K1(K2m1 ∨K2¬m1) b9
(31’)(K2m1 ∨K2¬m1)→ (¬K2m1 → K2¬m1) T
(32’)K1((K2m1 ∨K2¬m1)→ (¬K2m1 → K2¬m1)) (31’)GENK
(33’)K1((K2m1 ∨ K2¬m1) → (¬K2m1 → K2¬m1)) → (K1(K2m1 ∨ K2¬m1) → K1(¬K2m1 → K2¬m1))

DISTK
(34’)K1(K2m1 ∨K2¬m1)→ K1(¬K2m1 → K2¬m1) (32’)(33’)MP
(35’)K1(¬K2¬m1 → K2m1) (30’)(34’)MP
(36’)K1(¬K2¬m1 → K2m1)→ (K1¬K2¬m1 → K1K2m1) DISTK
(37’)K1¬K2¬m1 → K1K2m1 (35’)(36’)MP
(38’)K1K2m1 (29)(37’) MP
(39’)K1(m1 ↔ K2m1) b1
(40’)K1(K2m1 → m1)→ (K1K2m1 → K1m1) DISTK
(41’)K1K2m1 → K1m1 (39’)(40’)MP
(42’)K1m1 (38’)(41’)MP
The (41’)K1K2m1 → K1m1 in the sequence above is within the following principle:
In accepting that another knows a certain fact one is thereby effectively claiming that fact as part of one’s own

knowledge. And so, to know that another person knows some specific fact one must know this fact oneself. We thus
have the following principle: KxKyφ→ Kxφ

4.1 Common Knowledge

In the resolution above, is it necessary to demand the background knowledge to be common knowledge? When we
check the syntactic proof, we can see that we only use at most 2 levels of knowledge (i.e. K1K2 . . . ). So maybe we
shall say ”No” to the question.

Common knowledge is a special kind of knowledge for a group of agents. There is common knowledge of p in
a group of agents G when all the agents in G know p, they all know that they know p, they all know that they all
know that they know p, and so on ad infinitum.

We can define an operator EG with the intended meaning of ”everyone in group G knows” by defining it with
the axiom

EGφ↔
∧
i∈GKiφ

By abbreviating the expression EGE
n−1
G φ with EnGφ and defining E0

Gφ = φ, we could then define common
knowledge with the axiom

Cφ↔
∧∞
i=0E

iφ

The axiom is not a well-formed formula. To overcome this difficulty, a fixed-point definition of common know-
ledge can be given: CGφ = φ ∧ EG(CGφ).

We use the following example to say something about common knowledge:

Imagine two generals who are planning a coordinated attack on a city. The generals are on two hills on
opposite sides of the city, each with their armies, and they know they can only succeed in capturing the
city if the two armies attack at the same time. But the valley that separates the two hills is in enemy’s
hands, and any messenger that is sent from one army base to the other runs a severe risk of getting
captured. The generals have agreed on a joint attack, but they still have to settle the time.
So the generals start sending messengers. General 1 sends a soldier with the message We will attack
tomorrow at dawn. Call this message p. Suppose his messenger gets across to general 2 at the other
side of the valley. Then K2p holds, but general 1 does not know this because he is uncertain about
the transfer of his message. Now general 2 sends a messenger back to assure 1 that he has received
his message. Suppose this messenger also gets across without being captured, then K1K2p holds. But
general 2 does not know this, for he is uncertain about the success of transfer: ¬K2K1K2p. General
1 now sends a second messenger. If this one also safely delivers his message we have K2K1K2p. But
general 1 does not know this, and soon, and soon. In this way, theyll continue sending messages
infinitely (and certainly not attack tomorrow at dawn).

Clearly, this procedure will never establish common knowledge between the two generals. They share the
knowledge of p but that is surely not enough for them to be convinced that they will both attack at dawn. In case
of real common knowledge every formula of the infinite set
{K1p,K2p,K1K2p,K2K1p,K1K2K1p, . . . } holds.

