A Brief Introduction to Justification Logic 2015.12.08, Peking University

Junhua Yu

Department of Philosophy, Tsinghua University, Beijing 100084 China

December 10, 2015

1 Outline

- History from constructive proof to justification
- Elements of justification logics
 - \circ Syntax
 - Semantics
 - Realization of modal logics
- Selected topics
 - Joint systems with modal logics
 - Self-referentiality
- References

2 History

2.1 Origin - Artemov's explicit provability

- Brouwer: Truth in intuitionistic maths means the existence of a proof
- Heyting 1930: Axiomatization of intuitionistic propositional logic IPC
- Heyting and Kolmogorov (independently): An informal stipulation "BHK semantics"
 - A proof of $\alpha \wedge \beta$ consists of a proof of α and a proof of β
 - A proof of $\alpha \lor \beta$ is given by presenting either a proof of α or a proof of β
 - A proof of $\alpha \rightarrow \beta$ is a construction transforming proofs of α into proofs of β
 - $\circ \ \bot$ has no proof, and $\neg \alpha$ abbreviates $\alpha \! \rightarrow \! \bot$

- Gödel 1933: (proposed) Formalize intuitionistic truth in terms of classical provability
 - A classical propositional logic with provability operator:
 - ♦ Read $\Box \phi$ as " ϕ is provable"
 - \diamond Essentially S4
 - An embedding of IPC into S4: $(\cdot)^G$
 - \diamond Prefixing each subformula with a " \Box " truth \mapsto provability
 - ♦ IPC $\vdash \phi$ implies S4 $\vdash \phi^G$
 - ♦ Opposite direction by McKinsey, Tarski 1948
 - \diamond Alternative embeddings exist

• Does not work well when interpreted as $\exists x Proof(x, \lceil \phi \rceil)$:

$$\begin{array}{ll} \Box \bot \to \bot & \text{t-axiom / reflection principle} \\ \Box (\Box \bot \to \bot) & \\ \Box \neg \Box \bot & \end{array}$$

- Approach 1 Insisting on $\exists x Proof(x, \lceil \phi \rceil)$, the desired logic is GL
 - $\diamond \text{ Taking } \Box(\Box \alpha \rightarrow \alpha) \rightarrow \Box \alpha \text{ instead of } \Box \alpha \rightarrow \alpha$
 - ♦ Completeness by Solovay 1976
- $\,\circ\,$ Approach 2 Find an appropriate interpretation of $\Box,$ and formalize a provability semantics for $\mathsf{S4}$
 - \diamond Gödel's 1938 lecture offers an idea first published 1995
 - $\diamond\,$ Artemov 1994 LP the first justification logic
- Artemov's LP the logic of proofs
 - conference presentation 1994, technical report 1995, journal publishment 2001
 - Explicit provability
 - ♦ Instead of $\Box \phi$, employ $t: \phi$
 - \triangleright Intuitively, t is a proof of ϕ
 - $\triangleright t: \phi \rightarrow \phi$ is provably valid:
 - if $t: \phi$ holds, then ϕ has a concrete proof; otherwise, since Proof is recursive, PA sees $\neg t: \phi$
 - $\diamond t$ is a term, with an inductive structure
 - ▷ Constant: proof of axiom
 - ▷ Variable: proof of hypothesis
 - \triangleright Operator: operations on proofs
- Formalization of provability semantics of S4 and IPC
 - Gödel's modal embedding: interpret IPC in S4

- $\circ\,$ Artemov's realization: interpret S4 in LP
 - \diamond Realizer: a map that replaces \Box -occurrences by terms
 - ♦ S4 $\vdash \phi$ iff there is a realizer $(\cdot)^r$ s.t. LP $\vdash \phi^r$
- Artemov's completeness: interpret LP as a provability logic, e.g., of PA
 - ♦ Arithmetical interpretation $(\cdot)^*$: $(t:\phi)^*$ is defined as $Proof(t^*, \ulcorner\phi^*\urcorner)$
 - ◇ Let CS be a constant specification (defined later): LP(CS) $\vdash \phi$ iff $\forall (\cdot)^*$ that admits CS, PA $\vdash \phi^*$

