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@ Introduction: Godel’s First Incompleteness Theorem
® Generalized Meta-theoretical Properties

© Generalizing to Non-Recursively Enumerable Theories
O X ,-soundness is sufficient

@ [1,-soundness is also sufficient

@ n-consistency is also sufficient

@ Consistency isn't sufficient

® Conclusions: Diagrams for First Incompleteness
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Introduction: Godel’s First Incompleteness Theorem

@ Arithmetic language .Z4: non-logical symbols are 0, S, +, X and equality
symbol is =.

® n=5"0=S5---50. (nmany S)

@ x<y is defined as 3z(zFx=y) and x<y is x<y A x#£y.

@ The standard arithmetic model is A’ = (N,0,1,---, S, +, x,<).

-
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Arithmetic language .%4: non-logical symbols are 0, S, +, X and equality

n=5"0=35---50. (nmany S)
x<y is defined as 3z(zFx=y) and x<y is x<y A x#£y.
The standard arithmetic model is N' = (N,0,1,---, S, +, x, <).

Robinson arithmetic is the theory Q whose axioms are as follows

VxSx#0;
VxVy(Sx=Sy — x=y);
Vx(x#£0 — 3y(x=Sy));
Vx(x+ 0=x);
YxVy(xFSy=S(x+Fy));
Vx(xx0=0);

VxVy(x X Sy=xXy+x).
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@& (X,, /1, and A,) Fix our arithmetic language %4 (notably that n (n > 0)
and < are not non-logical symbols of it). The formulas Ay = Xy = Iy is
defined as follows:

% all the atomic formulas such as 7=0, where 7, o are terms, belong to Ao;

¥ if ¢,% € Ao, then so ¢, p A, ¢V Y € Ag;

% if 7 is a term with x € Vr(7), and ¢ € Ao , then so Vx<7¢, Ix<T¢ € Ao.
And recursively we can define X, I, and A, sets of formulas:

% ¢ € X, if ¢ =3IXY for some ¢ € M,_1;

% ¢ €, if o =VX1 for some ¥ € ,_1;

¥ pe A, if pe X, NI,
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(X5, M, and A,) Fix our arithmetic language %4 (notably that n (n > 0)
and < are not non-logical symbols of it). The formulas Ay = Xy = Iy is
defined as follows:

% all the atomic formulas such as 7=0, where 7, o are terms, belong to Ao;

¥ if ¢,% € Ao, then so ¢, p A, ¢V Y € Ag;

% if 7 is a term with x € Vr(7), and ¢ € Ao , then so Vx<7¢, Ix<T¢ € Ao.
And recursively we can define X, I, and A, sets of formulas:

% ¢ € X, if ¢ =3IXY for some ¢ € M,_1;

% ¢ €, if o =VX1 for some ¥ € ,_1;

¥ pe A, if pe X, NI,

ForallneN, X, Ull, C X, 1N M.
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@& (X,, /1, and A,) Fix our arithmetic language %4 (notably that n (n > 0)
and < are not non-logical symbols of it). The formulas Ay = Xy = Iy is
defined as follows:

% all the atomic formulas such as 7=0, where 7, o are terms, belong to Ao;
¥ if ¢,% € Ao, then so ¢, p A, ¢V Y € Ag;
% if 7 is a term with x € Vr(7), and ¢ € Ao , then so Vx<7¢, Ix<T¢ € Ao.
And recursively we can define X, I, and A, sets of formulas:
% ¢ € X, if ¢ =3IXY for some ¢ € M,_1;
% ¢ €, if o =VX1 for some ¥ € ,_1;
¥ pe A, if pe X, NI,
@ ForallneN, X, Ull, C X1 Ny

@ (X;-completeness of Q) If T D Q, then T is Xj-complete, i.e., for any X
sentence ¢ if N E ¢ then T F ¢.
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@ A k-ary predicate P C NX is representable in T if, there is a formula ¢(X)
such that for any ng, -+ ,nk_1 € N

(no,--- mk1) €EP=TkFo(no, -, Mk_1),
(no, -+ mk—1) ¢ P= T F =¢(no, - mc—1).

@ A function f : N¥ — N is representable in T D Q if, there is a formula
#(X,y) such that for any ng, -, ng_1 € N

TEVylp(no, -+ M1, y) <> y=f(ng,---, m_1)].

@ (Representability Theorem) Any recursive function (and hence every recursive
predicate) is representable in T 2 Q and 4;.
-
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@ A k-ary predicate P C NX is representable in T if, there is a formula ¢(X)
such that for any ng, -+ ,nk_1 € N

(no,--- m1) €EP=TkFo(no, -, Mk_1),
(no, -+ mk—1) ¢ P= T F =¢(no, - mc—1).

