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1. Standard Expected-Utility (EU) Theory

A gamble G:
Let X be a set of possible prizes / consequences / states:

{x1, x2, x3, ...xn}
Let U be a utility function over X and its values are:

{u(x1), u(x2), u(x3), ...u(xn)}
Let Cr be a credence distribution over X :

{cr1, cr2, cr3, ...crn}
The expected utility of the gamble:

EU(G ) =
n∑

i=1
criu(xi )
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Example: Lottery1 and Lottery2

X1 = {Winning ticket, Losing ticket}
U1 = {100,−10}
Cr1 = {.1, .9}

EU(Lottery1) =
2∑

i=1
criu(xi ) = 0.1× 100 + 0.9× (−10) = 1

X2 = {Winning ticket, Losing ticket}
U2 = {100,−15}
Cr2 = {.2, .8}

EU(Lottery2) =
2∑

i=1
criu(xi ) = 0.2× 100 + 0.8× (−15) = 8
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EU theory: the agent should prefer Lottery2 over Lottery1, because
the agent should maximize expected utility, and

EU(Lottery2) = 8 > 1 = EU(Lottery1)
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2. Problems with Infinities

Standard EU Theory:

I (with reasonable modifications) successful in the finite cases.

I (perhaps hopelessly) problematic in the infinite cases.

EU(G ) =
n∑

i=1

criu(xi ) =⇒ EU(G ) =
∞∑
i=1

criu(xi )
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Example 1: Failure of Dominance Reasoning

Infinity or Nothing: you are offered a coin flip that yields infinite
utility if heads, and nothing if it lands tails. The gamble is thus G1

= {.5,∞; .5, 0}.

Infinity or Something: you are offered a coin flip that yields
infinite utility if heads, and utility 10,000 if it lands tails. The
gamble is thus G2 = {.5,∞; .5, 10, 000}.

Infinity or Bust: you are offered a coin flip that yields infinite
utility if heads, and -10,000 utility if it lands tails. The gamble is
thus G3 = {.5,∞; .5,−10, 000}.
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Example 1: Failure of Dominance Reasoning

I Dominance reasoning: G2 weakly dominates both G1 and G3,
while G1 weakly dominates G3.

I Rational preferences (by Dominance): G2 � G1 � G3.

I Standard EU Theory: EU(G1) = EU(G2) = EU(G3) =∞.

I Rational preferences (by EU Theory): G2 ∼ G1 ∼ G3.
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Example 2: Non-Well-Defined Expected Utility

Fair Infinity: you are offered a coin flip that yields infinite utility if
heads, and infinite disutility if it lands tails. The gamble is thus G4

= {.5,∞; .5,−∞}.

Biased Positive Infinity: you are offered a coin flip that yields
infinite utility if heads, and infinite disutility if it lands tails. the
coin is biased 9:1 in favor of heads. The gamble is thus G5 =
{.9,∞; .1,−∞}.

Biased Negative Infinity: you are offered a coin flip that yields
infinite utility if heads, and infinite disutility if it lands tails. The
coin is biased 9:1 against heads. The gamble is thus G6 =
{.1,∞; .9,−∞}.
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Example 2: Non-Well-Defined Expected Utility

I Rational preferences: G5 � G4 � G6.

I Standard EU Theory: ∞−∞ is not well-defined.

I Rational preferences (by EU Theory): silent.
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Diagnosis

∞ is (infinitely) vague.
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Cantor’s Paradise?

Assign cardinal numbers as utilities and uses cardinal arithmetic to
calculate the expected utilities. We would get:

G1 = .5ℵ0

G2 = .5ℵ0 + 5, 000

G3 = .5ℵ0 − 5, 000

G4 = .5ℵ0 − .5ℵ0

G5 = .9ℵ0 − .1ℵ0

G6 = .1ℵ0 − .9ℵ0
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Problems with Cardinal Arithmetic

1. Cardinal arithmetic also has the absorption property.
Assuming the Axiom of Choice, if either κ or µ is infinite,
then κ+ µ = max{κ, µ}, and κ× µ = max{κ, µ}.

2. ℵ0 − ℵ0 is still not well-defined.
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Ordinal Arithmetic?

1. Ordinal arithmetic lacks the absorption property, but is
non-commutative.

2. ω − ω is still not well-defined.
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Searching for a Solution

Summarizing our previous observations about the problems with
infinities, we need a solution which includes:

1. an ordered-field including all reals and ordinals;

2. addition in that field that is commutative, non-absorptive, and
such that each element has an additive inverse;

3. multiplication in that field that is commutative,
non-absorptive, and such that each non-zero element has a
multiplicative inverse.