Another visual example:
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An illustration is provided by the puzzle of consecutive numbers, where two agents each is given a natural
number, with the public rule that the numbers are consecutive. A situation in which agent a has a 2 and b a 3 can
be depicted by the following Kripke model:

(0, 1)

a,b

��
oo b // (2, 1)

a,b

��
oo a // (2, 3)

a,b

��
oo b // (4, 3)

a,b

��
oo a // (4, 5)

a,b

��
. . .

In that situation, the standard epistemic semantics predicts that it is not common knowledge between a and b that
their numbers are less than 100000, or even less than any positive number however large it may be, despite the fact
that each of a and b knows that the numbers are less than 5. Informally, this corresponds to the fact that a considers
it possible that b considers it possible that a has a 4, and so on and so forth.

MaCarthy’s early work on epistemic logic with ”any fool knows”

MaCarthy added a special person constant called ’any fool’ and denoted it by 0. He says:” It is convenient to
introduce any fool because whatever he knows, everyone knows that everyone else knows. ’Any fool’ is especially
useful when an event occurs in front of all the knowers, and we need sentences like, ’S1knows that S2 knows that
S3 knows etc.’” In MaCarthy’s Formal Systems, S ∗ p stands for ”Person S knows proposition p”. e.g. 0 ∗ (S ∗ p→ p)
means ”Any fool knows that what a person knows is true”.

4.2 Extension to n children

Suppose n children are all muddy (i.e.k = n), so after the father ask the same question n times, all children
will raise their hands. Similar to the 2 children case, We describe a child’s knowledge on the general background.

(Announcement by the teacher) :
K1K2 . . .Kk(m1 ∨ · · · ∨mn), ∀k 6 n (a)
(Observational Abilities):
K1K2 . . .Kk(¬(m1 ∨ · · · ∨ms′)→ Ks¬(m1 ∨ · · · ∨ms′)), ∀k 6 n and n > s > s′ (b)
(Action Rules):
K1K2 . . .Kk(Ksms → rs), ∀k, s 6 n (c)
We call the set that exactly contains (a),(b) and (c) Γ0. Then we define Γk := {K1 . . .Kk−1(Kkmk →

rk)(c1),K1 . . .Kk−1(¬(m1 ∨ · · · ∨mk−1)→ Kk(¬(m1 ∨ · · · ∨mk−1))(b1),K1 . . .Kk(m1 ∨ · · · ∨mk)(a1),∀n > k > 2}.
It is easy to see that Γk ⊂ Γ0

As nobody answer to the fathers question at first time, so we add new knowledge to the knowledge base of
Child 1. K1 . . .Kk¬rs ∀k, s 6 n. Call it A. It is easy to see that K1K2 . . .Kk−1¬rk ⊂ A.

Proposition 1 Γn,K1 . . .Kn−1¬rn `S5 K1 . . .Kn−1(m1 ∨ · · · ∨mn−1) ∀n > 2

PROOF n = 2, we are to prove Γ2,K1¬r2 ` K1m1, this is done in the 2 children case.
Suppose the proposition holds when n = k − 1, we now prove when n = k, the proposition also holds. That is,

Γk,K1 . . .Kk−1¬rk `S5 K1 . . .Kk−1(m1 ∨ · · · ∨mk−1).
(1)K1 . . .Kk−1¬rk Pre
(2)K1 . . .Kk−1(Kkmk → rk) (c1)
(3)(Kkmk → rk)→ (¬rk → ¬Kkmk) T
(4)K1 . . .Kk−1((Kkmk → rk)→ (¬rk → ¬Kkmk)) (3)GENK
(5)K1 . . .Kk−1((Kkmk → rk) → (¬rk → ¬Kkmk)) → (K1 . . .Kk−1(Kkmk → rk) → K1 . . .Kk−1(¬rk →

