General Dynamic Dynamic Logic

Patrick Girard

Department of Philosophy
University of Auckland

Jeremy Seligman

Department of Philosophy
University of Auckland

Fenrong Liu

Department of Philosophy
Tsinghua University

Abstract

Dynamic epistemic logic (DEL) extends purely modal epistemic logic (S5) by adding
dynamic operators that change the model structure. Propositional dynamic logic
(PDL) extends basic modal logic with programs that allow the definition of complex
modalities. We provide a common generalisation: a logic that is ‘dynamic’ in both
senses, and one that is not limited to S5 as its modal base. It also incorporates, and
significantly generalises, all the features of existing extensions of DEL such as BMS
[1] and LCC [15]. Our dynamic operators work in two steps. First, they provide a
multiplicity of transformations of the original model, one for each ‘action’ in a purely
syntactic ‘action model’ (in the style of BMS). Second, they specific how to combine
these multiple copies to produce a new model. In each step, we use the generality of
PDL to specify the transformations. The main technical contribution of the paper is
to provide an axiomatisation of this ‘general dynamic dynamic logic’ (GDDL). This
is done by providing a computable translation of GDDL formulas to equivalent PDL
formulas, thus reducing the logic to PDL, which is decidable. The proof involves
switching between representing programs as terms and as automata. We also show
that both BMS and LCC are special cases of GDDL, and that there are interesting
applications that require the additional generality of GDDL, namely the modelling of
private belief update.

Keywords: Dynamic Logic, BMS, LCC, Belief Change.

Recent research in epistemic logic extends the classical S5-analysis of knowl-
edge with dynamic operators that model the epistemically relevant changes
brought about by various acts of communication. These are represented as

2 General Dynamic Dynamic Logic

extensions of the basic epistemic language with expression of the form [a]y in-
terpreted as ‘after action a is performed, ¢ is the case’. The primary example
of such an action is the ‘public announcement’ of a proposition 1, written !,
which achieves the right effect by simply removing the —p-states (those states
of the model in which ¢ is false), so that everyone subsequently knows that
these possibilities are no longer open.! A rich array of dynamic operators have
been introduced to deal with private communications of various sorts, and also
actions that affect more than just the epistemic states of agents, the so-called

‘real world changes’. 2

Meanwhile, interest has grown in applying similar techniques to other branches
of modal logic, such as doxastic logic (the logic of belief) [2,12] and preference
logic [5,7,8,14]. A significant difference from the epistemic setting is the need to
describe dynamic operators that change the relational structure of the underly-
ing model, not just the size of its domain (announcement) or the propositional
valuations (real-world change). For example, if one models the doxastic state
of an agent by a plausibility relation between epistemically possible state, ‘up-
grading’ a proposition ¢, so that it is believed, may be modelled by an operator
that transforms the plausibility relation by removing links from -states to —¢-
states and adding links from -¢-states to p-states. This ensures that every
possible state in which ¢ is true becomes more plausible (for the given agent)
than every possibility in which ¢ is false. Currently, however, there is no way of
adapting the technology of BMS to model the doxastic effect on a multiplicity
of agents of one or more of those agents privately upgrading their beliefs as a
response to a less-than-public communication.

We solve this problem by providing a more general framework, inspired by
Theorem 4.11 in [8], first noted in [14], which states that any dynamic operator
whose effect on a model can be described in PDL (without Kleene’s iteration
operator *) can be reduced to the underlying modal logic using essentially only
the standard axioms of PDL. We show how this idea can be used to extend
BMS (and LCC), so that a vast range of dynamic operators can be modelled in
a way that allows for private changes and real-world changes in epistemic logic,
doxastic logic, preference logic, and any other normal modal logic. We also
extend it by adding the Kleene star, so that certain desirable frame conditions
(such as transitivity) can be imposed.

Section 1 introduces the concept of a ‘PDL transformation’, which is a general
way of changing models using PDL terms. These transformation are used exten-

1 Notoriously, it is not guaranteed that the announced proposition is subsequently known
because its very announcement may change its truth value, e.g. announcing ‘the sun is
shining but you don’t know it’ results in your knowing that the sun is shining and so making
the announcement false.

2 See for example, the textbooks [16] and [13]. The initial paper on public announcement
was [9] and the most significant advance came with the eponymously acronymed BMS [1].
A recent extension of BMS, incorporating real-world changes, is LCC [15], the ‘Logic of
Communication and Change’.

Girard, Seligman, Liu 3

sively in Section 2, in which GDDL is defined semantically and then axiomatised,
using a technique that exploits the possibility of representing programs both
by PDL-terms and by finite state automata. We illustrate GDDL by showing
how it can be used to model private belief change. Finally, Section 3 shows
how BMS and LCC are special cases of GDDL.