In short: we require a number system and accompanying
operations that allow us to treat finite and transfinite numbers in
similar and familiar ways.
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A Surreal Solution

I John Conway discovered (or invented, depending on your
philosophy of mathematics) such a field, and began its
exploration in his On Games and Numbers (1976). [Norman
L. Alling (1962) discovered a similar number field.]

I Conway called the objects he discovered surreal numbers.

I Construction: similiar to Dedekind’s construction of the reals
out of the rationals, Conway’s construction uses the ordinals.
We can think of surreal numbers as being something
analogous to performing “Dedekind cuts” on ordinals.
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A Surreal Solution

Surreal Numbers:

1. an ordered-field including all reals and ordinals (in the sense
that their ordered fields can be realizes as subfields of the
surreals);

2. addition in that field that is commutative, non-absorptive, and
such that each element has an additive inverse;

3. multiplication in that field that is commutative,
non-absorptive, and such that each non-zero element has a
multiplicative inverse.
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Surreals: Definitions and Constructions

definition 1: If L and R are sets of numbers, and no x ∈ L ≥
any y ∈ R, then {L|R} is a number.

definition 2: x ≥ y iff no xR ≤ y and no yL ≥ x

Eddy Keming Chen and Daniel Rubio Great Expectations
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Surreals: Definitions and Constructions

Definition 1 looks circular. Fortunately, the null set is trivially a
set of numbers, and so our first surreal number is {∅|∅} = 0.

From 0, we gain two new numbers: {0|∅} = 1 and {∅|0} = −1.

From these numbers, we can find yet more numbers. We use No
to denote the class of numbers created by repeated application of
definition 1, and the iteration of definition 1 on which n is found
its ‘birthday.’
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Figure : The Surreal Tree
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definition 3: x + y = {xL + y , x + yL|xR + y , yR + x}

definition 4: -x = {-xL|-xR}

definition 5:
x × y = {xL × y + yL × x − xL × yL, xR × y + yR × x − xR ×
yR |xL × y + yR × x − xL × yR , xR × y + yL × x − xR × yL}

These definitions make No an ordered field including all reals and
all ordinals (in fact, Conway proves that it is a universally
embedding field). We refer the interested reader to Conway for the
proofs and further details. (Conway (1974), pp.15-44)
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Question: Can we use surreal numbers in decision theory?

Answer: Yes, we shall state a surreal von Neumann-Morgenstern
Representation Theorem.
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theorem 3 (Surreal von Neumann-Morgenstern
Theorem): Let X be a space of lotteries, and let � be a binary
relation ⊆ X × X . There exists an affine function U : X → No
such that ∀x , y ∈ X
U(x) ≤ U(y)⇔ x � y
if and only if � satisfies all of the following:

1. Completeness: ∀x , y ∈ X , either x � y or y � x .

2. Transitivity: ∀x , y , z ∈ X , if x � y and y � z , then x � z .

3. Continuity?: ∀x , y , z ∈ X , if x ≺ y ≺ z , then there exist
surreals p, q ∈ ?(0, 1) such that
px + (1− p)z ≺ y ≺ qx + (1− q)z .

4. Independence?: ∀x , y , z ∈ X ,∀p ∈?(0, 1],x � y if and only if
px + (1− p)z � py + (1− p)z .
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Proof: See bonus slides if interested.
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A Simple Application
With Surreal arithmetic thus defined, we now return to the games
that seem problematic for the standard EU theory. Given the
representation theorem, we can use surreal numbers to represent
the values of the various gambles.

Recall the calculations we needed to make (with ∞ precisified as
the ordinal ω):

G1 = .5ω

G2 = .5ω + 5, 000

G3 = .5ω − 5, 000

G4 = .5ω − .5ω
G5 = .9ω − .1ω
G6 = .1ω − .9ω
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A Simple Application
With surreal arithmetic operations, we get the intuitive results.
G2 > G1 > G3, and G5 > G4 > G5.
To illustrate how the calculations can be carried out, we will show
(with the help of some theorems in surreal analysis) that G2 > G1.
We can use the definitions to show:

.5ω = .5ω

0 < 5, 000

.5ω + 0 = .5ω

Moreover, it is a theorem that x < x ′ ∧ y < y ′ ⇒ x + y < x ′ + y ′.
Therefore, .5ω < .5ω + 5, 000.
Note: although it plays no part here, that ω − ω is defined, and is
0 (because -ω is the additive inverse of ω).
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Summary

Surreal numbers are well-suited for modeling decision problems
with infinite utilities.
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Infinite State Spaces—Different Problems

Recall Standard EU Theory extending from finite cases to cases
involving infinities:

EU(G ) =
n∑

i=1

criu(xi ) =⇒ EU(G ) =
∞∑
i=1

criu(xi )

Two places where infinities can occur:

1. u(xi ) =∞ for some i is infinite

2. n =∞, i.e. infinite number of terms in the summation
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Infinite State Spaces—Different Problems

EU(G ) =
∞∑
i=1

criu(xi )

To allow infinite sums in the calculation of EU is to consider
infinite state spaces.

