On the Finite Model Property of S4 Logics with Finite Width

李楷

北大哲学系, 2016.1.29
For transitive logics, we have many results in modal logic: concerning finite model property in modal logic.

- (Segerberg, 1971) and (Bull and Segerberg, 1984) shows that any transitive logic with finite depth has the f.m.p.
- (Fine, 1974) shows that any transitive logic with finite width is complete.
- (Bull, 1966) and (Fine, 1971) shows that any normal extension of $S4.3$ has the f.m.p.
- (Xu, 2002) and (Xu, 2013) show that any normal extension of $G.3$ and a class of normal extension of $K4.3$ has the f.m.p. and is finitely axiomatizable.
- (Li, 2011) shows that any any normal extension of $K4.3z$ has the f.m.p. and is finitely axiomatizable.

In this slides we mainly concern finite model property of reflective
Finite Width

Definition

Finite width $\mathbf{S4}$ logic is a logic containing following formulas $I_n(n > 0)$ and $\mathbf{S4}$ where:

$$I_n = \bigwedge_{i=0}^{n} \lozenge p_i \rightarrow \bigvee_{0 \leq i \neq j \leq n} \lozenge (p_i \land (p_j \lor \lozenge p_j)).$$
Finite Width

Definition

Finite width \(S4 \) logic is a logic containing following formulas \(I_n(n > 0) \) and \(S4 \) where:

\[
I_n = \bigwedge_{i=0}^{n} \Box p_i \rightarrow \bigvee_{0 \leq i \neq j \leq n} \Box (p_i \land (p_j \lor \Box p_j)).
\]

Let \(\mathcal{F} = (W, R) \) be any frame, let \(w, u \in W \) and let \(A \subseteq W \). \(w \) and \(u \) are \((R-)incomparable\) if neither \(wRu \) nor \(uRw \). \(A \) is a \(cluster \) if \(A \neq \emptyset \) and for all \(w, u \in A \), \(wRu \) and \(uRw \). \(A \) is an \(anti-chain \) if for all \(w, u \in A \), \(w \neq u \) only if \(w \) and \(u \) are incomparable.
Finite Width

Definition

Finite width S4 logic is a logic containing following formulas $I_n(n > 0)$ and S4 where:

$$I_n = \bigwedge_{i=0}^{n} \Diamond p_i \rightarrow \bigvee_{0 \leq i \neq j \leq n} \Diamond (p_i \land (p_j \lor \Diamond p_j))$$

Let $\mathfrak{F} = (W, R)$ be any frame, let $w, u \in W$ and let $A \subseteq W$. w and u are (R-)incomparable if neither wRu nor uRw. A is a cluster if $A \neq \emptyset$ and for all $w, u \in A$, wRu and uRw. A is an anti-chain if for all $w, u \in A$, $w \neq u$ only if w and u are incomparable.

Fact

Any frame \mathfrak{F} of a finite width (containing I_n) S4 logic is reflective, transitive and of finite width, i.e., any generated subframe of \mathfrak{F} has no anti-chain longer than n.
Definition (p-morphism)

Let $\mathcal{F} = (W, R)$ and $\mathcal{F}' = (W', R')$ be two frames. A function $f : W \rightarrow W'$ is a p-morphism from \mathcal{F} to \mathcal{F}' if

1. f is a surjection from W to W',
2. for all $w, u \in W$, wRu implies $f(w)R'f(u)$,
3. for all $w \in W$ and $u' \in U$, $f(w)Ru'$ implies wRu for some $u \in W$ such that $f(u) = u'$.

\mathcal{F}' is a p-morphic image of \mathcal{F} if there is a p-morphism from \mathcal{F} to \mathcal{F}'.
Definition (p-morphism)

Let $\mathcal{F} = (W, R)$ and $\mathcal{F}' = (W', R')$ be two frames. A function $f : W \rightarrow W'$ is a p-morphism from \mathcal{F} to \mathcal{F}' if

1. f is a surjection from W to W',
2. for all $w, u \in W$, wRu implies $f(w)R'f(u)$,
3. for all $w \in W$ and $u' \in U$, $f(w)Ru'$ implies wRu for some $u \in W$ such that $f(u) = u'$.

\mathcal{F}' is a p-morphic image of \mathcal{F} if there is a p-morphism from \mathcal{F} to \mathcal{F}'.