¬Kkmk)) DISTK
(6)K1 . . .Kk−1(Kkmk → rk)→ K1 . . .Kk−1(¬rk → ¬Kkmk) (4)(5)MP
(7)K1 . . .Kk−1(¬rk → ¬Kkmk) (2)(6)MP
(8)K1 . . .Kk−1(¬rk → ¬Kkmk)→ (K1 . . .Kk−1¬rk → K1 . . .Kk−1¬Kkmk) DISTK
(9)K1 . . .Kk−1¬rk → K1 . . .Kk−1¬Kkmk (7)(8) MP
(10)K1 . . .Kk−1¬Kkmk (1)(9)MP
(11)K1 . . .Kk(m1 ∨ · · · ∨mk) (a1)
(12)K1 . . .Kk(¬(m1 ∨ · · · ∨mk−1)→ mk)
(13)K1 . . .Kk−1(Kk¬(m1 ∨ · · · ∨mk−1)→ Kkmk)
(14)K1 . . .Kk−1(¬Kkmk → ¬Kk¬(m1 ∨ · · · ∨mk−1))
(15)K1 . . .Kk−1(¬Kkmk → ¬Kk¬(m1 ∨ · · · ∨mk−1)) → (K1 . . .Kk−1¬Kkmk → K1 . . .Kk−1¬Kk¬(m1 ∨ · · · ∨

mk−1)) DISTK
(16)K1 . . .Kk−1¬Kkmk → K1 . . .Kk−1¬Kk¬(m1 ∨ · · · ∨mk−1) (14)(15)MP
(17)K1 . . .Kk−1¬Kk¬(m1 ∨ · · · ∨mk−1) (10)(16)MP
(18)K1 . . .Kk−1(¬(m1 ∨ · · · ∨mk−1)→ Kk(m1 ∨ · · · ∨mk−1)) (b1)
(19)K1 . . .Kk−1(¬Kk(m1 ∨ · · · ∨mk−1)→ (m1 ∨ · · · ∨mk−1))
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(20)K1 . . .Kk−1(¬Kk(m1 ∨ · · · ∨ mk−1) → (m1 ∨ · · · ∨ mk−1)) → (K1 . . .Kk−1¬Kk(m1 ∨ · · · ∨ mk−1) →
K1 . . .Kk−1(m1 ∨ · · · ∨mk−1)) (19)DISTK

(21)K1 . . .Kk−1¬Kk(m1 ∨ · · · ∨mk−1)→ K1 . . .Kk−1(m1 ∨ · · · ∨mk−1) (19)(20)MP
(22)K1 . . .Kk−1(m1 ∨ · · · ∨mk−1) (17)(21)MP K

From the proposition, we can get that once a game round is over, the knowledge of Child 1 transfers from
K1 . . .Kk(m1∨· · ·∨mk) toK1 . . .Kk−1(m1∨· · ·∨mk−1), thus, after n−1 round, Child 1 knows thatK1K2(m1∨m2),
therefore Child 1 will raise his hand after the nth question asked by the father.

5 Syntactic reasoning within Public Announcement Logic

If we put the Muddy Children puzzle within the Public Announcement Logic, we can find a new resolution.
The language of Public Announcement Logic is usually presented as follows:

φ := > | p | ¬φ | φ ∧ φ | 2iφ | [φ]φ

where p ∈ P . As usual, we define ⊥, φ ∨ ψ, φ→ ψ and < ψ > φ as the abbreviations of ¬>,¬(¬φ ∧ ¬ψ),¬φ ∨ ψ
and ¬[ψ]¬φ respectively. The original reading of 2iφ is that ”Agent i knows that φ” and [ψ]φ expresses ”After
announcing ψ publicly, φ holds.” While < ψ > φ says that ψ can be truthfully announced publicly, and after its
announcement φ holds.

