Descriptor Revision, Epistemic Proximity Ordering and Believability Relation

Li Zhang

Peking University, June 23rd, 2015

Li Zhang: Descriptor Revision, Epistemic Proximity Ordering and Believability Relation

- A Brief Review of AGM
- Descriptor Revision: An Introduction
- Epistemic Proximity Ordering
- Restricted Descriptor Revision
- Believability Relation
- Summary

• Beliefs are expressed by sentences (ϕ , ψ , λ , ...) in a language \mathcal{L} .

- Beliefs are expressed by sentences (ϕ , ψ , λ , ...) in a language \mathcal{L} .
- The belief state of agent is represented by a *belief set*.

- Beliefs are expressed by sentences (ϕ , ψ , λ , ...) in a language \mathcal{L} .
- The belief state of agent is represented by a *belief set*.
- X is a belief set iff it is closed under logical consequence, i.e. Cn(X) = X.

- Beliefs are expressed by sentences (ϕ , ψ , λ , ...) in a language \mathcal{L} .
- The belief state of agent is represented by a *belief set*.
- X is a belief set iff it is closed under logical consequence, i.e. Cn(X) = X.
- *Cn* is a consequence operation:

- Beliefs are expressed by sentences (ϕ , ψ , λ , ...) in a language \mathcal{L} .
- The belief state of agent is represented by a *belief set*.
- X is a belief set iff it is closed under logical consequence, i.e. Cn(X) = X.
- *Cn* is a consequence operation:
 - $X \subseteq Cn(X)$ (inclusion)

- Beliefs are expressed by sentences (ϕ , ψ , λ , ...) in a language \mathcal{L} .
- The belief state of agent is represented by a *belief set*.
- X is a belief set iff it is closed under logical consequence, i.e. Cn(X) = X.
- *Cn* is a consequence operation:
 - $X \subseteq Cn(X)$ (inclusion)
 - Cn(X) = Cn(Cn(X)) (iteration)

- Beliefs are expressed by sentences (ϕ , ψ , λ , ...) in a language \mathcal{L} .
- The belief state of agent is represented by a *belief set*.
- X is a belief set iff it is closed under logical consequence, i.e. Cn(X) = X.
- *Cn* is a consequence operation:
 - $X \subseteq Cn(X)$ (inclusion)
 - Cn(X) = Cn(Cn(X)) (iteration)
 - If $A \subseteq B$, then $Cn(A) \subseteq Cn(B)$ (Monotony)

Cn satisfies following three properties:

• If ϕ can be derived from ψ by classical truth-functional logic, then $\phi \in Cn(\{\psi\})$. (supraclassicality)

Cn satisfies following three properties:

- If ϕ can be derived from ψ by classical truth-functional logic, then $\phi \in Cn(\{\psi\})$. (supraclassicality)
- If $\phi \in Cn(X \cup \{\psi\})$, then $\psi \rightarrow \phi \in Cn(X)$. (deduction)

Cn satisfies following three properties:

- If ϕ can be derived from ψ by classical truth-functional logic, then $\phi \in Cn(\{\psi\})$. (supraclassicality)
- If $\phi \in Cn(X \cup \{\psi\})$, then $\psi \rightarrow \phi \in Cn(X)$. (deduction)
- If $\phi \in Cn(X)$, then $\phi \in Cn(X')$ for some finite subset $X' \subseteq X$. (compactness)

Cn satisfies following three properties:

- If ϕ can be derived from ψ by classical truth-functional logic, then $\phi \in Cn(\{\psi\})$. (supraclassicality)
- If $\phi \in Cn(X \cup \{\psi\})$, then $\psi \to \phi \in Cn(X)$. (deduction)
- If $\phi \in Cn(X)$, then $\phi \in Cn(X')$ for some finite subset $X' \subseteq X$. (compactness)

Cn satisfies following three properties:

- If ϕ can be derived from ψ by classical truth-functional logic, then $\phi \in Cn(\{\psi\})$. (supraclassicality)
- If $\phi \in Cn(X \cup \{\psi\})$, then $\psi \to \phi \in Cn(X)$. (deduction)
- If φ ∈ Cn(X), then φ ∈ Cn(X') for some finite subset X' ⊆ X.
 (compactness)

Notations:

- $\phi \vdash \psi$: $\psi \in Cn(\{\phi\})$.
- K: agent's current belief state.

AGM 1

Studies of the logic of belief change have traditionally had a strong focus on two types of operations:

 Contraction ÷: a specified sentence has to be removed from the epistemic agent's set of beliefs

AGM 1

Studies of the logic of belief change have traditionally had a strong focus on two types of operations:

- Contraction ÷: a specified sentence has to be removed from the epistemic agent's set of beliefs
- Revision *: a specified sentence has instead to be consistently added.

Contraction

The standard method for contraction (partial meet contraction):

 To employ a choice function to select a number of belief sets from a remainder set each of which satisfies the success condition for the operation (namely that of not containing the specified sentence).

Contraction

The standard method for contraction (partial meet contraction):

- To employ a choice function to select a number of belief sets from a remainder set each of which satisfies the success condition for the operation (namely that of not containing the specified sentence).
- The intersection of those sets is taken to be the outcome of the operation.

Revision

A common method for constructing revision operation (*sphere model*):

 To select a number of possible worlds that satisfy the success condition (in this case that of containing the specified sentence).

Revision

A common method for constructing revision operation (*sphere model*):

- To select a number of possible worlds that satisfy the success condition (in this case that of containing the specified sentence).
- The intersection of these possible worlds is taken to be the outcome of the operation.