@ A function f : N¥ — N is representable in T D Q if, there is a formula
#(X,y) such that for any ng, -+, ng_1 € N

TEVy[¢(no, - M1, y) < y=1f(no, - mk-1)].
@ (Representability Theorem) Any recursive function (and hence every recursive
predicate) is representable in T 2 Q and 4;.
@ If T is recursively axiomatizable then proof and provability are arithmetized
as a binary predicate Ber(m, n) and a uary predicate Bebt(n) respectively.
@ And so if T is recursively axiomatizable, by Representability theorem proof
and provability can be expressed by formulas

ber(x,y) € Ay,
bebr(y) = Ixber(x,y) € X

respectively.
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@ The natural number #¢ is the Godel's code of ¢ and "¢ = ¢ = S¥0 is the
term corresponding to the natural number f¢.



Introduction: Godel’s First Incompleteness Theorem

@ The natural number #¢ is the Godel's code of ¢ and "¢ = ¢ = S¥0 is the
term corresponding to the natural number f¢.

@ (Fixed Point Lemma) Given any %4 formula ¢(x) with Fr(¢) = {x} and a
theory T 2 Q, we can effectively find a 4 such that T F v < ¢("y7).

Proof. Suppose xg, x1, ¥ # x and ¥(xg, y, x1) represents sub in T. For any
d(x)and any n € N, T (707, y, n) <> y="0(n)". Setting n = 44,

TH (787,787 & y=ro(raT) (1)

Let 0(x) = Vy(¥(x, y, x) = &(x; y)). It's enough to show v = 6("67) is the
desired fixed point of ¢(x): in T we have

vo= 000
— Yy((T07, y,"07) — ¢(x;y)) substitute "0 for x in 6(x)
o Vy(y="0(07)" = é(xy)) by (1) and § = 6(x)
= W(y=""—=d(xy) by v = 6("97)
< o(M).
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@ The natural number #¢ is the Godel's code of ¢ and "¢ = ¢ = S¥0 is the
term corresponding to the natural number f¢.

@ (Fixed Point Lemma) Given any %4 formula ¢(x) with Fr(¢) = {x} and a
theory T 2 Q, we can effectively find a 4 such that T F v < ¢("y7).

Proof. Suppose xg, x1, ¥ # x and ¥(xg, y, x1) represents sub in T. For any
d(x)and any n € N, T (707, y, n) <> y="0(n)". Setting n = 44,

TH (787,787 & y=ro(raT) (1)

Let 0(x) = Vy(¥(x, y, x) = &(x; y)). It's enough to show v = 6("67) is the
desired fixed point of ¢(x): in T we have

vo= 000
— Yy((T07, y,"07) — ¢(x;y)) substitute "07 for x in 6(x)
o Vy(y="0(07)" = é(xy)) by (1) and § = 6(x)
= W(y=""—=d(xy) by v = 6("97)
< o(M).

@ Forall n>1,if ¢(x) € X, then v € [My41, and if ¢(x) € [, then v € [,.
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Definition 1.1

T is w-consistent if, there is no ¢ with ¢ = Ix1p(x) such that T F 3x)(x) and
T F —p(m) for all m € N.

Theorem 1.2 (Gédel's First Incompleteness)

Let T O Q be a recursively axiomatizable theory. If T is w-consistent, then there
is a M sentence ~y such that T t/~v and T tf —y.

Proof.
Let v be the fixed point of —beb(y). Then

T+ > —beb("y7). ()

~ is as desired: (a) If T I ~, then A/ beb("™7), and T I beb("™7) by
X;-completeness. But by (2) we have T - —beb("™™), a contradiction. So T / ~;
(b) If T F =y, then by (2) we have T I beb("y™). Since T I/ ~, then for any

n € N we have = Be(n, ff7), and by representability T - —be(n, ") for any

n € N. By the w-consistency of T, T I/ Ixbe(x,™ "), i.e., T I/ beb("™"), a
contradiction. So T F/ —. a
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@ The condition that T is recursively axiomatizable allows us to use a X3
formula to express T in Z4, and so we may write it as Axiom € X7.
@ -consistency was weakened by G. Kreisel as 1-consistency: there is no

¢ € X7 with ¢ = 3xy(x) for some (x) € Iy such that T F Ixt)(x) and
T+ —p(m) for all m € N.

@ The conclusion could be written as T isn't [T;-deciding (T is [1;-deciding if
for any ¢ € [y either TH ¢ or T F —¢).
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@ The condition that T is recursively axiomatizable allows us to use a X3
formula to express T in Z4, and so we may write it as Axiom € X7.
@ -consistency was weakened by G. Kreisel as 1-consistency: there is no

¢ € X7 with ¢ = 3xy(x) for some (x) € Iy such that T F Ixt)(x) and
T+ —p(m) for all m € N.

@ The conclusion could be written as T isn't [T;-deciding (T is [1;-deciding if
for any ¢ € [y either TH ¢ or T F —¢).

® IfQC T and Axiomr€ Xy and T is 1-consistent, then T isn't [,-deciding.

® IfQC T and Axiomr€ Xy and T is X;-sound, then T isn't [1;-deciding.