Two problems associated with infinite sums:

1. Dominance

2. Order Dependence
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Review: General Problems with Infinities in Decision
Theory

1. Failure of Dominance
I St Petersburgh: 1 + 1 + 1 + ......

St Petersburgh+: 2 + 2 + 2 + ......

2. Paralysis from Order Dependence
I Pasadena: 1− 1

2 + 1
3 −

1
4 ......

I A game with an infinite state space does not come with
privileged orderings, unless the mathematical machinery
privileges some orderings.
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Review: Infinite Series

I Sequence: {a1, a2, ...an}
I Series: a1 + a2 + ...+ an
I Infinite sequence: {an}n∈N
I Infinite series:

∞∑
i=1

ai
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In standard mathematical analysis, the sum of an infinite sequence
is calculated as the limit of the associated sequence of partial sums.

L =
∞∑
i=1

ai ⇔ L = lim
k→∞

Sk

where

Sk =
k∑

i=1

ak
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Modes of convergence for the real-valued infinite sum
∞∑
i=1

ai :

I It is convergent ⇔ it has a limit in the real numbers.

I It is divergent ⇔ it doesn’t have a limit in the real numbers.

I It is absolutely convergent ⇔ both it and its companion series
∞∑
i=1
|ai | are convergent.

I It is conditionally convergent ⇔ it is convergent but its
companion series is divergent.
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I Absolutely convergent series, such as the series
∞∑
n=1

(−1)n2/n2,

behave nicely. Infinite state space games with absolutely
convergent payoff series work perfectly in standard EU theory.

I Divergent series, such as the series 1 + 1 + 1..., introduce
infinite expected utilities, even though no single state is
assigned infinite value. These games seem counterintuitive,
but they have well-defined values. The St. Petersburg game is
the classic case.

I However, the sweetened St Petersburgh game has the same
expected utility with the original St Petersburgh game:
2 + 2 + 2.... EU theory says we should be indifferent between
the two games.
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Order Dependence ⇒ Paralysis

A much more challenging problem lies in the conditionally
convergent series.

The classic case is Hájek and Nover’s Pasadena game, which, like
the St. Petersburg game, is played by flipping a coin until a coin
lands heads, paying on the nth flip $(−1)n−12n/n.
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Heads on nth Flip 1 2 3 4 ...

Probability 1/2 1/4 1/8 1/16 ...

Payoff $2 $-2 $8/3 $-4 ...

Expected Payoff $1 $-1/2 $1/3 $-1/4 ...

Table : Pasadena Game
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Assuming utility linear in dollars, the expected payoffs of this game
match the alternating harmonic series:

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+ .... = ln(2)

However, its companion series is divergent:

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ ....

> 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
..

= 1 +
1

2
+

1

2
+

1

2
+

1

2
+ ... =∞
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Riemann Rearrangement Theorem

Theorem: If an infinite series is conditionally convergent, then its
terms can be rearranged so that the new series converges to any
given value or diverges to positive or negative infinities.

In short: Infinite summation is highly order-dependent.
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Riemann Rearrangement Theorem

1. Infinite summation is highly order-dependent.

2. However we add up the expected payoffs, for every real
number (or positive/negative infinity) there is a
rearrangement of the series which sums to it.

3. But many infinite games do not come with privileged
orderings.

4. The Riemann Rearrangement Theorem, therefore, leaves us
with no way to consistently assign an expected value to many
games such as the Pasadena Game.
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Riemann Rearrangement Theorem

Example: The Pasadena Game Payoff Series

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+ .... = ln(2)

A rearrangement that gives us ∞:

1− 1

2
+

1

3
+

1

5
− 1

4
+

1

7
+

1

9
+

1

11
+

1

13
− 1

6
+ .....

>
1

2
− 1

4
+

1

4
− 1

6
+

1

4
− 1

6
+

1

4
− 1

6
.... =∞
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Riemann Rearrangement Theorem

Shall we explain away the Pasadena Game as somehow flawed,
incoherent, or ill-stated?

No.
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Figure : The Surreal Toolbox
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The Surreal Toolbox

Decision theory with infinite state spaces has 2 major problems:
(A) Failure of Dominance and (B) Paralysis. We shall once again
look at the “surreal toolbox” and (briefly) explore 4 ways to
address these problems:

1. Order Restriction.

2. Selective Representation. [Solves (B)]

3. Surrealization of RET. [Solves (A)]

4. Infinite Sums of Series of Exact Lengths. [Solves (A) and (B)]
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1. Order Restriction

The general strategy: check whether the mathematical machinery
imposes independently-motivated constraints on the order of
summation and see if those constraints rule out the problematic
cases.