Methodology for AGM

In both cases, the methodology can be summarized as "select-and-intersect":

 Select the most plausible sets that satisfy the success condition.

Methodology for AGM

In both cases, the methodology can be summarized as "select-and-intersect":

- Select the most plausible sets that satisfy the success condition.
- Then take their intersection as outcome.

We can question the select-and-intersect method in at least following three aspects:

• The adequacy of the options selected for intersection.

- The adequacy of the options selected for intersection.
- The preservation of optimality under intersection.

- The adequacy of the options selected for intersection.
- The preservation of optimality under intersection.
- The preservation of success under intersection.

- The adequacy of the options selected for intersection.
- The preservation of optimality under intersection.
- The preservation of success under intersection.

- The adequacy of the options selected for intersection.
- The preservation of optimality under intersection.
- The preservation of success under intersection.
- We need a "select-direct" approach.

 $\blacktriangleright \ \mathfrak{B}$ is a metalinguistic belief operator.

- $\blacktriangleright \mathfrak{B}$ is a metalinguistic belief operator.
- An atomic belief descriptor is a sentence $\mathfrak{B}\phi$ with $\phi \in \mathcal{L}$.

- $\blacktriangleright \ \mathfrak{B}$ is a metalinguistic belief operator.
- An atomic belief descriptor is a sentence $\mathfrak{B}\phi$ with $\phi \in \mathcal{L}$.
- A molecular belief descriptor (denoted by lower-case Greek letters α, β, …) is a truth-functional combination of atomic descriptors.

- $\blacktriangleright \ \mathfrak{B}$ is a metalinguistic belief operator.
- An atomic belief descriptor is a sentence $\mathfrak{B}\phi$ with $\phi \in \mathcal{L}$.
- A molecular belief descriptor (denoted by lower-case Greek letters α, β, …) is a truth-functional combination of atomic descriptors.
- A composite belief descriptor (in short: descriptor; denoted by upper-case Greek letters Φ, Ψ, …) is a set of molecular descriptors.

- $\blacktriangleright \ \mathfrak{B}$ is a metalinguistic belief operator.
- An atomic belief descriptor is a sentence $\mathfrak{B}\phi$ with $\phi \in \mathcal{L}$.
- A molecular belief descriptor (denoted by lower-case Greek letters α, β, …) is a truth-functional combination of atomic descriptors.
- A composite belief descriptor (in short: descriptor; denoted by upper-case Greek letters Φ, Ψ, …) is a set of molecular descriptors.
- $\{\mathfrak{BB}\phi\}$ and $\{\phi \land \mathfrak{B}\phi\}$ are not descriptors.

• We can use descriptors to describe the properties of belief sets.

- We can use descriptors to describe the properties of belief sets.
- Let X be any belief set. X ⊢ Φ means X satisfies the property expressed by Φ.

- We can use descriptors to describe the properties of belief sets.
- Let X be any belief set. $X \Vdash \Phi$ means X satisfies the property expressed by Φ .
- $X \Vdash \mathfrak{B}\phi$ iff $\phi \in X$

- We can use descriptors to describe the properties of belief sets.
- Let X be any belief set. $X \Vdash \Phi$ means X satisfies the property expressed by Φ .
- $X \Vdash \mathfrak{B}\phi$ iff $\phi \in X$
- $X \Vdash \neg \alpha$ iff $X \nvDash \alpha$

Descriptor 2

- We can use descriptors to describe the properties of belief sets.
- Let X be any belief set. $X \Vdash \Phi$ means X satisfies the property expressed by Φ .
- $X \Vdash \mathfrak{B}\phi$ iff $\phi \in X$
- $X \Vdash \neg \alpha$ iff $X \nvDash \alpha$
- $X \Vdash \alpha \lor \beta$ iff $X \Vdash \alpha$ or $X \Vdash \beta$

Descriptor 2

- We can use descriptors to describe the properties of belief sets.
- Let X be any belief set. $X \Vdash \Phi$ means X satisfies the property expressed by Φ .
- $X \Vdash \mathfrak{B}\phi$ iff $\phi \in X$
- $X \Vdash \neg \alpha$ iff $X \nvDash \alpha$
- $X \Vdash \alpha \lor \beta$ iff $X \Vdash \alpha$ or $X \Vdash \beta$
- $X \Vdash \Phi$ iff $X \Vdash \alpha$ for all $\alpha \in \Phi$

 We use descriptors (Φ, Ψ, ···) to express belief change patterns (success conditions).

- We use descriptors (Φ, Ψ, ···) to express belief change patterns (success conditions).
- Examples: The success condition of revocation
 ("contraction") by φ is {¬𝔅φ}, that of revision by φ is {𝔅φ},
 that of making up one's mind about φ is {𝔅φ ∨ 𝔅¬φ}.

- We use descriptors (Φ, Ψ, ···) to express belief change patterns (success conditions).
- Examples: The success condition of revocation
 ("contraction") by φ is {¬𝔅φ}, that of revision by φ is {𝔅φ},
 that of making up one's mind about φ is {𝔅φ ∨ 𝔅¬φ}.
- Descriptor revision ∘ is an operation that can be applied to any success condition expressed by descriptor: K ∘ Φ yields a belief set for all Φ.

- We use descriptors (Φ, Ψ, ···) to express belief change patterns (success conditions).
- Examples: The success condition of revocation
 ("contraction") by φ is {¬𝔅φ}, that of revision by φ is {𝔅φ},
 that of making up one's mind about φ is {𝔅φ ∨ 𝔅¬φ}.
- Descriptor revision ∘ is an operation that can be applied to any success condition expressed by descriptor: K ∘ Φ yields a belief set for all Φ.
- How to specify $K \circ \Phi$?