(2) Xi-soundness (T is Xj-sound if, for any ¢ € X3 with T = ¢ we have N E ¢)
is stronger than 1-consistency. d
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Theorem 1.4 (Gddel-Rosser’s First Incompleteness)

Let T D Q be a recursively axiomatizable theory. If T is consistent, then there is a
[y sentence ~y such that T t/ v and T If —y.
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Theorem 1.4 (Gddel-Rosser’s First Incompleteness)

Let T O Q be a recursively axiomatizable theory. If T is consistent, then there is a
[y sentence ~y such that T t/ v and T If —y.

Similarly, since Xy-soundness is equivalent to consistency whence Q C T,
Godel-Rosser's First Incompleteness theorem could be written as

Theorem 1.5

IfQC T and Axiomt€ X7 and T is Xg-sound, then T isn't [1;-deciding.

Corollary 1.6

® IfQC T and Axiomr€ Xy and T is ly-sound, then T isn't [T,-deciding.
® IfQC T and Axiomr€ X; and T C Th(N), then T isn’t I-deciding.
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Generalized Meta-theoretical Properties

Let T be a theory and I" a set of sentences, then

FrN)={¢el|NF¢}

where A is the standard arithmetic model. And so X,(A\) and /1,(N) denotes X,
sentences and /1, sentences respectively true in N.




Generalized Meta-theoretical Properties

Let T be a theory and I" a set of sentences, then

FrN)={¢el|NF¢}

where A is the standard arithmetic model. And so X,(A\) and /1,(N) denotes X,
sentences and /1, sentences respectively true in N.

Lemma 2.2 (Cf. Corollary 1.76 of [6])
® X,(N) is defined by a X, formula X,-True(x).
@ [1,(N) is defined by a I, formula IT,-True(x).

¢ € (N iff N E Z,-True("¢7) and ¢ € M,(N) iff N T,-True("¢7).
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Definition 2.4 (I-consistency)

Let T be a theory and I" a set of sentences, then T is [-consistent with if T + "
is consistent.




Generalized Meta-theoretical Properties

Definition 2.4 (I-consistency)

Let T be a theory and I" a set of sentences, then T is [-consistent with if T + "
is consistent.

@ We will survey the relations between X,(N')- and /1,(N)-consistency later.



Generalized Meta-theoretical Properties

Definition 2.5 (I"-deciding)

Let T be a theory and I a set of sentences, then T is [-deciding if, for any ¢ € I
either T ¢ or T F —¢; otherwise T isn't [-deciding.




Generalized Meta-theoretical Properties

Definition 2.5 (I"-deciding)

Let T be a theory and I a set of sentences, then T is [-deciding if, for any ¢ € I
either T ¢ or T F —¢; otherwise T isn't [-deciding.

Lemma 2.6

® X ,.1-deciding implies 1,-deciding and X ,-deciding;
® [1,,1-deciding implies X ,-deciding and [1,-deciding;
© X,-deciding is equivalent to [l,-deciding

@ Syntactic completeness implies X,-deciding and [1,-deciding.




Generalized Meta-theoretical Properties

Definition 2.5 (I"-deciding)

Let T be a theory and I a set of sentences, then T is [-deciding if, for any ¢ € I
either T ¢ or T F —¢; otherwise T isn't [-deciding.

® X ,.1-deciding implies 1,-deciding and X ,-deciding;

® [1,,1-deciding implies X ,-deciding and [1,-deciding;
© X,-deciding is equivalent to [l,-deciding

@ Syntactic completeness implies X,-deciding and [1,-deciding.

>p-deciding <— Xj-deciding s %, _1-deciding <— X-deciding <— X, 1-deciding S complete

| <] PSPt |

IMy-deciding <— [1;-deciding “ee I1,_1-deciding <— [ly-deciding <— /1, 1-deciding s complete
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Definition 2.7 (n-consistency)

Let T be a theory and I" a set of sentences.
@ T is w-cosistent if, there is no ¢ with ¢ = Ix1p(x) such that T F Ixp(x) and
T = —p(m) for all m € N; otherwise T is w-inconsistent.
@ T is n-cosistent if, there is no ¢ € X, with ¢ = Ixw)(x) for some
¥(x) € MM,—1 such that T F 3Ixy(x) and T + —p(m) for all m € N;
otherwise T is n-inconsistent.
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Definition 2.7 (n-consistency)

Let T be a theory and I" a set of sentences.
@ T is w-cosistent if, there is no ¢ with ¢ = Ixw)(x) such that T - Ixw(x) and
T = —p(m) for all m € N; otherwise T is w-inconsistent.

@ T is n-cosistent if, there is no ¢ € X, with ¢ = Ixw)(x) for some
¥(x) € MM,—1 such that T F 3Ixy(x) and T + —p(m) for all m € N;
otherwise T is n-inconsistent.

Lemma 2.8

@ n-consistency implies consistency;

® (n+ 1)-consistency implies n-consistency.

© w-consistency implies n-consistency and consistency.
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Definition 2.9 (I-soundness with respect to \)

Let T be a theory and I" a set of sentences.
@ T is sound (with respect to N) if, for any ¢ with T ¢ we have N E ¢;
otherwise T isn't sound.