Fact

If \mathcal{F} is a frame of some logic and \mathcal{F}' is a p-morphic image of \mathcal{F}, then \mathcal{F}' is also a frame of this logic.
Chains

Definition
Let $\mathcal{F} = (W, R)$ be any frame. A sequence of points $w_1, w_2, \ldots, w_n \in W$ is an R-chain if $w_{i+1}Rw_i$ for each i with $0 < i \leq n$. We use C, C', \ldots for R-chains, and we abuse the notation $w \in C$, $C \cap C'$ and $C \subseteq A$ for w is an element in this sequence, the set consisting of the common elements of C and C', and every element of C is in A. R-chain w_1, w_2, \ldots, w_n is strict if not w_iRw_{i+1} for all i with $0 < i \leq n$. \mathcal{F} is Noetherian if \mathcal{F} is transitive and there is no infinite strict R-chain.
Chains

Definition

Let $\mathcal{F} = (W, R)$ be any frame. A sequence of points $w_1, w_2, \ldots, w_n \in W$ is an R-chain if $w_{i+1} Rw_i$ for each i with $0 < i \leq n$. We use C, C', \ldots for R-chains, and we abuse the notation $w \in C, C \cap C'$ and $C \subseteq A$ for w is an element in this sequence, the set consisting of the common elements of C and C', and every element of C is in A. R-chain w_1, w_2, \ldots, w_n is strict if not $w_i Rw_{i+1}$ for all i with $0 < i \leq n$. \mathcal{F} is Notherian if \mathcal{F} is transitive and there is no infinite strict R-chain.

Theorem (Completeness Result by Fine)

Any logic contains $\text{I}_n (n > 0)$ and S4 is characterized by a class of Notherian frames.
Witness Set

Definition (witness set)

Let $\mathcal{M} = (\mathcal{W}, R, V)$ be any model and let α be any formula satisfiable on \mathcal{M}. We use $\text{final}(\alpha)$ for the set of R-maximal points in $\{w \in \mathcal{W} | M,w \models \alpha\}$, i.e., for each $w \in \mathcal{W}$, $w \in \text{final}(\alpha)$ iff $M, w \models \alpha$ and for each $u \in \mathcal{W}$ such that $M, u \models \alpha$, wRu implies uRw. Furthermore we use $\text{sub}(\alpha)$ for the set of all subformulas of α. The **witness set** of α (w.r.t. \mathcal{M}) is $\bigcup_{\beta \in \text{sub}(\alpha)} \text{final}(\beta)$.
Witness Set

Definition (witness set)

Let $\mathcal{M} = (W, R, V)$ be any model and let α be any formula satisfiable on \mathcal{M}. We use $\text{final}(\alpha)$ for the set of R-maximal points in $\{w \in W | M, w \models \alpha\}$, i.e., for each $w \in W$, $w \in \text{final}(\alpha)$ iff $\mathcal{M}, w \models \alpha$ and for each $u \in W$ such that $\mathcal{M}, u \models \alpha$, wRu implies uRw. Furthermore we use $\text{sub}(\alpha)$ for the set of all subformulas of α. The witness set of α (w.r.t. \mathcal{M}) is $\bigcup_{\beta \in \text{sub}(\alpha)} \text{final}(\beta)$.

Fact

Let $\mathcal{M} = (W, R, V)$ be any model and let α be any formula satisfiable on \mathcal{M}. If \mathcal{M} is of finite width, then the witness set of α is finite.
Let $\mathcal{M} = (W, R, V)$ be any Notherian model and let α be any formula satisfiable on \mathcal{M}. If there is a p-morphism f from (W, R) to $\mathcal{F} = (W', R')$, the witness set A of α is a subset of W and the f restricted to A is an isomorphism, then α is satisfiable in \mathcal{F}.

Definition.

A logic has the finite model property (f.m.p.) if it is characterized by a class of finite model.
Let $\mathcal{M} = (W, R, V)$ be any Notherian model and let α be any formula satisfiable on \mathcal{M}. If there is a p-morphism f from (W, R) to $\mathcal{F} = (W', R')$, the witness set A of α is a subset of W and the f restricted to A is an isomorphism, then α is satisfiable in \mathcal{F}.

Definition

A logic has the finite model property (f.m.p.) if it is characterized by a class of finite model.
Let \(M = (W, R, V) \) be any Notherian model and let \(\alpha \) be any formula satisfiable on \(M \). If there is a \(p \)-morphism \(f \) from \((W, R) \) to \(\mathcal{F} = (W', R') \), the witness set \(A \) of \(\alpha \) is a subset of \(W \) and the \(f \) restricted to \(A \) is an isomorphism, then \(\alpha \) is satisfiable in \(\mathcal{F} \).