 It is assumed that there is a set of potential outcomes of belief change, and the mechanism of change is a direct choice among these potential outcomes.

- It is assumed that there is a set of potential outcomes of belief change, and the mechanism of change is a direct choice among these potential outcomes.
- X is a Outcome set with respect to K iff it is a set of belief sets with K ∈ X.

- It is assumed that there is a set of potential outcomes of belief change, and the mechanism of change is a direct choice among these potential outcomes.
- X is a Outcome set with respect to K iff it is a set of belief sets with K ∈ X.
- f is a monoselective choice function for \mathbb{X} iff it holds that if $\emptyset \neq \mathbb{Y} \subseteq \mathbb{X}$ then $f(\mathbb{Y}) \in \mathbb{Y}$, and otherwise $f(\mathbb{Y})$ is undefined.

Let X be a outcome set (with respect to K), f a monoselective choice function for X and X^Φ denote {X ∈ X | X ⊨ Φ}.

- Let X be a outcome set (with respect to K), f a monoselective choice function for X and X^Φ denote {X ∈ X | X ⊨ Φ}.
- We say a descriptor revision \circ is *based on* ordered pair (\mathbb{X}, f) iff

$$K \circ \Phi = \begin{cases} f(\mathbb{X}^{\Phi}) & \text{if } \mathbb{X}^{\Phi} \neq \emptyset, \\ K & \text{otherwise.} \end{cases}$$

- Let X be a outcome set (with respect to K), f a monoselective choice function for X and X^Φ denote {X ∈ X | X ⊨ Φ}.
- We say a descriptor revision \circ is *based on* ordered pair (\mathbb{X}, f) iff

$$\mathcal{K} \circ \Phi = \begin{cases} f(\mathbb{X}^{\Phi}) & \text{if } \mathbb{X}^{\Phi} \neq \emptyset, \\ \mathcal{K} & \text{otherwise.} \end{cases}$$

We call the ordered pair (X, f) monoselective model (for descriptor revision) and ∘ based on this kind of model monoselective (descriptor revision) operator.

Axiomatic characterization of monoselective o

• is a monoselective operator iff it satisfies:

- $Cn(K \circ \Phi) = K \circ \Phi$ (closure)
- $K \circ \Phi \Vdash \Phi$ or $K \circ \Phi = K$ (relative success)
- $K \circ \Phi \Vdash \Psi$, then $K \circ \Psi \Vdash \Psi$ (regularity)
- If $\Phi \dashv \vdash \Psi$, then $K \circ \Phi = K \circ \Psi$ (extensionality)

Axiomatic characterization of monoselective o

• is a monoselective operator iff it satisfies:

- $Cn(K \circ \Phi) = K \circ \Phi$ (closure)
- $K \circ \Phi \Vdash \Phi$ or $K \circ \Phi = K$ (relative success)
- $K \circ \Phi \Vdash \Psi$, then $K \circ \Psi \Vdash \Psi$ (regularity)
- If $\Phi \dashv \vdash \Psi$, then $K \circ \Phi = K \circ \Psi$ (extensionality)
- $\Phi \Vdash \Psi$ iff for any belief set X, if $X \Vdash \Phi$ then $X \Vdash \Psi$
- $\Phi \dashv \vdash \Psi$ iff $\Phi \Vdash \Psi$ and $\Psi \Vdash \Phi$

• f is not plausible in general.

- *f* is not plausible in general.
- One plausible way to construct the monoselective choice function f is to let $K \circ \Phi$ be closest element of the outcome set that satisfies Φ . This requires an ordering or distance relation on outcome set.

 (\mathbb{X}, \leqq) is a relational model (for descriptor revision) iff

• X is a outcome set, \leq is a binary relation (with strict part <) on X.

 (\mathbb{X}, \leqq) is a relational model (for descriptor revision) iff

- X is a outcome set, \leq is a binary relation (with strict part <) on X.
- $K \leq X$ for all $X \in \mathbb{X}$.

 (\mathbb{X}, \leq) is a *relational model* (for descriptor revision) iff

- \mathbb{X} is a outcome set, \leq is a binary relation (with strict part <) on \mathbb{X} .
- $K \leq X$ for all $X \in \mathbb{X}$.
- ► For any descriptor Φ , if $\mathbb{X}^{\Phi} \neq \emptyset$, then there exists a unique ≤-minimal element (denoted by $\mathbb{X}^{\Phi}_{<}$) in it.

 (\mathbb{X}, \leqq) is a relational model (for descriptor revision) iff

- X is a outcome set, \leq is a binary relation (with strict part <) on X.
- $K \leq X$ for all $X \in \mathbb{X}$.
- ► For any descriptor Φ , if $\mathbb{X}^{\Phi} \neq \emptyset$, then there exists a unique ≤-minimal element (denoted by $\mathbb{X}^{\Phi}_{<}$) in it.

 (\mathbb{X}, \leq) is a *relational model* (for descriptor revision) iff

- \mathbb{X} is a outcome set, \leq is a binary relation (with strict part <) on \mathbb{X} .
- $K \leq X$ for all $X \in \mathbb{X}$.
- ► For any descriptor Φ , if $\mathbb{X}^{\Phi} \neq \emptyset$, then there exists a unique ≤-minimal element (denoted by $\mathbb{X}^{\Phi}_{<}$) in it.