The language of PAL is interpreted on Kripke models. A Kripke model over a nonempty set P of basic proposi-
tions is a triple (S,→, V ) where S is a nonempty set of possible worlds, →⊆ S × S is a binary relation over S and
V : P → 2S is a valuation function assigning each basic proposition letter a set of worlds where it is true. Given a
Kripke model M = (S,→, V ) over P , the truth value of PAL formulas at a state s in M is defined as follows:

M, s |= > ⇔ always
M, s |= p⇔ s ∈ V (p)
M, s |= ¬φ⇔M, s 2 φ

M, s |= φ ∧ ψ ⇔M, s |= φ and M, s |= ψ
M, s |= 2iφ⇔ ∀t Bi s : M, t |= ψ

M, s |= [ψ]φ⇔M, s |= ψ implies M |ψ, s |= φ

where (∀t B s : . . . ) denotes for all t : s → t implies . . . , and M |ψ = (S′,→′, V ′) such that: S′ = {s|M, s |=
ψ},→′=→ |S′×S′and V ′(p) = V (p) ∩ S′. According to this semantics, an announcement action [ψ] is interpreted as
a model transformer which deletes the worlds in the model that do not satisfy ψ.

5.1 Axiom systems of Public Announcement Logic

Standard reduction-based proof system for PAL (S5 omitted).

Axiom Schemas
TAUT all the instances of tautologies
DISTK 2i(φ→ ψ)→ (2iφ→ 2iψ)
UATOM [ψ]p↔ (ψ → p)
UNEG [ψ]¬φ↔ (ψ → ¬[ψ]φ)
UCON [ψ](φ ∧ χ)↔ ([ψ]φ ∧ [ψ]χ)
UK [ψ]2iφ↔ (ψ → 2i(ψ → [ψ]φ))
UCOMP [ψ][χ]φ↔ [ψ ∧ [ψ]χ]φ
Rules

NECK
φ

2iφ

MP
φ, φ→ ψ

ψ

No uniform substitution!
Wang & Cao system of PAL

7



System PAN
Axiom Schemas Rules

TAUT all the instances of tautologies MP
φ, φ→ ψ

ψ

DISTK 2(φ→ χ)→ (2φ→ 2χ) NECK
φ

2φ

DISTU [ψ](φ→ χ)→ ([ψ]φ→ [ψ]χ) NECU
φ

[ψ]φ

INV (p→ [ψ]p) ∧ (¬p→ [ψ]¬p)

DET(optional) 〈ψ〉φ→ [ψ]φ

PRE ψ ↔ 〈ψ〉>

NM 3〈ψ〉φ→ [ψ]3φ

PR 〈ψ〉3φ→ 3〈ψ〉φ

where p ∈ P ∪ {>}
Then how about the relation between public announcement and knowledge? I know φ as long as I heard a

public announcement φ, is it true?
Certainly not! There are many counterexamples about this: [φ ∧ ¬2φ]2(φ ∧ ¬2φ) doesn’t hold. φ ∧ ¬2φ is

itself consistent, but 2(φ∧¬2φ) is equivalent to (2φ∧2¬2φ) , 2¬2φ→ ¬2φ in S5 system, therefore (2φ∧¬2φ),
contradicts!

But we can prove that when φ is a proposition letter, i.e. p, I know p as long as I heard the public announcement
p.

5.2 Syntactic proof of [p]2p

Proposition 2 [p]2p is a theorem in PA and PAN.

First in the reduction-based proof system:
(1)p→ p TAUT
(2)(p→ p)→ [p]p UATOM
(3)[p]p (1)(2)MP
(4)[p]p→ (p→ [p]p) TAUT
(5)p→ [p]p (3)(4)MP
(6)2(p→ [p]p) (5)NECK
(7)2(p→ [p]p)→ (p→ 2(p→ [p]p)) TAUT
(8)p→ 2(p→ [p]p) (6)(7)MP
(9)p→ 2(p→ [p]p)→ [p]2p UK
(10)[p]2p (8)(9)MP