1 Preliminaries

A Kripke signature is a pair (P, R) of sets of symbols. The elements of P are
propositional variables and those of R are relation symbols. A model of this
signature, M = (W, V') consists of a set W (of states) and a valuation function
V mapping each p € P to V(p) C W and each r € R to V(r) € W2. To
describe such structures, we define T'(P, R) to be the set of programs m and
L(P, R) to be the set of formulas ¢ in the usual way:

7w = r|e?|(mm) | (rUm) | 7
¢ = plogl PVl (me

where r € R and p € P. In each model M, semantic values [¢]¥ C W and
[7]™ C W? are given by:

[p]™ = Vi(p)

[~ = WA [e]

[(eAPI™ = [e]™ N[]"

[(m)]M = {ueW | u[r]Mv and v € [¢]M, for some v € W}

[= V()

L7 = {(ww) | uele]}

[ri;me]™ = {{(u,v) | u[m]Mw and wme]™v, for some w € W}
[rUm]? = [m]" Um]"

[M _ {{wv)lu=vor w;[7]Mu;yq for some n > 0,ug, ..., u, € W

such that ugp = v and w,, = v}
As usual, we also write u[r]Mv for (u,v) € [7]™ and M, u = ¢ for u € [p]M.

PDL Transformations We will use expressions from our language to describe
changes to models. Given a model M of signature (P, R), we will show how
to obtain a model AM of a possibly different signature (@, S) in such a way
that we retain some control over which formulas are satisfied in the new model.
Specifically, we will also define a (computable) translation ¢* of each formula
v € L(Q, S) such that

M,u = o™ iff AM,u =@

This is the content of Lemma 1.1, below. Specifically, we say that a PDL-
transformation A from signature (P, R) to signature (Q,S) consists of

(i) a formula |A| € L(P, R),

4 General Dynamic Dynamic Logic

(i) an algorithm? for calculating A(q) € L(P, R) for each ¢ € Q and
(iii) an algorithm for calculating a term A(s) € T(P, R) for each s € S.

Now, given a model M = (W, R) of signature (P, R), we define the model AM
of signature (@, S) to be (AW, AV'), where

AW = [IAY
AV(g) = [A@Q]™ N AW for each g € Q
AV(s) = [A(s)]M N AW? for each s € S

In other words, the domain of the new model is simply a restriction of the
domain of the old model (defined by |A|) and the interpretation of the symbols
of (@, S) are given by evaluating the corresponding PDL-expressions provided
by A, and then restricting them to the new domain.

For the translation, we can inductively compute formulas ¢® and terms 7 of
signature (P, R) from each formula ¢ and term 7 of signature (Q, S}, as follows:

* = Ag) st = A(s);|A]?
(~p)™ = " () = (p")?
(eA)d = (A Ayh) (m;m)t = afymd
(myp)r = (M)t (muUm) = afurd
(W*)A — (WA)*

Most of the clauses in this definition are fairly obviously what is required. Note,
however, the role of formula |A|, which acts as a restriction on the quantifier
(m) in 5%, as can be seen by expanding the semantic definition of (s)y, since

M,u = (Mo iff Fv: M vk |A,u[sA]Mo& M,v = .

As remarked above, the definition is designed precisely so that the following
result holds:

Lemma 1.1 For each state u of AM and v of M, and for each formula ¢ €
LQ,S), Mule® iff AM,ul ¢, and
u[rA My iff ve AW and u[r]*Mo.

Proof: See Appendix. @)

Example Let P = {p1,p2}, R = {r1,m2}, Q = {q1,¢2}, and S = {s}. Let A
be the transformation from (P, R) to (Q, S) given by

3 We refer to ‘algorithms’ here in an informal way, which could be made precise, but doing
so would require us to be boringly pedantic about the way the symbols of the signature,
for example, are presented, and to choose arbitrarily between many equally good ways of
representing these algorithms. Besides, in most cases of interest, the signature (Q,S) is
finite, and in this case, it is enough merely to list the various components of A.

Girard, Seligman, Liu 5

(1) [Al = (ri)p1 V (r2)p2
(i) A(qr) = (r2)-p1, Alg2) = (p27;71)-p2.
(iii) A(s) = (r1;72) U (p17572)-

Then with model M as shown below, we get AM as follows:

S

As a simple example of Lemma 1.1 in action, let ¢ be the formula (s)(g1 A g2).
Then @™ is (((r1372) U (p17572)): ((r1)p1 V (r2)p2)?) ((r2)=p1 A (p2?571)-p2). A
bit of checking will confirm that [¢]*" and [@*] are both equal to the set
of states depicted in the left columns of these diagrams.

2 General Dynamic Dynamics

Given a signature (P, R), we will define a class of dynamic operators to add to
PDL to produce our dynamic dynamic logic, GDDL. Just as with the ‘action
models’ of BMS, we think of these operators as syntactic objects, albeit some-
what complex ones. A GDDL dynamic operator [A,G,A,a] consists of four
things:

(i) a finite model A = (D,U) of some finite signature (@), S) (distinct from
(P, R)),
(ii) a PDL-transformation G4 from (P, R) to (P, R) for each d € D,
(iii) a PDL-transformation H from (PUQ,RUS) to (P, R), and
(iv) a distinguished element a € D.

And so, the language of GDDL is given by:

m o= r|e?|(mw)| (rUm) |7
¢ = plowlleve)[{ne|[AG H ae

where, again, r € R, p € P, and [A, G, H,a] is a GDDL dynamic operator. Let
T*(P,R) and LT (P, R) be the set of GDDL terms and formulas so defined.
Notice, in particular, how the two senses in which the language is ‘dynamic’
are captured by (m) and [A,G, H,a]. L(P,R) is already dynamic in the first
sense but not in the second.