Observation

If (X, \leq) is a relational model for descriptor revision, then \leq is linear (transitive, anti-symmetric and complete)

A descriptor revision operator \circ is based on relational model (\mathbb{X}, \leqq) iff

$$\mathcal{K} \circ \Phi = \begin{cases} \mathbb{X}^{\Phi}_{<} & \text{if } \mathbb{X}^{\Phi} \neq \emptyset, \\ \mathcal{K} & \text{otherwise.} \end{cases}$$

A descriptor revision operator \circ is based on relational model (\mathbb{X}, \leqq) iff

$$\mathcal{K} \circ \Phi = \begin{cases} \mathbb{X}^{\Phi}_{<} & \text{if } \mathbb{X}^{\Phi} \neq \emptyset, \\ \mathcal{K} & \text{otherwise.} \end{cases}$$

We call this kind of \circ linear (descriptor revision) operator.

Axiomatic characterization of linear o

 \circ is a linear descriptor revision operator iff it satisfies:

•
$$Cn(K \circ \Phi) = K \circ \Phi$$
 (closure)

- $K \circ \Phi \Vdash \Phi$ or $K \circ \Phi = K$ (relative success)
- If $K \Vdash \Phi$, then $K \circ \Phi = K$ (confirmation)
- $K \circ \Phi \Vdash \Psi$, then $K \circ \Psi \Vdash \Psi$ (regularity)
- If $K \circ \Phi \Vdash \Psi$ and $K \circ \Psi \Vdash \Phi$, then $K \circ \Phi = K \circ \Psi$ (reciprocity)

Axiomatic characterization of linear o

 \circ is a linear descriptor revision operator iff it satisfies:

•
$$Cn(K \circ \Phi) = K \circ \Phi$$
 (closure)

- $K \circ \Phi \Vdash \Phi$ or $K \circ \Phi = K$ (relative success)
- If $K \Vdash \Phi$, then $K \circ \Phi = K$ (confirmation)
- $K \circ \Phi \Vdash \Psi$, then $K \circ \Psi \Vdash \Psi$ (regularity)
- If $K \circ \Phi \Vdash \Psi$ and $K \circ \Psi \Vdash \Phi$, then $K \circ \Phi = K \circ \Psi$ (reciprocity)

Observation

If \circ satisfies relative success, regularity and reciprocity, then it satisfies:

If $\Phi \dashv \vdash \Psi$, then $K \circ \Phi = K \circ \Psi$ (extensionality)

Summary

Success conditions are described in a general fashion with the help of a metalinguistic belief operator B. A unified operator can be applied to any success condition built on the metalinguistic belief operator B.

Summary

- Success conditions are described in a general fashion with the help of a metalinguistic belief operator B. A unified operator can be applied to any success condition built on the metalinguistic belief operator B.
- It is assumed that there is a set X of potential outcomes of belief change, and the mechanism of change is a direct choice among these potential outcomes.

Summary

- Success conditions are described in a general fashion with the help of a metalinguistic belief operator B. A unified operator can be applied to any success condition built on the metalinguistic belief operator B.
- It is assumed that there is a set X of potential outcomes of belief change, and the mechanism of change is a direct choice among these potential outcomes.
- In the linearly ordered form of descriptor revision, this choice is based on a linear relation on X that can be interpreted as representing distance from K.

• A binary relation \leq on \mathcal{L} .

- A binary relation \leq on \mathcal{L} .
- ▶ Intuitively: $\phi \leq \psi$ means the epistemic agent is at least as willing to give up ϕ as to give up ψ .

- A binary relation \leq on \mathcal{L} .
- ▶ Intuitively: $\phi \leq \psi$ means the epistemic agent is at least as willing to give up ϕ as to give up ψ .
- \leq is a *standard* epistemic entrenchment ordering iff it satisfies:

- A binary relation \leq on \mathcal{L} .
- ▶ Intuitively: $\phi \leq \psi$ means the epistemic agent is at least as willing to give up ϕ as to give up ψ .
- \leq is a *standard* epistemic entrenchment ordering iff it satisfies:
 - If $\phi \leq \psi$ and $\psi \leq \lambda$, then $\phi \leq \lambda$. (transitivity)

- A binary relation \leq on \mathcal{L} .
- ▶ Intuitively: $\phi \leq \psi$ means the epistemic agent is at least as willing to give up ϕ as to give up ψ .
- \leq is a *standard* epistemic entrenchment ordering iff it satisfies:
 - If $\phi \leq \psi$ and $\psi \leq \lambda$, then $\phi \leq \lambda$. (transitivity)
 - If $\phi \vdash \psi$, then $\phi \leq \psi$. (dominance)

- A binary relation \leq on \mathcal{L} .
- ▶ Intuitively: $\phi \leq \psi$ means the epistemic agent is at least as willing to give up ϕ as to give up ψ .
- \leq is a *standard* epistemic entrenchment ordering iff it satisfies:
 - If $\phi \leq \psi$ and $\psi \leq \lambda$, then $\phi \leq \lambda$. (transitivity)
 - If $\phi \vdash \psi$, then $\phi \leq \psi$. (dominance)
 - $\phi \leq \phi \land \psi$ or $\psi \leq \phi \land \psi$. (conjunctiveness)

- A binary relation \leq on \mathcal{L} .
- ▶ Intuitively: $\phi \leq \psi$ means the epistemic agent is at least as willing to give up ϕ as to give up ψ .
- \leq is a *standard* epistemic entrenchment ordering iff it satisfies:
 - If $\phi \leq \psi$ and $\psi \leq \lambda$, then $\phi \leq \lambda$. (transitivity)
 - If $\phi \vdash \psi$, then $\phi \leq \psi$. (dominance)
 - $\phi \leq \phi \land \psi$ or $\psi \leq \phi \land \psi$. (conjunctiveness)
 - $\phi \notin K$ if and only if $\phi \leq \psi$ for all ψ . (minimality)

