
A

Free for More: A Dynamic Epistemic Framework for Conformant
Planning 1

YANJUN LI, Peking University, China & University of Groningen, The Netherlands
QUAN YU, Sun Yat-sen University & Qiannan Normal College for Nationalities, China
YANJING WANG, Peking University, China

In this paper, we introduce a lightweight dynamic epistemic logical framework for automated planning under

initial uncertainty. We generalize the standard conformant planning problem in AI in two crucial aspects:
First, the planning goal can be any formula expressed in an epistemic propositional dynamic logic (EPDL);

Second, procedural constraints of the desired plan specified by regular expressions can be imposed. We

then reduce the problem of generalized conformant planning to the model checking problem of our logic.
Although our conformant planning problem is much more general than the standard one with Boolean goals

and no procedural constraints, the complexity is still PSPACE-complete which is equally hard as standard

conformant planning over explicit transition systems. In other words, the generalization is “for free”.

Categories and Subject Descriptors: []

General Terms: Verification

Additional Key Words and Phrases: conformant planning, dynamic logic, epistemic logic, modal logic

ACM Reference Format:
Yanjun Li, Quan Yu and Yanjing Wang. 2015. Free for More: A Dynamic Epistemic Framework for Confor-
mant Planning ACM Trans. Comput. Logic V, N, Article A (2015), 23 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Conformant planning is the problem of finding a linear plan (a sequence of actions) to
achieve a goal in presence of uncertainty about the initial state (cf. [Smith and Weld
1998]). For example, suppose that you are a rookie spy trapped in a foreign hotel with
the following map at hand:2

s6 s7:Safe s8:Safe

s1 r // s2 r //

u

OO

s3 r //

u

OO

s4:Safe r //

u

OO

s5

1A preliminary version of this paper was presented at TARK2015 [Yu et al. 2015]. In this paper, we refute a
crucial conjecture proposed in the preliminary version and give the precise complexity of the model checking
problem of epistemic PDL over uncertainty maps.
2It is a variant of the running example used in [Wang and Li 2012].

Yanjing Wang is the corresponding author.
Author’s addresses: Yanjun Li, Faculty of Philosophy, University of Groningen, The Netherlands; Quan Yu,
Qiannan Normal College for Nationalities, China; Yanjing Wang, Department of Philosophy, Peking Univer-
sity, China.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2015 ACM. 1529-3785/2015/-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

A:2 Yanjun Li et al.

Now somebody spots you and sets up the alarm. In this case you need to move fast
to one of the safe hiding places marked in the map (i.e., s7, s8 and s4). However, since
you were in panic, you lost your way and you are not sure whether you are at s2 or
s3 (denoted by the bubble in the above graph). Now, what should you do in order to
reach a safe place quickly? Clearly, merely moving r or moving u may not guarantee
your safety given the uncertainty. A simple plan is to move r first and then u, since
this plan will take you to a safe place, no matter where you actually are initially. This
plan is conformant since it does not require any feedback during the execution and
it should work in presence of uncertainty about the initial state. More generally, a
conformant plan should also work given actions with non-deterministic effects. Such a
conformant plan is crucial when there are no feedbacks/observations available during
the execution of the plan, or it is just too ‘expensive’ in time to have feedbacks [Bonet
2010]. Note that since no information is provided during the execution, the conformant
plan is simply a finite sequence of actions without any conditional moves.

As discussed in [Bonet and Geffner 2000; Palacios and Geffner 2006], conformant
planning can be reduced to classical planning, the planning problem without any ini-
tial uncertainty, over the space of belief states. Intuitively, a belief state is a subset
of the state space, which records the uncertainty during the execution of a plan, e.g.,
{s2, s3} is an initial belief state in the above example. In order to make sure a goal
is achieved eventually, it is crucial to track the transitions of belief states during the
execution of the plan, and this may traverse exponentially many belief states in the
size of the original state space. As one may expect, conformant planning is computa-
tionally harder than classical planning. The complexity of checking the existence of
a conformant plan is EXPSPACE-complete in the size of the variables generating the
state space [Haslum and Jonsson 1999]. In the literature, people proposed compact and
implicit representations of the belief spaces, such as OBDD [Cimatti and Roveri 2000;
Cimatti et al. 2004; Cimatti and Roveri 2011] and CNF [To et al. 2010], and different
heuristics were used to guide the search for a plan, e.g., [Brafman and Hoffmann 2004;
Bertoli et al. 2006; Bryce et al. 2006; Palacios and Geffner 2014].

Besides the traditional AI approaches, we can also take an epistemic-logical per-
spective on planning in presence of initial uncertainties, based on dynamic epistemic
logic (DEL) (cf. e.g., [van Ditmarsch et al. 2007]). The central philosophy of DEL takes
the meaning of an action as the change it brings to the knowledge of the agents. Intu-
itively, this is the transition of belief states we need to track during the execution of a
plan3. Indeed, in recent years, there has been a growing interest in applying DEL to
handle multi-agent planning with knowledge goals (cf. e.g., [Bolander and Andersen
2011; Löwe et al. 2011; Andersen et al. 2012; Aucher 2012; Yu et al. 2013; Pardo and
Sadrzadeh 2013; Jensen 2014; Bolander et al. 2015; Muise et al. 2015]), while the tra-
ditional AI planning focuses on the single-agent case. In particular, the event models
of DEL (cf. [Baltag and Moss 2004]) are used to handle non-public actions that may
cause different knowledge updates to different agents. In these DEL-based planning
frameworks, states are epistemic models, actions are event models and the state tran-
sitions are implicitly encoded by the update product which computes a new epistemic
model based on an epistemic model and an event model.

One advantage of this approach is its expressiveness in handling scenarios which re-
quire reasoning about agents’ higher-order knowledge about each other in presence of
partially observable actions. However, this expressiveness comes at a price, as shown
in [Bolander and Andersen 2011; Aucher and Bolander 2013], that multi-agent epis-

3Here the belief states are actually about knowledge in epistemic logic.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

Free for More: A Dynamic Epistemic Framework for Conformant Planning A:3

temic planning is undecidable in general. Many interesting decidable fragments are
found in the literature [Bolander and Andersen 2011; Löwe et al. 2011; Yu et al. 2013;
Andersen et al. 2015], which suggests that the restrictions on the form of event mod-
els and the single-agent cases are the key to decidability. However, if we focus on the
single-agent planning, a natural question arises: how do we compare such DEL ap-
proaches with the traditional AI planning? It seems that the DEL-based approaches
are more suitable for planning with actions that change (higher-order) knowledge
rather than planning with fact-changing actions, although the latter type of actions
can also be handled in DEL (cf. e.g., [van Benthem et al. 2006]). Moreover, the stan-
dard models of DEL are purely epistemic thus do not encode the information of avail-
able actions directly, which may limit the applicability of such approaches to planning
problems based on transition systems.

In this paper, we tackle the standard single-agent conformant planning problem
over transition systems, by using the ideas of DEL, but not its standard formalism.
Our formal framework is based on the logic proposed by Wang and Li [2012], where
the model is simply a transition system with initial uncertainty as in the motivating
example, and an action is interpreted in the semantics as an update on the uncertainty
of the agent. Our technical contributions are summarized as follows:

— A lightweight dynamic epistemic framework with an epistemic PDL language.
— A complete axiomatization of the program-free fragment.
— A generalization of conformant planning problem with arbitrary formulas as goals

and regular expressions as procedural constraints on the desired plans.
— A reduction of generalized conformant planning to model checking of our logic.
— The model checking problem of our logic is PSPACE-complete.4

The last result may sound contradictory to the aforementioned result that the com-
plexity of conformant planning is EXPSPACE-complete. Actually, the apparent ‘contra-
diction’ is due to the fact that the EXPSPACE result is based on the number of state
variables, which require an exponential blow up to generate an explicit transition sys-
tem that we use here. We will come back to this issue at the end of Section 4.2.

The most important advantage of our approach, besides the transparency of the se-
mantics and the logic, is that we can deal with more general planning problems with-
out paying any price in computational complexity. In the literature, the goal of a con-
formant planning problem is usually a formula of propositional logic, and its solution
is a sequence of actions. In this paper, we generalize conformant planning by extend-
ing the goal language and constraining the possible solutions. The goal language is
extended with both knowledge and program modalities, and the solution must comply
with some constrains on the shape of the action sequences.

These generalizations do make sense in real-life contexts. For example, suppose that
you have a toothache (p) caused by a broken tooth, and you have two choices: either
replacing it with a false tooth (a) or taking some medicine to temporally relieve the
pain (b). For the second option, the toothache may come again after some time (t). In
this scenario, your goal can be getting rid of the pain either temporally (¬p) or forever
([t∗]¬p) which involves a modality about future. More precisely, you want to make sure
that you know that it will not trouble you in the future (K[t∗]¬p). Moreover, we can
also handle negative epistemic goals, such as to make sure that you do not know p. It
may sound strange at the first glance in a single agent setting but it does make good
sense in some real-life contexts. For example, suppose that there are different drugs

4It was conjectured in [Yu et al. 2015] that the model checking problem was EXPTIME-complete, which is
now refuted in this paper.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

A:4 Yanjun Li et al.

to cure a symptom which all come with potential side effects (p). In this scenario, you
may prefer a drug which only have side-effect occasionally according to your knowledge
(¬Kp), over a drug which is known to have a bad side-effect for sure (Kp). We will come
back to such examples more formally in the later parts of the paper.