We think of each element d of D as representing a possible action whose effect
on M is to transform it to G4gM. This could be an announcement, a belief

6 General Dynamic Dynamic Logic

or preference change, or something far more complex, depending on the ap-
plication. The particular element a is the one that actually occurs. The only
restriction is that the transformation is definable by PDL expressions. 4

We represent the interaction between A = (D,U) and M = (W, V) by con-
structing the model GM = (GW, GV') of combined signature (P U Q, RUS),
as follows:

GW ={(u,d) | uwe[Gall"}

Then, for (u,d) and (v,e) in GW:

(u,d) € GV (p) iff u € [p] M for each p € P
(u,d) € GV (p) iff d e Ul(q) for each ¢ € Q
(u,d) GV (r) (v,e) iff d=eand u[r]9«v for eachr € R
(u,d) GV (s) (v,e) iff u=wvand dU(s)e for each s € S

We can think of GM as resulting from the process of replacing each action
node d € D by the transformed model G4M that results from applying that
action to M. The structure of A remains, linking these transformed models
together. ®

Finally, we use the transformation H to recover a model of signature (P, R)
from GM, defining
[A,G,HIM = HGM

H encodes the way in which the structure of A coordinates the different actions
represented by the elements of D. Again, there is great generality here. All
that is required is that this means of coordination is, in some sense, PDL-
definable.® Then, we can specify the semantics for our new dynamic operators
in a standard way: "

M,uE[A G Halp it [A G, HIM, (u,a) ¢

Because of the generality of the approach, it is useful to consider the special case
in which a GDDL-operator [A, G, H, a] is defined by a single PDL-transformation
A. For this we take A to have a domain {a}, with no structure, and let G, = A

4 In BMS elements of action models are associated with formulas, called ‘pre-conditions’
which act to restrict the domain but which have no effect on the relational structure of the
model. See Section 3 for details.

5 Another useful metaphor for visualising GM is that it is a two-dimensional model in which
the S links run in a horizontal direction and the R links run in a vertical direction. Whereas
the S links are merely copies of their projection on to D, the R links vary. In the dth place
in the horizontal direction the vertical R links form a copy of those in G4 M.

6 In BMS, the coordination is built into the details of the model construction, not a parameter
of the dynamic operators. Also, the signature used for A can be taken to be the same as
that for M, since both are simply families of equivalence relations. Again, see Section 3 for
details.

7 Although a is not relevant to computing [A,G,H]M, we define [A,G,H,a]M =
[A, G, H|M, for uniformity of notation when we consider arbitrary operators.

Girard, Seligman, Liu 7

and let H be the identity transformation. We will write this operator as [A],
which is a slight abuse of notation, justified by the fact that [A]M = AM.

As an example of what can be done with GDDL, and an illustration of the
definitions in action, we will consider an application to doxastic logic.

2.1 Private Belief Change

The dynamic semantics of belief and preference change introduced in [12] and
[14] operate on models by removing, adding or reversing relational links between
states. Such changes are not representable by the kind of approach used in BMS
or LCC but we will show how they can be modelled with GDDL.

Given a finite sets of agents I, consider a Kripke signature (P, R) with R =
{~i,<; | i € I}. Models for this signature have the restriction that V(~;) is
an equivalence relation and V(<;) a preorder for each i, with ~; interpreted
as epistemic indistinguishability for agent ¢ and <; as plausibility. We will say
that a proposition ¢ is believed by agent ¢ in state u, and write M, u = B;p,
iff o is satisfied by every maximally plausible state that is at least as plausible
as u.® Or, more precisely:

M,u = By iff M,v | ¢ for every v >; u such that v >; w for each w >; v.

[12] adopts the policy of upgrading agent #’s beliefs with respect to ¢ by re-
moving <;-links between p-states and -p-states and adding <;-links between
—~-states and p-states. The new plausibility relation is defined by

(075 <i;07) U (=97 <i5-¢7) U (=75 ~4; 07)

One can use this to define a PDL-transformation f}* ¢ that maps <; to the
term above and keeps everything else the same. The fact that agent i believes
1 after upgrading her beliefs with ¢ is then expressed in GDDL as [f} ¢]B;1.°

But there is a problem. Not only is [f? p]B;p valid (as expected), but also
for any other agent j, so is [p]B;B;p. In other words, it is logically true
that after ¢ doxastically upgrades with p, not only does she believe that p but
everyone else believes that she believes p. In this way, [f? ¢] is not really
private at all. To express private upgrading of beliefs we need the operator
(1" ¢) = [A, G, H, a] depicted in the following diagram: °

8 There are many different approaches to the semantics of belief. The one we choose here is
adopted merely for illustrative purposes. For others, see, e.g. [3].

9 Strictly speaking, this is not a formula of GDDL over the signature (P, R) because it uses
the belief operator B;. But B; is still a normal modal operator, so we could extend the
signature with new symbols b; (so that B; = (b;) and then express the required relationship
between V' (b;) and V(<;) as a semantic constraint.

10The approach to other agents’ ignorance is directly from BMS but with addition of gen-
uinely dynamic (in the ‘PDL’ sense) actions rather than just restrictions of the domain by
preconditions.