2.2 Generalization - explicit modal logics

- $\bullet~\mathsf{LP}$ can be seen as an explicit version of $\mathsf{S4}$
 - $\Box \phi$ some (concrete) proof proves ϕ
 - $t: \phi$ t proves ϕ
 - Explicit provability is normal, reflexive and transitive
 - Necessitation is simulated by a meta theorem (internalization)
- Other modal logics can also be explicitized
 - $\circ\,$ Keynote ideas
 - ♦ Read negative \square as input and positive \square as output ▶ e.g., $\square(\alpha \rightarrow \beta) \rightarrow (\square\alpha \rightarrow \square\beta)$
 - ♦ Assign operators to model operations from input to ouput
 ▷ in this case, binary operator "."
 - ♦ Correspond each modal axiom with a justification axiom ▷ in this case, $t_1: (\alpha \rightarrow \beta) \rightarrow (t_2: \alpha \rightarrow t_1 \cdot t_2: \beta)$
 - \diamond Offer completeness while maintaining intended realization
 - Explicit versions have been found for modal logics:
 - ◊ S4 by Artemov 1995,2001
 - $\diamond~\mathsf{K},\mathsf{D},\mathsf{T},\mathsf{K4},\mathsf{D4}$ by Brezhnev 2000
 - $\diamond~S5$ independently by Pacuit 2005 and Rubtsova 2005
 - \diamond several logics with k,d,t,4,b,5-axioms by Pacuit, Artemov, Goetschi, and Kuznets 2005 2012
 - $\diamond~K4^3, S4.2$ by Fitting 2014 (not included in this talk)

3 Elements of justification logics

ML, JL denote a modal logic, justification logic, resp.

3.1 Syntax

• Justification languages

• Terms
$$t ::= c_j^i | x_k | t \cdot t | t + t \underbrace{|!t|?t|\overline{?}t}_{optional}$$

- $\diamond c_j^i$ *j*-th constant in series *i* (less formally, *a*, *b*, *c*, ...)
- $\diamond x_k$ k-th variable (less formally, x, y, z, ...)
- \diamond operators:
 - $\triangleright~\cdot~$ application
 - \triangleright + sum
 - \triangleright ! positive introspection
 - \triangleright ? negative introspection
 - \triangleright ? weak negative introspection
- Formulas $\phi ::= \bot | p | \phi \rightarrow \phi | t : \phi$
 - $\diamond \neg, \land, \lor$ defined as usual
 - $\diamond t: \phi$ intuitively means "t is an evidence for ϕ "
- Axiomatization
 - Primary axiom schemes:
 - ♦ Finite complete propositional axiom schemes
 - $\diamond (\mathsf{app})t_1: (\phi \to \psi) \to (t_2: \phi \to t_1 \cdot t_2: \psi)$ $\triangleright \text{ cf. } (\mathsf{k}) \Box (\alpha \to \beta) \to (\Box \alpha \to \Box \beta) \text{ in modal logics}$
 - \diamond (sum₀) $t_1: \phi \rightarrow t_1 + t_2: \phi$
 - $\diamond (\operatorname{sum}_1)t_2 : \phi \to t_1 + t_2 : \phi$
 - $\circ\,$ Rule schemes:
 - $\diamond (MP)$

$$\diamond \ \overline{c_n^i\!:\!c_{n-1}^i\!:\!\ldots\!:\!c_1^i\!:\!A} \ (AN), \ \text{where} \ A \ \text{is an axiom} \\$$

- $\circ~$ The logic as above is J, the minimal justification logic
- $\circ~$ Optional axiom schemes:

$$\diamond (\mathbf{jd})t: \bot \to \bot \rhd \text{ cf. } (\mathbf{d})\Box \bot \to \bot \diamond (\mathbf{jt})t: \phi \to \phi \rhd \text{ cf. } (\mathbf{t})\Box \phi \to \phi \diamond (\mathbf{j4})t: \phi \to !t: t: \phi \rhd \text{ cf. } (\mathbf{4})\Box \alpha \to \Box\Box \alpha \diamond (\mathbf{j5}) \neg t: \phi \to ?t: \neg t: \phi \rhd \text{ cf. } (\mathbf{5}) \Diamond \alpha \to \Box \Diamond \alpha$$

$$\diamond (\mathbf{j}\mathbf{b})\phi \rightarrow \mathbf{\bar{?}}t:\neg t:\neg \phi$$

$$\triangleright \text{ cf. } (\mathbf{b})\alpha \rightarrow \Box \Diamond \alpha$$