Then in Wang &Cao system of PAL
(1)(p→ [p]p) ∧ (¬p→ [p]¬p) INV
(2)(p→ [p]p) ∧ (¬p→ [p]¬p)→ (p→ [p]p) TAUT
(3)p→ [p]p (1)(2)MP
(4)p→ p TAUT
(5)p→ (p ∧ [p]p) (3)(4)TAUT
(6)2(p→ (p ∧ [p]p)) (5)NECK
(7)(p ∧ [p]p)↔< p > p PFUNC
(8)2(p→< p > p)
(9)2(p→< p > p)→ 2(¬(p ∧ [p]¬p)) TAUT
(10)2¬(p ∧ [p]¬p) (8)(9)MP
(11)(p ∧ [p]¬p)↔< p > ¬p PFUNC
(12)2¬ < p > ¬p
(13)2¬ < p > ¬p→ ¬3 < p > ¬p TAUT
(14)¬3 < p > ¬p (13)(14)MP
(15) < p > 3¬p→ 3 < p > ¬p PR
(16)¬3 < p > ¬p→ ¬ < p > 3¬p (16)TAUT,MP
(17)¬ < p > 3¬p (15)(17)MP
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(18)¬ < p > 3¬p→ [p]2p TAUT
(19)[p]2p (18)(19)MP

Next we prove (φ→ [ψ]φ) ∧ (¬φ→ [ψ]¬φ) when φ is a boolean formula by induction on the length of the φ.
PROOF

φ := p.
φ := ¬χ, we need to prove (¬χ → [ψ]¬χ) ∧ (¬¬χ → [ψ]¬¬χ), by inductive hypothesis, we have (χ → [ψ]χ) ∧

(¬χ→ [ψ]¬χ), while ¬¬χ↔ χ.
φ := χ1 ∧ χ2, we need to prove (χ1 ∧ χ2 → [ψ](χ1 ∧ χ2)) ∧ (¬(χ1 ∧ χ2) → [ψ]¬(χ1 ∧ χ2)), that is (χ1 ∧ χ2) →

([ψ]χ1 ∧ [ψ]χ2) and (¬χ1 ∨ ¬χ2) → ([ψ]¬χ1 ∨ [ψ]¬χ2). By inductive hypothesis, we have χ1 → [ψ]χ1,χ2 → [ψ]χ2,
¬χ1 → [ψ]¬χ1and ¬χ2 → [ψ]¬χ2. According to propositional tautology, we have (χ1 ∧ χ2) → ([ψ]χ1 ∧ [ψ]χ2),
¬χ1 → ([ψ]¬χ1 ∨ [ψ]¬χ2) and ¬χ2 → ([ψ]¬χ1 ∨ [ψ]¬χ2), then we have (¬χ1 ∨ ¬χ2)→ ([ψ]¬χ1 ∨ [ψ]¬χ2). Done. K

After we have φ → [ψ]φ ∧ ¬φ → [ψ]¬φ holds when φ is a boolean formula, apply the same method as in the
proof above, we will get the following proposition:

Proposition 3 If φ is a boolean formula, [φ]2φ is a theorem of the PAN system.

5.3 Formal proof for 2-muddy children within S5 PAN

We list Child 1s knowledge on the general background in the public announcement language:
(a1)[m1 ∨m2]21(m1 ∨m2)
(a2)[m1 ∨m2]2122(m1 ∨m2)
(a3)21(m1 ↔ 22m1)
(a4)21(¬m1 ↔ 22¬m1)
(a5)21(22m1 ∨22¬m1)
(a6)21m2

No body raised his hand, that is to say each child publicly announced they don’t know whether they are muddy,
that is: ¬21m1 ∧ ¬22m2

We have to prove that [m1 ∨m2][¬21m1 ∧¬22m2](21m1 ∧22m2) We only prove one part: [m1 ∨m2][¬21m1 ∧
¬22m2]21m1:

Hint: If we have proved that [φ](31χ1 ∧ 21(χ1 ∨ χ2)), then after the announcement of (¬χ1) we will get
[φ][¬χ1]χ2.

