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2 History

2.1 Origin - Artemov’s explicit provability

• Brouwer: Truth in intuitionistic maths means the existence of a proof

• Heyting 1930: Axiomatization of intuitionistic propositional logic IPC

• Heyting and Kolmogorov (independently): An informal stipulation - “BHK semantics”

◦ A proof of α ∧ β consists of a proof of α and a proof of β

◦ A proof of α ∨ β is given by presenting either a proof of α or a proof of β

◦ A proof of α→β is a construction transforming proofs of α into proofs of β

◦ ⊥ has no proof, and ¬α abbreviates α→⊥
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• Gödel 1933: (proposed) Formalize intuitionistic truth in terms of classical provability

◦ A classical propositional logic with provability operator:

� Read �φ as “φ is provable”

� Essentially S4

◦ An embedding of IPC into S4: (·)G

� Prefixing each subformula with a “�” - truth 7→ provability

� IPC ` φ implies S4 ` φG

� Opposite direction by McKinsey, Tarski 1948

� Alternative embeddings exist

◦ Does not work well when interpreted as ∃xProof(x, pφq):

�⊥→⊥ t-axiom / reflection principle
�(�⊥→⊥)
�¬�⊥

◦ Approach 1 - Insisting on ∃xProof(x, pφq), the desired logic is GL

� Taking �(�α→α)→�α instead of �α→α

� Completeness by Solovay 1976

◦ Approach 2 - Find an appropriate interpretation of �, and formalize a provability
semantics for S4

� Gödel’s 1938 lecture offers an idea - first published 1995

� Artemov 1994 LP - the first justification logic

• Artemov’s LP - the logic of proofs

◦ conference presentation 1994, technical report 1995, journal publishment 2001

◦ Explicit provability

� Instead of �φ, employ t :φ

. Intuitively, t is a proof of φ

. t :φ→φ is provably valid:
if t :φ holds, then φ has a concrete proof;
otherwise, since Proof is recursive, PA sees ¬t :φ

� t is a term, with an inductive structure

. Constant: proof of axiom

. Variable: proof of hypothesis

. Operator: operations on proofs

• Formalization of provability semantics of S4 and IPC

◦ Gödel’s modal embedding: interpret IPC in S4
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◦ Artemov’s realization: interpret S4 in LP

� Realizer: a map that replaces �-occurrences by terms

� S4 ` φ iff there is a realizer (·)r s.t. LP ` φr

◦ Artemov’s completeness: interpret LP as a provability logic, e.g., of PA

� Arithmetical interpretation (·)∗:
(t :φ)∗ is defined as Proof(t∗, pφ∗q)

� Let CS be a constant specification (defined later):
LP(CS) ` φ iff ∀(·)∗ that admits CS, PA ` φ∗

2.2 Generalization - explicit modal logics

• LP can be seen as an explicit version of S4

◦ �φ - some (concrete) proof proves φ

◦ t :φ - t proves φ

◦ Explicit provability is normal, reflexive and transitive

◦ Necessitation is simulated by a meta theorem (internalization)

• Other modal logics can also be explicitized

◦ Keynote ideas

� Read negative � as input and positive � as output

. e.g., �(α→β)→(�α→�β)

� Assign operators to model operations from input to ouput

. in this case, binary operator “·”
� Correspond each modal axiom with a justification axiom

. in this case, t1 : (α→β)→(t2 :α→ t1 ·t2 :β)

� Offer completeness while maintaining intended realization

◦ Explicit versions have been found for modal logics:

� S4 - by Artemov 1995,2001

� K,D,T,K4,D4 - by Brezhnev 2000

� S5 - independently by Pacuit 2005 and Rubtsova 2005

� several logics with k, d, t, 4, b, 5-axioms - by Pacuit, Artemov, Goetschi, and
Kuznets 2005 2012

� K43, S4.2 - by Fitting 2014 (not included in this talk)

3 Elements of justification logics

ML, JL denote a modal logic, justification logic, resp.
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3.1 Syntax

• Justification languages

◦ Terms t ::= cij |xk | t·t | t+t | !t | ?t | ?̄t︸ ︷︷ ︸
optional

� cij - j-th constant in series i (less formally, a, b, c, ...)

� xk - k-th variable (less formally, x, y, z, ...)