@ T is [-sound (with respect to N\) if, for any ¢ € [T with T | ¢ we have
N E ¢; otherwise T isn't [-sound.




Generalized Meta-theoretical Properties

@® X,.1-soundness implies ¥,-soundness and [,-soundness;

® [1,1-soundness implies [1,-soundness and X ,-soundness;
© X ,-soundness implies [1,,1-soundness, and hence [,-soundness;

O Soundness implies X,-soundness and [1,-soundness.
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@® X,.1-soundness implies ¥,-soundness and [,-soundness;

® [1,1-soundness implies [1,-soundness and X ,-soundness;
© X ,-soundness implies [1,,1-soundness, and hence [,-soundness;

O Soundness implies X,-soundness and [1,-soundness.

(3). Let ¢ € MM,41 be such that ¢ = Vx0(x) for some 6 € X, and T F Vx0(x).
Then T F 6(m) for all m € N, and by X,-soundness N & 6(m) for all m € N.
Hence N E Vx0(x). m
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@® X,.1-soundness implies ¥,-soundness and [,-soundness;

® [1,1-soundness implies [1,-soundness and X ,-soundness;
© X ,-soundness implies [1,,1-soundness, and hence [,-soundness;

O Soundness implies X,-soundness and [1,-soundness.

(3). Let ¢ € MM,41 be such that ¢ = Vx0(x) for some 6 € X, and T F Vx0(x).
Then T F 6(m) for all m € N, and by X,-soundness N & 6(m) for all m € N.
Hence N E Vx0(x). m

Xpy-sound <— Xj-sound ce. X ,_1-sound <— Xj,-sound <— X, 1-sound N sound

P PSP A

y-sound <— [T;-sound s M,_1-sound <— [l,-sound <— [T, 41-sound [ sound



Generalized Meta-theoretical Properties

Definition 2.11 (completeness, and -completeness with respect to N)

Let T be a theory and I" a set of sentences.
@ T is (syntactically) complete if, for any ¢ either T - ¢ or T F —¢; otherwise
T isn't complete.
@ T is (semantically) complete (with respect to N) if, for any ¢ with A ¢
we have T F ¢; otherwise T isn't complete.

@ T is (semantically) -complete (with respect to N) if, for any ¢ € I with
N E ¢ we have T I ¢; otherwise T isn't [-complete.




Generalized Meta-theoretical Properties

@® X,.1-completeness implies X ,-completeness and [1,-completeness;

® [1,1-completeness implies [1,-completeness and X ,-completeness;
©® X ,-completeness doesn’t imply I1,-completeness;

O [1,-completeness implies X, 1-completeness, and hence X ,-completeness;

@® Semantical completeness implies X ,,-completeness and [1,-completeness.
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@® X,.1-completeness implies X ,-completeness and [1,-completeness;

® [1,1-completeness implies [1,-completeness and X ,-completeness;

©® X ,-completeness doesn’t imply I1,-completeness;

O [1,-completeness implies X, 1-completeness, and hence X ,-completeness;
@® Semantical completeness implies X ,,-completeness and [1,-completeness.

Proof.

(3) Q is Xj-complete but not [1;-complete (by Godel's First Incompleteness).
(4) Let ¢ € X1 be such that ¢ = Ix0(x) for some 6 € [, and N E Ixf(x). So
N E 6(m) for some m € N. By [1,-complete T F 6(m). Hence T F ¢. O
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@® X,.1-completeness implies X ,-completeness and [1,-completeness;

® [1,1-completeness implies [1,-completeness and X ,-completeness;

©® X ,-completeness doesn’t imply I1,-completeness;

O [1,-completeness implies X, 1-completeness, and hence X ,-completeness;
@® Semantical completeness implies X ,,-completeness and [1,-completeness.

Proof.

(3) Q is Xj-complete but not [1;-complete (by Godel's First Incompleteness).
(4) Let ¢ € X1 be such that ¢ = Ix0(x) for some 6 € [, and N E Ixf(x). So
N E 6(m) for some m € N. By [1,-complete T F 6(m). Hence T F ¢. O

Xp-complete <— Xj-complete cee X ,_1-complete <— Xj,-complete <— X, 1-complete cee complete

| <] | <] >X] |

lNp-complete <— [1y-complete e I1,_1-complete <<— [T,-complete <— [1,,1-complete [ complete
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@ Soundness is equivalent to Th(N)-consistency, and N E T;
@® [1,-soundness is equivalent to X,(N\')-consistency for all n € N;

® X,-soundness is equivalent to [1,(N)-consistency for all n € N;

O X ,-soundness implies n-consistency for all n € N;

@ n-consistency doesn’t imply X,-soundness for all n > 3;

@ n-consistency and X,,_1-completeness imply X ,-soundness for all n € N.
And if Q C T, then

@ 2,-soundness is equivalent to 2-consistency;

® Xi-soundness is equivalent to 1-consistency;

© Xy-soundness is equivalent to consistency.
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consistent << X (\)-consistent S £, 1(N)-consistent < %p(N)-consistent << X, 1 (N)-consistent S Th(N)-consistent
consistent << 17 (N)-consistent s My, _1 (N )-consistent << [Tn(N)-consistent < [, 1 (N)-consistent s Th(N)-consistent
Zy-sound <—— Xj-sound s X,_1-sound X p-sound % 4-1-sound s sound

consistent <<— 1-consistent cee (n — 1)-consistent <<—— n-consistent <<—— (n + 1)-consistent s w-consistent
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Definition 2.14 (I-definable theories)
Let T be a theory and I" a set of formulas.