For example, to avoid absurdities such as an infinite sequence of
negative numbers summing to a positive number, Conway’s
proposal of infinite sum imposes additional constraints on the order
of terms.
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We can think of stronger constraints on the order of terms for
infinite sums.
I A definition of infinite sum order-restricting if it bans certain

ordering of terms as inadmissible. For example, an infinite
sum that requires the absolute values of the terms be
non-increasing is order-restricting. So:
(1− ω) + (ω − ω2) + (ω2 − ω3) is inadmissible. No
rearrangement of the Pasadena payoff series is admissible.

I A definition of infinite sum is extremely order-restricting if
it allows at most one admissible ordering for every sequence.
For example, an infinite sum that requires the terms be
arranged in a non-increasing order is extremely
order-restricting.

The latter kind of sum can trivially avoid paralysis: the value of
the game is given by infinite sum in the privileged ordering and no
others. The former kind of sum can avoid at least some paralysis.
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2. Selective Representation

The general strategy: provide reasons for privileging certain
representations over the others in a mathematical equivalence class.

We have assumed that utility is linear in dollars. But this ipso
facto does not imply that a state paying $2 is worth 2 utils.

Utility functions are only unique up to positive affine
transformation:

u(x) represents an agent’s preferences ⇔
some au(x) + b represents an agent’s preferences.
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So there is a large class of mathematically equivalent
representations for one’s rational preferences.

Meacham and Weisberg (2011) argue that even if a preference
structure satisfies the axioms of EU theory, there’s always an
available representation that uses a non-probabilistic credence
function. Even the most respectable preference structures can be
represented by functions that we take to be problematic or
somehow suboptimal.

They think that this result undermines any normativity
representation theorems might claim.
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We disagree.

Rather, it shows that there are better and worse ways to represent
a preference structure quantitatively, even inside a mathematical
equivalence class.

Mathematical equivalence does not preserve everything that we
care about.
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We have good reasons to break the symmetry in the mathematical
equivalence.
E.g. from philosophy of physics.

1. A N-particle Bohmian system in R3 ∼ a one-particle Bohmian
system in R3N

2. A wave function in the position representation ∼ A wave
function in the momentum representation
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I Modeling scientific phenomena by mathematical models,
therefore, seems to rely on considerations more fine-grained
than mathematical equivalence.

I Since here we are providing a model of rational agents, we can
play favorites among mathematically equivalent models, on
the basis of pragmatic and epistemological concerns.

I Here, we a strategy for solving the Pasadena Game and indeed
the whole class of games involving conditional convergence.
These games show another way in which a representation can
be deficient: it can allow for gambles with conditionally
convergent expected payoffs series.
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I cc-vulnerability: Let u be a utility function and p the
probability function which together with u represents some
agent’s preferences. We will say that u is cc-vulnerable with
respect to p iff there is some X ⊆ {xi : x is the product of pi
and ui } such that the members of X can be all and only the
members of a conditionally convergent series.

I cc-invulnerability: Let u be a utility function and p be a
probability function. We will say that u is cc-invulnerable with
respect to p iff u is not cc-vulnerable with respect to p.

I cc-invulnerable transformation: Let p be a
probability function, u be a utility function and u+ be a
positive affine transformation of u. We say that u+ is a
cc-invulerable transformation of u with respect to p iff u is
cc-vulnerable with respect to p and u+ is cc-invulnerable with
respect to p.
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By Corollary 6.1, every utility function with codomain No (which is
to say, surreal-valued) has a cc-invulnerable transformation (in
fact, infinitely many).
Proof: Bonus.

We note that this is not true of utility functions with codomain R,
and thus surreal utilities are vital to our proposed resolution.
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Any representable preference structure can be adequately
represented with a cc-invulnerable utility function. So we contend
that cc-vulnerability in the utility function is inessential to
adequately representing a preference structure.

CC-vulnerable utility functions give rise to problematic gambles like
the Pasadena Game, we contend that cc-vulnerability is a
representational defect.

We propose that cc-vulnerable representations be rejected in favor
of their cc-invulnerable transformations.
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This proposal does not allow the problematic payoff series to arise;
but because we have a representation theorem, it ensures that any
preference structure satisfying the VNM axioms—and, a fortiori,
any VNM preference structure which can be represented by a
utility function that is linear in dollars—can still be represented.
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The Question of Dominance

Dominance principle(s): perhaps our most firmly held principle of
decision-making in an information-poor situation (covering both
risk and uncertainty; Newcombe’s Problem notwithstanding).
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The Question of Dominance

weak dominance: Act 1 weakly dominates Act 2 iff Act 1 and 2
contain the same states, every state in Act 1 pays at least as well
as it does in Act 2, and one state pays more in Act 1 than it does
in Act 2.

strict dominance: Act 1 strictly dominates Act 2 iff Act 1 and
2 contain the same states, and every state in Act 1 pays better
than it does in Act 2.