� operators:

. · - application

. + - sum

. ! - positive introspection

. ? - negative introspection

. ?̄ - weak negative introspection

◦ Formulas φ ::= ⊥ | p |φ→φ | t :φ
� ¬,∧,∨ defined as usual

� t :φ intuitively means “t is an evidence for φ”

• Axiomatization

◦ Primary axiom schemes:

� Finite complete propositional axiom schemes

� (app)t1 : (φ→ψ)→(t2 :φ→ t1 ·t2 :ψ)

. cf. (k)�(α→β)→(�α→�β) in modal logics

� (sum0)t1 :φ→ t1+t2 :φ

� (sum1)t2 :φ→ t1+t2 :φ

◦ Rule schemes:

� (MP )

�
(AN), where A is an axiom

cin :cin−1 : ... :ci1 :A

◦ The logic as above is J, the minimal justification logic

◦ Optional axiom schemes:

� (jd)t :⊥→⊥
. cf. (d)�⊥→⊥

� (jt)t :φ→φ

. cf. (t)�φ→φ

� (j4)t :φ→!t : t :φ

. cf. (4)�α→��α
� (j5)¬t :φ→?t :¬t :φ

. cf. (5)♦α→�♦α
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� (jb)φ→ ?̄t :¬t :¬φ
. cf. (b)α→�♦α

• All justification logics are extensions of J, and are named by their optional schemes

◦ E.g., JD45 is the logic with optional schemes (jd, j4, j5)

◦ Exception: omit letter D if (jt) presents

◦ JT4 is historically called LP

◦ This gives 3× 23 = 24 justification logics

◦ In logics with (j4), it is sufficient to have only the first constant in each series,

and use
(AN4)c :A instead

• An example proof of x :α ∨ y :β→(a·!x)+(b·y) : (x :α ∨ β) in LP

1. a : (x :α→x :α ∨ β) AN
2. a : (x :α→x :α ∨ β)→(!x :x :α→a·!x : (x :α ∨ β)) app
3. !x :x :α→a·!x : (x :α ∨ β) MP, 2, 1
4. x :α→!x :x :α j4
5. a·!x : (x :α ∨ β)→(a·!x)+(b · y) : (x :α ∨ β) sum
6. x :α→(a·!x)+(b · y) : (x :α ∨ β) classical logic, 4, 3, 5
7. b : (β→x :α ∨ β) AN
8. b : (β→x :α ∨ β)→(y :β→b · y : (x :α ∨ β)) app
9. y :β→b · y : (x :α ∨ β) MP, 8, 7

10. b · y : (x :α ∨ β)→(a·!x)+(b · y) : (x :α ∨ β) sum
11. y :β→(a·!x)+(b · y) : (x :α ∨ β) classical logic, 9, 10
12. x :α ∨ y :β→(a·!x)+(b · y) : (x :α ∨ β) classical logic, 6, 11

◦ Cf. theorem �α ∨�β→�(�α ∨ β) in S4

• Constant specification

◦ Intuitively, a justification logic breaks evidences to atomic ones, variables and
constants

� a constant specification assigns to constants axioms they support

◦ A constant specification (notation: CS) is a “downward closed” set of formulas of
the type cin :cin−1 : ... :ci1 :A

� downward closure means, for every n > 0 cin+1 : cin : ... : ci1 :A ∈ CS implies
cin : ... :ci1 :A ∈ CS
� formulas of this type are those introducible by (AN)

◦ JL(CS) is JL with (AN) restricted to CS
� JL is JL(CS) with the full CS

◦ A constant specification CS has property:

� axiomatically appropriate - if for every axiom A and every number n there
exist a series of constants c1, ..., cn s.t. cin :cin−1 : ... :ci1 :A ∈ CS
� schematic - if whenever cin : cin−1 : ... : ci1 :A ∈ CS and A, B are instances of a

same axiom scheme, cin :cin−1 : ... :ci1 :B ∈ CS
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� self-referential - if ci1 :A ∈ CS while cij occurs in A

• Some meta-theorems

◦ JLCS enjoys deduction theorem

� The standard proof works

◦ JLCS enjoys uniform substitution (variable/term, atom/formula), provided CS is
schematic

� CS should to be schematic, since when dealing with (AN), we need to use
same constants provided by CS

◦ (Internalization) if CS is axiomatically appropriate and α1, ..., αn ` β, then there
is a term t(x1, ..., xn) s.t. t1 : α1, ..., tn : αn ` t(t1, ..., tn) : β holds for any terms
t1, ..., tn

� induction on the original derivation

� axiomatically appropriateness provides constants to treat axioms and (AN)’s

� hypothesis is cared by variables

� (app) helps in dealing with (MP )

3.2 Semantics

Note: we will not mention semantics for logics with jb, since no completeness for them has
been formally claimed, as far as I know...