5.4 Return to the initial question

After all the syntactic proof, we can sum up the alternative axiomatizations of EL and PAL with axioms and rules
which explicitly state how we reason about other’s knowledge:

In EL, we add a necessitation rule for multi agents:

φ

21 . . .2nφ

In PAL:

[φ]21 . . .2nφ when φ is a boolean formula.

We prove the adding axiom in PAL as following:
(1)(φ→ [φ]φ)
(2)φ→ (φ ∧ [φ]φ)
(3)21 . . .2n(φ→ (φ ∧ [φ]φ))
(4)21 . . .2n(φ→ (< φ > φ))
(5)21 . . .2n¬(φ ∧ ([φ]¬φ))
(6)21 . . .2n¬ < φ > ¬φ
(7)21 . . .2n[φ]φ
(8)2[ψ]φ→ [ψ]2φ PR
(9)21 . . .2n−1(2n[φ]φ→ [φ]2nφ)
(10)21 . . .2n−1[φ]2nφ
(11). . .
(12)[φ]21 . . .2nφ
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As for the necessitation rule, there is a substantial amount of literature where the apparent problem of the
failure of the necessitation rule is discussed. why I should know every valid formula? But in our proof above, we
do apply the neessitation rule and it seems that no other method is available. So we have to say that necessitation
rule plays an important role when reasoning about others’ knowledge.

If we only care about the first-level knowledge in terms of Kiφ, we always need higher order knowledge, in the
muddy children puzzle, we need to prove [m1 ∨m2][¬21m1 ∧ ¬22m2](21m1 ∧ 22m2), If we apply the reduction
method, we can see what it is in EL:

[m1 ∨m2][¬21m1 ∧ ¬22m2]21m1(Let a = m1 ∨m2 and b = ¬21m1 ∧ ¬22m2)
⇔ [a ∧ [a]b]21m1

⇔ (a ∧ [a]b→ 21(a ∧ [a]b→ [a ∧ [a]b]m1)
⇔ (a ∧ [a]b→ 21(a ∧ [a]b→ (a ∧ [a]b→ m1))
⇔ (a ∧ [a]b→ 21(a ∧ [a]b→ m1)
⇔ a ∧ [a]¬21m1 ∧ [a]¬22m2 → 21(a ∧ [a]¬21m1 ∧ [a]¬22m2 → m1)
⇔ a ∧ (a→ ¬[a]21m1) ∧ (a→ ¬[a]22m2)→ 21(a ∧ (a→ ¬[a]21m1) ∧ (a→ ¬[a]22m2)→ m1)
⇔ a ∧ (a → ¬(a → 21(a → [a]m1))) ∧ (a → ¬(a → 22(a → [a]m2))) → 21(a ∧ (a → ¬(a → 21(a →

[a]m1))) ∧ (a→ ¬(a→ 22(a→ [a]m2)))→ m1)
⇔ a ∧ (a → ¬(a → 21(a → (a → m1)))) ∧ (a → ¬(a → 22(a → (a → m2)))) → 21(a ∧ (a → ¬(a → 21(a →

(a→ m1)))) ∧ (a→ ¬(a→ 22(a→ (a→ m2))))→ m1)
⇔ a ∧ (a → ¬(a → 21(a → m1))) ∧ (a → ¬(a → 22(a → m2))) → 21(a ∧ (a → ¬(a → 21(a → m1))) ∧ (a →

¬(a→ 22(a→ m2)))→ m1)
⇔ a∧(a→ a∧31(a∧¬m1))∧(a→ a∧32(a∧¬m2))→ 21(a∧(a→ a∧31(a∧¬m1))∧(a→ a∧32(a∧¬m2))→

m1)
There is no announcement operator in the last formula, we can see that the second-order knowledge(21 . . .31 . . . )

is included.

6 Muddy Children scenario is a lucky exception

In Artemov’s(Russian, 1951) report ”Syntactic Epistemic Logic”in the cerebration event for Johan van Benthem, He
proposed that Muddy Children scenario is a lucky exception.