Lemma

Definition

A logic has the finite model property (f.m.p.) if it is characterized by a class of finite model.

Let \(L \) be any logic. In order to show that \(L \) has the f.m.p, we want to prove that:

for any formula \(\alpha \) consistent with \(L \) and any model \(\langle \mathcal{F}, V \rangle \) satisfying \(\alpha \) there is a finite model \(\langle \mathcal{F}', V' \rangle \) satisfying \(\alpha \) and \(\mathcal{F}' \) is a \(p \)-morphic image of \(\mathcal{F} \).
Interval and Substructure

Definition

Let $\mathcal{F} = (W, R)$ be any frame, and let $A \subseteq W$. A is an *interval* if for all $w, u \in A$ and each $v \in W$, $wRvRu$ only if $v \in A$. We use $A \uparrow_R$ for the set $\{ w \in W | uRw \text{ for some } u \in A \}$, and $w \uparrow_R$ for $w \uparrow_R$ for.
Interval and Substructure

Definition

Let $\mathcal{F} = (W, R)$ be any frame, and let $A \subseteq W$. A is an interval if for all $w, u \in A$ and each $v \in W$, $wRvRu$ only if $v \in A$. We use $A \uparrow_R$ for the set $\{w \in W | uRw$ for some $u \in A\}$, and $w \uparrow_R$ for $w \uparrow_R$ for.

Definition

Let $\mathcal{F} = \langle W, R \rangle$ be any frame. Frame $\mathcal{G} = \langle U, S \rangle$ is a subframe of \mathcal{F} if:

- $U \subseteq W$,
- $S = R \cap (U \times U)$.

Let $B \subseteq W$. $\mathcal{G} = \langle U, S \rangle$ is the subframe of \mathcal{F} restricted to B if $U = B$ and \mathcal{G} is a subframe of \mathcal{F}. $\mathcal{G} = \langle U, S \rangle$ is a generated subframe of \mathcal{F} from B if $U = B \uparrow_R$. The submodel, generated submodel, point generated subframe and point generated submodel is defined as usual.
Interval Cuts

Definition (Interval Cuts)

Let \(\mathcal{M} = (W, R, V) \) be any model, let \(\alpha \) be any formula satisfiable on \(\mathcal{M} \) and let \(A \) be the witness set of \(\alpha \). The *interval cuts* of \(\mathcal{M} \) w.r.t. \(\alpha \) is a sequence of anti-chains \(C_1, C_2, \ldots, C_n \) such that \(C_1 \) is the set of all \(R \)-maximal points in \(\mathcal{M} \). For each \(k + 1 \), \(C_{k+1} \) is a maximal anti-chain containing the \(R' \)-maximal elements of \(A \) in the submodel \(\mathcal{M}' = \langle W', R', V' \rangle \) of \(\mathcal{M} \) restricted to \(W - C_k \uparrow R \).
Interval Cuts

Definition (Interval Cuts)

Let $\mathcal{M} = (W, R, V)$ be any model, let α be any formula satisfiable on \mathcal{M} and let A be the witness set of α. The interval cuts of \mathcal{M} w.r.t. α is a sequence of anti-chains C_1, C_2, \ldots, C_n such that C_1 is the set of all R-maximal points in \mathcal{M}. For each $k + 1$, C_{k+1} is a maximal anti-chain containing the R'-maximal elements of A in the submodel $\mathcal{M}' = \langle W', R', V' \rangle$ of \mathcal{M} restricted to $W - C_k \uparrow_R$.

Lemma

Let $\mathcal{M} = (W, R, V)$ be any Noetherian model of finite width and let α be any formula satisfiable on \mathcal{M}. Then the interval cuts of \mathcal{M} w.r.t. α is a finite sequence.
Iner-connected Intervals

Definition
Let $\mathcal{F} = (W, R)$ be any frame, let $w, u \in W$ and let $A \subseteq W$. w is **tough** if either there are incomparable points in $u, v \in W$ such that w is an R-maximal point to see both u and v, (i.e., wRu and wRv, and for each $w' \in W$, $w'Ru$, $w'Rv$ and wRw' only if $w'Rw$) or w is an R-maximal point in W, (i.e., for each $u \in W$, wRu only if uRw).
Iner-connected Intervals

Definition
Let $\mathfrak{F} = (W, R)$ be any frame, let $w, u \in W$ and let $A \subseteq W$. w is \textit{tough} if either there are incomparable points in $u, v \in W$ such that w is an R-maximal point to see both u and v, (i.e., wRu and wRv, and for each $w' \in W, w'Ru, w'Rv$ and wRw' only if $w'Rw$) or w is an R-maximal point in W, (i.e., for each $u \in W, wRu$ only if uRw).