- A binary relation \leq on \mathcal{L} .
- ▶ Intuitively: $\phi \leq \psi$ means the epistemic agent is at least as willing to give up ϕ as to give up ψ .
- \leq is a *standard* epistemic entrenchment ordering iff it satisfies:
 - If $\phi \leq \psi$ and $\psi \leq \lambda$, then $\phi \leq \lambda$. (transitivity)
 - If $\phi \vdash \psi$, then $\phi \leq \psi$. (dominance)
 - $\phi \leq \phi \land \psi$ or $\psi \leq \phi \land \psi$. (conjunctiveness)
 - $\phi \notin K$ if and only if $\phi \leq \psi$ for all ψ . (minimality)
 - If $\psi \leq \phi$ for all ψ , then $\vdash \phi$. (maximality)

An alternative model

We say a contraction operator \div is *based on* an epistemic entrenchment ordering \leq iff

 φ ∈ K ÷ ψ if and only if φ ∈ K and either ψ ≤ φ ∨ ψ or ψ ∈ Cn(Ø).

An alternative model

We say a contraction operator \div is *based on* an epistemic entrenchment ordering \leq iff

 φ ∈ K ÷ ψ if and only if φ ∈ K and either ψ ≤ φ ∨ ψ or ψ ∈ Cn(Ø).

Observation

÷ is a transitively partial meet contraction operator iff it is based on a standard epistemic entrenchment ordering. Epistemic Proximity Ordering

• An ordering applying to descriptors rather than to sentences.

Epistemic Proximity Ordering

- An ordering applying to descriptors rather than to sentences.
- Intuitively: $\Phi \leq \Psi$ (Φ is at least as epistemically proximate as Ψ) if and only if the change in the belief system required to satisfy Φ is not larger (more radical) than that required to satisfy Ψ .

Epistemic Proximity Ordering

- An ordering applying to descriptors rather than to sentences.
- Intuitively: Φ ≤ Ψ (Φ is at least as epistemically proximate as Ψ) if and only if the change in the belief system required to satisfy Φ is not larger (more radical) than that required to satisfy Ψ.
- From the point of view of relational model: $\Phi \leq \Psi$ if and only if the distance from K to the closest Φ -satisfying potential outcome is not longer than that to the closest Ψ -satisfying potential outcome.

Formal definition

A binary relation \leq (with strict part < and symmetric part \simeq) on descriptors is a *epistemic proximity ordering* iff there exists a relational model (\mathbb{X}, \leq) such that

$$\begin{split} \Phi &\leq \Psi \text{ if and only if either (i) there exists } \mathbb{X}^{\Phi}_{<} \text{ and } \mathbb{X}^{\Psi}_{<} \text{ with } \\ \mathbb{X}^{\Phi}_{<} &\leq \mathbb{X}^{\Psi}_{<} \text{ or (ii) } \Psi \text{ is not satisfiable in } \mathbb{X}. \end{split}$$

Representation theorem for \leq

Let $\perp = \{\mathfrak{B}\phi \land \neg \mathfrak{B}\phi\}$. \leq is a epistemic proximity ordering iff it satisfies

- If $\Phi \leq \Psi$ and $\Psi \leq \Xi$, then $\Phi \leq \Xi$. (transitivity)
- If $\Phi \Vdash \Psi$, then $\Psi \leq \Phi$. (counter-dominance)
- If $\Phi \simeq \Psi$, then $\Phi \simeq \Phi \cup \Psi$.(coupling)
- Either $\Phi \cup \{\mathfrak{B}\phi\} \simeq \Phi$ or $\Phi \cup \{\neg \mathfrak{B}\phi\} \simeq \Phi$ (amplification)
- $\Phi \prec \perp$ for some Φ . (absurdity avoidance)

Alternative model

Let \leq be some epistemic proximity ordering and $[\Phi]_{\leq} = \{\phi \in \mathcal{L} \mid \Phi \simeq \Phi \cup \{\mathfrak{B}\phi\}\}.$ We say a descriptor revision operator \circ is *based on* \leq iff

$$\mathcal{K} \circ \Phi = \begin{cases} [\Phi]_{\leq} & \text{if } \Phi < \pm, \\ \mathcal{K} & \text{if } \Phi \simeq \pm. \end{cases}$$

Alternative model

Let \leq be some epistemic proximity ordering and $[\Phi]_{\leq} = \{\phi \in \mathcal{L} \mid \Phi \simeq \Phi \cup \{\mathfrak{B}\phi\}\}.$ We say a descriptor revision operator \circ is *based on* \leq iff

$$\mathcal{K} \circ \Phi = \begin{cases} [\Phi]_{\preceq} & \text{if } \Phi \prec \pm, \\ \mathcal{K} & \text{if } \Phi \simeq \pm. \end{cases}$$

Observation

A descriptor revision operator \circ is based on some relational model iff it is based on the epistemic proximity ordering derived from the relational model.

Restrictions on descriptor revision

• Descriptor revision is a very general framework.

Restrictions on descriptor revision

- Descriptor revision is a very general framework.
- $K \star \phi = K \circ \mathfrak{B}\phi$.

Restrictions on descriptor revision

- Descriptor revision is a very general framework.
- $K \star \phi = K \circ \mathfrak{B}\phi$.
- Restricted operators, relational models and epistemic entrenchment orderings.