@ T is definable if there is some (2 of sentences axiomatizing T and some
formula Axiomt(x) such that

Q={¢| N E Axiomr("¢") and ¢ is a sentence}.

@ T is [-definable if there is some {2 of sentences axiomatizing T and some
formula Axiomt(x) € I" such that

Q={¢| N E Axiomr("¢") and ¢ is a sentence}.




Generalized Meta-theoretical Properties

@® X ,-definability implies X, 1- and [1,.1-definability;
® [1,-definability implies I1,.1- and X, 1-definability;

© X, .1-definability implies I1,-definability;
O T is recursively enumerable iff T is Xy-definable iff T is Xi-definable.
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@® X ,-definability implies X, 1- and [1,.1-definability;

® [1,-definability implies I1,.1- and X, 1-definability;

© X,.1-definability implies I1,-definability;

O T is recursively enumerable iff T is Xy-definable iff T is Xi-definable.

Proof |.

(3) Suppose T is axiomatized by £2 and Axiomt(x) = 3xq - - - Ixn(x, X1, -+ , Xm)
with ¢ € [T, defines 2. Then Axiomr(x) is equivalent to 3yd(x, y) with
6(X'y) = ElxlS}/' o HXmSy¢(X,X1, to me) S nn- So

Q' ={pAN(k=k)|NEGS(¢7, k) and ¢ € 2}
also axiomatizes T. And it's easy to see that 2’ is defined by the /7, formula

AxiomT(x) = Iy <x3z=<x[0(x, y) A (x="7, A (12=72) )],

where 7y, is the formula by encoding y and v, is the term by encoding z.
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Proof II.

(4) Clearly ‘X;-definability => X(-definability’ follows from (3) and
' Yo-definability = Recursive enumerability’ is trivial. While ‘Recursive
enumerability => X;-definability’ follows from the following claim.

If T is recuresively enumerable then T is axiomatized by a recursive set.

Suppose T is axiomatized by a recursively enumerable set 2. Then there is some
effective algorithm enumerating 2 as ¢1, ¢,,---. For any n, let

wn:dqun/\(d)n/\"'))'
————

n many

and 2’ be the set of such v,. Clearly T is axiomatized by the recursive 2’ 0
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Proof II.

(4) Clearly ‘X;-definability => X(-definability’ follows from (3) and
' Yo-definability = Recursive enumerability’ is trivial. While ‘Recursive
enumerability => X;-definability’ follows from the following claim.

If T is recuresively enumerable then T is axiomatized by a recursive set.

Suppose T is axiomatized by a recursively enumerable set 2. Then there is some
effective algorithm enumerating 2 as ¢1, ¢,,---. For any n, let

wn:dqun/\(d)n/\"'))'
————

n many

and 2’ be the set of such v,. Clearly T is axiomatized by the recursive 2’ 0

X -definable <= X;-definable cee X ,_i-definable — X ,-definable — X, ;-definable s definable

| </ < |

[Mp-definable —> [T;-definable cee I1,_1-definable —> [1,-definable —> [1,,, 1-definable ce definable



© Generalizing to Non-Recursively Enumerable Theories



Generalizing to Non-Recursively Enumerable Theories

Notation 3.1

Suppose the set of axioms for T is defined by Axiomt(x) and Q C T. We define
be(x, y)7 and bebr(y) corresponding to concepts ‘proof in T" and ‘provable in T
respectively as:

ber(x,y) =ar xq - - - Ixe (Axiom 7 (x1) A+ - - AAxiom 7 (xk ) Abeq (X, "Xq A+ - Axxe — Xy 1)),
bebr(y) =dr IxIxy - Ixk(Axiom7(x1)A- - -AAxiom T (xx) Abeq (X, "Xxq A+ - - Axxe = Xy 1))-

where xy is the formula by encoding x.




Generalizing to Non-Recursively Enumerable Theories

Notation 3.1

Suppose the set of axioms for T is defined by Axiomt(x) and Q C T. We define
be(x, y)7 and bebr(y) corresponding to concepts ‘proof in T" and ‘provable in T
respectively as:

ber(x,y) =ar xq - - - Ixe (Axiom 7 (x1) A+ - - AAxiom 7 (xk ) Abeq (X, "Xq A+ - Axxe — Xy 1)),
bebr(y) =dr IxIxy - Ixk(Axiom7(x1)A- - -AAxiom T (xx) Abeq (X, "Xxq A+ - - Axxe = Xy 1))-

where xy is the formula by encoding x.