It is known that in the finite case, standard EU maximization
respects dominance.(See Easwaran [Forthcoming].) But it is also
known that in the infinite case, standard EU maximization need
not respect dominance.
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The Question of Dominance

Are weak dominance and strict dominance true in the
surreal decision theory?
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The Question of Dominance

Conjecture 4 (Surreal Strict Dominance Theorem): Let {ai}i∈N
and {bi}i∈N be two surreal-valued expected payoff series. If

{ai}i∈N strictly point-wise dominates {bi}i∈N, then
∞∑
i=1

ai >
∞∑
i=1

bi .

Conjecture 5 (Surreal Weak Dominance Theorem): Let {ai}i∈N
and {bi}i∈N be two surreal-valued expected payoff series. If
{ai}i∈N strictly dominates {bi}i∈N at least in one term and weakly

dominates {bi}i∈N in all other terms, then
∞∑
i=1

ai >
∞∑
i=1

bi .
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The Question of Dominance

If the following sum rule holds, then we can easily prove
Conjectures 4 and 5:

∞∑
i=1

(bi + ki ) =
∞∑
i=1

bi +
∞∑
i=1

ki

But this principle is in tension with the CC-transformation
maneuver. [Thanks to Paul Bartha for discussing with us and
confirming this worry.] Other proofs?
In any case: Solution 2 addresses the Paralysis Problem.
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3. Surrealization of RET

I Goal: to show that we can outperform our competitors by
“surrealizing” their proposals.

I Adopting the surreal framework is good for almost all
proposals.

I Case Study: Relative Expectation Theory (Colyvan).

I Surrealized RET respects Dominance in the infinite and finite
cases; it outperforms RET in finite cases with single shot
infinities.
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Relative Expectation Theory (RET) Version 1

Finite state space:

REU(Ak ,Al) =
n∑

i=1

pi (uki − uli )

Infinite state space:

REU(Ak ,Al) =
∞∑
i=1

pi (uki − uli )

RET-1 Decision Rules: Choose act Ak over Al iff
REU(Ak ,Al) > 0. If REU(Ak ,Al) = 0 an agent should be
indifferent between the two acts in question.
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Strengths of RET-1

I Enforce the dominance principle to many infinite cases.
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Problems of RET-1

I Identification of states with probability profiles.

I Unable to handle comparisons such as Fair Infinity vs. Biased
Infinity.

I Unable to handle single-state infinities.
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Relative Expectation Theory (RET) Version 2

Finite state space:

REU(Ak ,Al) =
n∑

i=1

(pkiuki − pliuli )

Infinite state space:

REU(Ak ,Al) =
∞∑
i=1

(pkiuki − pliuli )

RET-2 Decision Rules: Choose act Ak over Al iff
REU(Ak ,Al) > 0. If REU(Ak ,Al) = 0 an agent should be
indifferent between the two acts in question.
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Strengths of RET-2

I Enforce the dominance principle in more cases involving the
infinite state spaces.
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Problems of RET-2

I Still unable to handle single-state infinities.
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Surrealized RET-2

Finite state space:

REU(Ak ,Al) =
n∑

i=1

(pkiuki − pliuli )

Infinite state space:

REU(Ak ,Al) =
∞∑
i=1

(pkiuki − pliuli )

S-RET-2 Decision Rules: Choose act Ak over Al iff
REU(Ak ,Al) > 0. If REU(Ak ,Al) = 0 an agent should be
indifferent between the two acts in question.
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Strengths of S-RET-2

I Enforce dominance in finite and infinite state spaces.

I More flexible than RET-1 with different probability profiles.

I Better than RET-2: no problem with finitely many single-state
infinities.
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Remaining Problems of S-RET-2

I Infinite state space with infinitely many infinities.

I Joyce-style examples: silent about some cases with infinite
state space.

Eddy Keming Chen and Daniel Rubio Great Expectations



1. Standard EU Theory
2. Problems with Infinities

3. A Surreal Solution
4. Infinite State Spaces

5. Conclusion
6. Bonus

Key Differences

I Finite sum: surreal pairwise addition. No problem with
single-state infinities.

I Infinite sum: agree with classical infinite sum. If finitely many
single-state infinities occur in the series, first separate them
from the infinite sum, do surreal addition on them, and sum
up the remaining terms in the classical way.
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4. Exact Lengths

Strategy: formulate a definition of infinite sum that requires exact
length of infinite sequence. This may block the Riemann
Rearrangement Theorem (RR) from the get-go.