8 General Dynamic Dynamic Logic

~ji= (g =g)T <= (S5 35)”

Here, A is a two-state model with domain D = {a,b}. It has signature (Q, S),
where @ is empty and S = {x;,=; | j € I}, and interprets <; as an equiv-
alence relation and =; as a preorder, although not all of the links are shown
in the diagram. The point a is distinguished as representing the actual action
performed, which is to upgrade agent i’s belief in . So, the transformation
G, is just f}* ¢ (written inside the node a). Point b represents the nil action
of doing nothing, so Gy is I, the identity transformation. Only agent ¢ knows
which of the two possible actions were performed, so a =<; b for all j # .
Likewise, we will assume (although there is room for more subtlety here) that
each of these other agents regards it as more plausible that i’s beliefs have
not changed. This is captured by making a <; b and not b <; a for all those
j. Finally, the integrating transformation H is defined as composing the two
epistemic and the two doxastic relations, and taking their reflexive transitive
closure. '

To see how this works, we will consider an application of (1% ¢) to the model
M displayed below:

<1,<2

We will think of M as representing a scenario with two agents, called 1 and 2,
who both believe —r: ‘it hasn’t rained today’. Now, the operator 1! r should
represent the action of agent 1 privately upgrading her belief in r, in a way
that is unobserved by agent 2; perhaps she takes a furtive glance out of the
window and sees someone closing an umbrella. The resulting combined model
GM (left) and the final model (1! r)M = HGM (right) of signature (P, R) are
as shown: 12

n fact, in this case, taking the reflexive transitive closure is redundant, but we include it
here to show how this can be done in general.

12 Again, we have not shown all the links, relying on diagrammatic convention for reflexive
and transitive closure.

Girard, Seligman, Liu 9

Now, we can see that in the model (11 7) M, the state (u, a) satisfies the formulas
Byr (agent 1 believes it to be raining), Bs-r (agent 2 still believes it is not
raining) and By Bj-r (agent 2 also believes, falsely, that agent 1 still believes
it not to be raining). 13

2.2 Axiomatisation

The key to understanding the logic of GDDL is to find a computable translation
@A G Hal of each formula ¢ in L(P, R) such that

[A, G, H,a]p oG el

is valid as a formula of GDDL. From this (and the replacement of logical
equivalents) it follows that every formula of L™ (P, R) is equivalent to a formula
of L(P, R), and can be proved to be so using these equivalences as axioms. We
can reduce the two senses of ‘dynamic’ in dynamic dynamic logic to one.

How, then, to define ¢4 H:al? Our approach will be to define a formula
4G of L(P,R) for each ¢ of L(PUQ,RUS) and a program 7l4:G:del of
T(P, R) for each m of T(PUQ, RUS) such that for any model M of signature
(P, R), the following result holds:

Lemma 2.1 For each (u,d), (v,e) € GW,

(i) GM, {u,d) = ¢ iff M,u = oACdl nd
(11) <u7d>|17r]]GM<’U,€> iﬁfu[[ﬂ[A,G,d,e]]]Mv

This will be proved below. We can then define @l4:G-H:dl — GHIAE o 104

13 Although the definition of a private belief upgrade operator is only an example to show
what can be done in GDDL, it illustrates the need for some constraints in getting sensible
results for epistemic logic. In particular, it is important that the epistemic relation =<; in
the operator constrains the definition of the various transformations G4 so that each agent
knows that actions affecting her own psychological state have occurred, namely, that d <; e
implies both G4(x;) = Ge(X;) and G4(<;) = Ge(<5).

10 General Dynamic Dynamic Logic

Lemma 2.2 For each operator [A,G, H,a] of GDDL and each formula ¢ of
L(P, R), the following is valid:

[A,G, H, a]p < 4G Hal

Proof: From Lemmas 2.1 and 1.1. (Note that, since GM is of signature (P U
Q,RUS) and [A,G, H,d|M = HGM is of signature (P, R), the formula ©f is
in L(PUQ,RUS), as required by Lemma 2.1.) ©

To define 7l4G %€l we need a small excursion into automata theory.'* For
each signature, say that o is a basic program of that signature if it is either
a relation symbol or a test. Then for each model N and a program 7, define
Y(N,u,v,7) to be the set of strings oy ...0, of basic subprograms of 7 such
that ui[[ai]]NuiH for some sequence ug,...,u, of states in N with ug = u
and u, = v. Say that a finite state automaton A over an alphabet of basic
subprograms of a program 7 represents 7 iff for all models N and states u and
/U7

u[r]Nv iff some word of X(N,u,v,) is accepted by A.

It has been well known since [10] that every PDL formula is represented by some
automaton and every automaton represents some PDL formula. Moreover, each
can be computed from the other.'® Now, given ¢ in L(PUQ, RUS) and 7 in
T(PUQ,RUS) and states d,e € D, we will define pl4¢4 and 7l4del by
mutual induction.

The definition of ¢!4&4 is straightforwardly inductive:

plAG.d] _ Gd(p?
q[A,G,d] Tifde U(q)
1 otherwise
_p)AGd _ IAG)
) [A,Gd _ gO[A G,d) [A,G,d]
(e AY) = (G A plAGd)
(M) D =V p(al A a) (Ge| A plhGel)

The program 74 %€l is obtained by constructing a corresponding automa-
ton, which will refer to 144 for subprograms 1? of m, which is inductively
legitimate. This will take the next couple of paragraphs.