On the other hand, constraints on the shape of the desired plan also play an im-
portant role in planning. For example, suppose that there are three means of trans-
portation: by air (a), by bus (b) and by train (c). To get to a place C, you have several
options, such as firstly riding a bus from A to B then taking a train from B to C, or
flying directly from A to C. In real life, you may have constraints on the actions or sub-
plans that you can use. For example, it might be the case that you cannot afford flying
but can only afford one train ticket (not even two). Therefore, the solution should be a
sequence that not only guarantees your arrival at C but also contains action b at most
once and no action a at all. All such constraints on the desired plans can be expressed
precisely in our approach.

In the literature, conformant planning has been generalized with epistemic goals by
[Bonet 2010]. Moreover, [Bonet 2010] also considered conformant planning under the
partial observability which may give the agent more information during execution of
the plan, although the plan itself is still linear. However, the complexity of conformant
planning with both partial observability and epistemic goals is strictly higher than
the complexity of standard conformant planning [Bonet 2010]. Here, as we show in the
paper, our generalized conformant planning with constraints and more general goals
has exactly the same complexity as the standard conformant planning. In other words,
we get these generalizations for free.

In sum, our approach has the following advantages compared to the existing ones:

— The planning goals can be specified as arbitrary formulas in our logic language with
both epistemic and program modalities. Moreover, extra plan constraints can be ex-
pressed by regular expressions, which generalizes the knowledge-based programs in
[Fagin et al. 1997; Lang and Zanuttini 2012]. Therefore it covers a richer class of
(conformant) planning problems compared to the traditional AI approach where a
goal is a set of valuations and no constraints on the actions.

— On the other hand, we do not pay the price in complexity. We can reduce the gener-
alized conformant planning problem to some model checking problem of the logical
language, which also reveals some subtleties. The model checking problem of the full
language with programs is still PSPACE-complete.

— Our logical language and models are very simple, and we can encode the externally
given executability of the actions in the model, inspired by epistemic temporal logic
(ETL) proposed in [Fagin et al. 1995; Parikh and Ramanujam 1985].

— Our approach is flexible enough to provide, in the future, a unified platform to com-
pare different planning problems under uncertainty. By studying different fragments
of the logical language and model classes, we may categorize planning problems
according to their complexity. Moreover, in principle, various model checking tech-
niques can be applied to the planning problems via reductions in our framework.

The rest of the paper is organized as follows: We introduce our basic logical frame-
work and provide an axiomatization in Section 2, and extend it in Section 3 with pro-
grams to handle the generalized conformant planning which is also introduced in the
same section. The complexity analysis of the model checking problem is provided in
Section 4, and we finally conclude in Section 5 with future directions.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

Free for More: A Dynamic Epistemic Framework for Conformant Planning A:5

2. BASIC FRAMEWORK
2.1. Epistemic action language
To talk about the knowledge of the agent during an execution of a plan, we start with
the following simple language proposed by Wang and Li [2012].

Definition 2.1 (Epistemic Action Language (EAL)). Given a countable set A of action
symbols and a countable set P of atomic proposition letters , the language EALAP is de-
fined as follows:5

φ ::= > | p | ¬φ | (φ ∧ φ) | [a]φ | Kφ,
where p ∈ P, a ∈ A. The following standard abbreviations are used: ⊥ := ¬>, φ ∨ ψ :=

¬(¬φ ∧ ¬ψ), φ→ ψ := ¬φ ∨ ψ, 〈a〉φ := ¬[a]¬φ, K̂φ := ¬K¬φ.

Kφ says that the agent knows that φ, and [a]φ expresses that if the agent can move
forward by action a, then after doing a, φ holds. Throughout the paper, we fix some P
and A, and refer to EALAP by EAL.

Definition 2.2 (Uncertainty map). Given P and A, a (multimodal) Kripke modelN is
a tuple 〈S, {Ra | a ∈ A},V〉, where S is a non-empty set of states,Ra ⊆ S×S is a binary
relation labeled by a, V : S → 2P is a valuation function. An uncertainty map M is a
Kripke model 〈S, {Ra | a ∈ A},V〉 with a non-empty set U ⊆ S. Given an uncertainty
mapM, we refer to its components by SM, RaM, VM, and UM. A pointed uncertainty
mapM, s is an uncertainty mapM with a designated state s ∈ UM. We write s a→ t for
(s, t) ∈ Ra.

Intuitively, a Kripke model encodes a map (transition system) and the uncertainty
set U encodes the uncertainty that the agent has about where he is in the map. The
graph mentioned at the beginning of the introduction is a typical example of an un-
certainty map. Note that there may be non-deterministic transitions in the model, i.e.,
there may be t1 6= t2 such that s a→ t1 and s a→ t2 for some s, t1, t2.

Remark 2.3. It is crucial to notice that the designated state in a pointed uncertainty
map must be one of the states in the uncertainty set.

Definition 2.4 (Semantics). Given any uncertainty mapM = 〈S, {Ra | a ∈ A},V,U〉
and any state s ∈ U , the semantics is defined as follows:

M, s � > always
M, s � p ⇐⇒ s ∈ V(p)
M, s � ¬φ ⇐⇒ M, s 2 φ
M, s � φ ∧ ψ ⇐⇒ M, s � φ andM, s � ψ
M, s � [a]φ ⇐⇒ ∀t ∈ S : s

a→ t impliesM|a, t � φ
M, s � Kφ ⇐⇒ ∀u ∈ U :M, u � φ

where M|a = 〈S, {Ra | a ∈ A},V,U|a〉 and U|a = {r′ | ∃r ∈ U such that r a→ r′}. We
say φ is valid (notation: � φ) if it is true on all the pointed uncertainty maps. For a
action sequence σ = a1 . . . an, we write U|σ for (. . . ((U|a1)|a2) . . .)|an . and writeM|σ for
(. . . ((M|a1)|a2) . . .)|an .

Intuitively, the agent ‘carries’ the uncertainty set with him when moving forward
and obtains a new uncertainty set U|a. Note that here we differ from [Wang and Li

5We do need unboundedly many action symbols to encode the desired problem in the later discussion of
model checking complexity.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

A:6 Yanjun Li et al.

2012] where the updated uncertainty set is further refined according to what the agent
can observe at the new state. For conformant planning, we do not consider the obser-
vational power of the agent during the execution of a plan.

Let us call the model mentioned in the introductionM, it is not hard to see thatM|r
and (M|r)|u are as follows:

s6 s7:Safe s8:Safe

s1 r // s2 r //

u

OO

s3 r //

u

OO

s4:Safe r //

u

OO

s5

s6 s7:Safe s8:Safe

s1 r // s2 r //

u

OO

s3 r //

u

OO

s4:Safe r //

u

OO

s5

Thus we haveM, s3 � [r](Safe ∧ ¬KSafe) andM, s3 � K[r][u](Safe ∧KSafe)
The usual global model checking algorithm for modal logics labels the states with the

subformulas that are true on the states. However, this cannot work here since the truth
value of epistemic formulas on the states outside U is simply undefined. Moreover, the
exact truth value of an epistemic formula on a state depends on ‘how you get there’, as
the following example shows (the underlined states mark the actual states):

s1 b //

a

��

s3 : p

a

��
s2

a

<<

s4

b→

s1 b //

a

��

s3 : p

a

��
s2

a

<<

s4

s1 b //

a

��

s3 : p

a

��
s2

a

<<

s4

a→ a→

s1 b //

a

��

s3 : p

a

��
s2

a

<<

s4

Let the left-hand-side model beM then it is clear thatM|b, s3 � Kp whileM|aa, s3 2
Kp thus M, s1 � 〈b〉Kp ∧ 〈a〉〈a〉¬Kp. This shows that the truth value of an epistemic
subformula w.r.t. a state in the model is somehow ‘context-dependent’: it depends on
the uncertainty set.

2.2. Axiomatization
Following the axioms proposed in [Wang and Li 2012], we give the following axiomati-
zation for EAL w.r.t. our semantics:

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

Free for More: A Dynamic Epistemic Framework for Conformant Planning A:7

System SELA
Axioms Rules
TAUT all axioms of propositional logic MP

φ, φ→ ψ

ψ

DISTK K(p→ q) → (Kp→ Kq) NECK
φ

Kφ

DIST(a) [a](p→ q) → ([a]p→ [a]q) NEC(a)
φ

[a]φ

T Kp→ p SUB
φ(p)

φ(ψ)

4 Kp→ KKp

5 ¬Kp→ K¬Kp

PR(a) K[a]p→ [a]Kp

NM(a) 〈a〉Kp→ K[a]p

where a ranges over A, p, q range over P. PR(·) and NM(·) denote the axioms of perfect
recall and no miracles respectively (cf. [Wang and Cao 2013]).

Note that since we do not assume that the agent can observe the available actions,
the axiom OBS(a) : K〈a〉> ∨ K¬〈a〉> in [Wang and Li 2012] is abandoned. Due to the
same reason, the axiom of no miracles is also simplified. Intuitively, PR(a) means that
the agent can tell t from t0 since he perfectly remembers that he can tell states result-
ing in t from states resulting in t0. NM(a) means there are no such miracles that the
agent cannot distinguish two states initially but nevertheless he can distinguish the
states resulting from executing the same action on these two states. These properties
can be depicted as follows.

s1

a

��
s2 s4

PR(a)−−−→

s1

a

��

s3

a

��
s2 s4

NM(a)←−−−

s1

a

��

s3

a

��
s2 s4

We show the completeness of SELA using a more direct proof strategy based on
canonical model compared to the one used in [Wang and Li 2012].

THEOREM 2.5. SELA is sound and strongly complete w.r.t. EAL on uncertainty maps.

PROOF. To prove that SELA is sound on uncertainty maps, we need to show that all
the axioms are valid and all the inference rules preserve validity. Since the uncertainty
set in an UM denotes an equivalence class, axioms T, 4 and 5 are valid; due to the
semantics, the validity of axioms PR(·) and NM(·) can be proved step by step; others can
be proved as usual.