• Let \mathfrak{D} be the set of all descriptors.

- \blacktriangleright Let ${\mathfrak D}$ be the set of all descriptors.
- For any $\mathfrak{S} \subseteq \mathfrak{D}$. (\mathbb{X}, \leq) is a relational model restricted to \mathfrak{S} iff

- \blacktriangleright Let ${\mathfrak D}$ be the set of all descriptors.
- For any $\mathfrak{S} \subseteq \mathfrak{D}$. (\mathbb{X}, \leq) is a relational model restricted to \mathfrak{S} iff
 - \mathbb{X} is a outcome set, \leq is a binary relation (with strict part <) on \mathbb{X} .

- \blacktriangleright Let ${\mathfrak D}$ be the set of all descriptors.
- For any $\mathfrak{S} \subseteq \mathfrak{D}$. (\mathbb{X}, \leq) is a relational model restricted to \mathfrak{S} iff
 - \mathbb{X} is a outcome set, \leq is a binary relation (with strict part <) on \mathbb{X} .
 - $K \leq X$ for all $X \in \mathbb{X}$.

- \blacktriangleright Let ${\mathfrak D}$ be the set of all descriptors.
- For any $\mathfrak{S} \subseteq \mathfrak{D}$. (\mathbb{X}, \leq) is a relational model restricted to \mathfrak{S} iff
 - \mathbb{X} is a outcome set, \leq is a binary relation (with strict part <) on \mathbb{X} .
 - $K \leq X$ for all $X \in \mathbb{X}$.
 - For any descriptor $\Phi \in \mathfrak{S}$, if $\mathbb{X}^{\Phi} \neq \emptyset$, then there exists a unique \leq -minimal element (denoted by \mathbb{X}^{Φ}_{\leq}) in it.

- \blacktriangleright Let ${\mathfrak D}$ be the set of all descriptors.
- For any $\mathfrak{S} \subseteq \mathfrak{D}$. (\mathbb{X}, \leq) is a relational model restricted to \mathfrak{S} iff
 - \mathbb{X} is a outcome set, \leq is a binary relation (with strict part <) on \mathbb{X} .
 - $K \leq X$ for all $X \in \mathbb{X}$.
 - For any descriptor $\Phi \in \mathfrak{S}$, if $\mathbb{X}^{\Phi} \neq \emptyset$, then there exists a unique \leq -minimal element (denoted by \mathbb{X}^{Φ}_{\leq}) in it.
- It does not in general hold that \leq is linear if (X, \leq) is a restricted relational model.

Restricted descriptor revision

• • is a restricted (descriptor revision) operator with respect to $\mathfrak{S} \subseteq \mathfrak{D}$ iff it only applies to \mathfrak{S} .

Restricted descriptor revision

- • is a restricted (descriptor revision) operator with respect to $\mathfrak{S} \subseteq \mathfrak{D}$ iff it only applies to \mathfrak{S} .
- • is a *relational* restricted descriptor revision operator with respect to \mathfrak{S} iff it is based on some relational model restricted to \mathfrak{S} , i.e. for any $\Phi \in \mathfrak{S}$,

$$\mathcal{K} \circ \Phi = \begin{cases} \mathbb{X}^{\Phi}_{<} & \text{if } \mathbb{X}^{\Phi} \neq \emptyset, \\ \mathcal{K} & \text{otherwise.} \end{cases}$$

• Let \mathfrak{A} be the set of all atomic descriptors, i.e. $\mathfrak{A} = \{\mathfrak{B}\phi \mid \phi \in \mathcal{L}\}.$

- Let \mathfrak{A} be the set of all atomic descriptors, i.e. $\mathfrak{A} = \{\mathfrak{B}\phi \mid \phi \in \mathcal{L}\}.$
- ▶ is a sentential descriptor revision operator iff is a restricted descriptor revision operator with respect to 𝔄.

- Let \mathfrak{A} be the set of all atomic descriptors, i.e. $\mathfrak{A} = \{\mathfrak{B}\phi \mid \phi \in \mathcal{L}\}.$
- ▶ is a sentential descriptor revision operator iff is a restricted descriptor revision operator with respect to 𝔄.
- o is a *relational* sentential descriptor revision operator iff o is sentential descriptor revision operator based on some relational model restricted to 𝔄.

- Let \mathfrak{A} be the set of all atomic descriptors, i.e. $\mathfrak{A} = \{\mathfrak{B}\phi \mid \phi \in \mathcal{L}\}.$
- ○ is a sentential descriptor revision operator iff is a restricted descriptor revision operator with respect to 𝔄.
- o is a *relational* sentential descriptor revision operator iff o is sentential descriptor revision operator based on some relational model restricted to 𝔄.
- $K \star \phi = K \circ \mathfrak{B}\phi$: (relational) sentential operator derived from (relational) sentential descriptor revision operator.

• \leq on \mathfrak{A} is an epistemic proximity ordering restricted to \mathfrak{A} iff there exists a relational model restricted to \mathfrak{A} such that $\Phi \leq \Psi$ if and only if \mathbb{X}^{Φ}_{\leq} and \mathbb{X}^{Ψ}_{\leq} exist and $\Phi \leq \Psi$.

- \leq on \mathfrak{A} is an epistemic proximity ordering restricted to \mathfrak{A} iff there exists a relational model restricted to \mathfrak{A} such that $\Phi \leq \Psi$ if and only if \mathbb{X}^{Φ}_{\leq} and \mathbb{X}^{Ψ}_{\leq} exist and $\Phi \leq \Psi$.
- It is not same as the "either...or..." definition of general epistemic proximity ordering.