- All justification logics are extensions of J, and are named by their optional schemes
 - E.g., JD45 is the logic with optional schemes (jd, j4, j5)
 - \circ Exception: omit letter D if (jt) presents
 - JT4 is historically called LP
 - This gives $3 \times 2^3 = 24$ justification logics
 - \circ In logics with (j4), it is sufficient to have only the first constant in each series,

and use
$$\overline{c:A}^{(AN_4)}$$
 instead

• An example proof of $x: \alpha \lor y: \beta \to (a \cdot ! x) + (b \cdot y): (x: \alpha \lor \beta)$ in LP

1.	$a: (x: \alpha \to x: \alpha \lor \beta)$	AN
2.	$a: (x: \alpha \to x: \alpha \lor \beta) \to (!x: x: \alpha \to a \cdot !x: (x: \alpha \lor \beta))$	арр
3.	$!x : x : \alpha \to a \cdot !x : (x : \alpha \lor \beta)$	MP, 2, 1
4.	$x : \alpha \rightarrow ! x : x : \alpha$	j4
5.	$a \cdot !x : (x : \alpha \lor \beta) \to (a \cdot !x) + (b \cdot y) : (x : \alpha \lor \beta)$	sum
6.	$x : \alpha \to (a \cdot ! x) + (b \cdot y) : (x : \alpha \lor \beta)$	classical logic, $4, 3, 5$
7.	$b: (\beta \rightarrow x: \alpha \lor \beta)$	AN
8.	$b: (\beta \rightarrow x : \alpha \lor \beta) \rightarrow (y : \beta \rightarrow b \cdot y : (x : \alpha \lor \beta))$	арр
9.	$y:\beta \rightarrow b \cdot y: (x:\alpha \lor \beta)$	MP, 8, 7
10.	$b \cdot y : (x : \alpha \lor \beta) \to (a \cdot ! x) + (b \cdot y) : (x : \alpha \lor \beta)$	sum
11.	$y:\beta \to (a\cdot !x) + (b \cdot y): (x:\alpha \lor \beta)$	classical logic, 9, 10
12.	$x : \alpha \lor y : \beta \to (a \cdot ! x) + (b \cdot y) : (x : \alpha \lor \beta)$	classical logic, 6, 11

- Cf. theorem $\Box \alpha \lor \Box \beta \rightarrow \Box (\Box \alpha \lor \beta)$ in S4
- Constant specification
 - Intuitively, a justification logic breaks evidences to atomic ones, variables and constants
 - \diamond a constant specification assigns to constants axioms they support
 - A constant specification (notation: CS) is a "downward closed" set of formulas of the type $c_n^i : c_{n-1}^i : \ldots : c_1^i : A$
 - ♦ downward closure means, for every n > 0 $c_{n+1}^i : c_n^i : ... : c_1^i : A \in CS$ implies $c_n^i : ... : c_1^i : A \in CS$
 - \diamond formulas of this type are those introducible by (AN)
 - JL(CS) is JL with (AN) restricted to CS

 \diamond JL is JL(CS) with the full CS

- \circ A constant specification \mathcal{CS} has property:
 - \diamond axiomatically appropriate if for every axiom A and every number n there exist a series of constants $c_1, ..., c_n$ s.t. $c_n^i : c_{n-1}^i : ... : c_1^i : A \in CS$
 - ♦ schematic if whenever $c_n^i : c_{n-1}^i : \ldots : c_1^i : A \in \mathcal{CS}$ and A, B are instances of a same axiom scheme, $c_n^i : c_{n-1}^i : \ldots : c_1^i : B \in \mathcal{CS}$

 \diamond self-referential - if $c_1^i : A \in \mathcal{CS}$ while c_i^i occurs in A

- Some meta-theorems
 - $\circ~\mathsf{JL}\mathcal{CS}$ enjoys deduction theorem
 - $\diamond\,$ The standard proof works
 - $\circ~\mathsf{JLCS}$ enjoys uniform substitution (variable/term, atom/formula), provided \mathcal{CS} is schematic
 - $\diamond CS$ should to be schematic, since when dealing with (AN), we need to use same constants provided by CS
 - (Internalization) if \mathcal{CS} is axiomatically appropriate and $\alpha_1, ..., \alpha_n \vdash \beta$, then there is a term $t(x_1, ..., x_n)$ s.t. $t_1 : \alpha_1, ..., t_n : \alpha_n \vdash t(t_1, ..., t_n) : \beta$ holds for any terms $t_1, ..., t_n$
 - $\diamond\,$ induction on the original derivation
 - \diamond axiomatically appropriateness provides constants to treat axioms and (AN)'s
 - \diamond hypothesis is cared by variables
 - \diamond (app) helps in dealing with (MP)

3.2 Semantics

Note: we will not mention semantics for logics with jb, since no completeness for them has been formally claimed, as far as I know...