First, consider an automaton A, which represents w. Let A, have states X, of

14 This excursion into automata theory is solely for the purpose of producing the reduction
axioms, in a recursive way. Once the axioms are produced, however, no essential use of
automata remains in the logic. We find the technique useful and illuminating but recognise
that there may be an alternative approach that provides reduction axioms in a more direct
way. We leave this as an open problem.

15 The complexity of translating between the two representations has been investigated in
[6].

Girard, Seligman, Liu 11

which Xy C X are initial states, X; C X are accepting states, and for each o
(a basic subprogram of 7), T'(c) € X? is such that there is a transition from
x1 to xo labelled by o iff (x1,22) € T(0).

Now for each symbol ¢ in the alphabet of A; (a basic subprogram of 7) and
each c1,co € D, define 012 as follows:

PlAGe? if o =p? and ¢; = o = ¢

oC1ee — Ga(o) ifoeRandc; =co
T? if o € S and (c1,¢2) € U(o)
17 otherwise

Construct a new automaton B%¢, whose alphabet consists of the basic programs
02 where o is in the alphabet of A, with states X’ = X x D, initial states
X4 = Xo x {d}, accepting states X| = X7 x {e}, and transition function 7"
defined by

T'(r) = {{{z1,c1),{ma,c2)) | for some o, (x1,72) € T(0) and o> = 7}
Now, let 7[4:G 4l be the program of T (P, R) represented by B%©.

The two automata are designed to be synchronised in the sense given by the
following technical lemma:

Lemma 2.3 Assume that for each test ¥? occurring in w, and each {(w,c) €
GW, GM,(w,c) = ¥ iff Myw = A Then, given z1,20 € X and
(u, 1), (v, ca) € GW, consider the following properties of the labels of the au-
tomata Ar and B&¢:

Y(o): (z1,22) € T(0) V(1) : ({21, ¢1), (22, ¢2)) € T'(T)
and and
{(u, c1)[o] M (v, c2) u[r]Mv

Then for each symbol T of the alphabet of B¢,
¥ () iff v(o) and 02 = 1 for some o in the alphabet of Ay

Proof: See Appendix. @)
We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1: The rank of a formula or program is defined as follows.
Formulas of rank n are not of rank n — 1 but contain no programs of rank
n, and programs of rank n not of rank n — 1 but contain no test formulas of
rank n. (In particular, formulas of rank 0 contain no programs and programs
of rank 0 contain no test formulas; formulas of rank 1 contain at least one
program of rank 0 but none of rank 1 and programs of rank 1 contain at least
one test formula of rank 0 but none of rank 1, etc.) To prove the lemma we
show, by induction on the rank n of a formula ¢ of L(P U Q, RU S), that for
(u, d), (v, €) € W,

12 General Dynamic Dynamic Logic

(i) GM,u,d = ¢ iff M,u = o4 and

(ii) for any program 7 of rank < n, (u,d)[x]“M (v, e) iff u[xlAGdel]My
We prove part 1 by induction on the structure of .

For propositional variables:

GM,u,d = p iff u € Vy(p) iff u € [Ga(p)]M iff M,u = Gq4(p) iff M,u |=
[A,G,d]
p

GM,u,d |= q iff d € U(q) iff ¢G4 = T iff M,u | ¢ (given that
gl e {T,1})

For Booleans (— and A), the proof is straightforwardly inductive.
For formulas of the form (7)1, note that 7 must be of rank < n and so for
each (w, f) e W’
(u, d)[x] M (w, f) iff u[[Tr[A’G’d’f]}]MU
and by the (inner, structural) inductive hypothesis,
GM,w, f = iff M, w, | A7)

But then the following are equivalent:

GM, u,d | (m)op
(u, d)[7]“M (w, f) and GM,w, f k= ¥ for some (w, f) € W'

u[rAGEA]My and M, w, = 4G for some (w, f) € W’

M,w E |Gyl u[rlAG AN My and M, w, = 4G for some f € D,w e W
M\ jep (mAGaD (G| A gl GoT)

M,u = (myg

For part 2, we know that any test formula in 7 is of rank < n. So suppose
(u, d)[7]M (v, e). Then by choice of A, we have that some word oy ...0, in
Y2(GM, (u,d), (v,e),m) is accepted by Ar. This implies that

(i) there are ug,...,u, and co,...,c, € D such that up = u, co =d, u, = v
cn = e and (u;, ¢;)[o;] M (it 1, ciyq) for 0 < i < n, and

(i) there are xg, ..., 2z, € X and such that 2y € Xy, x, € X1, and (z;,2,11) €
T(o;) for 0 <i < n.

Now for each i we have ~;(0;):

CiyCit1
i

(zi,wi01) € T(oy) and (us,) [od] “ (wis, i)
So, by Lemma 2.3, for 7; = o , we have ~/(7;):
(i, ¢i), (wig1, cig1)) €T'(1) and ws[m] i

Also, since ¢y = d, ¢, = €, xg € X0, Tn € X1, we have that (zg, o) € X{j and
(@, cn) € X|. Thus:

Girard, Seligman, Liu 13

(i) there are ug,...,u, such that ug = u, u, = v and u;[7;]Mu;1 for 0 <
i < mn, and
(ii) there are zg,...,z, € X and c¢g,...,c, € D such that (xg,co) € Xo,

(@n, cn) € X1, and (x4, ¢;), (Xig1,cit1)) € T'(13) for 0 < i < n.