- \leq on \mathfrak{A} is an epistemic proximity ordering restricted to \mathfrak{A} iff there exists a relational model restricted to \mathfrak{A} such that $\Phi \leq \Psi$ if and only if \mathbb{X}^{Φ}_{\leq} and \mathbb{X}^{Ψ}_{\leq} exist and $\Phi \leq \Psi$.
- It is not same as the "either...or..." definition of general epistemic proximity ordering.
- Let \leq be an epistemic proximity ordering restricted to \mathfrak{A} and $Ref(\leq)$ denote the domain of \leq . It is possible that $Ref(\leq) \neq \mathfrak{A}$.

- \leq on \mathfrak{A} is an epistemic proximity ordering restricted to \mathfrak{A} iff there exists a relational model restricted to \mathfrak{A} such that $\Phi \leq \Psi$ if and only if \mathbb{X}^{Φ}_{\leq} and \mathbb{X}^{Ψ}_{\leq} exist and $\Phi \leq \Psi$.
- It is not same as the "either...or..." definition of general epistemic proximity ordering.
- Let \leq be an epistemic proximity ordering restricted to \mathfrak{A} and $Ref(\leq)$ denote the domain of \leq . It is possible that $Ref(\leq) \neq \mathfrak{A}$.
- Intuitively: $\Phi \notin Ref(\leq)$ means Φ is not under consideration.

Why a difference

 Cn(φ) < Cn(⊥) and Cn(φ): Two different relational sentential descriptor revision operator are derived from them. Why a difference

- Cn(φ) < Cn(⊥) and Cn(φ): Two different relational sentential descriptor revision operator are derived from them.
- Either...or...: The same restricted epistemic proximity ordering is derived from them.

Believability relation

 A binary relation ⊴ (with strict part ⊲ and symmetric part ⋈) on L is a *believability relation* iff there exists an epistemic proximity ordering restricted to 𝔅 satisfying the following condition: Believability relation

- A binary relation ⊴ (with strict part ⊲ and symmetric part ⋈) on L is a *believability relation* iff there exists an epistemic proximity ordering restricted to A satisfying the following condition:
 - $\phi \trianglelefteq \psi$ iff $\mathfrak{B}\phi \preceq \mathfrak{B}\psi$

Believability relation

- A binary relation ⊴ (with strict part ⊲ and symmetric part ⋈) on L is a *believability relation* iff there exists an epistemic proximity ordering restricted to 𝔅 satisfying the following condition:
 - $\phi \trianglelefteq \psi$ iff $\mathfrak{B}\phi \preceq \mathfrak{B}\psi$
- Intuitively: φ ≤ ψ means belief in φ is at least as easily acquired by the agent as belief in ψ.

Axiomatic characterization of believability relation

 \trianglelefteq is a believability relation iff it satisfies

- Given $\phi \bowtie \phi \land \psi$, (i) $\phi \trianglelefteq \lambda$ if and only if $\phi \land \psi \trianglelefteq \lambda$, and (ii) $\lambda \trianglelefteq \phi$ if and only if $\lambda \oiint \phi \land \psi$. (weak transitivity)
- ▶ If $\phi \in Ref(\trianglelefteq)$ and $\phi \vdash \psi$, then $\psi \trianglelefteq \phi$. (relative counter-dominance)
- If $\phi \bowtie \phi \land \psi$ and $\phi \bowtie \phi \land \lambda$, then $\phi \bowtie \phi \land (\psi \land \lambda)$. (weak coupling)
- $\phi \in K$ if and only if $\phi \in \operatorname{Ref}(\trianglelefteq)$ and $\phi \trianglelefteq \psi$ for all $\psi \in \operatorname{Ref}(\trianglelefteq)$. (relative minimality)

An alternative model for sentential revision

We say an sentential operator \star is based on some believability relation \trianglelefteq if and only if it satisfies:

$$K \star \phi = \begin{cases} \{\psi \mid \phi \bowtie \phi \land \psi\} & \text{if } \phi \in \operatorname{Ref}(\trianglelefteq), \\ K & \text{otherwise.} \end{cases}$$

An alternative model for sentential revision

We say an sentential operator \star is based on some believability relation \trianglelefteq if and only if it satisfies:

$$\mathcal{K} \star \phi = \begin{cases} \{\psi \mid \phi \bowtie \phi \land \psi\} & \text{if } \phi \in \operatorname{Ref}(\trianglelefteq), \\ \mathcal{K} & \text{otherwise.} \end{cases}$$

Observation

Let (\mathbb{X}, \leq) be some relational model restricted to \mathfrak{A} and \circ the relational sentential descriptor revision operator based on (\mathbb{X}, \leq) . Then, the following two conditions are equivalent:

- (1) \star is the sentential operator derived from \circ .
- (2) \star is based on the believability relation derived from (\mathbb{X}, \leq) .

* is a sentential operator derived from some relational sentential descriptor revision operator (namely based on some believability relation) iff it satisfies following postulates:

•
$$Cn(K \star \phi) = K \star \phi$$
 (closure)

- If $K \star \phi \neq K$, then $\phi \in K \star \phi$ (relative success)
- If $\phi \in K$, then $K \star \phi = K$ (confirmation)
- If $\psi \in K \star \phi$, then $\psi \in K \star \psi$ (regularity)
- If $\psi \in K \star \phi$ and $\phi \in K \star \psi$, then $K \star \phi = K \star \psi$ (reciprocity)

...believability relation:

• transitivity: If $\phi \trianglelefteq \psi$ and $\psi \trianglelefteq \lambda$, then $\phi \trianglelefteq \lambda$.