Remark 3.2
@ |f Axiom7(x) € X, then bebr(y) € X, and —bebr(y) € I1,.
@ |If Axiomt(x) € [1,, then bebt(y) € X,+1 and —bebr(y) € M,41.




Generalizing to Non-Recursively Enumerable Theories

We generalize Corollary 1.6 (2) i.e., ‘If QC T and Axiomr€ X3 and T C Th(N),
then T isn't [T;-deciding’ to non-recursively enumerable (non-r.e.) theories:

IfQC T and Axiomr€e X, and T C Th(N), then T isn't [1,-deciding.




Generalizing to Non-Recursively Enumerable Theories

We generalize Corollary 1.6 (2) i.e., ‘If QC T and Axiomr€ X3 and T C Th(N),
then T isn't [T;-deciding’ to non-recursively enumerable (non-r.e.) theories:

Theorem 3.3

IfQC T and Axiomr€e X, and T C Th(N), then T isn't [1,-deciding.

Proof.

Let v be the fixed point of —bebt(y)
T~ <+ —bebr (7). 3)

Clearly ~y could be I1,, and it suffices to show - is independent of T:

@ T~ If TEv. Then N E beb("y") and N E . And since
N E 7 <> —bebt, then A/ E —beb(™7), a contradiction.

@ T —y. If TE—y. Then N E —y. And since N E v <> —bebt, then
N E bebr ("), and hence T I ~, a contradiction to to T /.

We can also show that N F 7. )




Generalizing to Non-Recursively Enumerable Theories

Corollary 3.4

IfQC T and Axiomr€ [, and T C Th(N), then T isn't [,,1-deciding.

This is because Axiomy € 1, C X.;. O




O X ,-soundness is sufficient



2 ,-soundness is sufficient

Theorem 4.1

IfQC T and Axiomt€ I, and T is X,-sound, then T isn't [1,.1-deciding.




2 ,-soundness is sufficient

Theorem 4.1

IfQC T and Axiomt€ I, and T is X,-sound, then T isn't [1,.1-deciding.

Define

pror(y) =qr Ix[ber(x, y) AVz<x—ber(z, S(y))]-

Set T* = T + [1,(N). Then T* is [1,-complete and X, ;1-complete, and
consistent by X,-soundness. One claim is needed.




2 ,-soundness is sufficient

Theorem 4.1

IfQC T and Axiomt€ I, and T is X,-sound, then T isn't [1,.1-deciding.

Define

pror(y) =qr Ix[ber(x, y) AVz<x—ber(z, S(y))]-

Set T* = T + [1,(N). Then T* is [1,-complete and X, ;1-complete, and
consistent by X,-soundness. One claim is needed.

Foralln €N, QF Vx(x<hn + \/anXE g) and QF Vx(x<n V n<x).

@ If THO, then T* Fpro(T07).
@ If T+ 4, then T* F —pro(767).




2 ,-soundness is sufficient

Proof II.
Let's turn to the theorem, and let v be the fixed point of =pro(y). Then

T~ < =pror("y7). (4)

Clearly ~y could be I7,.;. It suffices to show that -y is independent of T: if T I ~,
then by the Claim 1 we have T* |- pro ("), but (4) gives us T* F —pro("v7),
a contradiction to consistency of T*, and so T t/~; if T F —, then by the Claim
2 we have T* = —pro("77), but (4) gives us T* F pro("y™), also a

contradiction to consistency of T, and so T t/ —. d




2 ,-soundness is sufficient
Corollary 4.3

@® fQC T and Axiomt€ X, and T is X, _1-sound, then T isn't [,-deciding.

® fQC T and Axiomt€ X, and T is X,-sound, then T isn't [1,-deciding.

Proof.

(1) By Lemma 2.15 (3), Axiomt could also be [1,_1, and then by Theorem 4.1 T
isn't [1,-deciding.
(2) By (1) and X,-soundness implies X, _;-soundness. O




@ /1,-soundness is also sufficient



[1.-soundness is sufficient

IfQC T and Axiomt€ [, and T is [1,41-sound, then T isn't [, 1-deciding. \
This is because [1,1-soundness is equivalent to X ,-soundness. )




[1,-soundness is sufficient

IfQC T and Axiomt€ [, and T is [1,41-sound, then T isn't [, 1-deciding.

This is because [1,1-soundness is equivalent to X ,-soundness.

Corollary 5.2

IfQC T and Axiomt€ X, and T is [1,-sound, then T isn't I,-deciding.

Proof.

Since AxiomT € X, then Axiomt € [1,_;, and then the conclusion suffices from
Theorem 5.1.

a




@ n-consistency is also sufficient



n-consistency is sufficient

Th(N) is the only complete and w-consistent extension of PA (indeed Q).