- Evidence function
 - Firstly appears in Mkrtychev 1997
 - $\circ \ E ::= Term \mapsto 2^{Formula}$
 - \diamond specify a set of formulas to whom t serves as an evidence
 - Closure conditions (depending on the logic)
 - \diamond if $\alpha \rightarrow \beta \in E(t_1)$ and $\alpha \in E(t_2)$ then $\beta \in E(t_1 \cdot t_2)$
 - $\diamond E(t_1) \subseteq E(t_1 + t_2)$ and $E(t_2) \subseteq E(t_1 + t_2)$
 - $\diamond \phi \in E(t)$ implies $t: \phi \in E(!t)$ (when j4 is adopted)
 - ♦ $\phi \notin E(t)$ implies $\neg t : \phi \in E(?t)$ (when j5 is adopted)
 - If $\phi \in E(c)$ holds for every $c: \phi \in \mathcal{CS}$, then E is a \mathcal{CS} -evidence function
- Fitting model
 - A Fitting model is $\mathfrak{M} = (W, R, E, V)$ where
 - \diamond (W, R, V) is a Kripke model
 - \triangleright R must be (serial, reflexive, transitive, euclidean) if (jd, jt, j4, j5) presents
 - $\diamond \mathcal{E}$ is an evidence assignment that assigns to each u an evidence function $\mathcal{E}(u)$
 - \triangleright If j4 presents, then monotonicity is required: uRv implies $\mathcal{E}(u) \subseteq \mathcal{E}(v)$

- A Fitting-model is a \mathcal{CS} -model if for every $u \in W$, $\mathcal{E}(u)$ is a \mathcal{CS} -evidence function
- $\circ \mathfrak{M}, u \vDash t : \psi$ iff
 - (1) $\mathfrak{M}, v \vDash \psi$ for every v s.t. uRv and (2) $\psi \in \mathcal{E}(u)(t)$
 - ◇ If j5 presents, then clause (1) is dropped (this is called "strong evidence") (alternative setting exists)
- Fitting Completeness (Fitting 2005, Artemov 2008, etc.)
 - $\diamond \ \mathsf{JL}(\mathcal{CS}) \vdash \phi \text{ iff} \\ \text{for every } \mathcal{CS}\text{-model of } \mathsf{JL} \text{ and state } w, \mathfrak{M}, w \Vdash \phi \text{ holds} \\ \end{cases}$
 - \diamond when JL has scheme jd, then we need a further requirement that \mathcal{CS} is axiomatically appropriate
 - \triangleright this is so because internalization is employed in the completeness proof
 - \diamond Proved usually by canonical model construction
 - $\mathbb{P} W = \{ \Gamma \mid \Gamma \text{ is a maximal } \mathsf{JL}(\mathcal{CS} \text{ consistent set}) \}$ $\mathbb{P} R = \{ (\Gamma, \Delta) \mid \Gamma^{\sharp} \subseteq \Delta \}, \text{ where } \Gamma^{\sharp} = \{ \phi \mid (\exists t)t : \phi \in \Gamma \}$ $\mathbb{P} \mathcal{E}(\Gamma)(t) = \{ \phi \mid t : \phi \in \Gamma \}$
 - $\triangleright V(p) = \{ \Gamma \in W \mid p \in \Gamma \}$

3.3 Realization of modal logics

- A justification logic is an explicit version of the modal logic linked to it by realization
- Realization theorem says: $\mathsf{ML} \vdash \phi \text{ iff } \exists \text{ realizer } r \text{ to the language of } \mathsf{JL} \text{ s.t. } \mathsf{JL} \vdash \phi^r$
 - $\circ~$ If this holds, we say that ML realizes to JL in notation: $ML \hookrightarrow JL$
- Some existing realizations:
 - Artemov 1995,2001: $S4 \hookrightarrow LP$ (i.e., JT4)
 - As expected, Brezhnev 2000 shows: $K \hookrightarrow J, D \hookrightarrow JD, T \hookrightarrow JT, K4 \hookrightarrow J4, D4 \hookrightarrow JD4$
 - $\circ~{\rm Similarly}$ for other modal logics with k,d,t,4,5,b axioms, except that:
 - \diamond KB5 realizes to each of JB4, JB5, and JB45
 - \diamond S5 realizes to each of JT5, JTB5, JDB5, JT45, JTB45, JDB45, JTB4, JDB4
 - ♦ Both modal logics have multiple axiomatizations, each modal scheme has a distinct corresponding justification scheme, some even with distinct operators
 - $\diamond\,$ Thus 15 modal logics have 24 justification counterparts
 - ♦ Goetschi 2012 offers an embedding w.r.t. which all justification counterparts of a same modal logic are pairwise equivalent
- There are various methods in proving realization