To prove that SELA is strongly complete on uncertainty maps, we only need to show
that every SELA-consistent set of formulas is satisfiable on some uncertainty map.
The proof idea is that we construct an uncertainty map consisting of maximal SELA-
consistent sets (MCSs), and then with the Lindenbaum-like lemma that every SELA-
consistent set of formulas can be extended in to a MCS (we omit the proof here), we
only need to prove that every formula holds on the MCS to which it belongs.

Firstly, we construct a canonical Kripke model N c = 〈Sc, {Rca | a ∈ A},Vc〉 as follows:

— Sc is the set of all MCSs;
— sRcat ⇐⇒ 〈a〉φ ∈ s for any φ ∈ t (equivalently φ ∈ t for any [a]φ ∈ s);

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

A:8 Yanjun Li et al.

— Vc(p) = {s | p ∈ s}.

Given s ∈ Sc, we define Ucs = {u ∈ Sc | Kφ ∈ s iff Kφ ∈ u}, and it is obvious that s ∈ Ucs .
Thus we have that for each s ∈ Sc,Mc

s = 〈N c,Ucs 〉 is an uncertainty map, andMc
s, s is

a pointed uncertainty map.
Secondly, we prove the following claim.

CLAIM 2.1. If ¬Kφ ∈ s, then there exists u ∈ Ucs such that ¬φ ∈ u.

Let u− be {Kψ | Kψ ∈ s} ∪ {¬φ}. Then u− is consistent. For suppose not, there are
Kψ1, . . . ,Kψn such that ` Kψ1 ∧ · · · ∧ Kψn → φ. By rule NECK and axiom DISTK, it
follows that ` KKψ1 ∧ · · · ∧KKψn → Kφ. It follows by axiom 4 that KKψi ∈ s for each
1 ≤ i ≤ n. Thus we have Kφ ∈ s. This is contrary with ¬Kφ ∈ s. We conclude that u−
is consistent. By Lindenbaum-like Lemma, there exists a MCS u extending u−. Now
since u− ⊆ u, it is clear that Kψ ∈ s implies Kψ ∈ u for any ψ. On the other hand, if
Kψ 6∈ s then K¬Kψ ∈ s by axiom 5. Therefore K¬Kψ ∈ u, and thus Kψ 6∈ u by axiom
T. It follows that u ∈ Ucs .

CLAIM 2.2. If ¬[a]φ ∈ s, then there exists t ∈ Scs such that s a→ t and ¬φ ∈ t.

Let t− be {ψ | [a]ψ ∈ s} ∪ {¬φ}. Then t− is consistent. For suppose not, there are
ψ1, . . . , ψn such that ` ψ1 ∧ · · · ∧ ψn → φ. By rule NEC(a) and axiom DIST(a), it follows
that ` [a](ψ1 ∧ · · · ∧ ψn) → [a]φ. By ` [a]ψ1 ∧ · · · ∧ [a]ψn → [a](ψ1 ∧ · · · ∧ ψn), it follows
that ` [a]ψ1 ∧ · · · ∧ [a]ψn → [a]φ. Thus we have [a]φ ∈ s. This is contrary with ¬[a]φ ∈ s.
We conclude that t− is consistent. By Lindenbaum-like Lemma, there exists a MCS t

extending t−. It follows by t− ⊆ t that s a→ t and ¬φ ∈ t.

CLAIM 2.3. If s a→ t, then we have Ucs |a = Uct .

⊆: Assuming v ∈ Ucs |a, we need to show v ∈ Uct , namely we need to show that Kφ ∈
v ⇐⇒ Kφ ∈ t. Since v ∈ Ucs |a, we have that there is u ∈ Ucs such that uRcav. If Kφ ∈ t,
it follows by axiom 4 that KKφ ∈ t. Thus we have 〈a〉KKφ ∈ s. By axiom NM(a), it
follows that K[a]Kφ ∈ s. By u ∈ Ucs and axiom T, we have [a]Kφ ∈ u. It follows by uRcav
that Kφ ∈ v. If Kφ 6∈ t, we have ¬Kφ ∈ t. By axiom 5, we have K¬Kφ ∈ t. Similarly,
we have ¬Kφ ∈ v. Thus we have Kφ 6∈ v.
⊇: Assuming v ∈ Uct , we need to show v ∈ Ucs |a, namely there is u ∈ Ucs such that

uRcav. Let u− be {Kφ | Kφ ∈ s} ∪ {〈a〉ψ | ψ ∈ v}. Then u− is consistent. For suppose
not, we have ` Kφ1 ∧ · · · ∧ Kφn → [a]¬ψ1 ∨ · · · ∨ [a]¬ψk for some n and k. Since `
[a]¬ψ1∨· · ·∨[a]¬ψk → [a](¬ψ1∨· · ·∨¬ψk), we have ` Kφ1∧· · ·∧Kφn → [a](¬ψ1∨· · ·∨¬ψk).
By rule NECK and axiom DISTK, we have ` KKφ1 ∧ · · · ∧KKφn → K[a](¬ψ1 ∨ · · · ∨¬ψk).
Since KKφi ∈ s for each 1 ≤ i ≤ n, we have K[a](¬ψ1 ∨ · · · ∨ ¬ψk) ∈ s. By axiom PR(a),
it follows that [a]K(¬ψ1 ∨ · · · ∨ ¬ψk) ∈ s. It follows by sRcat that K(¬ψ1 ∨ · · · ∨ ¬ψk) ∈ t.
Since v ∈ Uct , by axiom T, we have ¬ψ1 ∨ · · · ∨ ¬ψk ∈ v. This is contrary with ψi ∈ v
for each 1 ≤ i ≤ k. Thus u− is consistent. By Lindenbaum-like Lemma, there exists
a MCS u extending u−. It follows by u− ⊆ u that u ∈ Ucs and uRcav. We conclude that
v ∈ Ucs |a.

Finally, we will show thatMc
s, s � φ iff φ ∈ s. we prove it by induction on φ. We only

focus on the case of Kφ and [a]φ; the others are obvious. By Claim 2.1 and induction
hypothesis, it is straightforward thatMc

s, s � Kφ iff Kφ ∈ s. With Claim 2.3, it follows
that Mc

t = Mc
s|a if s a→ t. Moreover, by Claim 2.1 and induction hypothesis, it can be

shown thatMc
s, s � [a]φ iff [a]φ ∈ s.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

Free for More: A Dynamic Epistemic Framework for Conformant Planning A:9

3. AN EXTENSION OF EAL FOR CONFORMANT PLANNING
3.1. Epistemic PDL over uncertainty maps
In this section we extend the language of EAL with programs in propositional dynamic
logic and use this extended language to express the existence of a conformant plan.

Definition 3.1 (Epistemic PDL). The Epistemic PDL Language (EPDL) is defined as
follows:

φ ::= > | p | ¬φ | (φ ∧ φ) | [π]φ | Kφ
π ::= a | ?φ | (π;π) | (π + π) | π∗

where p ∈ P, a ∈ A. We use LπMφ to denote [π]φ ∧ 〈π〉φ, which is logically equivalent to
[π]φ ∧ 〈π〉>. Given a finite B ⊆ A, we write B∗ for (Σa∈Ba)∗, i.e., the iteration over the
‘sum’ (non-deterministic choices) of all the action symbols in B. We use ΠA to denote
all the programs. The size of EPDL formulas/programs is given by: |[π]φ| = |π| + |φ|,
|p| = |a| = 1, |π1;π2| = 1 + |π1|+ |π2|, |?φ| = |¬φ| = |Kφ| = 1 + |φ|, |φ ∧ ψ| = 1 + |φ|+ |ψ|,
|π1 + π2| = 1 + |π1|+ |π2| and |π∗| = 1 + |π|.

Given any uncertainty mapM = 〈S, {Ra | a ∈ A},V,U〉, any state s ∈ U , the seman-
tics is given by a mutual induction on φ and π (we only show the case about [π]φ, other
cases are as in EAL):

M, s � [π]φ ⇔ for allM′, s′ : (M, s)JπK(M′, s′)
impliesM′, s′ � φ

(M, s)JaK(M′, s′) ⇔ M′ =M|a and s a→ s′

(M, s)J?ψK(M′, s′) ⇔ (M′, s′) = (M, s) andM, s � ψ
(M, s)Jπ1;π2K(M′, s′) ⇔ (M, s)Jπ1K ◦ Jπ2K(M′, s′)

(M, s)Jπ1 + π2K(M′, s′) ⇔ (M, s)Jπ1K ∪ Jπ2K(M′, s′)
(M, s)Jπ∗K(M′, s′) ⇔ (M, s)JπK?(M′, s′)

where ◦,∪, ? at the right-hand side denote the usual composition, union and reflexive
transitive closure of binary relations respectively. Clearly this semantics coincides with
the semantics of EAL on EAL formulas.

Note that each program π can be viewed as a set of computation sequences, which
are sequences of actions in A and tests with φ ∈ EPDL:

L(a) = {a}
L(?φ) = {?φ}
L(π;π′) = {ση | σ ∈ L(π) and η ∈ L(π′)}
L(π + π′) = L(π) ∪ L(π′)
L(π∗) = {ε} ∪

⋃
n>0(L(π · · ·π︸ ︷︷ ︸

n

)) where ε is the empty sequence

We leave the complete axiomatization of EPDL on uncertainty maps to future work.

3.2. Generalized conformant planning via model checking EPDL
Let PL be the propositional language based on P. We can now define the conformant
planning problem formally.