This is precisely what is required for 7y ... 7, to be accepted by B%¢. Then by
definition of 7[4 &l we have that u[rl4&4l]My, as required. The converse
is proved similarly. @)

Theorem 2.4 The logic of GDDL is completely axiomatised by the axioms and
rules of PDL (see Definition 4.78 in [4]) and the schema

A, G, H,a]p & oG
Corollary 2.5 GDDL is decidable.

Proof: We have a computable reduction of GDDL to its PDL fragment, which
is itself decidable. ©

3 Applications

In the remainder of the paper, we show how two well-known systems for dy-
namic epistemic logic (BMS and LCC) are special cases of GDDL.

For BMS [1], we will be working with a signature (P, R) for which P is a
(countably infinite) set of propositional variables and R = {K; | i € I} is a set
of epistemic relations, one for each agent 4 € I, with I finite. The BMS system is
not dynamic in the first (PDL) sense and so we will refer to basic modal language
(in which the only terms are the atoms K;) as L~ (P, R). A model M = (W, V)
of this signature is an epistemic model iff all the relations V' (K;) are equivalence
relations. So far, this is all just standard epistemic logic. The innovation was
to define an action model to be a structure of the form (D, U, pre) for which
(D,U) is an epistemic model and pre: D — L~ (P, R) assigns a formula to
each element of D that expresses the ‘precondtion’ of performing the action
it represents. For example, if d represents the announcement of ¢, then it is
usually assumed that, as a precondition, the announcement must be true, and
so pre(d) = . Action models are finite and so can be added to the syntax as
dynamic operators. The full language of BMS is thus

o = pl-p|(@Ve)| (K| [D,U,preale

where (D, U, pre) is an action model and a € D is the designated action. Given
action model A = (D, U, pre) and epistemic model M = (W, V), the product
model AM is defined to be (AW, AV), where

14 General Dynamic Dynamic Logic

AW = {(u,d) | M, uf= pre(d)}
AV(p) ={{u,d) € AW | u € V(p)} for each p € P
AV(K;) = {{u,d), (v,e)) € (AW)? | (u,v) € V(K;) and (d,e) € U(K;)}

Finally, the semantics of the BMS operator [D, U, pre, a] is given by
M,u = [D,U,pre,ale iff (D,U,pre)M, (u,a) E ¢

This can be seen as a special case of our general construction. First, we take
a copy K of each symbol K;, because we need to keep the signature of the
epistemic model distinct from that of the action model. Then we define the
model A = (D, U’) of signature (@, S), with Q@ = 0 and S = {K! | i € I},
such that U'(K]) = U(K;), for each ¢ € I. For each d € D we define the
transformation G4 by setting |Gy4| = pre(d).'® This captures the idea of a
precondition. Finally, we take H to be the transformation given by H(K;) =
K;; KI.17 To show that [D,U, pre,a]yp is logically equivalent to [A, G, H, a]ep,
the following theorem is sufficient.

Theorem 3.1 With A = (D,U,pre) and A, G and H defined as above,
AM =[A,G,HIM

Proof: See Appendix. @)

It follows that there is a (computable) translation mapping formulas of BMS
to equivalent formulas of GDDL.

LCC [15], the Logic of Communication and Change, extends BMS in two ways:
by expanding the base language to include PDL modalities, and by introduc-
ing ‘real-world’ change. The first extension is relatively straightforward. It
just amounts to moving from L~ (P, R) to L(P, R), and the argument that the
resulting system is a fragment of GDDL goes through as above. The second
extension, to model ‘real-world’ change, is achieved using ‘propositional substi-
tutions’, which are functions o : P — L(P, R) with a finite base, meaning that
o is the identity function on all but a finite number of propositional variables.
An action that changes something other than just the psychological states of
agents, can thus be represented by a propositional substitution ¢ such that,
after the change, p is true of state u iff o(p) were true of it before the change. 18

A LCC action model A = (D, U, pre, sub) consists of a BMS-like ! action model
(D, U, pre) and a propositional substitution function suby for each d € D. Given

16 The rest of G4 keeps everything the same: Gg(p) = p and G4(K;) = K.

17 Again, everything else is kept the same, so |H| = T and H(p) = p for all p € P.

18 The restriction to o of finite base requires the changes to be, in some sense, local. However,
the embedding of LCC in GDDL shows that what is important here is only that there is some
finite representation of o, on the basis of which o can be recovered algorithmically.

19The only difference is that pre(d) is not restricted to L~ (P, R); it may be any formula of
L(P,R).

Girard, Seligman, Liu 15

an epistemic model M = (W, V), the LCC product model AM is defined to be
(AW, AV) as for BMS, except that

AV(p) ={(u,d)y € AW | u € V(suby(p))} for each p € P

To extend our earlier representation of BMS operators in GDDL requires only
one small change: the transformation G4 is now defined by |G4| = pre(d) (as
for BMS) and Gg4(p) = subg(p) (new to LCC). With A and H defined as for
BMS, we have the required result:

Theorem 3.2 With A = (D, U, pre,sub) and A, G and H defined as above,

AM = [A,G, HIM

Proof: See Appendix. @)

It follows that there is a (computable) translation mapping formulas of LCC to
equivalent formulas of GDDL.