- Artemov 1995,2001: induction on cut-free sequent proofs for S4
 - $\diamond\,$ read sequents as derivations
 - ◊ for most rules, similar to the conversion of sequent proofs to axiomatical proofs (deduction theorem employed)

♦ for $\frac{\Box \Theta \Rightarrow \eta}{\Box \Theta, \Gamma \Rightarrow \Delta, \Box \eta} (R\Box)$, employ internalization on the premise-derivation to compute an LP-term to replace the principal □

- $\circ~$ Brezhnev 2000: transplant to $\mathsf{K},\mathsf{D},\mathsf{T},\mathsf{K4},\mathsf{D4},$ as each also enjoys a cut-free sequent calculus
- Fitting 2009: a sophisticated algorithmic proof, some properties with prices
- $\circ\,$ Goetschi Kuznets 2012: employ nested sequent calculi
 - \diamond capable of realizing modal logics with b, 5 axioms
- Other methods in Fitting 2005, Wang 2011, etc.

4 Selected topics

4.1 Joint systems with modal logics

- The logic GLA Nogina 2006
 - A mixed language of GL and LP
 - Axiom and rule schemes of both, together with:

$$\begin{array}{l} \diamond \ t:\phi \to \Box \phi \\ \diamond \ \neg t:\phi \to \Box \neg t:\phi \\ \diamond \ t:\Box \phi \to \phi \quad [\text{cf. } \Box \phi \to \phi] \\ \diamond \ \frac{\vdash \Box \phi}{\vdash \phi} \text{ reflection} \end{array}$$

- Completeness w.r.t. a mixed provability semantics
- Goris 2006
 - $\diamond\,$ The collection of GL-theorems realizable in LP is exactly $\mathsf{GL}\cap\mathsf{S4}$
 - $\diamond~{\rm An}$ axiomatization of ${\sf GL}\cap{\sf S4}$
- The logic S4LP Fitting 2008
 - $\circ\,$ A mixed language of S4 and LP
 - Axiom and rule schemes of both, together with:

 $\diamond t: \phi \rightarrow \Box \phi$

- Justification takes care of both accessibility and evidence function, while modality takes care of only accessibility
- $\circ\,$ Local realization:

- \diamond If $\mathfrak{M}, u \Vdash \phi$, then for some realization ψ of $\phi, \mathfrak{M}, u \Vdash \psi$
- Completeness w.r.t. to models that meets local realizability condition, with some proviso
- Epistemic reading
 - Logic with both knowledge and justification
 - $\circ~$ Using different accessible relations for \square and $t\colon$

4.2 Self-referentiality

- In justification language, $t:\phi$ is a legal formula even if t occurs in ϕ
 - t is a justification of a propositional ϕ about t itself
 - Atomic case: c: A(c) (arithmetical reading)
- Employ constant specification to control
 - Recall: \mathcal{CS} is self-referential, if $c_1^i: A \in \mathcal{CS}$ while c_i^i occurs in A
 - In LP, as j4 presents, we can take the reduced form: CS is self-referential if $c^i: A \in CS$ while c^i occurs in A
- What happens if \mathcal{CS} is restricted to be non-self-referential?
 - \circ Not interesting for completeness, which has \mathcal{CS} as a parameter
 - Realization?
- Kuzents 2006,2008:
 - $\circ\,$ Each K or D theorem can be realized (in J or JD) without using self-referential \mathcal{CS}
 - \circ In each of $\mathsf{T},\mathsf{K4},\mathsf{S4},$ there is a theorem whose realization necessarily calls for self-referential \mathcal{CS}
 - \diamond As an instance: $\Box \neg (p \rightarrow \Box p) \rightarrow \Box \bot$
- Yu 2014:
 - \circ There are IPC-theorems whose all images (in S4) under Gödel-style embeddings each requires self-referential \mathcal{CS} to be realized (in LP)
 - For example: $\neg \neg \alpha$ where α is intuitionistic invalid tautology
 - $\circ~$ As an example in $\mathsf{IPC}_{\rightarrow} \colon ((((p \!\rightarrow\! q) \!\rightarrow\! p) \!\rightarrow\! p) \!\rightarrow\! q) \!\rightarrow\! q)$
- Yu 2015:
 - $\circ\,$ Non-self-referential realizable fragments of modal logics T, K4, S4 are closed under MP
 - There are modal theorems self-referential in a smaller logic but non-self-referential in a larger one