I RR holds for real numbers and real countable sum.

I Its proof requires a crucial property in real analysis (with
extended reals): vagueness of infinity.

I The surreal field has much more structure than the real field –
thus we can provide more precision in the infinity in countable
sum.
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Riemann Rearrangement Theorem

Example: The Pasadena Game Payoff Series

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+ .... = ln(2)

A construction of Riemann Rearrangement—-a rearrangement that
gives us ∞:

1− 1

2
+

1

3
+

1

5
− 1

4
+

1

7
+

1

9
+

1

11
+

1

13
− 1

6
+ .....

>
1

2
− 1

4
+

1

4
− 1

6
+

1

4
− 1

6
+

1

4
− 1

6
.... =∞
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Precise Countable Sum in No:

∞∑
n=1

an =⇒
X∑

n=1

an,

where X can be finite or infinite. Interpret the surreal countable
sum as a formal symbol with four inputs: state, utility function,
probability function, and the exact length of the sequence. This
introduces precision in the sum, even if the exact length of the
series is infinite.
E.g. if X = ω0, then X + 1 6= X , 2X 6= X , and X/2 6= X .
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Precise Countable Sum in No:
X∑

n=1
(−1)n+11/n

1. Let X = ω0. If ω0 is even, then there will be X
2 positive terms

and X
2 negative terms. A rearrangement of

X∑
n=1

(−1)n+11/n

should also contain X terms.

2. In the rearrangement of the Pasadena series, there are more
negative terms than positive terms. If there are X

2 negative

terms, there will be more than X
2 positive terms. The entire

series has more terms than X .

3. Therefore, it is not a rearrangement of
X∑

n=1
(−1)n+11/n.

Eddy Keming Chen and Daniel Rubio Great Expectations



1. Standard EU Theory
2. Problems with Infinities

3. A Surreal Solution
4. Infinite State Spaces

5. Conclusion
6. Bonus

I Therefore, no order-dependency results from conditionally
convergent series such as the Pasadena payoff series.

I Conjecture: its value is infinitesimally close to ln2.

I If the Sum Rule holds, then Dominance Theorems also hold.
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Conclusion
1. Infinities (infinite utilities and infinite state spaces) present

difficult problems for the standard EU theory.
2. We develop a surreal decision theory—a conservative

extension from standard EU theory of finite cases.
3. We prove a surreal representation theorem and two dominance

theorems.
4. We apply our theory to games with finite state spaces

(Pascal’s Wager and Many Gods in the bonus slides) and
show how to assign consistent values that respect dominance
reasoning.

5. We apply our theory to games with infinite state spaces (St
Petersburgh’s Game, the Pasadena Game, and their sweetened
cousins) and explore four approaches that can be fruitful for
further investigation.
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In closing, we note future potential applications for surreal
numbers.

We see our project as one of the first steps in a program of bringing
cutting-edge mathematical tools from non-standard analysis to
bear on old philosophical problems. We expect the use of surreals
to be particularly helpful in solving problems in transfinite axiology
and in dissolving many of the traditional paradoxes of infinity,
which rely on absorption by cardinal operations.
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Thanks for your attention!
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Pascal’s Wager

God No God

Christian ∞ 10

Non-Christian 5 10

Expected Payoff ∞ 10

Table : Pascal‘s Wager, Classical Presentation

Pascal reasoned, best to lead a Christian life as long as one’s
credence that there is a god is non-zero. The rule of expected
utility maximization confirms this.
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Objection 1: Mixed Strategies

Whenever we have gambles, we can adopt mixtures of those
gambles. We can think of mixtures heuristically as using coin flips

to decide which gamble to take. So someone presented with
Pascal’s Wager might make her choice by flipping a fair coin. In
that case, the expected utility of the flip strategy = the expected
utility of simply picking “Christian.”

This is counterintuitive because gambles with arbitrary biases will
have the same expected utility and the agent (according to the
standard EU theory) ought to be indifferent among the different
gambles.
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Objection 1: Mixed Strategies

By standard lights, a chance at ∞ is as good as the genuine
artifact. But not so in surreal arithmetic.

The surreal ω is strictly greater than the surreal .5ω. Thus, our
proposal correctly predicts that the pure “Christian” strategy beats
all mixed strategies.
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Objection 2: Many Gods

Another common objection to Pascal is that his decision problem is
too simple, and as a result, the use of infinite utilities looks less
problematic than it is.

For there are a great many purported gods, many of which treat
their followers well, and their doubters cruelly. Moreover, there are
any number of other potential eschatological situations.