IfQC T and T is Il,-deciding and T is n-consistent, then T is [1,-complete.




n-consistency is sufficient

Th(N) is the only complete and w-consistent extension of PA (indeed Q).

IfQC T and T is Il,-deciding and T is n-consistent, then T is [1,-complete.

Proof I.
Suppose T isn't [1,-complete, then there is some ¢ € 1, such that N F ¢ and
T t/ ¢; by [,-decidability of T we have T - —¢, and so

NE¢and T —¢and ¢ € I, (5)

We may write ¢ = Vx3yw(x, y) for some ¢ € M,_». By T F Ix—=3Iyu(x,y) and
the n-consistency of T we have T I/ Jyw(k,y) for some k € N. Since T is
I1,-deciding then T - Yy—(k,y). Since N E Vx3yv(x, y), then N E (k, 1) for
some | € N, and clearly T = —¢(k, ). So for x = 1 (k, I) we have

NExand TF—xand x € l,_». (6)




n-consistency is sufficient

Proof II.

Proceeding in this way (from n to n —2) we can show that there is some ¢ such
that

N E§ and T+ =4 and either § € T(n is odd) or 6 € My(n is even).  (7)

If § € 1} then write § = Vx0(x) for some 6 € . By T = 3x—6(x) and the
1-consistency of T we have T / §(m) for some m € N. Since T is [Ty-deciding
then T - —6(m). And also we have N E Vx0(x), then N E 6(m). So for there is
some ~y (either 6 in (7) or 6(m)) such that

NE~yand TF —yand vy € . (8)

By Xj-completeness of T O Q and N E ~ we have T I . Also we have T F —,
a contradiction to the consistency of T following from its n-consistency. 0




n-consistency is sufficient

Theorem 6.3

IfQC T and Axiomt€ [, and T is n-consistent, then T isn't [1,.1-deciding.

Let T satisfy the conditions in the theorem. If T isn't [1,-deciding, then T isn’t
[1,+1-deciding. So we suppose T is [1,-deciding, then T is [1,-complete by
Lemma 6.2, and so 1,(N) C T, and so T is X,-sound. Then T isn't
[1,+1-deciding by Theorem 4.1. 0




n-consistency is sufficient

Theorem 6.3

IfQC T and Axiomt€ [, and T is n-consistent, then T isn't [1,.1-deciding.

Let T satisfy the conditions in the theorem. If T isn't [1,-deciding, then T isn’t
[1,+1-deciding. So we suppose T is [1,-deciding, then T is [1,-complete by
Lemma 6.2, and so 1,(N) C T, and so T is X,-sound. Then T isn't
[1,+1-deciding by Theorem 4.1. 0

@ |t is interesting to note that for n > 3 all the incompleteness proofs
(presented as above) with the assumption of X,(/1,-1)-soundness are
constructive, while all the incompleteness proofs with the assumption of
n-consistency are all non-constructive (i.e., the independent sentence is not
constructed explicitly, and only its mere existence is proved).



n-consistency is sufficient

@® IfQC T and Axiomr€ X, and T is (n — 1)-consistent, then T isn't [1,-deciding.

® IfQC T and Axiomr€ X, and T is n-consistent, then T isn’t I1,-deciding.
©® IfQC T and Axiomt€ X, and T is w-consistent, then T isn't l,-deciding.

® IfQC T and Axiomr€ lM,—1 and T is w-consistent, then T isn’t 1,-deciding.

Proof.

(1) By Theorem 6.3 and X,-definability is equivalent to [1,_1-definability.

(2) By (1) and n-consistency implies (n — 1)-consistency.

(3) By (2) and w-consistency implies n-consistency.

(3) By (3) and X,-definability is equivalent to I1,_1-definability. a




@ Consistency isn't sufficient



Consistency isn't sufficient

There is a complete (and consistent) theory T such that Q C T and T is
5 ,1o-definable and T is X,-sound.




Consistency isn't sufficient

Lemma 7.1

There is a complete (and consistent) theory T such that Q C T and T is
5 ,1o-definable and T is X,-sound.

Proof |.

Let S = Q + [M,(N)(clearly S = Q = Q + ITo(N') when n = 0). We get the
completion of S in Lindenbaum’s way: enumerate all the sentences as ¢y, ¢1, - - -
and define

To, = S;

. ToU{on}  ToU{¢n} is consistent,
- T,U{—¢,} otherwise;
T = Upen To-

Clearly Q C T, and T is X,-sound since [1,(N) C S C T. It suffices to show that
T is X, p-definable.

Tn+1




Consistency isn't sufficient

Proof II.

Now define Axiomr(x) as

dy |:ﬁnseq(y) A yéen(y)—IEX/\

Vk<len(y) {Sent(yk) AVz<y|[Senth(z, k)A

[con’(S+y k+2z)—= w=zV —con’(S+y | k+z)— yk:ﬁ(z)]”].
And

con’(S+y | k+z) = VvWw([M,-true(v) — —bebq(w, ™8, Aby, A= A8, _, Ad, — L7)).