Definition 3.2 (Standard conformant planning). Given an uncertainty map M, a
goal formula φ ∈ PL, and a finite set B ⊆ A, the conformant planning problem is to find
a finite (possibly empty) sequence σ = a1a2 · · · an ∈ L(B∗) such that for each u ∈ UM
we have M, u � La1MLa2M · · · LanMφ, i.e., M, v � KLa1MLa2M · · · LanMφ for any v ∈ UM. The
existence problem of conformant planning is to test whether such a sequence exists.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

A:10 Yanjun Li et al.

Recall that LπMφ is the shorthand of [π]φ ∧ 〈π〉>. Intuitively, we want a plan which
is both executable and safe w.r.t. non-deterministic actions and initial uncertainty
of the agent. It is crucial to observe the difference between La1MLa2M · · · LanMφ and
La1; a2; · · · ; anMφ by the following example:

Example 3.3. Given the uncertainty map M depicted as follows, we have M, s1 �
La; bMp butM, s1 2 LaMLbMp. Intuitively there is no conformant plan to make sure p at s1.

s2 b // s4 : p

s1

a
66

a))
s3

Given M and φ, to verify whether σ ∈ L(π) is a conformant plan can be formu-
lated as the model checking problem: M, u � KLa1MLa2M · · · LanMφ. On the other hand,
the existence problem of a conformant plan is more complicated to formulate: it asks
whether there exists a σ ∈ L(B∗) such that it can be verified as a conformant plan. The
simple-minded attempt would be to check whether M, u � K〈B∗〉φ holds. Despite the
〈·〉-vs.-L·M distinction, K〈B∗〉φ may hold on a model where the sequences to guarantee φ
on different states in UM are different, as the following example shows:

Example 3.4. Given the uncertainty map M depicted as follows, let the goal for-
mula be p and B = {a, b}. We have M, s1 � K〈B∗〉p, but there is no solution to this
conformant planning problem.

s1 a // s3 b // s5 : p

s2 b // s4 a // s6 : p

The correct formula to check for the existence of a conformant plan w.r.t. the actions
in B ⊆ A and a goal formula φ ∈ EPDL is:

θB,φ = 〈(Σa∈B(?K〈a〉>; a))∗〉Kφ.

For example, if B = {a1, a2} then θB,φ = 〈((?K〈a1〉>; a1) + (?K〈a2〉>; a2))∗〉Kφ. Intu-
itively, a conformant plan consists of actions that are always executable given the un-
certainty of the agent (guaranteed by the guard K〈a〉>). In the end the plan should
also make sure that φ must hold given the uncertainty of the agent (guaranteed by
Kφ). In the following, we will prove that this formula is indeed correct.

First, we observe that the rule of substitution of equivalents is valid (φ(ψ/χ) is ob-
tained by replacing any occurrence of χ by ψ, similar for Jπ(ψ/χ)K):

PROPOSITION 3.5. If � ψ ↔ χ, then we have � φ↔ φ(ψ/χ) and JπK = Jπ(ψ/χ)K.

PROPOSITION 3.6. � KLaMφ↔ 〈?K〈a〉>; a〉Kφ

PROOF. Since � KLaMφ↔ (K[a]φ∧K〈a〉φ) and � (K〈a〉>∧〈a〉Kφ)↔ 〈?K〈a〉>; a〉Kφ,
we only need to show that � (K[a]φ ∧K〈a〉φ)↔ (K〈a〉> ∧ 〈a〉Kφ).

Left to right:
(L1) � K[a]φ→ [a]Kφ, by validity of Axiom PR(a)
(L2) � K〈a〉φ→ 〈a〉> ∧K〈a〉>, by semantics
(L3) � 〈a〉> ∧ [a]Kφ→ 〈a〉Kφ, by semantics
(L4) � K[a]φ ∧K〈a〉φ→ K〈a〉> ∧ 〈a〉Kφ, by (L1)-(L3)
Right to left:
(R1) � 〈a〉Kφ→ K[a]φ, by validity of Axiom NM(a)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

Free for More: A Dynamic Epistemic Framework for Conformant Planning A:11

(R2) � K[a]φ ∧K〈a〉> → K〈a〉φ, by semantics
(R3) � K〈a〉> ∧ 〈a〉Kφ→ K[a]φ ∧K〈a〉φ, by R(1)-R(2)

LEMMA 3.7. For any a1a2 · · · an ∈ L(A∗), any φ ∈ EPDL:

� KLa1MLa2M · · · LanMφ↔ 〈?K〈a1〉>; a1; . . . ; ?K〈an〉>; an〉Kφ

PROOF. It is trivial when n = 0 (i.e., the sequence is ε), since the claim then boils
down to Kφ↔ Kφ. We prove the non-trivial cases by induction on n ≥ 1. When n = 1,
it follows from Proposition 3.6. Now, as the induction hypothesis, we assume that:

� KLa1MLa2M · · · LakMφ↔ 〈?K〈a1〉>; a1; . . . ; ?K〈ak〉>; ak〉Kφ.

We need to show:

� KLa1MLa2M · · · Lak+1Mφ↔ 〈?K〈a1〉>; a1; . . . ; ?K〈ak+1〉>; ak+1〉Kφ.

By IH,

� KLa1MLa2M · · · Lak+1Mφ↔ 〈?K〈a1〉>; a1; . . . ; ?K〈ak〉>; ak〉KLak+1Mφ. (1)

Due to Propositions 3.5 and 3.6, we have

�〈?K〈a1〉>; a1; . . . ; ?K〈ak〉>; ak〉KLak+1Mφ↔
〈?K〈a1〉>; a1; . . . ; ?K〈an〉>; ak〉〈?K〈ak+1〉>; ak+1〉Kφ. (2)

The conclusion is immediate by combining (1) and (2).

Note that, the above proof does not require that φ ∈ PL.

The following theorem follows from the above lemma.

THEOREM 3.8. Given a pointed uncertainty mapM, s, a PL formula φ and a finite
set B ⊆ A, the following two are equivalent:

(1) There is a σ = a1 . . . an ∈ L(B∗) such thatM, s � KLa1MLa2M · · · LanMφ;
(2)M, s � 〈(Σa∈B(?K〈a〉>; a))∗〉Kφ.

We would like to emphasize that the K operator right before φ in the definition of
θB,φ cannot be omitted, as demonstrated by the following example:

Example 3.9. Given the uncertainty map M depicted as follows, let the goal for-
mula be p. As we can see, there is no solution to this conformant planning prob-
lem. Indeed M, s1 2 〈(Σa∈B(?K〈a〉>; a))∗〉Kp with B = {a, b}, but we could have
M, s1 � 〈(Σa∈B(?K〈a〉>; a))∗〉p.

s1 a // s2 b //

b

""

s5 : p

s4

3.3. Generalized conformant planning
In this subsection, we generalize the standard conformant planning and reduce it to
the model checking problem of EPDL too.

The generalization is two-fold, as we mentioned in the introduction: on the goal and
on the constraint on the desired plan. Formally:

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

A:12 Yanjun Li et al.

Definition 3.10 (Generalized conformant planning). Given an uncertainty mapM,
a goal formula φ ∈ EPDL, and a test-free (i.e., ?φ-free) π ∈ ΠA, the generalized confor-
mant planning problem is to find a finite (possibly empty) sequence σ = a1 · · · an ∈ L(π)
such that for each u ∈ UM we haveM, u � La1MLa2M · · · LanMφ. The existence problem of
conformant planning is to test whether such a sequence exists.

Note that the standard conformant planning is actually the generalized conformant
planning w.r.t. (Σa∈Ba)∗ with the restriction on the PL goal formulas.

Let t be the translation of test-free programs such that each atomic action a is re-
placed by (?K〈a〉>; a):

t(a) = (?K〈a〉>; a)
t(π;π′) = t(π); t(π′)
t(π + π′) = t(π) + t(π′)
t(π∗) = (t(π))∗

It is not hard to show:

THEOREM 3.11. Given a pointed uncertainty map M, s, an EPDL formula φ and a
test-free program π ∈ ΠA, the following two are equivalent:

(1) There is an action sequence a1 . . . an ∈ L(π) such thatM, s � KLa1MLa2M · · · LanMφ;
(2)M, s � 〈t(π)〉Kφ.

PROOF SKETCH. Let π be a test-free program, then it can be shown by induction
on π that a1 · · · an ∈ L(π) if and only if t(a1) · · · t(an) ∈ L(t(π)). Moreover, it follows
by Lemma 3.7 that � KLa1MLa2M · · · LanMφ ↔ 〈t(a1); · · · ; t(an)〉Kφ. Please note that the
proof of Lemma 3.7 does not depend on the shape of φ. Therefore, (1) and (2) are equiv-
alent.

Note that Theorem 3.8 is now a special case of the above theorem where a particular
π = (Σa∈Ba)∗ is fixed.

The new conformant planning problem is clearly more general, but do we really need
this generality? First of all, let us see what we can express with EPDL formulas as goals.

Having positive epistemic goals such as Kq is nothing more than having the goal q
since according to Theorem 3.11, the model checking problems w.r.t. to goals q orKq are
equivalent due to the fact that � Kq ↔ KKq. However, we can also express negative
epistemic goals such as ¬Kq which is not expressible in the standard setting: K¬Kq
is logically equivalent to ¬Kq but not equivalent to any Kφ formula where φ ∈ PL. In
fact, a negative epistemic goal can be viewed as a set of sets of possible states, e.g.,
¬Kq amounts to a set of uncertainty sets that intersect with the set of ¬q worlds.