An interval B is \textit{iner-connected} if it is an R-chain and for each $w, u \in B$, if w is tough, then uRw. An iner-connected interval B is maximal w.r.t. A if $B \subseteq A$ and there is no iner-connected interval B' such that $B \subset B' \subseteq A$.
Iner-connected Intervals

Definition

Let $\mathcal{F} = (W, R)$ be any frame, let $w, u \in W$ and let $A \subseteq W$. w is *tough* if either there are incomparable points in $u, v \in W$ such that w is an R-maximal point to see both u and v, (i.e., wRu and wRv, and for each $w' \in W$, $w'Ru$, $w'Rv$ and wRw' only if $w'Rw$) or w is an R-maximal point in W, (i.e., for each $u \in W$, wRu only if uRw).

An interval B is *iner-connected* if it is an R-chain and for each $w, u \in B$, if w is tough, then uRw. An iner-connected interval B is maximal w.r.t. A if $B \subseteq A$ and there is no iner-connected interval B' such that $B \subset B' \subseteq A$.
Theorem (p-morphism and Iner-connected Intervals)

Let $\mathcal{M} = (W, R, V)$ be any Noetherian $\mathsf{S}4$-modal, let α be any formula satisfiable on \mathcal{M} and let C_1, C_2, \ldots, C_n be an interval cuts of \mathcal{M} w.r.t. α. Let $W' \subseteq W$ be the set such that $w \in W'$ iff w is an R-maximal point in an iner-connected interval B is maximal w.r.t. $C_{k+1} \uparrow_R - C_k \uparrow_R$, then the submodel restricted to W' is a p-morphic image of \mathcal{M}.
Tough Chains

Definition

\(w_1, w_2, \ldots, w_n\) is an *(R-)tough chain* if it is a strict *R*-chain and \(w_i\) is tough for all \(i\). *R*-chain (\(R\)-tough chain) \(C\) is *maximal with respect to an interval* \(A\) if \(C \subseteq A\), and there is no longer *R*-chain (\(R\)-tough chain) in \(A\) contains every elements in \(C\), note that maximal implies filled). *R*-chain (\(R\)-tough chain) \(w_1, w_2, \ldots, w_n\) is *filled* if for each \(w \in W\) (that is tough), \(w_{i+1} R w_i\) for some \(i < n\) only if either \(w R w_i\) or \(w_{i+1} R w\). Sequences \(w_1, w_2, \ldots, w_n\) and \(u_1, u_2, \ldots, u_m\) are conjugate if \(w_1 = u_1\) and \(w_n = u_m\). A sequence of *R*-chains are conjugate if any two of these chains are conjugate. A sequence of *R*-chains \(C_1, C_2, \ldots\) is *anti-chain generable* if they are distinct, pairwise conjugate and for each \(i\) such that \(1 < i < n\) where \(n\) is the length of \(C_1\), \(w_i\) is incomparable to any element.
Generating Infinite Anti-chain

Lemma

Let $\mathcal{F} = (W, R)$ be any frame without infinite tough chain. Suppose there is an infinite sequence C_1, C_2, \ldots of distinct, filled and conjugate tough chains. Then there is an infinite sequence $S = (C'_1, C'_2, \ldots)$ of filled and anti-chain generable tough chains such that each C'_i is a subchain of C_j for some $j \in \omega$.
Generating Infinite Anti-chain

Proof.

Let \(w_1, w_2, \ldots, w_n \) be \(C_1 \). Without losing any generality, suppose \(n > 2 \). Then there is an infinite sub-sequence of \(S: C_{i_1}, C_{i_2}, C_{i_3}, \ldots \) such that \(C_{i_1} = C_1 \) and for all \(j > 1 \) \(C_{i_1} \cap C_{i_j} = C_{i_1} \cap C_{i_2} \). (because \(C_1 \) is finite, \(\{ C_1 \cap C_i \mid i \in \omega \} \) is finite, recall that each \(C_i \) is distinct.) \(C_{i_1} \cap C_{i_2} = C_{i_1} \), for otherwise \(C_{i_1} \) is a subchain of \(C_{i_2} \), contrary to our presupposition that they are filled and conjugate.