Let us review the informal description at the beginning of our report,

”. . . Each child sees everybody else’s foreheads, but not his own.. . . ”

In fact, we presuppose two basic knowledge reasoning ability for each person, that is:
1. Knowing about others:∧
i 6=j
{Ki(mj) ∨Ki(¬mj)}

2.Not knowing about himself:∧
i=1,2

{¬Ki(mi) ∧ ¬Ki(¬mi)}

What is missing in the semantic solution?
The first presupposition was presented in the list of general knowledge in our syntactic process of the previous

section. But not the second one, so is it unnecessary to write it into our informal description?
Consider our semantic solution to the 2-Muddy Children puzzle, we adopt the following model as the whole

possibility:
(1, 1) 1

2

(0, 1)

2

(1, 0) 1 (0, 0)

M1

Does the model M1 characterize the scenario of 2-Muddy Children puzzle completely?
We should first check if the modelM1 satisfies the two syntactic presuppositions above. There seems no problem.
How about the other direction? If we omit the second presupposition, what will happen?
A nontrivial example
Let us consider the case when the second presupposition is omitted. That is:
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Two children have muddy foreheads and each child sees the other child’s forehead. The father an-
nounces publicly ”some of you are muddy.” The father then says: ”Do any of you know that you have
mud on your forehead? If you do, raise your hand now.” No one raises his hand. The father repeats the
question, and both children raise their hands simultaneously.

Which model characterizes the scenario best?
The possible epistemic models
The model M1 is certainly a choice.

(1, 1) 1

2

(0, 1)

2

(1, 0) 1 (0, 0)

Problem arises!
How about the following model M2? Obviously, it is not equivalent to M1

(1, 0) 2 (1, 1)

(0, 0) 2 (0, 1)

Model M2

. . .
What can we learn from this abnormal example?

If an epistemic scenario is given syntactically, but formalized by an epistemic model, it makes sense to
examine its syntactic formalization as well and try to establish their equivalence.

Sergei Artemov

7 ’Knowingly’ on criminal

There are a lot of ”knowingly” in the rules of criminal law and judicial interpretation. Theorists have different
opinions on ”knowingly”, as for ”ascertain”or ”should have known”, so it is such a difficult discrimination that
judicial departments try different methods to identify ”knowingly”.

The following is several examples in criminal law:
Article 138 If a person who is directly responsible knowingly fails to adopt measures against dangers in school

buildings or in educational. . .
Article 144 Whoever mixes the foods that he produces or sells with toxic or harmful non-food raw materials or

knowingly sells such foods . . .
Article 172 Whoever knowingly holds or uses counter-feit currencies shall, . . .
Article 399 Any judicial officer who, bending the law for selfish ends or twisting the law for a favor, subjects to

investigation for criminal responsibility a person he knows to be innocent or intentionally protects from investiga-
tion for criminal responsibility a person he knows to be guilty . . .

. . .
Then how to identify responsibility in criminal law? How to reason that the doer did things knowingly?
There is a term in law called ”legal reasoning”, which is an evidence law to reason from known basic facts to

unknown presumption facts and allow the party propose counterevidence in the process.
Let Φ be the set of basic facts and ψ be presumption fact, ψ usually has the form of Kχ. As we can reason

from Φ to ψ, there must be some relation between Φ and ψ, we call it ’Permanent Connection’, i.e.PC. Then∧
Φ→ ψ ∈ PC.

Reasoning about knowingly in law usually follow the following pattern:
(1)Solidify the permanent connection between knowingly subjectively and objective basic facts.
(2)Determine the existence of objective basic facts according to the permanent connection.
(3)Excluded the doer’s counterevidence.
In logic, to say

∧
Φ→ ψ valid iff ψ holds whenever Φ holds, no tolerance of exception. Is it that rigid in criminal

law? How can our logic help with it?
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