However, careful reader may wonder why we would ever want a negative epistemic
goal at all. It definitely makes sense in the multi-agent setting: you may want a plan to
know whether p but at the same time not to let your enemy know it as well. Actually,
it also makes perfect sense in the single-agent setting. Suppose that there are two
possible causes s1 and s2 for the same symptom of a patient, but you are not sure
which is the actual cause. Now suppose you also have two drugs a and b which can
both alleviate the symptom (p). However, drug b is bound to have a bad side-effect (q)
but drug a only has it in the case of cause s2. Which drug do you prefer? It seems
that we would like to avoid the side-effect when possible, which amounts to the goal of
p ∧ ¬Kq or equivalently p ∧ K̂¬q. Here is a concrete example.

Example 3.12 (negative epistemic goal). Given the uncertainty mapM depicted as
follows, let the goal be p then both a and b are conformant plans. If the goal is p∧¬Kq,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

Free for More: A Dynamic Epistemic Framework for Conformant Planning A:13

only a is a good plan.

s1 a //

b
''

s3 : p

s2
a //

b
''

s4 : p, q

s5 : p, q

Besides negative epistemic goals, it is also useful to have goals involving actions and
even programs. Consider the following example:

Example 3.13 (goal with program). Given the uncertainty map M depicted as fol-
lows. p denotes the proposition that a tooth hurts. Now you have two choices: you can
either replace it with a false tooth (a) or fix the problem temporally without the re-
placement (b). The trouble for the second option is that it may go wrong again in some
time (t). What would you choose? If your goal is [t∗]¬p, which means free of worries
forever, then a is clearly a better plan.

s1 : p a //

b ,,

s2

t

��

s3

t
jj

Now, let us consider the other aspect of our generalization: the constraints on the
plan. Normally, the conformant plan is only an action sequence to guarantee the agent
achieving the goal. However, in real-life scenarios, we may require that the plan should
have a special form. For example, we would like the plan is such an action sequence
that a occurs at most once since the cost of doing a is so high that we cannot afford
twice.

Example 3.14 (constraints on plan). Given the uncertainty mapM depicted as fol-
lows. p denotes the place you want to go. There are two kinds of transportation: by bus
(a) or by walking (b). However, you can afford taking a bus only one time. Therefore,
the solution should be a sequence in L(π) with π = b∗; a; b∗ + b∗. To check if there is
a solution for this generalized conformant planning, by Theorem 3.11 we only need to
checkM, s1 � 〈t(π)〉Kp. It is easy to see that under this constraint only a; b is a plan.

s1 a // s2
a ++
b 22

s3 : p

As we mentioned, there are also other ways to generalize conformant planning. For
example, [Bonet 2010] extends conformant planning with both partial observability
and epistemic formulas, but this generalization does not come for free. It is shown in
[Bonet 2010] that the complexity of conformant planning with partial observability
and epistemic formulas is higher than standard conformant planning. As we will show
in the next section, our generalization is for free in complexity.

4. MODEL CHECKING EPDL: COMPLEXITY AND ALGORITHMS
In this section, we show that model checking EPDL on uncertainty maps is PSPACE-
complete. Thus the generalized conformant planning problem is also PSPACE-complete
based on the fact that the standard conformant planning is already PSPACE hard over
transition systems. In particular, the lower bound is obtained by a reduction from QBF

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

A:14 Yanjun Li et al.

(quantified Boolean formula) truth testing to the model checking problem borrowing
some ideas from temporal logic with past operators. The upper bound is shown by mak-
ing use of an equivalent alternative semantics based on the model space over pointed
uncertainty maps. It is somehow surprising that a PSPACE algorithm suffices to model
check EPDL formulas over this potential exponentially larger model.

Note that throughout this section, we focus on uncertainty maps with finitely many
states and assume Ra = ∅ for cofinitely many a ∈ A.

4.1. Lower Bound
To show the PSPACE lower bound, we provide a polynomial reduction of QBF truth
testing to the model checking problem of EPDL. Note that to determine whether a given
QBF (even in prenex normal form based on a conjunctive normal form) is true or not is
known to be PSPACE-complete [Stockmeyer and Meyer 1973]. Our method is inspired
by [Schnoebelen 2003] which discusses the complexity of model checking temporal log-
ics with past operators. Surprisingly, we can use the uncertainty sets to record the
‘past’ and use the dual of the knowledge operator to ‘go back’ to the past. This intuitive
idea will become more clear in the proof.

QBF formulas are Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn) where:

— For 1 ≤ i ≤ n,Qi is ‘∃’ if i is odd, and Qi is ‘∀’ if i is even.
— φ is a propositional formula in CNF based on variables x1, . . . , xn,

For each such QBF α with n variables, we need to find a pointed modelMn, x0 and
a formula θα such that α is true iffMn, x0 � θα. The modelMn is defined below.

Definition 4.1. Let A = {ai, āi | i ≥ 1} and P = {pk, qk | k ≥ 1}, the uncertainty map
Mn = 〈S, {Ra | a ∈ A},V,U〉 is defined as:

— S = {x0} ∪ {xi | 1 ≤ i ≤ n} ∪ {x̄i | 1 ≤ i ≤ n}
— V(x0) = ∅, and V(xi) = {pi},V(x̄i) = {qi} for 1 ≤ i ≤ n.
— ai→= {(s, s) | s ∈ S} ∪ {(xi−1, xi), (x̄i−1, xi)}
— āi→= {(s, s) | s ∈ S} ∪ {(xi−1, x̄i), (x̄i−1, x̄i)}
— U = {x0}

|Mn| is linear in n and can be depicted as the following:

x1 : p1

A

�� a2 //

ā2

��

x2 : p2

A

�� a3 //

ā3

��

· · · xn−1 : pn−1

A

�� an //

ān

!!

xn : pn

A

��

x0

A

��
a1
::

ā1 $$
x̄1 : q1

A

XX ā2
//

a2

AA

x̄2 : q2

A

XX ā3
//

a3

CC

· · · x̄n−1 : pn−1

A

WW ān
//

an

==

x̄n : qn

A

XX

Given α = Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn), the formula θα is defined as

QT1 · · ·QTnψ(K̂p1, · · · , K̂pn, K̂q1, · · · , K̂qn)

where QTi is 〈(ai + āi); ?(pi ∨ qi)〉 if i is odd and QTi is [(ai + āi); ?(pi ∨ qi)] if i is even,
and ψ is obtained from φ(x1, . . . , xn) by replacing each xi with K̂pi and ¬xi with K̂qi.

To ease the latter proof, we first define the valuation tree below.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

Free for More: A Dynamic Epistemic Framework for Conformant Planning A:15

Definition 4.2 (V-tree). A V-tree τ is a rooted tree such that 1) each node is 0 or 1
(except the root ε); 2) each internal node in an even level has only one successor; 3)
each internal node in an odd level has two successors: one is 0 and the other one is 1;
4) each edge to node 0 of level i is labelled āi; 5) each edge to node 1 of level i is labelled
ai. Given a V-tree with depth n, a path σ is a sequence of A1 . . . An where Ai = ai or
Ai = āi. A path σ can also be seen as a valuation assignment for x1, . . . , xn with the
convention that σ(xi) = 1 if ai occurs in σ, and σ(xi) = 0 if āi occurs in σ. Let path(τ)
be the set of all paths of τ .

As an example, a V-tree τ can be depicted as below:

ε a1 // 1
ā2 **

a2
44

0 a3 //

1 ā3 //

1

0

It is not hard to see the following:

PROPOSITION 4.3. For each 1 ≤ i ≤ n, we have α = Q1x1 . . . QixiQi+1xi+1 . . . Qnxnφ
is true iff there exists a V-tree τ with depth i such that σ(Qi+1xi+1 . . . Qnxnφ) = 1 for each
σ ∈ path(τ) (σ is viewed as a valuation).

Now let us see the update result of running a path σ ∈ path(τ) onMn.

PROPOSITION 4.4. GivenMn, let σ = A1 . . . Ai (1 ≤ i ≤ n) be a sequence of actions
such that Ak = ak or Ak = āk for each 1 ≤ k ≤ i, then we have U|σ = {x0, X1, . . . , Xi}
where Xk = xk if Ak = ak else Xk = x̄k for each 1 ≤ k ≤ i.

PROOF. We prove it by induction on i. It is obvious if i = 1. Next we need to show
the proposition holds when i+ 1. By IH, it follows that U ′ = U|A1...Ai = {x0, X1, . . . , Xi}
where Xk = xk if Ak = ak else Xk = x̄k for each 1 ≤ k ≤ i. Since U ′|Ai+1 =
{x0, X1, . . . , Xi+1} where Xi+1 = xi+1 or Xi+1 = x̄i+1. Therefore, we only need to show
that if Ai+1 = ai+1 then Xi+1 = xi+1 else Xi+1 = x̄i+1. If Ai+1 = ai+1, since Xi

ai+1→ xi+1,
we have Xi+1 = xi+1. If Ai+1 6= ai+1, it follows that Ai+1 = āi+1. since Xi

āi+1→ x̄i+1, we
have Xi+1 = x̄i+1.

Given σ = A1 . . . An where Ai is ai or āi for each 1 ≤ i ≤ n, let g(σ) = xn if An = an
and g(σ) = x̄n if An = ān. By Proposition 4.4, we always have g(σ) ∈ UMk

|σ with k > n.
Thus givenMk and σ = A1 . . . An and k > n,Mk|σ, g(σ) is a pointed uncertainty map.

PROPOSITION 4.5. For each 1 ≤ i ≤ n, we haveMk, x0 � QT1 . . . QTiQTi+1 . . . QTnψ
iff there exists a V-tree τ with depth i such that Mk|σ, g(σ) � QTi+1 . . . QTnψ for each
σ ∈ path(τ), where k > n and g(σ) is the state corresponds to the last edge of σ, e.g.,
g(a1ā2) = x̄2.