The objection goes that once we see all these situations, and their
accompanying infinite utilities and disutilities in the decision
problem, we conclude that there’s nothing interesting to say, and
so problems of this sort aren’t sensibly posed.
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Objection 2: Many Gods

Our proposal allows us to formulate and analyze this objection
precisely. Let E1...En... be a (potentially infinite) partition over
states in an expanded Pascalian decision problem. With each Ei ,
we associate some surreal number n, corresponding to u(Ei ) in the
agent’s utility function. Let cr(Ei ) be value of the agent’s credence
function over Ei . We can then give the EU of each of the Ei ’s.
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Objection 2: Many Gods

Zeus Athena Apollo Atheism

Zeusian ω ω -ω 100

Athenian -ω ω -ω 100

Apollinist -ω ω -ω 100

Atheist -ω ω ω 100

Table : Pascal’s Wager With Three Gods
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Objection 2: Many Gods

I Zeus is the best option if: Cr(Zeus) = .5,Cr(Athena) =
.3,Cr(Apollo) = .1,Cr(Atheism) = .1,

I EU(Zeusian) = .7ω − 10 > EU(Atheist) = −.1ω + 10 >
EU(Athenian) = EU(Apollinist) = −.3ω + 10.

I Atheist is the best option, if Cr(Zeus) = .1,Cr(Athena) =
.2,Cr(Apollo) = .2,Cr(Atheism) = .5

I EU(Atheist) = .3ω + 50 > EU(Zeusian) = .1ω + 50 >
EU(Athenian) = EU(Apollinist) = −.1ω + 50.

Which one to choose? It depends on the gambler’s credences.
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Key Theorems and Proofs

theorem 3 (Surreal von Neumann-Morgenstern
Theorem): Let X be a space of lotteries, and let � be a binary
relation ⊆ X × X . There exists an affine function U : X → No
such that ∀x , y ∈ X , U(x) ≤ U(y)⇔ x � y
if and only if � satisfies all of the following:

1. Completeness: ∀x , y ∈ X , either x � y or y � x .

2. Transitivity: ∀x , y , z ∈ X , if x � y and y � z , then x � z .

3. Continuity?: ∀x , y , z ∈ X , if x ≺ y ≺ z , then there exist
surreals p, q ∈ ?(0, 1) such that
px + (1− p)z ≺ y ≺ qx + (1− q)z .

4. Independence?: ∀x , y , z ∈ X ,∀p ∈?(0, 1],x � y if and only if
px + (1− p)z � px + (1− p)z .
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Proof: We adopt the usual constructive proof strategy for the von
Neumann-Morgenstern representation theorem. We will use the
proof to illustrate the content of Continuity? and Independence? as
well as some properties of surreal numbers.

(⇒) This is, as usual, the easier direction. Suppose the existence
of a ?-affine function U : X → No such that ∀x , y ∈ X ,
U(x) ≤ U(y)⇔ x � y . We want to show that � satisfies
Completeness, Transitivity, Continuity? and Independence?.
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(Completeness) Take any x , y ∈ X , suppose that it is not the case
that x � y . Then it is not the case that U(x) ≤ U(y). Since
U(x),U(y) ∈ No, U(x) ≥ U(y). (Application of a theorem about
≤ as a linear ordering of the surreal field.) Thus, y � x .

(Transitivity) Take any x , y , z ∈ X , suppose that x � y and y � z .
Then U(x) ≤ U(y) and U(y) ≤ U(z). Since
U(x),U(y),U(z) ∈ No, U(x) ≥ U(z). (Application of a theorem
about ≤ as a linear ordering of the surreal field.) Thus, x � z .
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(Continuity?) Take any x , y , z ∈ X , suppose that x � y � z . Then
U(x) < U(y) < U(z). Now, U(x),U(y),U(z) ∈ No. Since in No

infinitesimals are well-defined, take p = U(y)−U(z)
2U(x)−2U(z) . Then,

pU(x) + (1− p)U(z) < U(y). Similarly, q = U(x)−U(y)
2U(x)−2U(z) . Thus,

U(y) < qU(x) + (1− q)U(z). Thus,
px + (1− p)z ≺ y ≺ qx + (1− q)z .