4 Conclusion

GDDL achieves our objective of generalising existing approaches to dynamic
epistemic logic to allow relational change and opens up a number of possibilities
for further work. Firstly, it would be interesting to look at fragments that can
be expressed in a more restricted syntax. Even the syntactically promiscuous
logics of BMS and LCC exploit only a small part of the generality of GDDL
operators, suggesting that other restrictions may be equally interesting in their
own right.

Secondly, there are many applications that could profit from the ability to
code appropriate GDDL operators. For example, the study of the relationship
between first and higher-order psychological attitudes requires the interplay
between levels available in GDDL. This arises in preference logic when trying
to account for weakness of will, which may be expresses as the preference for
having different preferences: I may prefer an action in which my preference for
smoking is downgraded to one in which it is not. Moving from the personal
setting, similar level distinctions occurs when reflecting on normative systems.
Certain changes to the law, for example, may be regarded as permissible, while
others are not. Moving to a multi-agent perspective, GDDL operators could be
devised to model changes to conflicting normative systems, and so providing a
logic for reasoning about the effect of those changes, which may provide a new
approach to reasoning about conflict resolution. If the relations in a model are
understood as transitions (as in the standard interpretation of PDL), GDDL
operators encode operations for changing what it is possible to do, and so a
basis for reasoning about design.

Thirdly, from a technical point of view, the interaction between levels raises

16 General Dynamic Dynamic Logic

interesting questions about the framing of general constraints to ensure sensible
results. We saw an example of this in our brief exploration of belief change
(Footnote 13) but as yet we have no idea about how to frame a general theory
of such constraints.

These suggestions are of course very speculative but they give a sense of how
GDDL could be used to open up a new area for applications. Our motivations for
developing the system arose from technical considerations in an ongoing project
called ‘logic in the community’ [11], which aims at studying the consequences
of social relationships for our understanding of rational procedures. We expect
there to be many further uses for GDDL in this area also, as well as an extension
to the two-dimensional setting.

References

[1] Baltag, A., L. S. Moss and S. Solecki, The logic of public announcements, common
knowledge and private suspicious, Technical Report SEN-R9922, CWI, Amsterdam
(1999).

[2] Baltag, A. and S. Smets, The logic of conditional actions, in: R. van Rooij and
K. Apt, editors, New perspective on games and interaction, Texts in logic and games 4,
Amsterdam University Press, 2008 pp. 9-31.

[3] Baltag, A. and S. Smets, A qualitative theory of dynamic interactive belief revision, in:
G. Bonanno, W. van der Hoek and M. Wooldridge, editors, Logic and the Foundations of
Game and Decision Theory, Texts in Logic and Games 3, Amsterdam University Press,
2008 .

[4] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge University Press,
Cambridge, Mass., 2001.

[5] Girard, P., “Modal Logic for Belief and Preference Change,” Ph.D. thesis, Stanford
University (2008).

[6] Harel, D. and R. Sherman, Propositional dynamic logic of flowcharts, Information and
Control 64 (1985), pp. 119-135.

[7] Liu, F., “Changing for the Better: Preference Dynamics and Agent Diversity,” Ph.D.
thesis, ILLC (2008).

[8] Liu, F., “Reasoning about Preference Dynamics,” Synthese Library 354, Springer, 2011.

[9] Plaza, J., Logics of public communications, Synthese 158 (2007), pp. 165-179.

[10] Pratt, V. R., Using graphs to understand PDL, in: Logic of Programs, Workshop (1982),
pp- 387-396.

[11] Seligman, J., F. Liu and P. Girard, Logic in the community, in: M. Banerjee and A. Seth,
editors, ICLA, Lecture Notes in Computer Science 6521 (2011), pp. 178-188.

[12] van Benthem, J., Dynamic logic for belief revision, Journal of Applied Non-classical
Logic 17 (2007), pp. 129-155.

[13] Van Benthem, J., “Modal Logic for Open Minds,” CSLI lecture notes, Center for the
Study of Language and Information, 2010.

(14] van Benthem, J. and F. Liu, The dynamics of preference upgrade, Journal of Applied
Non-Classical Logics 17 (2007), pp. 157-182.

[15] van Benthem, J., J. van Eijck and B. Kooi, Logics of communication and change,
Information and computation 204 (2006), pp. 1620-1662.

[16] van Ditmarsch, H., W. van der Hoek and B. Kooi, “Dynamic Epistemic Logic,” Berlin:
Springer, 2007.

Girard, Seligman, Liu 17
Appendix

This technical appendix contains those proofs that we regard as relatively
straightforward, and which should not appear in the final version of the paper.
They are included here merely to assist the referees to check our results.

Proof of Lemma 1.1: We prove the two claims simultaneously by induction.
Assume that uw € AW.

M,u ¢ iff M,ukE Aq) (definition of ¢*)
iff we AQ]MNAW (ue AW)
if uweAV(qg) (definition AV (q))
it AM,ul=gq (definition AM)

Negation and conjunction are straightforward.