5 References

- Artemov 1994,1995
 Sergei Artemov: Operational modal logic. Technical Report MSI 95-29. Cornell Univ. (1995)
- Artemov 2001 Sergei Artemov: Explicit provability and constructive semantics. BSL 7(1), 1-36 (2001)
- Artemov 2008 Sergei Artemov: The logic of justification. RSL 1(4), 477-513 (2008)
- Artemov 2011 Sergei Artemov: The ontology of justifications in the logical setting. *RSL* 1(4), 477-513 (2008)
- Brezhnev 2000 Vladimir Brezhnev: On explicit counterparts of modal logics. Technical Report CFIS 2000-05, Cornell Univ. (2000)
- Fitting 2005 Melvin Fitting: The logic of proofs, semantically. APAL 132(1), 1-25 (2005)
- Fitting 2008 S4LP and Local Realizability. *LNCS 5010*, 168-179 (2008)
- Fitting 2009 Melvin Fitting: Realizations and LP. APAL 161(3), 368-387 (2009)
- Fitting 2014 Melvin Fitting: Justification Logics and Realization. Computer Science Technical Reports TR-2014004, GC CUNY (2014)
 - Gödel 1933

Kurt Gödel: Eine Interpretation des intuitionistischen Aussagenkalkuls. *Ergebnisse* eines mathematischen Kolloquiums 4, 39-40, (1933) English translation in: Solomon Feferman, et al (eds.): *Kurt Gödel Collected Works*, vol. 1, 301-303. Oxford University Press, Oxford, Clarendon Press, New York (1986)

 $\bullet~$ Gödel's 1938

Kurt Gödel: Lecture at Zilsel's. English version in: Solomon Feferman, et al (eds.): *Kurt Gödel Collected Works*, vol. 3, 86-113. Oxford Univ. Press, Oxford, Clarendon Press, New York (1995)

• Goetschi 2012

Remo Goetschi: On the Realization and Classification of Justification Logics. Ph.D. Thesis, Univ. of Bern (2012)

• Goetschi, Kuznets 2012

Remo Goetschi, Roman Kuznets: Realization for justification logics via nested sequents: Modularity through embedding. APAL 163(9), 1271-1298 (2012)

- Goris 2006
 Evan Goris: Explicit Proofs in Formal Provability Logic. LNCS 4514, 241-253 (2006)
- Kuzents 2006
 Vladimir Brezhnev, Roman Kuznets: Making knowledge explicit: how hard it is. TCS 357(1-3), 23-34 (2006)
- Kuzents 2008

Roman Kuznets: Self-referential justifications in epistemic logic. ToCS 46(4), 636-661 (2010)

- McKinsey, Tarski 1948
 John C.C. McKinsey, Alfred Tarski: Some theorems about the sentential calculi of Lewis and Heyting. JSL 13, 1-15 (1948)
- Mkrtychev 1997 Alexey Mkrtychev: Models for the logic of proofs. LNCS 1234, 266-275 (1997)
- Nogina 2006 Elena Nogina: On logic of proofs and provability, *BSL* 12(2) (2006)
- Pacuit 2005
 Eric Pacuit: A note on some explicit modal logics. 5th Panhellenic Logic Symposium, (2005)
- Rubtsova 2005 Natalia Rubtsova: Evidence-based knowledge for S5. Logic Colloquium 2005 (2005)
- Solovay 1976

Robert Solovay: Provability interpretations of modal logic, *Israel Journal of Mathe*matics 25(3), 287-304 (1976)

- Wang 2011 Wang Ren-June: On non-circular proofs and proof realization in modal logic. Computer Science Technical Report TR-2011012, GC CUNY (2011)
- Yu 2014

Yu Junhua: Self-referentiality of BrouwerCHeytingCKolmogorov semantics. APAL 165(1), 371-388 (2014)

• Yu 2015 Yu Junhua: On Non-self-referential Fragments of Modal Logics. manuscript