(Independence?) Take any x , y , z ∈ X , p ∈ ?(0, 1]. We have:

x � y ⇔ U(x) ≤ U(y)

⇔ pU(x) ≤ pU(y)

⇔ pU(x) + (1− p)U(z) ≤ pU(y) + (1− p)U(z)

⇔ px + (1− p)z � px + (1− p)z
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(⇐) Suppose that � satisfies Completeness, Transitivity,
Continuity? and Independence?. We want to construct a ?-affine
function U : X → No such that ∀x , y ∈ X ,U(x) ≤ U(y)⇔ x � y .
As usual1, let p and p denote the �-top and �-bottom elements in
X . If � admits several maximals and several minimals, then let p
and p denote some representatives of the equivalence classes of
maximals / minimals. If p = p, then choose any constant surreal
function and we are done. Suppose p > p. By Continuity? and
Independence?, suppose that 1 > b > a > 0, we have:

1The following proof follows closely Jonathan Levin’s online notes at:
http://web.stanford.edu/ jdlevin/Econ%20202/Uncertainty.pdf. Accessed on
March 7, 2015.
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p = bp + (1− b)p

> bp + (1− b)p

> (b − a)p + ap + (1− b)p

> (b − a)p + ap + (1− b)p

= ap + (1− a)p

> p

Thus,

p > bp + (1− b)p > ap + (1− a)p > p (1)

Eddy Keming Chen and Daniel Rubio Great Expectations



1. Standard EU Theory
2. Problems with Infinities

3. A Surreal Solution
4. Infinite State Spaces

5. Conclusion
6. Bonus

(Lemma) ∀p ∈ X , ∃!λp such that λpp + (1− λp)p ∼ p.

The existence of such a λp is guaranteed by Continuity?, for
p ≥ p ≥ p. The uniqueness of λp is guaranteed by Inequality (1).
Thus, (Lemma) is true.
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Now, because of (Lemma), we can construct the desired utility
function as U(p) = λp. We know:

p � q ⇔ λpp + (1− λp)p ≥ λqq + (1− λq)q ⇔ λp ≥ λq

.
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In the final step of the proof, we show that U is affine, i.e.

∀a ∈ ?[0, 1],∀p, p′ ∈ X ,U(ap + (1− a)p′) = aU(p) + (1− a)U(p′)

.
Take a ∈ ?[0, 1], p, p′ ∈ X . By the construction of U(p), we have:
p ∼ U(p)p + (1−U(p))p and p′ ∼ U(p′)p′+ (1−U(p′))p′. Thus,

ap+(1−a)p′ ∼ (aU(p)+(1−a)U(p′))p+(1−(aU(p)+(1−a)U(p′)))p

By the construction of U(p), we thus have:
U(ap + (1− a)p′) = aU(p) + (1− a)U(p′).
So U is indeed an affine utility function. This completes Proof 2. �
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Theorem 4 (Surreal Strict Dominance Theorem): Let {ai}i∈N
and {bi}i∈N be two surreal-valued expected payoff series. If

{ai}i∈N strictly point-wise dominates {bi}i∈N, then
∞∑
i=1

ai >
∞∑
i=1

bi .
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Proof: Suppose {ai}i∈N strictly point-wise dominates {bi}i∈N.
Since they are both expected payoff series, they are
CC-invulnerable by stipulation, i.e. invulnerable to conditional
convergence. Moreover,

∞∑
i=1

ai =
∞∑
i=1

(ai − bi + bi ) =
∞∑
i=1

(ki + bi ),

for some positive ki . Since surreal addition is commutative and
irreflexive (non-absorptive), and ki ’s are positive,

∞∑
i=1

ai =
∞∑
i=1

bi +
∞∑
i=1

ki >
∞∑
i=1

bi .�
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Theorem 5 (Surreal Weak Dominance Theorem): Let {ai}i∈N
and {bi}i∈N be two surreal-valued expected payoff series. If
{ai}i∈N strictly dominates {bi}i∈N at least in one term and weakly

dominates {bi}i∈N in all other terms, then
∞∑
i=1

ai >
∞∑
i=1

bi .
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Theorem 5 (Surreal Weak Dominance Theorem): Let {ai}i∈N
and {bi}i∈N be two surreal-valued expected payoff series. If
{ai}i∈N strictly dominates {bi}i∈N at least in one term and weakly

dominates {bi}i∈N in all other terms, then
∞∑
i=1

ai >
∞∑
i=1

bi .

Proof: We leave this as an exercise for the reader. �
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theorem 8: Suppose X is a set of surreal numbers. Then there
exists some n s.t. n > X .
Proof: By theorem 7, for any surreal number n, the class of
ordinals 6≥ n is set-sized. By theorem 8, for any set of ordinals,
there is a greater one. Let Xo by the set {x : x is an ordinal in
X} ∪ {x : x is an ordinal less than X}. By construction, Xo is a set
of ordinals. So there is an ordinal α greater than it. But since Xo

includes every ordinal that is a member of, or less than a member
of, X , α > X . Let n = α.�
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corollary 8.1 Let u be a surreal-valued utility function. There
exists a utility function u′ that is a cc-invulnerable transformation
of u.
Proof : Let X be the set of negative numbers in the image of u.
Let n be greater than {|X |}. Then u′(x) = u(x) + n. �
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