Myu e (W) i M,u e ()t (definition ((r)))
iff u[r*]Mv and M,v = ¢ for some v € W (definition)
iff w[r]*v and AM,v = for some v € AW (IH)
it AM,u = (m)¢ (definition)

u[sMMo it w[A(s);|A|7]M (definition of s%)
iff FJw:u[A(s)]Mw&w[|A|?]Mv (definition of [A(s);|A|?]M)
iff u[A(s)[Mo&o|A]?7]M (w[|A]?]Mv = w = v)
iff w[A(s)|[Mv&wv e [|A]M (definition of [|A|?]™)
iff u[A(s)[Mv&v e AW (definition of AW)
(

iff u[s][*Mv&v e AW definition of [A(s)]™)

(A Mo iff w=v and v][(y*)?]Mo (u[)A Mo =u=v
iff u=uv,0e[prM (definition of [(*)?]*)
iff u=v,0€ AW and v € [v]* (IH, and u € AW)
iff u=v,0¢ AW and v[?]*Mv (definition of [¢?]*M)
iff v e AW &uyp?]AMu (u[?]* Mo = u =)

The remaining cases are straightforward.

©

Proof of Lemma 2.3: In the first direction, assume that ((z1,c1), (x2,c2)) €
T'(t) and u[r]Mv. Then, for some o, (z1,23) € T(0) and o2 = 7, s0
ufocre2]My. It remains to show that v(o).

Now, 0°:¢2 = T?,Gy(0) or A:Gel?;
e 02 = T? o € S {c1,c0) € U(o), so u[T?]Mv implies that u = v, so
(u, c1)[0]“M (v, e2), by definition.

e 012 = Gy(o): o = r € Ry = ca. So u[Ga(o)]v. Thus,

18 General Dynamic Dynamic Logic

(u, c1)[0]“M (v, e2), by definition.

o ooz = YlAGA 5 = Y2 ¢p = ¢ = ¢ So u[plGA?]My implies that
u = v and M,u | ¢4 Hence, GM, (u,c) = 1, by assumption, so
(u, e1) [0]“M (v, c2).

Therefore, (x1,72) € T(0) and (u, c1)[0]“M (v, ca).

In the other direction, assume that (o) and o“2 = 7. We show
that ((z1,c1), (x2,c2)) € T'(0) and ufo]™v. Now (o) implies that
(u, c1)[o]EM (v, e2), so either u = v or ¢; = cg, by definition. If ¢; = ¢z, 0 is a
basic subprogram of , i.e., o = r or ¥?, which implies that g€1:¢2 = ¢[4.G:cl?
or G4(o). And if u = v, then (c1,c2) € U(s), by definition, so ¢ = T?. So

if 0¢¢2 = 1?7, then NOT (u, c;)[0]“™ (v, c2), contradicting our assumption.

o g2 = lAGAdY 5 = h? c) = co = ¢, s0 (u,) [$?]“M (v, c), which implies
that u = v and GM, (u, ¢) |= . By assumption, M, u |= 4Gl so u[[r]Mo,
by definition.

o 090 =Gy(0): o =1 €R, c; = cy =d, 50 (u,d)[r]M(v,d), which implies
that (u,v) € Vy(r), by definition, so u[G4(r)]*v. Hence, u[r]Mv.

e 02 =T?% o0 =s¢€ S and {(c1,ca) € U(a). so (u,c1)[s]9M (v, c2), which
implies that u = v. But M,u |= T, so u[T?]Mu. Hence, u[r]™v.

Therefore, u[r]Mv.

Finally, (z1,22) € T(0) and 0°*2 = 7 implies that ((z1,c1)){(x2,c2) € T'(7)
by definition. ®

Proof of Theorem 3.1: Let AM = (W', V") and [A, G, M|M = (AGW,AGV).
Then,

AGW = GW (Al =T)
= {(u,d) | ue[|Gq]} (definition)
= {(u,d) | ue][lpre(d)]]} (assumption)

= AW
AGV(p) = [AGP)]M* "AGW (definition)
= [pIMnAaw (AGW = AW)
= AV(p) (definition)
[AGa(ra)]*M = [A(r)]*M (Galri) = 1)

= [rss]M (assumption)

But (u,d)[rs;si]9M (v,e) iff there exists (w,f) € GW such that
(u, d)[r:]M (w, f) and (w, f)[s:]M (v,e), iff d = f and w = v, by defini-
tion. Hence, (u,d)[r:; s;]M (v, e) iff (u,d)[r;]9™ (v,d) and (v,d)[s;]“M (v, e)
iff u[G4(r;)]Mv and d[s;]?e, by definition, iff u[r;]*v and d[s;]*e. Therefore,

Girard, Seligman, Liu 19

[AGq(r)]ACM = AV (7). ®

Proof of Theorem 3.2: The proof is the same as the previous theorem but for
the propositional case:

AGV(p) = [AGa()]™ NAGW (definition)
= [suba®)]M NAW (AGW = AW)
= AV(p) (definition)

	Preliminaries
	General Dynamic Dynamics
	Private Belief Change
	Axiomatisation

	Applications
	Conclusion
	References
	References