• Evidence function

◦ Firstly appears in Mkrtychev 1997

◦ E ::= Term 7→ 2Formula

� specify a set of formulas to whom t serves as an evidence

◦ Closure conditions (depending on the logic)

� if α→β ∈ E(t1) and α ∈ E(t2) then β ∈ E(t1 ·t2)
� E(t1) ⊆ E(t1 + t2) and E(t2) ⊆ E(t1 + t2)

� φ ∈ E(t) implies t :φ ∈ E(!t) (when j4 is adopted)

� φ /∈ E(t) implies ¬t :φ ∈ E(?t) (when j5 is adopted)

◦ If φ ∈ E(c) holds for every c :φ ∈ CS, then E is a CS-evidence function

• Fitting model

◦ A Fitting model is M = (W,R,E, V ) where

� (W,R, V ) is a Kripke model

. R must be (serial, reflexive, transitive, euclidean) if (jd, jt, j4, j5) presents

� E is an evidence assignment that assigns to each u an evidence function E(u)

. If j4 presents, then monotonicity is required: uRv implies E(u) ⊆ E(v)
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◦ A Fitting-model is a CS-model if for every u ∈ W , E(u) is a CS-evidence function

◦ M, u � t :ψ iff
(1) M, v � ψ for every v s.t. uRv and (2) ψ ∈ E(u)(t)

� If j5 presents, then clause (1) is dropped (this is called “strong evidence”)
(alternative setting exists)

◦ Fitting Completeness (Fitting 2005, Artemov 2008, etc.)

� JL(CS) ` φ iff
for every CS-model of JL and state w, M, w  φ holds

� when JL has scheme jd, then we need a further requirement that CS is ax-
iomatically appropriate

. this is so because internalization is employed in the completeness proof

� Proved usually by canonical model construction

. W = {Γ |Γ is a maximal JL(CS consistent set)}

. R = {(Γ,∆) |Γ] ⊆ ∆}, where Γ] = {φ | (∃t)t :φ ∈ Γ}

. E(Γ)(t) = {φ | t :φ ∈ Γ}

. V (p) = {Γ ∈ W | p ∈ Γ}

3.3 Realization of modal logics

• A justification logic is an explicit version of the modal logic linked to it by realization

• Realization theorem says:
ML ` φ iff ∃ realizer r to the language of JL s.t. JL ` φr

◦ If this holds, we say that ML realizes to JL
in notation: ML ↪→ JL

• Some existing realizations:

◦ Artemov 1995,2001: S4 ↪→ LP (i.e., JT4)

◦ As expected, Brezhnev 2000 shows:
K ↪→ J, D ↪→ JD, T ↪→ JT, K4 ↪→ J4, D4 ↪→ JD4

◦ Similarly for other modal logics with k, d, t, 4, 5, b axioms, except that:

� KB5 realizes to each of JB4, JB5, and JB45

� S5 realizes to each of JT5, JTB5, JDB5, JT45, JTB45, JDB45, JTB4, JDB4

� Both modal logics have multiple axiomatizations, each modal scheme has a
distinct corresponding justification scheme, some even with distinct operators

� Thus 15 modal logics have 24 justification counterparts

� Goetschi 2012 offers an embedding w.r.t. which all justification counterparts
of a same modal logic are pairwise equivalent

• There are various methods in proving realization
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◦ Artemov 1995,2001: induction on cut-free sequent proofs for S4

� read sequents as derivations

� for most rules, similar to the conversion of sequent proofs to axiomatical
proofs (deduction theorem employed)

� for

�Θ⇒ η
(R�)

�Θ,Γ⇒ ∆,�η , employ internalization on the premise-derivation
to compute an LP-term to replace the principal �

◦ Brezhnev 2000: transplant to K,D,T,K4,D4, as each also enjoys a cut-free sequent
calculus

◦ Fitting 2009: a sophisticated algorithmic proof, some properties with prices

◦ Goetschi Kuznets 2012: employ nested sequent calculi

� capable of realizing modal logics with b, 5 axioms

◦ Other methods in Fitting 2005, Wang 2011, etc.