- transitivity: If $\phi \trianglelefteq \psi$ and $\psi \trianglelefteq \lambda$, then $\phi \trianglelefteq \lambda$.
- exhaustiveness: $Ref(\trianglelefteq) = \mathcal{L}.$

- transitivity: If $\phi \trianglelefteq \psi$ and $\psi \trianglelefteq \lambda$, then $\phi \trianglelefteq \lambda$.
- exhaustiveness: $Ref(\trianglelefteq) = \mathcal{L}.$
- maximality: If $\psi \trianglelefteq \phi$ for all ψ , then $\phi \equiv \perp$.

- transitivity: If $\phi \trianglelefteq \psi$ and $\psi \trianglelefteq \lambda$, then $\phi \trianglelefteq \lambda$.
- exhaustiveness: $Ref(\trianglelefteq) = \mathcal{L}.$
- maximality: If $\psi \trianglelefteq \phi$ for all ψ , then $\phi \equiv \perp$.
- coupling: If $\phi \bowtie \psi$ then $\phi \bowtie \phi \land \psi$.

- transitivity: If $\phi \trianglelefteq \psi$ and $\psi \trianglelefteq \lambda$, then $\phi \trianglelefteq \lambda$.
- exhaustiveness: $Ref(\trianglelefteq) = \mathcal{L}.$
- maximality: If $\psi \trianglelefteq \phi$ for all ψ , then $\phi \equiv \perp$.
- coupling: If $\phi \bowtie \psi$ then $\phi \bowtie \phi \land \psi$.
- complete: Either $\phi \trianglelefteq \psi$ or $\psi \trianglelefteq \phi$.

...relational model restricted to ${\mathfrak A}$

• \leq is linear.

...relational model restricted to ${\mathfrak A}$

- \leq is linear.
- $Cn(\{\bot\}) \in \mathbb{X}$.

...relational model restricted to ${\mathfrak A}$

- \leq is linear.
- $Cn(\{\bot\}) \in \mathbb{X}$.
- For any $\phi \not\equiv \bot$, $\mathbb{X}^{\mathfrak{B}\phi}_{<} < Cn(\{\bot\})$.

...sentential operator:

• success: $\phi \in K \star \phi$ for all $\phi \in \mathcal{L}$.

...sentential operator:

- success: $\phi \in K \star \phi$ for all $\phi \in \mathcal{L}$.
- consistency: If $\neg \phi \notin Cn(\emptyset)$, then $K \star \phi$ is consistent.

...sentential operator:

- success: $\phi \in K \star \phi$ for all $\phi \in \mathcal{L}$.
- consistency: If $\neg \phi \notin Cn(\emptyset)$, then $K \star \phi$ is consistent.
- ▶ strong reciprocity: Given $n \in \mathbb{N}$, if for every $0 \le i < n$, $\phi_i \in K \star \phi_{i+1}$ and $\phi_n \in K \star \phi_0$, then $K \star \phi_0 = K \star \phi_2 = \cdots = K \star \phi_n$.)

Correspondences among these properties

Omit...

Relationships with AGM revision and entrenchment relation

 Given K is consistent, AGM revision operator on K can be exactly characterized by a subset of believability relations which can be specified in an explicit way.

Relationships with AGM revision and entrenchment relation

- Given K is consistent, AGM revision operator on K can be exactly characterized by a subset of believability relations which can be specified in an explicit way.
- Assume elements in X are all maximal consistent sets, the derived believability relations and related entrenchment relations are inter-definable.

Problems and limitations of AGM

- Problems and limitations of AGM
- Descriptor revision: A select-direct approach with an extended language.

- Problems and limitations of AGM
- Descriptor revision: A select-direct approach with an extended language.
- Epistemic proximity ordering: An alternative model for descriptor revision

- Problems and limitations of AGM
- Descriptor revision: A select-direct approach with an extended language.
- Epistemic proximity ordering: An alternative model for descriptor revision
- Restricted descriptor revision: Looking backwards to sentential revision.

- Problems and limitations of AGM
- Descriptor revision: A select-direct approach with an extended language.
- Epistemic proximity ordering: An alternative model for descriptor revision
- Restricted descriptor revision: Looking backwards to sentential revision.
- Believability relation: A counterpart to epistemic entrenchment ordering.

References (AGM)

- Alchourrón, Carlos, Peter Gärdenfors, and David Makinson (1985) "On the logic of theory change: Partial meet contraction and revision functions", *Journal of Symbolic Logic* 50:510-530.
- Fermé, Eduardo and Sven Ove Hansson (2011) "AGM 25 years. Twenty-Five Years of Research in Belief Change", *Journal of Philosophical Logic* 40:295-331.
- Grove, Adam (1988) "Two modellings for theory change", Journal of philosophical logic 17:157-170.
- Gärdenfors, Peter and David Makinson (1988), "Revision of Knowledge Systems Using Epistemic Entrenchment", Proceedings of the 2nd Conference on Theoretical Aspects of Reasoning About Knowledge: 83-95.

References (Descriptor revision)

- Hansson, Sven Ove (2014a) "Descriptor Revision", Studia Logica 102: 955-980, 2014.
- Hansson, Sven Ove (2014b) "Relations of Epistemic Proximity for Belief Change", Artificial Intelligence 217: 76-91, 2014.
- Hansson, Sven Ove (2015) "A monoselective presentation of AGM revision", *Studia Logica*, in press.
- Li, Zhang and Hansson, Sven Ove (2015) "How to make up one's mind", Logic Journal of IGPL, in press.

Thanks for your attention!