Consider any \(w_k \in C_{i_1} - (C_{i_1} \cap C_{i_2}) \) and any \(j > 1 \). Let \(C_{i_j} = (u_1, u_2, \ldots, u_l) \). Without losing any generality, suppose \(w_{k-1}, w_{k+1} \in C_{i_1} \cap C_{i_2} \) and \(w_{k-1} = u_n, w_{k+1} = u_m \). Then \(m \neq n + 1 \), for otherwise \(u_mRw_kRu_n \), contrary to that \(C_{i_j} \) is filled. Obviously \(w_k \) and \(u_{k'} \) are incomparable for each \(k' \) such that \(n < k' < m \).
Generating Infinite Anti-chain

Lemma

Let $\mathcal{F} = (W, R)$ be any frame without infinite tough chain, let A be an interval. Then there is no infinite sequence of distinct and maximal though chains.
Lemma

Let \(\mathcal{F} = (W, R) \) be any frame without infinite tough chain, let \(A \) be an interval. Then there is no infinite sequence of distinct and maximal though chains.

Proof.

Suppose there are infinitely many such though chains. We prove that there is an infinite anti-chain.

There is an infinite sequence \(S = (C_1, C_2, \ldots) \) of distinct and conjugate though chains. This is because any two distinct first elements of these though chains maximal w.r.t. \(A \), say \(C \) and \(C' \), are incomparable, for otherwise \(C \) or \(C' \) is not maximal w.r.t. \(A \). The same goes for the last elements.
Generating Infinite Anti-chain

Proof.
Hence by finite width, if there is no such S_1, there is an infinite anti-chain.

We construct an infinite anti-chain as follows:
Using Lemma 18, we have an infinite sequence $S_1 = (C_1^1, C_2^1, C_3^1, \ldots)$ of filled and anti-chain generable though chains such that each C_i^1 is a subchain of C_j for some $j \in \omega$. Let w_1 be the second element of C_1^1.

\[\square \]
Generating Infinite Anti-chain

Proof.

If we have sequence $S_n = (C^n_1, C^n_2, C^n_3, \ldots)$ and w_n, using Lemma 18 on $C^n_2, C^n_3, C^n_3, \ldots$ we obtain an infinite sequence $S_{n+1} = (C^{n+1}_1, C^{n+1}_2, C^{n+1}_3, \ldots)$ of filled and anti-chain generable though chains such that each C^{n+1}_i is a subchain of C^n_j for some $j \in \omega$ with $j > 1$. Let w_{n+1} be the second element of C^{n+1}_1. \qed
Generating Infinite Anti-chain

Proof.

Now we claim that the sequence \(w_1, w_2, w_3, \ldots \) is an anti-chain. Consider any nonzero \(i < j \in \omega \). \(w_i \) and \(w_j \) are the second element of \(C^i_1 \) and \(C^j_1 \) respectively. An easy induction can show that \(C^j_1 \) is a subchain of \(C^i_k \) for some \(k \in \omega \) with \(k > 1 \). Furthermore by the definition of anti-chain generable, \(C^j_1 \) has at least three elements, we can get that \(w_j \) is neither the first nor the last element of \(C^i_k \), and then \(w_i \) and \(w_j \) are incomparable.
Theorem

Let L be any finite width S4 logic without infinite though chain. Then L has the f.m.p.
Generating Infinite Anti-chain

Theorem

Let \mathbf{L} be any finite width $\mathbf{S4}$ logic without infinite though chain. Then \mathbf{L} has the f.m.p.

Proof.

Consider any \mathbf{L}-consistent formula α. We know that there is a point generated and Notherian \mathbf{L}-model $\mathcal{M} = \langle W, R, V \rangle$ such that α is true at the root of \mathcal{M}. Let C_1, C_2, \ldots, C_n be an interval cuts of \mathcal{M} w.r.t. α and let $\mathcal{M}' = \langle W', R', V' \rangle$ be the submodel of \mathcal{M} such that $W' = \{ w \in W | w \text{ is tough} \} \cup \bigcup_{0 < i \leq n} C_i$. We have W' is finite. We only need to show that there is a p-morphism f from $\langle W, R \rangle$ to $\langle W', R' \rangle$ and f restricted to W' is an isomorphism.
Theorem (f.m.p. for finite width S4 logic without infinite though chain)

Let L be any finite width S4 logic without infinite though chain. Then L has the f.m.p.

Proof.

It is easy to check that for each $w \in W$, $w \in W'$ iff w is an R-maximal point in an interconnected interval maximal w.r.t. $C_{k+1}^{\uparrow_R} - C_k^{\uparrow_R}$.

volume 13. Filosofiska Föreningen och Filosofiska Institutionen
vid Uppsala Universitet, Uppsala.