PROOF. We prove it by induction on i. It is obvious when i = 1. Next we will show
that the proposition holds when i + 1. By IH,we only need to show that there exists a
V-tree τ with depth i such thatMk|σ, g(σ) � QTi+1 . . . QTnψ for all σ ∈ path(τ), if and
only if, there exists a V-tree τ ′ with depth i+ 1 such thatMk|σ

′
, g(σ′) � QTi+2 . . . QTnψ

for all σ′ ∈ path(τ ′).
Left-to-Right: Since τ ′ is a V-tree with depth i+1, we can get the V-tree τ with depth i

by cutting the leavies and the last edge of the V-tree τ ′. Then we only need to show that
Mk|σ, g(σ) � QTi+1 . . . QTnψ for all σ ∈ path(τ). Since for each σ ∈ path(τ) there exists
σ′ ∈ path(τ ′) such that σ′ = σai+1 or σ′ = σāi+1, andMk|σ

′
, g(σ′) � QTi+2 . . . QTnψ (4),

next we will showMk|σ, g(σ) � QTi+1 . . . QTnψ no matter i+ 1 is odd or even.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

A:16 Yanjun Li et al.

— i+1 is odd. If σ′ = σai+1 ∈ path(τ ′), it follows that g(σ′) = xi+1. Thus we have g(σ)
ai+1→

xi+1 and Mk|σai+1 , xi+1 � QTi+2 . . . QTnψ. What is more, because of pi+1 ∈ V(xi+1),
we have Mk|σ, g(σ) � 〈(ai+1 + āi+1); ?(pi+1 ∨ qi+1)〉 . . . QTnψ, namely Mk|σ, g(σ) �
QTi+1 . . . QTnψ. Similarly, we can also getMk|σ, g(σ) � QTi+1 . . . QTnψ if σ′ = σāi+1.

— i + 1 is even. It follows that both σai+1 and σāi+1 are members of path(τ ′). Assume
that Mk|σ, g(σ) 2 QTi+1 . . . QTnψ, namely Mk|σ, g(σ) 2 [(ai+1 + āi+1)](pi+1 ∨ qi+1 →
QTi+2 . . . QTnψ). Since g(σ)

ai+1→ xi+1 and g(σ)
āi+1→ x̄i+1, it follows thatMk|σai+1 , xi+1 2

QTi+2 . . . QTnψ orMk|σāi+1 , x̄i+1 2 QTi+2 . . . QTnψ. However, each of them are contra-
dictary with (4). Therefore, we haveMk|σ, g(σ) � QTi+1 . . . QTnψ.

Left-to-Right: Since τ is a V-tree with depth i andMk|σ, g(σ) � QTi+1 . . . QTnψ for all
σ ∈ path(τ), we can get the V-tree τ ′ with depth i + 1 by extending each σ ∈ path(τ).
There are two situations:

— i + 1 is odd. Since Mk|σ, g(σ) � 〈(ai+1 + āi+1); ?(pi+1 ∨ qi+1)〉 . . . QTnψ, it follows
that Mk|σ, g(σ) � 〈ai+1〉〈?(pi+1 ∨ qi+1)〉 . . . QTnψ or Mk|σ, g(σ) � 〈āi+1〉〈?(pi+1 ∨
qi+1)〉 . . . QTnψ. If it is the case of Mk|σ, g(σ) � 〈ai+1〉〈?(pi+1 ∨ qi+1)〉 . . . QTnψ, we
extend σ to be σai+1, and it is obvious thatMk|σai+1 , g(σai+1) � QTi+2 . . . QTnψ. If it
is the case ofMk|σ, g(σ) � 〈āi+1〉〈?(pi+1∨qi+1)〉 . . . QTnψ, we extend σ to be σāi+1, and
it is obvious thatMk|σāi+1 , g(σāi+1) � QTi+2 . . . QTnψ.

— i + 1 is even. We split eahc σ in to σai+1 and σāi+1. By assumption, we know that
Mk|σ, g(σ) � [(ai+1 + āi+1); ?(pi+1 ∨ qi+1)] . . . QTnψ, namely Mk|σ, g(σ) � [(ai+1 +
āi+1)](pi+1 ∨ qi+1 → QTi+2 . . . QTnψ). What is more, because of Mk|σai+1 , g(σai+1) �
(pi+1 ∨ qi+1 andMk|σāi+1 , g(σāi+1) � (pi+1 ∨ qi+1, it follows thatMk|σai+1 , g(σai+1) �
QTi+2 . . . QTnψ andMk|σāi+1 , g(σāi+1) � QTi+2 . . . QTnψ.

THEOREM 4.6. The following two are equivalent:

— α = Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn) is true
— Mn, x0 � QT1 · · ·QTnψ(K̂p1 · · · K̂pn, K̂q1 · · · K̂qn) in which ψ is obtained from φ by

replacing each xi with K̂pi and ¬xi with K̂qi.

PROOF. By Propositions 4.3 and 4.5, we only need to show that given V-tree τ with
depth n, σ(φ) = 1 if and only ifMn|σ, g(σ) � ψ for each σ ∈ path(τ). Since φ is in CNF,
ψ is also in CNF-like form obtained by replacing each xi with K̂pi and each ¬xi with
K̂qi for 1 ≤ i ≤ n. Thus we only need to show that σ(xi) = 1 iffMn|σ, g(σ) � K̂pi, and
σ(¬xi) = 1 iff Mn|σ, g(σ) � K̂qi. Since σ(xi) = 1 iff σ(¬xi) = 0, we only need to show
thatMn|σ, g(σ) � K̂pi iffMn|σ, g(σ) � ¬K̂qi, and σ(xi) = 1 iffMn|σ, g(σ) � K̂pi.

Firstly, we will show thatMn|σ, g(σ) � K̂pi iffMn|σ, g(σ) � ¬K̂qi. Because of V(pi) =

{xi}, we know thatMn|σ, g(σ) � K̂pi iff xi ∈ U|σ. It follows by Proposition 4.4 that xi ∈
U|σ iff x̄i 6∈ U|σ. Because of V(qi) = {x̄i}, we know that x̄i 6∈ U|σ iffMn|σ, g(σ) � ¬K̂qi.
Therefore, we haveMn|σ, g(σ) � K̂pi iffMn|σ, g(σ) � ¬K̂qi.

Next, we will show that σ(xi) = 1 iff Mn|σ, g(σ) � K̂pi. By the definition of τ , we
know that σ = A1 . . . An where Ai is ai or āi for each 1 ≤ i ≤ n. By our convention, we
know that σ(xi) = 1 iff Ai = ai. It follows by Proposition 4.4 that Ai = ai iff xi ∈ U|σ.
Because of V(pi) = {xi}, we know that xi ∈ U|σ iff Mn|σ, g(σ) � K̂pi. Therefore, we
have σ(xi) = 1 iffMn|σ, g(σ) � K̂pi.

This gives us the desired lower bound:

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

Free for More: A Dynamic Epistemic Framework for Conformant Planning A:17

THEOREM 4.7. The model checking problem for EPDL is PSPACE-hard.

Note that the PSPACE-hardness also holds for the star-free fragment of EPDL since θα
does not use the Kleene star.

4.2. Upper Bound
In this section, we give a PSPACE model checking method for EPDL via model checking
EPDL over two-dimensional models with both epistemic and action relations. Let us
first define such models.

Definition 4.8 (Epistemic Temporal Structure). An Epistemic Temporal Structure
(ETS) is a Kripke model with both epistemic and action relations. Formally, an ETS
model M is a tuple 〈S, {Ra | a ∈ A},∼,V〉, where Ra is a binary relation on S, ∼ is an
equivalence relation on S and V : S → 2P is a valuation function.

Now we define an alternative semantics of EPDL over ETSs.

Definition 4.9 (ETS Semantics). Given any ETS model M = 〈S, {Ra | a ∈ A},∼,V〉
and any state s ∈ S, the satisfaction relation for EPDL formulas is defined as follows
(the Boolean cases are as in the standard modal logic):

M, s Kφ ⇔ ∀u ∈ S : s ∼ u implies M, u φ

M, s [π]φ ⇔ ∀t ∈ S : s
π→ t implies M, t φ

a→ = Ra
?φ→ = {(s, s) |M, s φ}
π1;π2→ =

π1→ ◦ π2→
π1+π2→ =

π1→ ∪ π2→
π∗→ = (

π→)?

where ◦,∪, ? at right-hand side denote the usual composition, union and reflexive tran-
sitive closure of binary relations respectively.

We can turn a Kripke model without the epistemic relation into an ETS model by
essentially considering all the possible uncertainty sets.

Definition 4.10. Given any Kripke model N = 〈S, {Ra | a ∈ A},V〉, we define the
ETS model N • as follows:

S• = {sΓ | s ∈ S,Γ ∈ 2S , s ∈ Γ}
R•a = {(sΓ, t∆) | s a→ t,∆ = Γ|a}
∼• = {(sΓ, t∆) | Γ = ∆}
V•(sΓ) = V(s)

where Γ|a = {t ∈ S | ∃s ∈ Γ such that s a→ t}. For any Kripke model N and any
Γ ∈ 2S\{∅}, let NΓ be the uncertainty map 〈N ,Γ〉.

Note that each sΓ can be viewed as an uncertainty set (Γ) with a designated state
(s), and the definition of Ra captures the update in the � semantics of EPDL, and N •
unravels all the updates in a whole picture. Note that the size ofN • is |S| ·2|S|−1 where
S is the set of states of N .

Now we can show that � and coincide w.r.t. uncertainty map NΓ and ETS model
N •.