4 Selected topics

4.1 Joint systems with modal logics

• The logic GLA Nogina 2006

◦ A mixed language of GL and LP

◦ Axiom and rule schemes of both, together with:

� t :φ→�φ
� ¬t :φ→�¬t :φ
� t :�φ→φ [cf. �φ→φ]

�
` �φ

reflection` φ
◦ Completeness w.r.t. a mixed provability semantics

◦ Goris 2006

� The collection of GL-theorems realizable in LP is exactly GL ∩ S4

� An axiomatization of GL ∩ S4

• The logic S4LP Fitting 2008

◦ A mixed language of S4 and LP

◦ Axiom and rule schemes of both, together with:

� t :φ→�φ
◦ Justification takes care of both accessibility and evidence function, while modality

takes care of only accessibility

◦ Local realization:
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� If M, u  φ, then for some realization ψ of φ, M, u  ψ

◦ Completeness w.r.t. to models that meets local realizability condition, with some
proviso

• Epistemic reading

◦ Logic with both knowledge and justification

◦ Using different accessible relations for � and t :

4.2 Self-referentiality

• In justification language, t :φ is a legal formula even if t occurs in φ

◦ t is a justification of a propositional φ about t itself

◦ Atomic case: c :A(c) (arithmetical reading)

• Employ constant specification to control

◦ Recall: CS is self-referential, if ci1 :A ∈ CS while cij occurs in A

◦ In LP, as j4 presents, we can take the reduced form: CS is self-referential if
ci :A ∈ CS while ci occurs in A

• What happens if CS is restricted to be non-self-referential?

◦ Not interesting for completeness, which has CS as a parameter

◦ Realization?

• Kuzents 2006,2008:

◦ Each K or D theorem can be realized (in J or JD) without using self-referential
CS
◦ In each of T,K4, S4, there is a theorem whose realization necessarily calls for

self-referential CS
� As an instance: �¬(p→�p)→�⊥

• Yu 2014:

◦ There are IPC-theorems whose all images (in S4) under Gödel-style embeddings
each requires self-referential CS to be realized (in LP)

◦ For example: ¬¬α where α is intuitionistic invalid tautology

◦ As an example in IPC→: ((((p→q)→p)→p)→q)→q

• Yu 2015:

◦ Non-self-referential realizable fragments of modal logics T,K4, S4 are closed under
MP

◦ There are modal theorems self-referential in a smaller logic but non-self-referential
in a larger one
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Kurt Gödel Collected Works, vol. 3, 86-113. Oxford Univ. Press, Oxford, Clarendon
Press, New York (1995)

• Goetschi 2012
Remo Goetschi: On the Realization and Classification of Justification Logics. Ph.D.
Thesis, Univ. of Bern (2012)

10



• Goetschi, Kuznets 2012
Remo Goetschi, Roman Kuznets: Realization for justification logics via nested se-
quents: Modularity through embedding. APAL 163(9), 1271-1298 (2012)

• Goris 2006
Evan Goris: Explicit Proofs in Formal Provability Logic. LNCS 4514, 241-253 (2006)

• Kuzents 2006
Vladimir Brezhnev, Roman Kuznets: Making knowledge explicit: how hard it is. TCS
357(1-3), 23-34 (2006)

• Kuzents 2008
Roman Kuznets: Self-referential justifications in epistemic logic. ToCS 46(4), 636-661
(2010)

• McKinsey, Tarski 1948
John C.C. McKinsey, Alfred Tarski: Some theorems about the sentential calculi of
Lewis and Heyting. JSL 13, 1-15 (1948)

• Mkrtychev 1997
Alexey Mkrtychev: Models for the logic of proofs. LNCS 1234, 266-275 (1997)

• Nogina 2006
Elena Nogina: On logic of proofs and provability, BSL 12(2) (2006)

• Pacuit 2005
Eric Pacuit: A note on some explicit modal logics. 5th Panhellenic Logic Symposium,
(2005)

• Rubtsova 2005
Natalia Rubtsova: Evidence-based knowledge for S5. Logic Colloquium 2005 (2005)

• Solovay 1976
Robert Solovay: Provability interpretations of modal logic, Israel Journal of Mathe-
matics 25(3), 287-304 (1976)

• Wang 2011
Wang Ren-June: On non-circular proofs and proof realization in modal logic. Com-
puter Science Technical Report TR-2011012, GC CUNY (2011)

• Yu 2014
Yu Junhua: Self-referentiality of BrouwerCHeytingCKolmogorov semantics. APAL
165(1), 371-388 (2014)

• Yu 2015
Yu Junhua: On Non-self-referential Fragments of Modal Logics. manuscript

11