It's easy to check that Axiomt(x) € X2 and T is defined by it. 0




Consistency isn't sufficient

Theorem 7.2 (Optimal Gddel-Rosser’s First Incompleteness)

IfQC T and T is X, »-definable and T is consistent, then T may be complete.

This is the case for n = 0 in X,-sound since Xg-soundness is equivalent to
consistency under Q C T. )




Consistency isn't sufficient

Corollary 7.3

@ IfQC T and Axiomt € X, and T is X,_»-sound, then T may be [1,-deciding.

® IfQC T and Axiomt € X, and T is [1,_1-sound, then T may be [1,-deciding.

© IfQC T and Axiomt € X, and T is (n — 2)-consistent, then T may be [T,-deciding.
O IfQC T and Axiomt € ,—1 and T is X,_»-sound, then T may be [,-deciding.

@ IfQC T and Axiomt € l,_1 and T is [1,_1-sound, then T may be [l,-deciding.

@ IfQC T and Axiomt € ll,_1 and T is (n — 2)-consistent, then T may be [,-deciding.

(1) Suppose for sake of a contradiction that none of such T is [1,-deciding, then none of such T
is complete, a contradiction to Lemma 7.1.
(2) By (1) and X,_»-soundness is equivalent to [1,_i-soundness.
(3) By (1) and X,_p-soundness implies (n — 2)-consistency.
(4) By (1) and X,-definability is equivalent to [1,_1-definability.
)
)

(5) By and X,-definability is equivalent to [1,_1-definability.
(6) By and X,-definability is equivalent to [1,_;-definability. )

—~— e~ —~

1
2
3




® Conclusions: Diagrams for First Incompleteness



Conclusions: Diagrams for First Incompleteness

First Incompleteness Theorems for X,-definable Theories(n > 1)

Godel-Rosser's 15t 1.5 QC T AAxiomr € X3 ATis >p-sound = T isn't [1;-deciding
Corollary 1.3 (2) QC T AAxiomr € X3 A Tis %5 -sound = T isn't 1 -deciding
Corollary 7.3 (1) QC T AAxiomr € X, A Tis >, _o-sound = T isn't [,-deciding
Corollary 4.3 (1) QC T A Axiomy € I, A Tis X, _1-sound S T isn't [Ty-deciding
Corollary 4.3 (2) QC T A Axiomy € I, A Tis X p-sound = T isn't [Ty-deciding
Theorem 3.3 QC T AAxiomr € X, ATis sound e T isn't [1,-deciding
Godel-Rosser's 15t 1.5 QC T AAxiomr € X3 ATis [y-sound = T isn't [1;-deciding
Corollary 1.6 (1) QC T A Axiomr € I3 A Tis [1;-sound — T isn't [1-deciding
Corollary 7.3 (2) QC T AAxiomr € X, ATis 1,_1-sound = T isn't [,-deciding
Corollary 5.2 QC T AAxiomr € X, A Tis IMy-sound SR T isn't [1,-deciding
Theorem 3.3 QC T AAxiomr € X, ATis sound = T isn't [1,-deciding
Godel-Rosser’s 15 QC T AAxiomr € I3 ATis consistent == T isn't [1;-deciding
Godel's 1% 1.3 (1) QC T AAxiomr € X3 ATis 1-consistent - T isn't [1;-deciding
Corollary 7.3 (3) QC T A Axiomy € I, A Tis (n — 2)-consistent > T isn't [T,-deciding
Corollary 6.4 (1) QC T AAxiomy € I, A Tis (n — 1)-consistent = T isn't [Ty-deciding
Corollary 6.4 (2) QC T A Axiomy € I, A Tis n-consistent == T isn't [1,-deciding
Corollary 6.4 (3) QC T AAxiomy € I, A Tis w-consistent = T isn't [Ty-deciding




Conclusions: Diagrams for First Incomplete

First Incompleteness Theorems for [Tc-definable Theories(k > 0)

Corollary 7.3 (4) QC T AAxiomyr € Iy AN Tis > _q-sound = T isn't My 1-deciding
Theorem 4.1 QC T AAxiomy € Iy AN Tis X -sound Sl T isn't [ 1-deciding
Corollary 3.4 QC T AAxiomr € My AN Tis sound = T isn't 1 1-deciding
Corollary 7.3 (5) QC T AAxiomy € [y AN Tis My-sound > T isn't MMy 1-deciding
Theorem 5.1 QC T A Axiomy € Ty N Tis My 4 1-sound = T isn't ;4 1-deciding
Theorem 3.3 QC T AAxiomyr € Iy AN Tis sound = T isn't [, 1-deciding
Corollary 7.3 (6) QC T A Axiomy € Ty N Tis (k — 1)-consistent > T isn't ;4 1-deciding
Theorem 6.3 QC T AAxiomy € Iy N Tis k-consistent == T isn't 1y 1-deciding
Corollary 6.4 (4) QC T A Axiomy € My A Tis w-consistent = T isn't [ 1-deciding
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