PROPOSITION 4.11. Given any map N , we have

(i) NΓ, sJπKN∆, t iff sΓ
π→ t∆ in N • (Cf. the definition of π→ in Def. 4.9);

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

A:18 Yanjun Li et al.

(ii) NΓ, s � φ iff N •, sΓ φ.

PROOF. The proof is by simultaneous induction on π and φ (due to the test actions).
For (i), we will only focus on the non-trivial cases of π1;π2 and π∗; the other cases are
straightforward.

Case π1;π2: We have NΓ, sJπ1;π2KN∆, t if and only if NΓ, sJπ1KNΓ′ , s′ and
NΓ′ , s′Jπ2KN∆, t for some Γ′ ∈ 2S . By IH, this amounts to sΓ

π1→ s′Γ′ and s′Γ′
π2→ t∆.

Thus, we have sΓ
π1;π2→ t∆.

Case π∗: By induction on n, it can be proved that for each n, NΓ, sJπnKN∆, t if and
only if sΓ

πn

→ t∆. This follows that NΓ, sJπ∗KN∆, t if and only if sΓ
π∗→ t∆.

For (ii), we will only focus on the case of [π]φ; the other cases are straightforward.
Case [π]φ: If NΓ, s � [π]φ but N •, sΓ 1 [π]φ, then N •, t∆ 1 φ for some t∆ ∈ S• such

that sΓ
π→ t∆. By IH, this follows N∆, t 2 φ and NΓ, sJπKN∆, t. This is contradictory

with the assumption that NΓ, s � [π]φ. If N •, sΓ [π]φ but NΓ, s 2 [π]φ, it follows that
NΓ, sJπKN∆, t and N∆, t 2 φ for some ∆ ∈ 2S and t ∈ ∆. By IH, we have sΓ

π→ t∆ and
N •, t∆ 1 φ. This is contradictory with N •, sΓ [π]φ.

COROLLARY 4.12. Given an uncertainty map M = 〈N ,U〉 and s ∈ U , we have
M, s � φ iff N •, sU φ.

Based on the above corollary, in order to check M, s � φ, we only need to check
N •, sU φ which is rather standard for PDL-like logics with PTIME algorithm (cf. e.g.,
[Lange 2006]). However, to build N • we need to exponentially blow up the state space
and this led us to conjecture in [Yu et al. 2015] that the complexity of model checking
EPDL over uncertainty maps could be EXPTIME-hard. Luckily, the exponential blow-up
is avoidable based on the following important observation:

We do not need to compute the whole N • beforehand, the only thing to be
computed is the one-step transition between two states in N • when needed,
and this will give us the PSPACE algorithm.

Let us start from some obvious observation: if a node is reachable from another one
in a graph then the length of the shortest path connecting the two should not exceed
the cardinality of the graph.

PROPOSITION 4.13. Let N be a Kripke model with cardinality n, and N • is con-

structed as Definition 4.10. We have that for each π, sΓ
π∗→ t∆ iff sΓ

πk

→ t∆ where
k ≤ n · 2n−1 (n · 2n−1 is the cardinality of the domain of N •).

Given a Kripke model N , a state set Γ ⊆ S, a state s ∈ Γ and a formula φ, next we
will give PSPACE algorithms for checking N •, sΓ φ.

Suppose that |SN | = n and |φ| = m. Algorithm 1 checks the atomic program whether
(sΓ, t∆) ∈ R•a. Algorithm 1 uses variables Γ′ and Ra to calculate the state set Γ|a.
Therefore it requires O(n2) space.

Algorithm 2 below checks whether sΓ
πk

→ t∆ in N • for a given k. For Algorithm 2, the
most space-demanding part is the k > 1 case using the midpoints recursively. Because
of k ≤ n · 2n−1, the depth of the recursion is bounded by O(n · log n).

Algorithm 3 is the main model checking algorithm. Note that Algorithms 2 and 3
involve mutual recursion of each other due to the tests in programs. However, the
depth of the recursion is bounded by a polynomial of |φ| · |N |, and for each call poly-
nomial space suffices. Except the recursion step, the space usage of Algorithms 2 and

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

Free for More: A Dynamic Epistemic Framework for Conformant Planning A:19

Algorithm 1: Function BR(sΓ, t∆, a): Check whether (sΓ, t∆) ∈ R•a.
input : sΓ, t∆, a
output: true if (sΓ, t∆) ∈ R•a

1 /* Firstly, we calculate Γ|a. */
2 Let Γ′ be an empty set;
3 foreach u ∈ Γ do
4 foreach v ∈ S do
5 if (u, v) ∈ Ra then put v in Γ′;

6 if ∆ = Γ′ and (s, t) ∈ Ra then return true else return false;

Algorithm 2: Function CR(sΓ, t∆, π, k): Check whether sΓ
πk

→ t∆ in N •.
input : sΓ, t∆, π, k

output: true if sΓ
πk

→ t∆ in N •

1 if k = 0 then return s = t ∧ Γ = ∆ ;
2 else if k = 1 then
3 switch π do
4 case a BR(sΓ, t∆, a) ;
5 case ?ψ
6 if s = t and Γ = ∆ then return MC(N , sΓ, ψ) else return false;
7 case π1 + π2 return CR(sΓ, t∆, π1, 1) ∨ CR(sΓ, t∆, π2, 1) ;
8 case π1;π2

9 foreach Γ′ ⊆ SN do
10 foreach s′ ∈ Γ′ do
11 if CR(sΓ, s

′
Γ′ , π1, 1) ∧ CR(s′Γ′ , t∆, π2, 1) then return true ;

12 return false;
13 case π∗ /* By Proposition 4.13, we only need to check πi. */
14 for i← 0 to n · 2n−1 do
15 if CR(sΓ, t∆, π, i) then return true;
16 return false;

17 else
18 foreach Γ′ ⊆ SN do
19 foreach s′ ∈ Γ′ do
20 if CR(sΓ, s

′
Γ′ , π, bk/2c) ∧ CR(s′Γ′ , t∆, π, dk/2e) then return true ;

21 return false;

3 is bounded by O(n2). Thus the overall running space of Algorithm 3 is bounded by
O(m · n3 · log n).

THEOREM 4.14. The model checking problem of EPDL on uncertainty maps is in
PSPACE.

As we mentioned in the introduction, the conformant planning problems in the AI
literature are usually given by using state variables and actions with preconditions
and (conditional) effects, rather than explicit transition systems. The corresponding

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

A:20 Yanjun Li et al.

Algorithm 3: Function MC(N , sΓ, φ): Model checking algorithm for EPDL (Boolean
cases omitted)
input : N , sΓ, φ
output: true if N •, sΓ φ.

1 switch φ do
2 case 〈π〉ϕ
3 foreach ∆ ⊆ SN do
4 foreach t ∈ ∆ do
5 if CR(sΓ, t∆, π, 1) and MC(N , t∆, ϕ) then return true ;

6 return false;
7 case Kϕ
8 foreach t ∈ Γ do
9 if MC(N , tΓ, ϕ) is false then return false ;

10 return true;

explicit transition system can be generated by taking all the possible valuations of
the state variables as the state space (an exponential blow-up), and computing the
transitions among the valuations according to the preconditions and the postconditions
of the actions. In terms of the size of explicit transition systems, our above result is
consistent with the EXPSPACE complexity result in the AI literature for conformant
planning with Boolean and modal goals [Kleinberg and Tardos 2005; Bonet 2010].

However, not all the transition systems can be generated in this way since the pre-
conditions and postconditions are (usually) purely propositional and thus two states
that share the same valuation must have the same executable actions. In an arbitrary
transition system, multiple states with the same valuation may have different avail-
able actions due to some underlying protocol or other (external) factors not modelled
by basic propositions.

As a simple corollary based on the complexity of the standard conformant planning:

COROLLARY 4.15. Generalized conformant planning is PSPACE-complete.

5. CONCLUSIONS AND FUTURE WORK
In this work we first introduce the logical language EAL interpreted on uncertainty
maps and give a complete axiomatization. EAL is then extended to EPDL with programs
to specify conformant and conditional plans. We also generalize conformant planning
with arbitrary EPDL formulas as goals and test-free programs as plan constraints. We
show that the generalized conformant planning problem can be reduced to certain
model checking problem of EPDL. Finally we show that model checking EPDL over un-
certainty maps is PSPACE-complete, and thus the generalized conformant planning
problem is also PSPACE-complete.

Note that our EPDL is a powerful language which can already express conditional
plans, e.g. (?p; a+?¬p; b); c. This suggests that we can use the very EPDL language to
verify plans in contingent planning w.r.t. a variant of the semantics which can handle
feedbacks during the execution. In fact, observational power about the availability of
the actions has been already incorporated in [Wang and Li 2012], which can be ex-
tended to general feedbacks discussed in the literature of contingent planning (cf. e.g.,
[Bonet and Geffner 2012]). On the other hand, to check the existence of a conditional
plan, we are not sure whether EPDL is expressive enough, as subtleties may arise as in
the case of conformant planning. We leave the contingent planning to future work.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

Free for More: A Dynamic Epistemic Framework for Conformant Planning A:21

Another natural extension is to go probabilistic, and reduce the probabilistic plan-
ning over MDP to some model checking problem of the probabilistic version of our EPDL.
Our ultimate goal is to cast all the standard AI planning problems into one unified log-
ical framework in order to facilitate careful comparison and categorization. We will
then see clearly how the form of the goal formula, the constructor of the plan, and the
observational ability matter in the theoretical and practical complexity of planning, in
line with the research pioneered in [Bäckström and Jonsson 2011].

Finally there is an obvious link with the logic of “knowing how” proposed by Wang
[2015]: “knowing how” may mean that you have a good plan to achieve your goal.
Different planning problems may induce different meanings of “knowing how” which
in turn lead to different logics. We leave the explicit connections to future work.

ACKNOWLEDGMENTS

Yanjun Li thanks the support from China Scholarship Council. Quan Yu is supported by NSF Grant
No.61463044 and Grant No.[2014]7421 from the Joint Fund of the NSF of Guizhou province of China. Yan-
jing Wang acknowledges the support from ROCS of SRF by Education Ministry of China and the NSSF key
project 12&ZD119.

REFERENCES
Mikkel Birkegaard Andersen, Thomas Bolander, and Martin Holm Jensen. 2012. Con-

ditional epistemic planning. In Logics in Artificial Intelligence. Springer, 94–106.
DOI:http://dx.doi.org/10.1007/978-3-642-33353-8 8

Mikkel Birkegaard Andersen, Thomas Bolander, and Martin Holm Jensen. 2015. Don’t plan for the unex-
pected: Planning based on plausibility models. (2015). To appear in Logique et Analyse.

Guillaume Aucher. 2012. DEL-sequents for regression and epistemic planning. Journal of Applied Non-
Classical Logics 22, 4 (2012), 337–367. DOI:http://dx.doi.org/10.1080/11663081.2012.736703

Guillaume Aucher and Thomas Bolander. 2013. Undecidability in Epistemic Planning. In IJCAI. 27–33.
https://hal.inria.fr/hal-00824653

Christer Bäckström and Peter Jonsson. 2011. All PSPACE-Complete Planning Problems Are Equal but
Some Are More Equal than Others. In SOCS 2011. http://www.aaai.org/ocs/index.php/SOCS/SOCS11/
paper/view/4009

Alexandru. Baltag and Larry Moss. 2004. Logics for epistemic programs. Synthese 139 (March 2004), 165–
224. DOI:http://dx.doi.org/10.1023/B:SYNT.0000024912.56773.5e

Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri, and Paolo Traverso. 2006. Strong
planning under partial observability. Artificial Intelligence 170, 4-5 (2006), 337–384.
DOI:http://dx.doi.org/10.1016/j.artint.2006.01.004

Thomas Bolander and M. Birkegaard Andersen. 2011. Epistemic planning for single and
multi-agent systems. Journal of Applied Non-Classical Logics 21, 1 (2011), 9–34.
DOI:http://dx.doi.org/10.3166/jancl.21.9-34

Thomas Bolander, Martin Holm Jensen, and François Schwarzentruber. 2015. Complexity Results in Epis-
temic Planning. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, Qiang Yang and Michael Wooldridge
(Eds.). AAAI Press, 2791–2797. http://ijcai.org/papers15/Abstracts/IJCAI15-395.html

Blai Bonet. 2010. Conformant plans and beyond: Principles and complexity. Artificial Intelligence. 174, 3-4
(2010), 245–269. DOI:http://dx.doi.org/10.1016/j.artint.2009.11.001

Blai Bonet and Hector Geffner. 2000. Planning with Incomplete Information as Heuristic Search in Belief
Space. In ICAPS 2000. 52–61. DOI:http://dx.doi.org/10.1.1.38.8535

Blai Bonet and Hector Geffner. 2012. Width and Complexity of Belief Tracking in Non-Deterministic Confor-
mant and Contingent Planning. In AAAI 2012. http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/
view/5022

Ronen I. Brafman and Jörg Hoffmann. 2004. Conformant Planning via Heuristic Forward Search: A New
Approach. In ICAPS 2004. 355–364. DOI:http://dx.doi.org/10.1016/j.artint.2006.01.003

Daniel Bryce, Subbarao Kambhampati, and David E. Smith. 2006. Planning Graph Heuris-
tics for Belief Space Search. Journal of Artificial Intelligence Research 26 (2006), 35–99.
DOI:http://dx.doi.org/10.1613/jair.1869

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

A:22 Yanjun Li et al.

Alessandro Cimatti and Marco Roveri. 2000. Conformant Planning via Symbolic Model Checking. Journal
of Artificial Intelligence Research 13 (2000), 305–338. DOI:http://dx.doi.org/10.1613/jair.774

Alessandro Cimatti and Marco Roveri. 2011. Conformant Planning via Symbolic Model Checking. CoRR
abs/1106.0252 (2011). http://arxiv.org/abs/1106.0252

Alessandro Cimatti, Marco Roveri, and Piergiorgio Bertoli. 2004. Conformant planning via sym-
bolic model checking and heuristic search. Artificial Intelligence 159, 1-2 (2004), 127–206.
DOI:http://dx.doi.org/10.1016/j.artint.2004.05.003

R. Fagin, J. Halpern, Y. Moses, and M. Vardi. 1995. Reasoning about knowledge. MIT Press, Cambridge, MA,
USA.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. 1997. Knowledge-based programs. Distributed Computing
10, 4 (4 July 1997), 199–225. DOI:http://dx.doi.org/10.1007/s004460050038

Patrik Haslum and Peter Jonsson. 1999. Some Results on the Complexity of Planning with Incomplete
Information. In ECP 1999. 308–318. DOI:http://dx.doi.org/10.1007/10720246 24

Martin Holm Jensen. 2014. Epistemic and Doxastic Planning. Ph.D. Dissertation. Technical University of
Denmark.

Jon Kleinberg and Éva Tardos. 2005. Algorithm Design. Addison-Wesley.
Jérôme Lang and Bruno Zanuttini. 2012. Knowledge-Based Programs as Plans - The Complexity of Plan

Verification. In ECAI 2012. 504–509. DOI:http://dx.doi.org/10.3233/978-1-61499-098-7-504
Martin Lange. 2006. Model checking propositional dynamic logic with all extras. Journal of Applied Logic 4,

1 (2006), 39–49. DOI:http://dx.doi.org/10.1016/j.jal.2005.08.002
Benedikt Löwe, Eric Pacuit, and Andreas Witzel. 2011. DEL planning and some tractable cases. In LORI

2011. Springer, 179–192. DOI:http://dx.doi.org/10.1007/978-3-642-24130-7 13
Christian Muise, Vaishak Belle, Paolo Felli, Sheila McIlraith, Tim Miller, Adrian R Pearce, and Liz Sonen-

berg. 2015. Planning Over Multi-Agent Epistemic States: A Classical Planning Approach. In The 29th
AAAI Conference on Artificial Intelligence.

Héctor Palacios and Hector Geffner. 2006. Compiling Uncertainty Away: Solving Conformant Planning Prob-
lems using a Classical Planner (Sometimes). In AAAI 2006. 900–905. http://www.aaai.org/Library/AAAI/
2006/aaai06-142.php

Héctor Palacios and Hector Geffner. 2014. Compiling Uncertainty Away in Conformant Planning Problems
with Bounded Width. CoRR abs/1401.3468 (2014). http://arxiv.org/abs/1401.3468

Pere Pardo and Mehrnoosh Sadrzadeh. 2013. Strong Planning in the Logics of Communica-
tion and Change. In Declarative Agent Languages and Technologies X. Springer, 37–56.
DOI:http://dx.doi.org/10.1007/978-3-642-37890-4 3

Rohit. Parikh and R. Ramanujam. 1985. Distributed Processes and the Logic of Knowledge.
In Proceedings of Conference on Logic of Programs. Springer-Verlag, London, UK, 256–268.
DOI:http://dx.doi.org/10.1007/3-540-15648-8 21

Philippe Schnoebelen. 2003. The Complexity of Temporal Logic Model Checking. In AiML 2002, Philippe
Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev (Eds.). King’s College Pub-
lication, Toulouse, France, 393–436. http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/Sch-aiml02.pdf
Invited paper.

David E. Smith and Daniel S. Weld. 1998. Conformant Graphplan. In AAAI 1998. 889–896. http://www.aaai.
org/Library/AAAI/1998/aaai98-126.php

Larry J Stockmeyer and Albert R Meyer. 1973. Word problems requiring exponential time (Preliminary
Report). In STOC 1973. ACM, 1–9. DOI:http://dx.doi.org/10.1145/800125.804029

Son Thanh To, Tran Cao Son, and Enrico Pontelli. 2010. A New Approach to Conformant Planning Using
CNF*. In ICAPS 2010. 169–176. http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1461

J. van Benthem, J. van Eijck, and B. Kooi. 2006. Logics of Communication and Change. Information and
Computation 204, 11 (2006), 1620–1662.

Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. 2007. Dynamic epistemic logic. Springer.
DOI:http://dx.doi.org/10.1007/978-1-4020-5839-4

Yanjing Wang. 2015. A Logic of Knowing How. In Proceedings of LORI 2015.
Yanjing Wang and Qinxiang Cao. 2013. On axiomatizations of public announcement logic. Synthese 190

(2013), 103–134. Issue 1S. DOI:http://dx.doi.org/10.1007/s11229-012-0233-5
Yanjing Wang and Yanjun Li. 2012. Not All Those Who Wander Are Lost: Dynamic Epistemic Reasoning in

Navigation.. In AiML 2012. 559–580. http://www.aiml.net/volumes/volume9/Wang-Li.pdf
Quan Yu, Yanjun Li, and Yanjing Wang. 2015. A Dynamic Epistemic Framework for Conformant Planning.

In Proceedings of TARK’15.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

Free for More: A Dynamic Epistemic Framework for Conformant Planning A:23

Quan Yu, Ximing Wen, and Yongmei Liu. 2013. Multi-Agent Epistemic Explanatory Diagnosis via Reason-
ing about Actions. In IJCAI 2013. 1183–1190. http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/
view/6631

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: 2015.

